Name \qquad
\qquad
Marking rule: 0.5 points/ question
Remark: the multiple choice questions can have 1,2 or several correct answers

1. Let us suppose that we have a log file containing data on the access of various users to a web server. We are interested in identifying some user profiles. To which category belongs this task? (a) classification; (b) forecasting; (c) clustering; (d) association rules; (e) regression.
2. Let us consider the following set of transactions:

T1: \{milk, bread, meat, water\}
T2: \{bread, water\}
T3: \{bread, butter, meat, water\}
T4: \{water\}
and the rule: IF bread and meat THEN water. Compute the values for the rule support:
\qquad and for the rule confidence \qquad
3. Let us consider a numerical attribute taking values in the interval [a,b). We are interested in discretizing the attribute by using an equi-depth discretization approach in such a way that the discretized attribute takes values in a set with N elements $\left(v_{1}, v_{2}, \ldots, v_{N}\right)$. Which interval of values is mapped to the i-th discretized value $\left(\mathrm{v}_{\mathrm{i}}\right)$? (a) $\left[\mathrm{a}+\mathrm{i}^{*}(\mathrm{~b}-\mathrm{a}) / \mathrm{N}, \mathrm{a}+(\mathrm{i}+1)^{*}(\mathrm{~b}-\mathrm{a}) / \mathrm{N}\right)$; (b) $\left[\mathrm{a}+(\mathrm{i}-1)^{*}(\mathrm{~b}-\right.$ a)/N, $\left.a+(i+1)^{*}(b-a) / N\right) ;(c)[a+(i-1) *(b-a) / N, a+i *(b-a) / N) ;(d)[b-(i+N) *(b-a) / N, b-(i+N-1) *(b-$ a)/N); (e) $[\mathrm{b}-(\mathrm{i}+\mathrm{N}-1) *(\mathrm{~b}-\mathrm{a}) / \mathrm{N}, \mathrm{b}-(\mathrm{i}+\mathrm{N}-2) *(\mathrm{~b}-\mathrm{a}) / \mathrm{N})$;
4. Let us consider the following confusion matrix provided by a binary classifier

	Predicted C1	Predicted C2
True C1	25	15
True C2	5	55

Compute the accuracy of the classifier: \qquad
5. Let us consider the following probability distributions correponding to three splitting variants (in the context of the induction decision trees for a binary classification problem): (a) (0.5,0.5); (b) $(1,0) ;(c)(0.25,0.75) ;(d)(0.75,0.25)$. Which of these distributions have the smallest entropy?

