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Outline 

2 

 Artificial Neural Networks 
 
 Artificial neurons 
 Feedforward neural networks 
 Backpropagation algorithm 

 

 Support Vector Machines 
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Artificial Neural Networks 
Particularities:   
 Artificial neural networks are black-box classifiers, i.e. they just predict 

the class to which a given data belongs without providing an explicit 
classification rule 

Input data  
(numerical 
feature vector) 

Result (class index or 
probability distribution 
over classes) 

Examples (labeled dataset) 

Neural Network =  
Adaptive (trainable) 
system consisting of  
many interconnected  
simple functional units 
 

Training 



Data mining - Lecture 5-6 4 

Artificial Neural Networks 
 Particularities:   

 Artificial neural networks are black-box classifiers, i.e. they just 
predict the class to which a given data belongs without providing an 
explicit classification rule 

 They are inspired by the structure and functioning of the brain = 
system of highly interconnected neurons 
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Artificial Neural Networks 
 ANNs are sets of interconnected artificial neurons (functional units)  

 Each neuron receives some input signals and produces an output 
signal 

 The neural network receives an input vector (through the input 
neurons) and  produces an output vector (through the output 
neurons)  

 The main aspects of an ANN: 
 Architecture = directed weighted graph having artificial neurons as 

nodes and edges marking the connections; each edge has a 
numerical weight which models the synaptic permeability 

 Functioning = the process through which the network transforms an 
input vector in an output vector 

 Training = the process through which are established the values of 
the synaptic weights (and other parameters of the network) 
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Artificial Neural Networks 
Main NN architectures: 
 Feed-forward:   

 the support graph does not contain cycles (the neurons are usually 
placed on several layers) 

 The output signal can be computed by composition of some aggregation 
and activation functions (see next slides) 

 Recurrent: 
 The  support graph contain cycles 
 The output signal is computed by simulating a dynamical system 

(iterative process) 

Feed-forward (multilayer perceptron) 

Recurrent (fully connected network) 
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ANN Design 
Steps to follow in designing a neural network: 
 
• Choose the architecture:  number of layers, number of units on each 

layer, activation functions, interconnection style 
 

• Train the network:  compute the values of the weights using the training 
set and a learning algorithm.  
 

• Validate/test the network:  analyze the network behavior for data which 
do not belong to the training set 

 
Remarks:  
 in the context of classifying N-dimensional data in M classes the ANN 

should have: 
 N input units 
 M output units 

 the classification model is incorporated in the synaptic weights 
(attached to the inter-connection edges) 
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Functional units (artificial neurons) 

Functional unit: several inputs, one output 
Notations:   
 
 input signals: y1,y2,…,yn 

 synaptic weights: w1,w2,…,wn (they model 
the synaptic permeability)   

 threshold (bias):  b (or theta)  - it models 
the activation threshold of the neuron 

 Output: y 
 

Remark: All these values are usually real 
numbers  (there exist also complex networks 
which have complex numbers as weights)  

inputs 

output 

Weights assigned to the 
connections 

w1 

w2 

y1 

y2 

yn wn 

b | f 

bias 

activation 
function 
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Functional units (artificial neurons) 
Output signal generation: 
 
• The input signals are “combined” by using the connection weights and the 

threshold  
– The obtained value corresponds to the local potential of the neuron 
– This “combination” is obtained by applying a so-called aggregation 

function  
• The output signal is constructed by applying an activation function 

– It corresponds to the pulse signals propagated along the axon 

Input signals 
(y1,…,yn) 

Neuron’s state 
(u) 

Output signal  
(y) 

Aggregation  
function 

Activation 
function 
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Functional units (artificial neurons) 
Aggregation functions: 
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Functional units (artificial neurons) 

Activation functions: 
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Functional units (artificial neurons) 

Sigmoidal activation functions 

)exp(1
1)(       

1)2exp(
1)2exp()tanh()(       

u
uf

u
uuuf

−+
=

+
−

==

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-6 -4 -2 2 4 6

-1

-0.5

0.5

1(Hyperbolic tangent) 

(Logistic) 



Data mining - Lecture 5-6 15 

Functional units (artificial neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1           y=H(w1x1+w2x2-b) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

b 
-1 
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Functional units (artificial neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1        y=H(w1x1+w2x2-w0) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

w0 
-1 

AND 
0     1 

0 
 
1 

0      0 
 
0      1 

       y=H(w1x1+w2x2-w0) 
Ex:    w1=w2=1, w0=1.5 
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Functional units (artificial neurons) 
Representation of boolean functions:  f:{0,1}2->{0,1} 

Linearly separable  
problem: one layer 
network 

Nonlinearly separable  
problem: multilayer  
network 

OR 

XOR 
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Architecture and notations 
Feedforward network with K layers 

0 1 k 

Input  
layer 

Hidden layers Output layer 

Y0=X 

… … K 
W1 W2 Wk Wk+1 WK 

X1 

Y1 

F1 

Xk 

Yk 

Fk 

XK 

YK 

FK 

X = input vector, Y= output vector,  F=vectorial activation function  
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Functioning 
Computation of the output vector 
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FORWARD Algorithm (propagation of the input signal toward the output layer) 
 
Y[0]:=X (X is the input signal) 
FOR k:=1,K DO 
     X[k]:=W[k]Y[k-1] 
     Y[k]:=F(X[k]) 
ENDFOR  
Rmk:  
 Y[K] is the output of the network 
 Interpretation of the results: for a given data vector X the index of the 

functional unit which produces the largest value is the class label Data mining - Lecture 5-6 
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A particular case 
One hidden layer 
 
Adaptive parameters:  W(1), W(2) 
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Remark:    
Traditionally only 1 or 2 hidden layers are used 
Lately, architectures involving many hidden layers became more popular (Deep 

Neural Networks) – they are used mainly for image and language processing 
(http://deeplearning.net) 
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Learning process 
Learning based on minimizing a error function 
• Training set:  {(x1,d1), …, (xL,dL)} 
• Error function (mean squared error): 
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• Aim of learning process:  find W which minimizes the error function  
• Minimization method:  gradient method 
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Learning process  

Gradient based adjustement 
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Learning process  
• Partial derivatives computation 
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Learning process  
• Partial derivatives computation 
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Remark:  
The derivatives of sigmoidal activation functions have particular 

properties: 
Logistic: f’(x)=f(x)(1-f(x))=y(1-y) 
Tanh: f’(x)=1-f2(x)=1-y2 
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The BackPropagation Algorithm 
Main idea: 
For each example in the training 

set: 
   - compute the output signal  
   - compute the error 

corresponding to the output 
level 

   - propagate the error back into 
the network and store the 
corresponding delta values for 
each layer 

   - adjust each weight by using 
the error signal and input 
signal for each layer 

Computation of the output signal (FORWARD) 

Computation of the error signal (BACKWARD) 
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The BackPropagation Algorithm 
General structure 
Random initialization of weights 
 
REPEAT 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        weights adjustement 
     ENDFOR 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The weights adjustment depends 

on the learning rate 
• The error computation needs the 

recomputation of the output signal 
for the new values of the weights 

• The stopping condition depends on 
the value of the error and on the 
number of epochs 

• This is a so-called serial 
(incremental) variant: the 
adjustment is applied separately for 
each example from the training set 
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The BackPropagation Algorithm 
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The BackPropagation Algorithm 
Details (serial variant) 
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E* denotes the expected training accuracy 
pmax denotes the maximal number of epochs 
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The BackPropagation Algorithm 
Batch variant 
Random initialization of weights 
 
REPEAT 
     initialize the variables which will 

contain the adjustments 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        cumulate the adjustments 
     ENDFOR 
     Apply the cumulated adjustments 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The incremental variant can be 

sensitive to the presentation order 
of the training examples 
 

• The batch variant is not sensitive to 
this order and is more robust to the 
errors in the training examples 
 

• It is the starting algorithm for more 
elaborated variants, e.g. 
momentum variant 
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The BackPropagation Algorithm 
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The BackPropagation Algorithm 
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Variants 
Different variants of BackPropagation can be designed by changing: 

 
 Error function 

 
 Minimization method 

 
 Learning rate choice 

 
 Weights initialization 
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Variants 
Error function: 
 
 MSE (mean squared error function) is appropriate in the case of 

approximation problems 
 

 For classification problems a better error function is the cross-entropy 
error: 
 

 Particular case: two classes (one output neuron): 
 dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to class 1) 
 yl is from (0,1) and can be interpreted as the probability of class l  
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Rmk:  the partial derivatives change, thus the adjustment terms  
will be different 
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Variants 
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Entropy based error:   
 
 Different values of the partial derivatives 
 In the case of logistic activation functions the error signal will be: 
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Variants 
Minimization method: 
 The gradient method is a simple but not very efficient method 

 
 More sophisticated and faster  methods can be used instead: 

 Conjugate gradient methods 
 Newton’s method and its variants 

 
 Particularities of these methods: 

 Faster convergence (e.g. the conjugate gradient converges in n steps 
for a quadratic error function) 

 Needs the computation of the hessian matrix (matrix with second 
order derivatives) : second order methods 
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Variants 
Example:  Newton’s method 
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Variants 

Advantage: 
 Does not need the computation of the hessian 
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Particular case:  Levenberg-Marquardt 
 This is the Newton method adapted for the case when the objective 

function is a sum of squares (as MSE is) 

Used in order to deal with  
singular matrices 
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Problems in BackPropagation 
 Low convergence rate (the error decreases too slow) 

 
 Oscillations (the error value oscillates instead of continuously 

decreasing) 
 

 Local minima problem (the learning process is stuck in a local 
minima of the error function) 
 

 Stagnation (the learning process stagnates even if it is not a 
local minima) 
 

 Overtraining and limited generalization 
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Problems in BackPropagation 
Problem 1: The error decreases too slow or the error value oscillates 

instead of continuously decreasing 
 

Causes:   
 Inappropriate value of the learning rate (too small values lead to slow 

convergence while too large values lead to oscillations) 
Solution:  adaptive learning rate 

 
 Slow minimization method (the gradient method needs small learning 

rates in order to converge) 
      Solutions:   
       -  heuristic modification of the standard BP (e.g. momentum) 
       -  other minimization methods (Newton, conjugate gradient) 
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Problems in BackPropagation 
Adaptive learning rate: 
 
 If the error is increasing then the learning rate should be decreased 
 If the error significantly decreases then the learning rate can be increased 
 In all other situations the learning rate is kept unchanged 

)1()()1()1()()1()1(
21 ),1()()1()1()(
10 ),1()()1()1()(

−=⇒−+≤≤−−
<<−=⇒−−<
<<−=⇒−+>

pppEpEpE
bpbppEpE
apappEpE

ηηγγ
ηηγ
ηηγ

Example:  γ=0.05 
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Problems in BackPropagation 
Momentum variant: 
 
 Increase the convergence speed by introducing some kind of “inertia” in 

the weights adjustment: the weight changes corresponding to the current 
epoch includes the adjustments from the previous epoch 
 

)()1()1( pwypw ijjiij ∆+−=+∆ αδαη

Momentum coefficient: α in [0.1,0.9] 
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Problems in BackPropagation 
Momentum variant: 
 
 The effect of these enhancements is that flat spots of the error surface are 

traversed relatively rapidly with a few big steps, while the step size is 
decreased as the surface gets rougher. This implicit adaptation of the step 
size increases the learning speed significantly.  

Simple gradient 
descent 

Use of inertia term 
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Problems in BackPropagation 
Problem 2: Local minima problem (the learning process is stuck in a local 

minima of the error function) 
 
Cause: the gradient based methods  are local optimization methods 
 
Solutions: 
 
 Restart the training process using other randomly initialized weights 
 Introduce random perturbations into the values of weights: 

 variablesrandom :       , =+= ijijijij ww ξξ

 Use a global optimization method 
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Problems in BackPropagation 
Solution: 
 
• Replacing the gradient method with a stochastic optimization method 
• This means using a random perturbation instead of an adjustment based 

on the gradient computation 
• Adjustment step: 

)W:(W adjustment accept the THEN )()( IF

 valuesrandom

∆+=<∆+

=∆

WEWE
ij

Rmk: 
• The adjustments are usually based on normally distributed random 

variables 
• If the adjustment does not lead to a decrease of the error then it is not 

accepted 
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Problems in BackPropagation 
Problem 3: Stagnation (the learning process stagnates 

even if it is not a local minima) 
 
Cause: the adjustments are too small because the 

arguments of the sigmoidal functions are too large 
 
Solutions: 

– Penalize the large values of the weights (weights-
decay) 

 
– Use only the signs of derivatives not their values  

 

-6 -4 -2 2 4 6
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0.6
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Very small derivates 
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Problems in BackPropagation 

Penalization of large values of the weights: add a regularization term to the 
error function 

∑+=
ji

ijr wWEWE
,

2
)( )()( λ

The adjustment will be: 

ijij
r
ij wλ2)( −∆=∆
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Problems in BackPropagation 
Resilient BackPropagation (use only the sign of the derivative not its value) 

ab

w
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w
pWEpb
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Problems in BackPropagation 
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Problem 4: Overtraining and limited generalization ability (illustration for an 
approximation problem) 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 

(illustration for an approximation problem) 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 
 
Causes: 
 
 Network architecture (e.g. number of hidden units) 

 A large number of hidden units can lead to overtraining (the 
network extracts not only the useful knowledge but also the noise in 
data) 

 The size of the training set 
 Too few examples are not enough to train the network 

 The number of epochs (accuracy on the training set) 
 Too many epochs could lead to overtraining 

 
Solutions: 
 Dynamic adaptation of the architecture 
 Stopping criterion based on  validation error; cross-validation 
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Problems in BackPropagation 
Dynamic adaptation of the architectures: 
 
• Incremental strategy: 

 
– Start with a small number of hidden neurons 
– If the learning does not progress new neurons are introduced 

 
 
• Decremental  strategy: 

– Start with a large number of hidden neurons 
– If there are neurons with small weights (small contribution to the 

output signal) they can be eliminated 
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Problems in BackPropagation 
Stopping criterion based on  validation error : 
 
• Divide the learning set in m parts: (m-1) are for training and another 

one for validation 
• Repeat the weights adjustment as long as the error on the validation 

subset is decreasing (the learning is stopped when the error on the 
validation subset start increasing) 
 

Cross-validation: 
• Applies for m times the learning algorithm by successively changing the 

learning and validation sets 
 
1: S=(S1,S2, ....,Sm) 
2: S=(S1,S2, ....,Sm)  
....    
m: S=(S1,S2, ....,Sm)  
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Problems in BackPropagation 
 
Stop the learning process when the error on the validation set start to 

increase (even if the error on the training set is still decreasing) : 
 

Error on the training set 

Error on the validation set 



Data mining - Lecture 5-6 54 

Support Vector Machines 
Support Vector Machine (SVM) = a machine learning technique characterized 

by 
 

 The learning process is based on solving a quadratic optimization problem 
(avoids the main limits of Backpropagation)  
 

 Ensures a good generalization power 
 

 It relies  on the statistical learning theory (main contributors: Vapnik and 
Chervonenkis)  
 

 Applications:  handwritten recognition, speaker identification , object 
recognition 
 

Biblio: C.Burges – A Tutorial on SVM for Pattern Recognition, Data Mining and 
Knowledge Discovery, 2, 121–167 (1998) 
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Support Vector Machines 
Let us consider a simple linearly separable classification problem 

 There exist an infinite number of lines 
(hyperplanes, in the general case) which 
ensure the separation in the two classes 
 

 Which separating hyperplane is the best? 
 

 That which leads to the best generalization 
ability = correct classification for data which 
do not belong to the training set 
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Support Vector Machines 
Which is the best separating line (hyperplane)  ? 

 That for which the minimal distance to the convex 
hulls corresponding to the two classes is maximal 
 

 The lines (hyperplanes) going through the 
marginal points are called canonical lines 
(hyperplanes) 
 

 The distance between these lines is 2/||w||, thus 
maximizing the width of the separating regions 
means minimizing the norm of w 

m 

m 

wx+b=0 

Eq. of the separating 
hyperplane 

wx+b=-1 

wx+b=1 
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Support Vector Machines 
How can we find the separating hyperplane? 

Find w and b which  
      minimize  ||w||2     
  (maximize the separating region) 
 

and satisfy 
      (wxi+b)yi-1>=0 
 
For all examples in the training set 

{(x1,y1),(x2,y2),…,(xL,yL)}  
      yi=-1 for the green class 
      yi=1  for the red class 
(all examples from the training set are 

classified in the correct class) 
 
 
 

 
   
 

m 

m 

wx+b=0 
wx+b=-1 

wx+b=1 
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Support Vector Machines 
The constrained minimization problem can be solved by using the Lagrange 

multipliers method: 
Initial problem:    
    minimize  ||w||2  such that (wxi+b)yi-1>=0  for all i=1..L 
By introducing the Lagrange multipliers, the initial optimization problem is 

transformed in a problem of finding the saddle point of V: 
    

),,(minmax*)*,*,(  :ifpoint  saddle is *)*,*,(
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2
1),,(

,
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2
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To solve this problem the dual function should be constructed: 
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Support Vector Machines 
Thus we arrived to the problem of maximizing the dual function (with respect to α): 
    

such that the following constraints are satisfied: 
 

)(
2
1)(

1,1
jijij

L

ji
i

L

i
i xxyyW ⋅−= ∑∑

==

αααα

0    ,0
1

=≥ ∑
=

i

L

i
ii yαα

By solving the above problem (with respect to the multipliers α) the coefficients 
of the separating hyperplane can be computed as follows: 

    

ki

L

i
ii xwbxyw ⋅−==∑

=

1*    ,*
1
α

where k is the index of a non-zero multiplier and xk is the corresponding training 
example (belonging to class +1) 

    



Data mining - Lecture 5-6 60 

Support Vector Machines 
Remarks: 
 
• The nonzero multipliers correspond to the examples for which the 

constraints are active (w x+b=1 or w x+b=-1). These examples are called 
support vectors and they are the only examples which have an influence on 
the equation of the separating hyperplane 
 

• The other examples from the training set (those corresponding to zero 
multipliers) can be modified without influencing the separating hyperplane) 

 
• The decision function obtained by solving the quadratic optimizaton 

problem is: 
    

*))(sgn()(
1

bzxyzD i

L

i
ii +⋅= ∑
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Support Vector Machines 
What happens when the data are not very well separated?  

The condition corresponding to each class is relaxed: 

1 if    ,1
1 if    ,1
−=+≤+⋅

=−≥+⋅

iii

iii

ybxw
ybxw

ξ
ξ

The function to be minimized becomes: 

)1)((
2
1),,,(

11

2 −+⋅−+= ∑∑
==

bxwyCwbwV ii

L

i
i

L

i
i αξξα

Thus the constraints in the dual problem are also changed: 

Cii ≤≤≥ αα 0 used isit   0 of instead
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Support Vector Machines 
What happens if the problem is nonlineary separable?  
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Support Vector Machines 
In the general case a transformation is applied: 

)',()'()(
:becomes  vectorsed transform theofproduct scalar   theand  )(

xxKxx
xx

=⋅
→

θθ
θ

Since the optimization problem contains only scalar products it is not necessary 
to know explicitly the transformation θ but it is enough to know the kernel 
function K 
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Support Vector Machines 

Example 2: Constructing a kernel function when the decision surface 
corresponds to an arbitrary quadratic function (from dimension 2 the pb.is 
transferred in dimension 5).  
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Example 1: Transforming a nonlinearly separable problem in a linearly 
separable one by going to a higher dimension 

1-dimensional nonlinearly separable pb 
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2-dimensional linearly separable pb 
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Support Vector Machines 

)'tanh()',(

)
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The decision function becomes: 

Examples of kernel functions: 
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Support Vector Machines 
Implementations 
 
LibSVM  [http://www.csie.ntu.edu.tw/~cjlin/libsvm/]: (+ links to 

implementations in Java, Matlab, R, C#, Python, Ruby) 
 
SVM-Light [http://www.cs.cornell.edu/People/tj/svm_light/]: implementation 

in C 
 
Spider [http://www.kyb.tue.mpg.de/bs/people/spider/tutorial.html]: 

implementation in Matlab  
 
SciLab interface for LibSVM (http://atoms.scilab.org/toolboxes/libsvm 
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