
to be published in: Int. Journal ofComputer Standards and InterfacesSpecial Issue on Neural Networks (5), 1994Advanced Supervised Learning in Multi-layer Perceptrons -From Backpropagation to Adaptive Learning AlgorithmsMartin RiedmillerInstitut f�ur Logik, Komplexit�at und DeduktionssytemeUniversity of KarlsruheW-76128 KarlsruheFRGriedml@ira.uka.deAbstract| Since the presentation of the back-propagation algorithm [1] a vast variety of im-provements of the technique for training theweights in a feed-forward neural network havebeen proposed. The following article introducesthe concept of supervised learning in multi-layerperceptrons based on the technique of gradient de-scent. Some problems and drawbacks of the orig-inal backpropagation learning procedure are dis-cussed, eventually leading to the development ofmore sophisticated techniques.This article concentrates on adaptive learningstrategies. Some of the most popular learning al-gorithms are described and discussed accordingto their classi�cation in terms of global and localadaptation strategies.The behavior of several learning procedures onsome popular benchmark problems is reported,thereby illuminating convergence, robustness, andscaling properties of the respective algorithms.I. IntroductionAt present, supervised learning is probably the most fre-quently used technique in the �eld of neural networks.A teacher provides training examples of an arbitrarymapping which the network is to learn. Learning inthis context means incremental adaptation of connectionweights that transport information between simple pro-cessing units.In fact, this sort of learning can be expressed as a min-imization problem over a many dimensional parameterspace, namely the vector space spanned by the weights.A typical technique to perform this kind of optimizationis gradient descent. The learning rule of the most pop-ular supervised learning procedure, the backpropagationalgorithm [1], follows the principle of gradient descent.Section II outlines supervised learning in multi-layer per-ceptrons, and describes the backpropagation algorithm.After a short discussion of possible problems and pit-falls of the basic algorithm, a selection of more elaboratelearning techniques is presented. Section III is dedi-

cated to the introduction and discussion of global adap-tive learning algorithms, especially the class of conjugategradient methods. Several local adaptive learning rulesare introduced in Section IV. The last part of the articlediscusses the performance of backpropagation and severaladaptive variations on a couple of benchmark problems.Some important properties of learning procedures are thenexamined and compared.II. FoundationsA. Multi-layer PerceptronsA multi-layer perceptron is a feed-forward neural network,consisting of a number of units (neurons) which are con-nected by weighted links. The units are organized in sev-eral layers, namely an input layer, one or more hiddenlayers, and an output layer. The input layer receives anexternal activation vector, and passes it via weighted con-nections to the units in the �rst hidden layer. These com-pute their activations and pass them to neurons in suc-ceeding layers (Figure 1).From a distal point of view, an arbitrary input vector ispropagated forward through the network, �nally causingan activation vector in the output layer. The entire net-work function, that maps the input vector onto the outputvector is determined by the connection weights of the net.
Input−Layer

Hidden−Layer

Output−Layer

wij

is

i

j

external inputFigure 1: Topology of a typical feed-forward network withone hidden layer. The external input is presented tothe input layer, propagated forward through the hiddenlayer(s) and yields an output activation vector in the out-put layer.



Each neuron i in the network is a simple processingunit that computes its activation si with respect to itsincoming excitation, the so-called net input neti:neti = Xj2pred(i) sjwij � �iwhere pred(i) denotes the set of predecessors of unit i,wij denotes the connection weight from unit j to unit i,and �i is the unit's bias value. For the sake of a homoge-neous representation, �i is often substituted by a weightto a 'bias unit' with a constant output 1. This means thatbiases can be treated like weights, which is done through-out the remainder of the text.The activation of unit i, si, is computed by passing thenet input through a non-linear activation-function. Usu-ally, the sigmoid logistic functionsi = flog(neti) = 11 + e�netiis used. A nice property of this function is its easilycomputable derivative:@si@neti = f 0log (neti) = si � (1� si)B. Supervised LearningIn supervised learning, the objective is to tune the weightsin the network such that the network performs a desiredmapping of input to output activations. The mapping isgiven by a set of examples of this function, the so-calledpattern set P.Each pattern pair p of the pattern set consists of aninput activation vector xp and its target activation vectortp. After training the weights, when an input activationxp is presented, the resulting output vector sp of the netshould equal the target vector tp. The distance betweenthe target and the actual output vector, in other wordsthe �tness of the weights, is measured by the followingenergy or cost function E:E := 12Xp2P Xn (tpn � spn)2 (1)where n is the number of units in the output layer.Ful�lling the learning goal now is equivalent to �nding aglobal minimum of E. The weights in the network arechanged along a search direction d(t), driving the weightsin the direction of the estimated minimum:4w(t) = � � d(t)w(t+ 1) = w(t) +4w(t)where the learning parameter � scales the size of theweight-step. To determine the search direction d(t), �rstorder derivative information, namely the gradient rE :=@E@w is commonly used.The backpropagation algorithm, introduced in the nextsection, performs successive computation of rE by prop-agating the error back from the output layer towards theinput layer.

C. The Backpropagation AlgorithmThe basic idea, used to compute the partial derivatives@E@wij for each weight in the network, is to repeatedly applythe chain rule: @E@wij = @E@si @siwij (2)where @si@wij = @si@neti @neti@wij = f 0log (neti) sj (3)To compute @E@si , or the inuence of the output si ofunit i on the global error E, the following two cases aredistinguished:� If i is an output unit, then@E@si = 12 @(ti � si)2@si = �(ti � si) (4)� If i is not an output unit, then the computation of@E@si is a little more complicated. Again, the chainrule is applied:@E@si = Xk2 succ(i) @E@sk @sk@si= Xk2 succ(i) @E@sk @sk@netk @netk@si= Xk2 succ(i) @E@sk f 0log(netk)wki (5)where succ(i) denotes the set of all units k in succes-sive layers (successive means closer to the output layer) towhich unit i has a non-zero weighted connection wki.Equation (5) assumes knowlegde of the values @E@sk forthe units in successive layers to which unit i is connected.This can be provided by starting the computation atthe output layer (4) and then successively computing thederivatives for the units in preceding layers, applying (5).In other words, the gradient information is successivelymoved from the output-layer back towards the input-layer.Hence the name 'backpropagation algorithm'.D. Gradient DescentOnce the partial derivatives are known, the next stepin backpropagation learning is to compute the resultingweight update. In its simplest form, the weight updateis a scaled step in the opposite direction of the gradient,in other words the negative derivative is multiplied bya constant value, the learning-rate �. This minimizationtechnique is commonly known as 'gradient descent':4w(t) = �� � rE(t) (6)or, for a single weight:4wij(t) = �� � @E@wij (t) (7)2



Although the basic learning rule is rather simple, it isoften a di�cult task to choose the learning-rate appropri-ately. A good choice depends on the shape of the error-function, which obviously changes with the learning taskitself. A small learning-rate will result in long convergencetime on a at error-function, whereas a large learning-ratewill possibly lead to oscillations, preventing the error tofall below a certain value. Moreover, although conver-gence to a (local) minimum can be proven under certaincircumstances, there is no guarantee that the algorithm�nds a global minimum of the error-function.Another problem with gradient descent is the 'contraintuitive' inuence of the partial derivative on the sizeof the weight-step. If the error-function is shallow, thederivative is quite small, resulting in a small weight step.On the other hand, in the presence of steep ravines in theenergy landscape, where cautious steps should be taken,large derivatives lead to large weight steps, possibly takingthe algorithm to a completely di�erent region of weightspace (Figure 2).
E(w)

w

wFigure 2: Problem of gradient descent: The weight-step isdependent on both the learning parameter and the size ofthe partial derivative @E@wijAn early idea, introduced to make learning more stable,was to add a momentum term:4wij(t) = �� @E@wij (t) + �4wij(t� 1) (8)The momentum parameter � scales the inuence of theprevious weight-step on the current one. It should benoted that although this technique works well on manylearning tasks, this is not a general technique for gainingstability or speeding up convergence. Sometimes, com-parable or even better results can be achieved by usingno momentum term at all. Usually, when using gradi-ent descent with momentum, the learning-rate should bedecreased to avoid unstable learning.E. Learning by pattern versus. Learning by epochBasically there are two possible methods for computingand performing weight-update, depending on when theupdate is performed.In the 'learning by pattern' method, a weight-update isperformed after each presentation of a pattern pair and thecomputation of the respective gradient. This is also knownas 'online learning' or 'stochastic learning', because onetries to minimize the overall error by minimizing the errorfor each individual pattern pair, and these are not actuallythe same. This method works especially well for large

pattern sets containing substantial amounts of redundantinformation.An alternative method, known as 'learning by epoch',�rst sums gradient information for the whole pattern set,then performs the weight-updates. This method is alsoknown as 'batch learning'. Each weight-update tries tominimize the summed error of the pattern set, in otherwords the error-function de�ned in (1). The adaptive pro-cedures described in the following section use the lattertype of learning, because the summed gradient informa-tion for the whole pattern set contains more reliable infor-mation regarding the shape of the entire error-function.F. Adaptive TechniquesMany techniques have been proposed to date to deal withthe above mentioned, inherent problems of gradient de-scent. Most of these have their roots in the well-exploreddomain of optimization theory.These techniques can roughly be divided into two cate-gories. Algorithms that use global knowledge of the stateof the entire network, such as the direction of the over-all weight-update vector, are referred to as 'global' tech-niques. There are many examples where adaptive learn-ing algorithms make use of global knowledge [2], [3]. Oneclass of global algorithms, the conjugate gradient method,is discussed in the following section.By contrast, local adaptation strategies are based onweight-speci�c information only, such as the temporal be-havior of the partial derivative of this weight. The localapproach is more closely related to the neural networkconcept of distributed processing in which computationscan be made in parallel. Furthermore, it appears that formany applications local strategies work far better thanglobal techniques, although they use less information andare often much easier and faster to compute [4].III. Global Adaptive TechniquesThe following presents a short review of some global adap-tation techniques. A good introduction to the foundationof several optimization approaches can be found in [5].A. Steepest DescentWhile the gradient descent technique used in the standardbackpropagation algorithm performs weight-update by aconstant scaling � of a search direction d(t) = �rE(t),the 'steepest descent' procedure tries to take an optimalweight-step by �nding an individual scaling parameter �(t)each iteration.Determining such an optimal parameter can be re-garded as a one-dimensional optimization problem knownas 'line search'. In the simplest case, a small initiallearning-rate is used, which is iteratively increased untilthe error-function no longer decreases.Unfortunately, for every iteration the evaluation of theerror-function E is required, which means a costly forwardpropagation of the whole pattern set to compute the newvalue of E. In general, more elaborate methods for linesearch must be used, such as the false position method,which typically converges in 2-3 iterations [6].3



When applying the method of steepest descent, it can beshown that two successive weight-steps are necessarily per-pendicular. Assume that an � has been found that yieldsan optimal weight-step, which means that @E(w(t+1))@� = 0.Then,@E(w(t + 1))@� = @E(w(t + 1))@w(t + 1) @(w(t) + � � d(t))@�= rE(t+ 1) d(t)= 0 (9)This means that the new gradient rE(t + 1), whichdetermines the new direction d(t+ 1), and the old searchdirection d(t) are perpendicular. This relation is �nallyused to improve the performance of the steepest descentprocedure, as it is done by conjugate gradient methodsdescribed in the following section.B. The Conjugate Gradient MethodFinding an optimal learning-rate is a costly iterative pro-cedure, so we do not want to completely destroy this e�ortin succeeding steps. Accordingly, the condition found inequation (9) should also hold for the followingweight-step,namely d(t)rE(t+ 2) != 0 (10)It can be shown that condition (10) is ful�lled, ifd(t)H d(t+ 1) = 0 (11)where H denotes the Hessian matrix, containing the sec-ond order derivatives of the weights. Two vectors ful�llingcondition (11) are called 'conjugate'.To determine the new search direction d(t + 1) thatful�lls (11) we set:d(t+ 1) := �rE(t + 1) + � � d(t)This means that the new search direction is a combina-tion of both the direction indicated by the gradient andby the previous search direction.The parameter � is computed for example according tothe Polak-Ribiere rule:� = (rE(t+ 1)�rE(t))rE(t+ 1)(rE(t))2As in the steepest descent procedure, a line search tech-nique has to be applied to �nd an optimal learning-ratethat minimizes the error along the new search directiond(t+ 1).According to the reported results on several small bi-nary classi�cation tasks [6], the higher expense of the con-jugate gradient computation (line search + Polak Ribiere)is compensated very well by a much faster convergencecompared with backpropagation learning. However, asshown in a recent comparison on a real world benchmark[4], global optimization techniques can experience severeproblems with convergence when applied to larger learn-ing tasks.

IV. Local Adaptive TechniquesA. The Delta-Bar-Delta RuleTo overcome the drawbacks of the simple backpropaga-tion weight update, Jacobs [7] proposed weight-speci�clearning-rates, since the error-function may have a di�er-ent shape with respect to the one-dimensional view of eachweight in the network. Because of this, Jacobs introduceda second learning law, which determines the evolution of alearning-rate according to a local estimation of the shapeof the error-function.This estimation is based on the observed behavior ofthe partial derivative during two successive weight-steps.If the derivatives have the same sign, the learning-rate islinearly increased by a small constant to accelerate learn-ing in shallow regions. On the other hand, a change insign of the two derivatives indicates that the procedure hasovershot a local minimum; the previous weight-step wastoo large. As a consequence, the learning-rate is exponen-tially decreased by multiplying it with a decreasing-factorsmaller than unity:�(t)ij = 8>><>>: � + �(t�1)ij ; if @E@wij (t�1) � @E@wij (t) > 0�� � �(t�1)ij ; if @E@wij (t�1) � @E@wij (t) < 0�(t�1)ij ; else (12)with 0 < �� < 1The weight-update itself is the same as with backpropa-gation learning, except that the �xed global learning-rate� is replaced by a weight-speci�c, dynamic learning-rate�ij(t):4wij(t) = ��ij(t) @E@wij (t) + �4wij(t� 1) (13)As reported in [7], the Delta-Bar-Delta converges fasterthan backpropagation and is more robust with respect tochoice of parameters.B. SuperSABSuperSAB [8] is also based on the idea of sign-dependentlearning-rate adaptation, as just described with the Delta-Bar-Delta method. A very similar approach can be foundin [9].The basic change is to increase the learning-rate expo-nentially instead of linearly as with the Delta-Bar-Deltamethod. This is done to take the wide range of temporar-ily suited learning-rates into account.�(t)ij = 8>><>>: �+ � �(t�1)ij ; if @E@wij (t�1) � @E@wij (t) > 0�� � �(t�1)ij ; if @E@wij (t�1) � @E@wij (t) < 0�(t�1)ij ; else (14)with 0 < �� < 1 < �+Moreover, in case of a change in sign of two successivederivatives, the previous weight-step is reverted.4



SuperSAB has shown to be a fast converging algorithm,that is often considerably faster than ordinary gradientdescent. One possible problem of SuperSAB is the largenumber of parameters that need to be determined in or-der to achieve good convergence times, namely the initiallearning-rate, the momentum factor, and the increase (de-crease) factors.Another drawback, inherent to all learning-rate adap-tation algorithms, is the remaining inuence of the size ofthe partial derivative on the weight-step:4wij(t) := ��ij(t) � @E@wij (t) + �4wij(t� 1)Despite careful adaptation of the learning-rate, thederivative itself can have an un-foreseeable inuence onthe size of the weight-step. For example consider thesituation, where a very shallow error-function leads to apermanent increase of the learning-rate. Although thelearning-rate grows rather large, the resulting weight-stepremains small, due to the small partial derivative. Whensuddenly a region of steep descent is reached, probablyindicating the presence of a minimum, the resulting largederivative is scaled by the large learning-rate, pushing theweight in a region far away from the previous (promising)position (Figure 2).C. QuickpropA completely di�erent approach to local adaptive learningis that of Fahlman [10], in which the local error-functionfor each weight is assumed to be a 'parabola whose armsare opened upward', and that the slope of the curve isnot a�ected by changing all other weights in the network.Estimates of the position of the minimum for each weightare obtained by solving the following equation for the twofollowing partial derivatives @E@wij (t� 1) and @E@wij (t):4wij(t) := @E@wij (t)@E@wij (t � 1)� @E@wij (t) 4w(t� 1) (15)It can be shown that this weight update is equivalentto a local application of Newton's approximation method,which can be derived from the �rst order Taylor series ex-pansion for the approximation of the error. The objectiveis to �nd a minimum of f(x), and this is done by search-ing for an x for which f 0(x) = 0. Under the assumptionthat f 0(x) is convex, Newton's method iteratively com-putes updates of x according to the following equation:x(t+ 1) = x(t) +4x(t) (16)where 4x(t) = � f 0(x(t))f 00(x(t)) (17)If the second order information f 00(x) is not easily avail-able (as it is the case for the weights in a neural network),an approximation is made using the �rst order derivatives:

f 00(x(t)) = f 0(x(t)) � f 0(x(t� 1))x(t)� x(t� 1)= f 0(x(t)) � f 0(x(t� 1))4x(t� 1) (18)Substituting (18) in (17) then yields:4x(t) = � f 0(x(t))f 0(x(t)) � f 0(x(t � 1))4x(t� 1)= f 0(x(t))f 0(x(t� 1)) � f 0(x(t))4x(t� 1) (19)This corresponds exactly to the expression given inequation (15).Although the main formula for the weight-update (15)is straightforward and easy to compute, there are a fewmodi�cations necessary, due to violation of the above as-sumptions. Firstly, the actual update-rule is composed ofboth the application of (15) and a small gradient descentstep. Moreover, in order to avoid arbitrary large weight-steps resulting from a possibly very small denominator in(15), the present weight-step is restricted to be at most �times as large as the previous step.Thus the Quickprop algorithm has two parameters,these being a learning rate � for gradient descent, and asecond parameter � which limits the step-size (the defaultvalue for � is 1:75).There is a marked improvement of learning time com-pared with standard backpropagation, and indeed Quick-prop is one of today's most frequently used adaptive learn-ing paradigms.D. RpropRprop stands for 'Resilient backpropagation' and is a lo-cal adaptive learning scheme [11]. The basic principle ofRprop is to eliminate the harmful inuence of the sizeof the partial derivative on the weight step. As a con-sequence, only the sign of the derivative is considered toindicate the direction of the weight update. The size ofthe weight change is exclusively determined by a weight-speci�c, so-called 'update-value' 4ij:4wij(t) = 8>><>>: �4ij(t) ; if @E@wij (t) > 0+4ij(t) ; if @E@wij (t) < 00 ; else (20)It should be noted, that by replacing the 4ij by a con-stant update-value 4, equation (20) yields the so-called'Manhattan'-update rule.The second step of Rprop learning is to determinethe new update-values 4ij(t). This is based on a sign-dependent adaptation process, similar to the learning-rateadaptation of equation (14).4(t)ij = 8>><>>: �+ � 4(t�1)ij ; if @E@wij (t�1) � @E@wij (t) > 0�� � 4(t�1)ij ; if @E@wij (t�1) � @E@wij (t) < 04(t�1)ij ; else (21)5



where 0 < �� < 1 < �+At the beginning, all update-values are set to an initialvalue 40, which is one of two parameters of Rprop. Since40 directly determines the size of the �rst weight step,it should be chosen according to the initial values of theweights themselves, for example 40 = 0:1. The choice ofthis value is rather uncritical, for it is adapted as learningproceeds.In order to prevent the weights from becoming too large,the maximum weight-step determined by the size of theupdate-value, is limited. The upper bound is set by thesecond parameter of Rprop, 4max. The default upperbound is set somewhat arbitrarily to 4max = 50:0. Usu-ally, convergence is rather insensitive to this parameter aswell. Nevertheless, for some problems it can be advanta-geous to allow only very cautious (namely small) steps, inorder to prevent the algorithm getting stuck too quicklyin suboptimal local minima.The increase and the decrease factor are �xed to �+ =1:2 and �� = 0:5. These values are based on both the-oretical considerations and empirical evaluations. Thisreduces the number of free parameters to two, namely40and 4max.To summarize, the basic principle of Rprop is the di-rect adaptation of the weight update-values 4ij . In con-trast to the learning-rate based algorithms described ear-lier, Rprop modi�es the size of the weight-step directly byintroducing the concept of resilient update-values. As a re-sult, the adaptation e�ort is not blurred by un-foreseeablegradient behaviour. Due to the clarity and simplicity ofthe learning laws, there is only a slight expense in compu-tation compared with ordinary backpropagation.Rprop su�ers from the same problem as does any of theabove mentioned adaptive learning algorithms. Becausethe adaptation is based on an estimation of the topologyof the error-function, both adaptation and weight updatecan be �rst performed after the whole gradient informa-tion is available, in other words after each pattern hasbeen presented and the gradient of the sum of pattern er-rors is known. Accordingly, adaptive learning proceduresare typically based on 'learning by epoch'. This possiblyreduces their e�ciency on redundant training sets com-pared to a simple stochastic gradient descent and posesproblems on their use with variable training sets.Moreover, a restricted local adaptation scheme inher-ently lacks the overall view that global techniques mayhave. If for example, an optimal search direction for theminimumlies along the diagonal, a local scheme will try todecrease the error in each dimension, by carefully search-ing the local minimum with small weight-steps; it willnot increase the composite weight-step along the diago-nal, which would be the more appropriate approach inthis case.Nevertheless, the results reported in the following sec-tion show the favorable properties of local adaptationstrategies in practical applications.

V. Comparative StudiesA good learning algorithm should ful�ll at least the fol-lowing requirements:� fast convergence� easy parameter choice� good generalization ability on unknown inputsDue to the wide variety of di�erent learning problemswith di�erent requirements and di�erent goals it is noteasy to establish a fair comparison between the many vari-ants of supervised learning techniques. Nearly as manybenchmark problems are reported in the literature as newlearning algorithms. This is not surprising, since everynew variant solves a speci�c learning problem faster thanmost other techniques, and certainly faster than backprop-agation.One of the most famous benchmark problems is the 'ex-clusive or' (XOR) problem, or in its more general form,the N-parity problem. Following the argumentation ofFahlman [10], this is not a typical benchmark for thereal world problems solved with neural networks. Thehighly desired ability of a network to generalize, that is tomap similar input patterns to similar output activations,doesn't apply with XOR. A single change of a bit in theinput vector requires a complementary classi�cation. Thereason why we include N-parity problems here is that theyare often used in the literature to benchmark new learningalgorithms.A better class of benchmarks is the family of the N-M-Nencoder problems. The network consists of N units each inthe input and output layers, and M neurons in the hiddenlayer. The input vector comprises N bits, one of which isset to '1', and the remaining bits set to '0'. The output(target) vector is identical to the input, so the task of thenetwork is to perform an auto-association between inputand output vectors. The objective is to learn a mapping ofN input units to M hidden units (encoding) and a mappingof M hidden units to N output units (decoding), where ingeneral M < N . If M � log2N we refer to this mappingas a 'tight encoder'.A. Testing ConditionsIn the following experiments the performance of severalalgorithms was tested in twenty runs, each with a di�er-ent initial weight setting. The weights were chosen ran-domly within a certain range. Learning time is reportedas the average number of epochs1 required until the taskedwas learned. If a run failed to converge, its convergencetime is set to a benchmark-dependent maximum numberof epochs. The number of converged runs is reported inthe 'success' row of each table.Following Fahlman's suggestions as to how resultsshould be reported, learning of binary tasks is complete,if a '40-20-40' criterion is ful�lled: an output is consideredto be a logical zero if it is in the lower 40% of the output1An epoch is de�ned as the period during which every pattern ofthe training set is presented once6



range, a one if it is in the upper 40%, and indeterminate(and therefore incorrect) if it is in the middle 20% of therange.A wide variety of parameter values was tested in orderto �nd a correspondingly good choice for each learningalgorithm. However, in practice it is often undesirableor even impossible to perform large parameter test series,due to time or hardware constraints. Moreover, the easierit is to �nd a parameter setting that allows fast and ro-bust convergence, the better the algorithm will be suitedfor practical application. The sensitivity of the averagenumber of required epochs on a good choice of the initiallearning parameter is shown in the �gures which follow.The tables show the average number of epochs requiredusing the best parameter setting. The comparison wasperformed for the following learning procedures: Back-propagation by epoch (BP), SuperSAB (SSAB), Quick-prop (QP) and Rprop.In the following, � denotes the (initial) learning-rate(BP, SSAB, QP), 40 denotes the initial update-value(RPROP), 4max is the maximum step size (RPROP), �is the momentum (BP, SSAB), and � denotes the maximalgrowth factor (QP).B. 3 Bit ParityThis is the 3 bit version of the 'XOR'-problem. The three-layer-network consists of 3 input, 3 hidden and 1 outputneuron. The target for the output is 'one', if the numberof 'one' bits in the input is odd, and 'zero' otherwise. Forthe symmetric nature of the problem we used symmetricactivation functions with a range of [�1;+1]. The max-imum learning time was set to 100 epochs. The weightswere randomly initialized within the range [�1:0;+1:0].In summary:Task: 3 bit parityNetwork: 3-3-1 (3 input, 3 hidden, 1 output)No. of patterns: 23 = 8Activation: symmetricMax. epochs: 100Weight initialization: [-1.0,+1.0]B.1. Learning TimeTable 1 shows the results for the di�erent learning algo-rithms on the 3 bit parity task.3 Bit ParityAlgorithm �/40 �=�=4max # epochs successBP by ep. 0.2 0.9 17.7 20/20SSAB 1.0 0.5 19.2 20/20QP 0.1 � 18.3 20/20RPROP 0.07 � 17.6 20/20Table 1: 3 Bit Parity: Results for the di�erent learningproceduresAs is clear from this table, all algorithms convergerather fast when the corresponding best parameter set-ting was used. Due to the very short convergence time ingeneral, the adaptive algorithms have no chance to prove

their superiority over pure gradient descent when opti-mally tuned parameters are used. The '�'-mark in thesecond row of both Rprop and Quickprop means that therespective default value was used, and that no further tun-ing was needed for this parameter - in fact both algorithmsonly needed tuning of one parameter to achieve their bestresult.B.2. SensitivityIn the following, we regard the inuence of the choice oflearning parameter on the average number of epochs re-quired. For convenience, we consider the (initial) learning-rate � for backpropagation, SuperSAB and Quickprop andthe initial update-value 40 for Rprop. The remaining pa-rameters for each algorithm are set to the values that canbe found in Table 1.
10

20

30

40

50

60

70

80

90

100

0.001 0.01 0.1 1

a
v
e
r
a
g
e
 
n
o
.
 
e
p
o
c
h
s

learning parameter

3 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSABFigure 3: 3 Bit Parity: Sensitivity of the di�erent learningprocedures to choice of initial learning parameterAs demonstrated in Figure 3, standard backpropagationis very sensitive to the choice of its learning-rate parame-ter. A slight deviation from the optimal value causes thealgorithm to consume considerably more learning time.A little surprising is the obvious sensitivity of the Super-SAB algorithm, despite its learning-rate parameter beingadapted during learning. This is possibly due to the highlynonlinear nature of the parity problem. Both Quickpropand Rprop are rather robust with respect to choice of ini-tial learning parameter. This is a notable result, sincetheir second parameters have been set to their default val-ues (see Table 1).C. 6 Bit ParityC.1. DescriptionTask: 6 bit parityNetwork: 6-12-1 (6 input, 12 hidden, 1 output)No. of patterns: 26 = 64Activation: symmetricMax. epochs: 1000Weight initialization: [-1.0,+1.0]The results of the 6 bit parity problem are reportedto illuminate the scaling properties of the algorithms, inother words their convergence behavior when the di�cultyof the learning task is increased.7



C.2. Learning Time and SensitivityTable 2 shows the results obtained using the di�erentlearning algorithms to solve the 6 bit parity problem.6 Bit ParityAlgorithm �/40 �=�=4max # epochs successBP by ep. 0.3 0.0 279.4 16/20SSAB 0.01 0.9 82.6 20/20QP 0.005 � 50.5 20/20RPROP 0.05 � 52.8 20/20Table 2: 6 Bit Parity: Results for the di�erent learningproceduresThe 6 bit parity task is considerably more di�cult tolearn than the 3 bit version described previously. Thisis reected in the drastically increased number of epochsrequired by the backpropagation algorithm (about �fteentimes as high). Moreover, backpropagation failed to con-verge in 4 of the 20 trials. The use of a momentum termdid not improve convergence on this learning task. In con-trast to this, all the adaptive algorithms converged in alltwenty runs, being more than 3 times (SuperSAB) or evenmore than 5 times as fast (Quickprop, Rprop) comparedwith pure gradient descent.
0

50

100

150

200

250

300

350

400

450

500

0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e
 
n
o
.
 
e
p
o
c
h
s

learning parameter

6 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSABFigure 4: 6 Bit Parity: Sensitivity of the di�erent learningprocedures to choice of initial learning parameterFigure 4 shows the superiority of the adaptive algo-rithms even more impressively. For a wide range (severalmagnitudes) of initial values of learning parameter, bothQuickprop and Rprop converge at least 3 times faster thanstandard backpropagation. Again, the second parameterof Quickprop and Rprop could remain set to its defaultvalue, which again simpli�es their use.D. 10-5-10 EncoderD.1. DescriptionThe 10-5-10 encoder task is a typical benchmark prob-lem of the N-M-N encoder family described earlier. Thenetwork consists of 10 input units, 5 hidden units and 10output units. The pattern set contains 10 pattern pairs.In summary:

Task: 10-5-10 EncoderNetwork: 10-5-10(10 input, 5 hidden, 10 output)No. of patterns: 10Activation: logisticMax. epochs: 500Weight initialization: [-1.0,+1.0]D.2. Learning Time and SensitivityTable 3 shows the average learning times of the di�erentprocedures. 10-5-10 EncoderAlgorithm �/40 �=�=4max # epochs successBP by ep. 1.7 0.0 137.1 20/20SSAB 2.0 0.8 49.2 20/20QP 1.0 � 21.0 20/20RPROP 0.7 � 19.0 20/20Table 3: 10-5-10 Encoder: Results for the di�erent learn-ing proceduresThis again is an example of a learning task wherethe best backpropagation result was achieved using nomomentum. This demonstrates the need to both alterlearning-rate and momentum in order to �nd a good pa-rameter setting for standard backpropagation.
0

50

100

150

200

250

300

350

400

450

500

0.001 0.01 0.1 1 10

a
v
e
r
a
g
e
 
n
o
.
 
e
p
o
c
h
s

learning parameter

10-5-10 Encoder - Sensitivity

Rprop

BP

QP

SSABFigure 5: 10-5-10 Encoder Task: Sensitivity of the di�er-ent learning procedures to choice of initial learning param-eterOn the 10-5-10 encoder task, Quickprop and Rpropclearly outperform the other algorithms, needing less thanone sixth of the number of epochs required by backprop-agation and being more than 2 times faster than Super-SAB. As far as the inuence of choice of learning parame-ter on learning time is concerned, this task again con�rmsthe particular robustness of adaptive learning algorithmsagainst variation of their parameters (Figure 5).E. 12-2-12 EncoderE.1. DescriptionIn the next experiment, the learning task was made moredi�cult by reducing the number of hidden units, in or-8



der to investigate the algorithms' ability to �nd sophisti-cated solutions in weight space. The number of input andoutput units was increased to 12, while the width of thehidden layer was reduced to two neurons.Task: 12-2-12 'Tight' EncoderNetwork: 12-2-12(12 input, 2 hidden, 12 output)No. of patterns: 12Activation: logisticMax. epochs: 15000Weight initialization: [-1.0,+1.0]E.2. Learning Time and SensitivityTable 4 shows the results of the 12-2-12 Encoder problem.12-2-12 'Tight Encoder'Algorithm �/40 �=�=4max # epchs successBP div. div. > 15000 0/20SSAB 1.0 0.95 536.0 20/20QP 1.0 1.2 221.0 20/20RPROP 0.5 � 210 20/20Table 4: 12-2-12 Encoder: Results for the di�erent learn-ing proceduresInterestingly, backpropagation was not able to learn thetask in under 15; 000 epochs, despite many di�erent pa-rameter settings being tested. On the other hand, alladaptive procedures converged rather fast, although bothSuperSAB and Quickprop needed some �ne tuning of theirsecond parameters to do so. Moreover, Quickprop exhib-ited quite sensitive behavior, depending on the choice ofits �rst learning parameter. Rprop converged very fast,using the default setting for its second parameter, andagain was rather insensitive to choice of its �rst learningparameter (Figure 6).
0

200

400

600

800

1000

0.001 0.01 0.1 1

a
v
e
r
a
g
e
 
n
o
.
 
e
p
o
c
h
s

learning parameter

12-2-12 Encoder - Sensitivity

Rprop

QP

SSABFigure 6: 12-2-12 Encoder Task: Sensitivity of the di�er-ent learning procedures to choice of initial learning param-eterThe fast and robust convergence of adaptive learning al-gorithms, and the failure of pure gradient descent, demon-strates the ability of the advanced techniques to exploittheir adaptability to solve very complex learning tasks in

situations, where a suitable solution in weight space is dif-�cult to �nd. We may even conclude that, by using adap-tive methods, smaller networks with fewer weights can beused. This will on one the one hand lead to less computa-tional e�ort, and on the other hand to better generaliza-tion ability promoted by a less complex network topology.F. Two SpiralsThe task of this di�cult benchmark problem is to discrim-inate between two spirals which coil three times aroundthe origin of the x-y plane. The training set consists of 194points in the plane belonging either to one class (spiral) orto the other. The network consists of three hidden layerswith 5 units (nodes) per layer. Each unit is connected toevery unit in previous layers (the network uses so called'short-cut connections' [12]).Task: Two SpiralsNetwork: 2-5-5-5-1 (+shortcut connections)No. of patterns: 194Activation: symmetricMax. epochs: 15000Weight initialization: [-1.0,+1.0]G. Learning time and sensitivityTable 5 shows the results on the two spirals problem.Two SpiralsAlgorithm �/40 �=�=4max # epchs successBP 0.0008 0.9 8830 9/20SSAB 0.01 0.9 10015 8/20QP 0.00005 1.3 8415 12/20RPROP 0.001 0.1 2605 19/20Table 5: Two Spirals Task: Results for the di�erent learn-ing proceduresThe di�culty of this benchmark is reected not onlyin the large number of epochs but also in the high fail-ure rates. In subsequent experiments we further discov-ered that convergence is highly dependent on the range ofweight initialization.When a careful parameter tuning was applied, the per-formance of standard backpropagation was comparablewith both SuperSAB and Quickprop. Convergence wasreached in 9 out of 20 runs for backpropagation, and in8 out of 20 runs for SuperSAB. Quickprop worked morereliably and converged in 12 runs. The best result forQuickprop was achieved using a cautious setting for itssecond parameter (� = 1:3). Rprop achieved the best re-sult on this benchmark, converging in 19 out of 20 runs,and thereby being more than 3 times faster than the otheralgorithms. For this di�cult and highly nonlinear prob-lem, Rprop's second parameter was chosen considerablysmaller than its default value. Again, the tuning of the�rst parameter was rather non critical (Figure 7).VI. ConclusionThis article gives an overview over past and recent devel-opments in algorithms for supervised learning in multi-layer perceptrons.9



0

2000

4000

6000

8000

10000

12000

14000

1e-05 0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e
 
n
o
.
 
e
p
o
c
h
s

learning parameter

Two Spirals - Sensitivity

Rprop

BP

QP

SSAB

Figure 7: Two Spirals Task: Sensitivity of the di�erentlearning procedures to choice of initial learning parameterAll approaches described here make use in some man-ner of the �rst order partial derivative of each weight withrespect to the overall network error. This gradient infor-mation can easily be computed by the backpropagationalgorithm. The variety of proposed weight learning rulesranges from a simple gradient descent (commonly referredto as 'backpropagation learning') to more sophisticatedglobal and local adaptation techniques.Many of the proposed procedures, especially the globaltechniques, are based on ideas from many dimensional op-timization theory, and often require increased computa-tion.As demonstrated on a couple of representative bench-mark problems the local adaptive algorithms, especiallyQuickprop and Rprop, converge considerably faster thanthe ordinary gradient descent algorithm. What is proba-bly even more signi�cant from a practical perspective isthe drastically improved robustness of the adaptive algo-rithms with respect to choice of initial parameters.It appears, that their very simple and straightforwardlocal adaptation rules are very e�ective for the type offunction minimization required in the context of multi-layer neural networks.References[1] D. E. Rumelhart, G. Hinton, and R.Williams. Learn-ing internal representations by error propagation. InD. E. Rumelhart and J.L. McClelland, editors, Paral-lel Distributed Processing, Vol. I Foundations, pages318{362. MIT Press, Cambridge, MA, 1986.[2] R. Salomon. Improved convergence rate of backprop-agation with dynamic adaptation of the learning rate.In H.-P. Schwefel and R. M�anner, editors, LectureNotes in Computer Science, PPSN 1, pages 269{273,Dortmund, 1990. Springer-Verlag.[3] M. F. Moller. A scaled conjugate gradient algo-rithm for fast supervised learning. Neural Networks,6(3):525{533, 1993.[4] W. Schi�mann, M. Joost, and R. Werner. Optimiza-tion of the backpropagation algorithm for training

multilayer perceptrons. Technical report, Universityof Koblenz, Institute of Physics, 1993.[5] J. Hertz, A. Krogh, and R. Palmer. Introduction tothe theory of neural computation. Addison-Wesley,Redwood City, CA 94065, 1991.[6] A. Kramer and S. Vincentelli. E�cient parallel learn-ing algorithms for neural networks. In D.Touretzky,editor, Advances in Neural Information Processing,volume I, San Mateo, 1989. Morgan Kau�man.[7] R. Jacobs. Increased rates of convergence throughlearning rate adaptation. Neural Networks, 1(4),1988.[8] T. Tollenaere. Supersab: Fast adaptive backpropaga-tion with good scaling properties. Neural Networks,3(5), 1990.[9] Fernando M. Silva and Luis B. Almeida. Speeding upbackpropagation. In R. Eckmiller, editor, AdvancedNeural Computers, pages 151{158. North-Holland,Amsterdam, 1990.[10] S. E. Fahlman. An empirical study of learning speedin back-propagation networks. Technical report,CMU-CS-88-162, Carngie-Mellon University, 1988.[11] M. Riedmiller and H. Braun. A direct adaptivemethod for faster backpropagation learning: TheRPROP algorithm. In H. Ruspini, editor, Proceed-ings of the IEEE International Conference on NeuralNetworks (ICNN), pages 586 { 591, San Francisco,1993.[12] K. Lang andM.Witbrock. Learning to tell two spiralsapart. In Proceedings of 1988 Connectionist ModelsSummer School. Morgan Kaufmann, 1988.

10


