
Projects - Neural and Evolutionary Computing

2014-2015

I. Application oriented topics

1. Task scheduling in distributed systems. The aim is to assign a set of (independent or
correlated) tasks to some machines such that some quality measures (e.g. total execution
time, lateness etc) are optimized. There are a lot of variants of this problem and it can be
solved by using various heuristics and meta-heuristics: simulated annealing (SA), evolutionary
algorithms (EA), ant colony optimization (ACO), particle swarm optimization(PSO).

Requirement: Select a problem instance (there are sets of test problems, e.g. Braun bench-
mark: testData 512x16.zip); describe an adequate method (based on SA, EA, ACO or PSO),
implement and test it.

Variants: 4 (SA, EA, ACO, PSO)

Biblio: aplicatii/task scheduling

2. Nurse rostering. This is a practical problem asking to find a schedule of nurses in a hos-
pital. It is in fact a constraint satisfaction problem which can be solved by using different
meta-heuristics (evolutionary algorithms (EA), estimation of distribution algorithms (EDA),
ant colony optimization (ACO), variable neighborhood search (VNS), tabu search (TS), hy-
perheuristics etc).

Requirement: Select a problem variant, identify and describe an adequate method (based on
EA, EDA, ACO, VNS or TS), implement and test it.

Variants: 5 (EA, EDA, ACO, VNS, TS)

Biblio: aplicatii/nurse rostering

3. Credit scoring. Credit scoring is a classification problem aiming to discriminate the credits
which involves risks for the bank from those which do not present risks. There are several ap-
proaches in solving this problem: neural networks (NN), genetic programming (GP), artificial
immune systems (AIS).

Requirement: Identify and describe an adequate method (based on NN,GP, AIS), implement
a variant and test it.

Variants: 3 (NN, GP, AIS)

Biblio: aplicatii/credit scoring

4. Portfolio optimization. Portfolio optimization means to find financial or production port-
folios which maximize the profit and minimize the risk. The problem can be formulated as
a constrained combinatorial optimization problem which can be solved using various meta-
heuristics (e.g. GA, GP, PSO, Hopfield Neural Networks - HNN)

1



Requirement: Identify and describe an adequate method (based on GA, GP, PSO, HNN),
implement a variant and test it.

Variants: 4 (GA, GP, PSO, HNN)

Biblio: aplicatii/portfolio optimization

5. Community detection in networks. The aim is to identify the groups of highly intercon-
neted nodes in a network. The problem is similar to that of graph partitioning such that the
nodes in a partition are highly connected while the nodes in different partitions are sparsely
connected. It can be solved by using clustering techniques but also evolutionary algorithms.

Requirement: Study aof the community detection problem, implementation of an EA and its
testing for a test problem (e.g. Zachary’s club problem).

Biblio: aplicatii/communities detection

6. Intrusion detection systems. Intrusion detection systems (IDS) are mainly based on
classifying the behaviour of the user of a computing system in normal and abnormal, based
on data related to the access of the user to the computing resource. IDSs usually monitor all
events taking place in the computing system. Currently there are various approaches based on
computational intelligence (CI) techniques: neural networks (NN), evolutionary algorithms
(EA) and artificial immune systems (AIS)

Requirement: Analyze the structure of a IDS and implement at least one component based
on a CI technique: NN, EA or AIS.

Variants: 3 (NN, EA, AIS)

Biblio: aplicatii/intrusion detection systems

7. Software testing. The evolutionary algorithms and other nature inspire metaheuristics (e.g.
ACO) can be used to generate test cases for software analysis.

Requirement: Study of the applicability of evolutionary algorithm in software testing. Choose
an evolutionary algorithm to generate test cases for a software product and implement it.

Biblio. aplicatii/software testing

8. Automated Program Repairing. Automatic generation of patches used to remove bugs
from software or to make an application more efficient can be done using genetic programming.
The patches are usually small pieces of code which are generated starting from some templates
and are evaluated using the behavior of the program for some testcases.

Requirement: Comparative study of different approaches in automated patches generation.
A Genetic Programming based example should be implemented.

Biblio. aplicatii/AutomatedProgramRepair

9. Evolutionary Art. EAs can be used to synthesize artistic images or music starting from
some patterns and using specific crossover and mutation operators. A particular element of
such algorithms is their interactive character, i.e. the user should be allowed to score the
intermediate configurations.

Requirement: Implementation of an interactive EA to generate artistic images or music.

Biblio: aplicatii/EvolutionaryArt

2



II. Topics oriented towards techniques

1. ABC - Artificial Bee Colony. It is a metaheuristic inspired by the behaviour of bee colonies
(how they find food or communicate). Basic info can be found at http://mf.erciyes.edu.tr/abc/
Requirement: A review of ABC techniques, implementation of a ABC algorithm and testing
for a continuous or a combinatorial optimization problem.

Biblio. tehnici/ABC

2. ACO - Ant Colony Optimization, AS - Ant systems. These are metaheuristics inspired
by the behaviour of ants. The main characteristic is the existence of an indirect communica-
tion between the individuals of the same colony based on the pheromone trails. They can be
used in solving routing or scheduling problems.

Requirement. Study of ant-based algorithms, implementation of a variant and its application
for a problem (routing, scheduling or assignment).

Biblio. tehnici/ACO

3. BBO - Biogeography Based Optimization. This is a recent metaheuristic inspired by
the properties of the geographical distribution of biological organisms. It uses a particular
crossover operator inspired by the emigration/immigration processes.

Requirement. Study of BBO, implementation of a variant and its application for a simple
optimization problem.

Biblio. tehnici/BBO

4. PSO - Particle Swarm Optimization This is inspired by the behavior of birds swarms
or of other social entities. Each individual in the swarm decides which is its next position in
the search space based both on the personal experience and the experience of the swarm. It
can be used for solving continuous optimization problems.

Requirement: Study of PSO methods, implementation of a variant and application for an
optimization problem.

Biblio. tehnici/PSO

5. VNS - Variable Neighborhood Search It is a search technique involving selection of
perturbed configurations inside a neighborhood of the current configuration.

Requirement: Study of VNS methods, implementation of a variant and application for an
optimization problem.

Biblio. tehnici/VNS

6. Cooperative Coevolution. Coevolution means the simultaneous evolution of several popu-
lations. Cooperative coevolution provides a general framework for solving complex problems
by dividing them in simpler problems. This strategy can be combined with any type of
evolutionary algorithms and has been successfully applied for high-dimensional optimization
problems.

Requirement. Study of cooperative coevolution, implementation of a coevolutionary algo-
rithms and its application for a optimization problem with a large number of variables (at
least 100).

Biblio. tehnici/coevolution

3



7. Compact Evolutionary Algorithms. They are EAs designed under the assumption that
there is a limited amount of resources available for their execution (e.g. they should be
executed on mobile devices). In order to deal with this problem they do not use explicit
populations but only descriptions of the probability distributions which models the elements
of the populations.

Requirement. Study of compact EAs, implementation of such an algorithm and its application
for a simple optimization problem.

Biblio. tehnici/compactEA

8. EDA - Estimation of Distribution Algorithms. They are stochastic optimization tech-
niques that uses probabilistic models for exploring the search spaces (they are somewhat
similar to compact EAs). Requirement: Study of EDA algorithms, implementation of a vari-
ant and testing for a simple optimization problem (e.g. Onemax).

Biblio. tehnici/EDA

9. Hyperheuristics. They are heuristics which ”chooses heuristics” in order to design a method
for solving a problem. The selection of heuristics can be random, greedy, based on some
learning processes or even based on genetic algorithms. They have succesfully applied for
combinatorial optimization problems.

Requirement: Study of hyperheuristics, implementation of a variant and testing it for a simple
optimization problem.

Biblio. tehnici/hyperheuristics

10. Cuckoo Search. This technique is inspired by the cuckoo behaviour (the use the nests of
other species to place their eggs). This idea is modelled by particular mutations involving
Levy distributions.

Requirement. Study of the state-of-the-art of cuckoo search, software implementation and
testing for some optimization problems. Biblio. tehnici/CuckooSearch

11. Firefly algorithms. This technique is inspired by the fireflyes ”lightening” behavior. The
biological inspiration is modelled through attraction/repelling mechanisms which control the
search process.

Requirement. Study of the state-of-the-art of fireflies algorithm, software implementation and
testing for some optimization problems.

Biblio. tehnici/FireflyAlgorithm

12. Bat algorithms. This metaheuristic is isnpired by the echo-location mechanism used by
bats in the orientation process. The idea is modelled by combining a local search with a
random search.

Requirement. Study of the state-of-the-art of bat algorithm, software implementation and
testing for some optimization problems.

Biblio. tehnici/BatAlgorithm

13. Deep Learning Since introduction in 2006 deep learning became a powerful tool in solving
handwriting recognition, image recognition, speech recognition and lately in natural language
processing (see the Google tool word2vec). These models are based on complex architectures

4



which contain recurrent subnetworks (e.g. Boltzmann machines) and on unsupervised pre-
training.

Requirement. Study of Deep Learning models and of the tools Theano
(http://deeplearning.net/software/theano/), PyLearn (http://deeplearning.net/software/pylearn2/)
and word2vec (https://code.google.com/p/word2vec/).

Biblio. tehnici/DeepLearning

14. Reservoir computing.
Reservoir computing (http://reservoir-computing.org/, http://reslab.elis.ugent.be/) is an ap-
proach to train recurrent neural networks used in processing time series (classification or
prediction). These models contain some random hidden connections and only the weights
corresponding to the connections leading to output units are trained.

Requirement. Study of at least one reservoir computing model (Echo State Network, Liquid
State Machine etc) and a small example implementation.

Biblio. tehnici/ReservoirComputing

15. GPU implementation of EAs. Implementation of EAs on GPU became popular in the
last years. The main issue is related to the choice of operation to be done on GPU such that
the transfer between CPU and GPU is minimized.

Requirement: GPU implementation of a simple GPU.

Biblio. aplicatii/EA+GPU

III. Comparative studies of neural evolutionary tools.
Examples of tools which can be compared:

Neural Computation:

1. Neuroph. (Java) http://goodoldai.org/neuroph

2. FANN.(C++) http://leenissen.dk/fann/wp/

3. PyNN. (Python) http://neuralensemble.org/trac/PyNN

4. PyBrain. (Python) http://pybrain.org/pages/home

5. HyperNEAT. (C++) http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html

6. ENCOG. (C++, Java) http://www.heatonresearch.com/encog

7. SimBrain. (Java) http://www.simbrain.net/

Evolutionary Computation:

1. ECJ. http://cs.gmu.edu/ eclab/projects/ecj/

2. JGap. http://jgap.sourceforge.net/

3. JavaEVA. http://www.ra.cs.uni-tuebingen.de/software/EvA2/

4. JCLEC. http://jclec.sourceforge.net/

5. JaGA. http://www.jaga.org/

5



6. JMetal.http://jmetal.sourceforge.net/

7. GAA. http://www.aridolan.com/ga/gaa/gaa.html

8. EO. http://eodev.sourceforge.net/

9. ParadisEO. http://paradiseo.gforge.inria.fr/index.php?n=Main.HomePage

10. PISA. http://www.tik.ee.ethz.ch/sop/pisa/

11. OpenBeagle. http://beagle.gel.ulaval.ca/

12. Robust Genetic Programming. http://robgp.sourceforge.net/about.php

13. JEF - Grammar Guided Genetic Programming http://spl.utko.feec.vutbr.cz/component/content/article/258-
jef-java-evolution-framework?lang=en

14. DEAP - Distributed Evolutionary Algorithms in Python http://code.google.com/p/deap/

15. pySTEP - Python Strongly Typed gEnetic Programming http://pystep.sourceforge.net/

16. GPE - Genetic Programming Engine http://gpe.sourceforge.net/

17. PYRO - Python Robotics http://pyrorobotics.org/?page=PyroModuleEvolutionaryAlgorithms

18. PerlGP - Perl Genetic Programming System http://perlgp.org/

Requirement. At least two tools should be selected, described and tested for a simple problem.
The project will contain a comparative study of the selected tools.

6



Structure of the project. Each project will consist of:

1. A report structured as follows:

• abstract (5 lines): will describe the aim of the report and the main result

• introduction: will contain a state of the art concerning the studied method/application;
it is based on the study of the papers specified as references

• detailed presentation of the models/algorithms/problems related to the subject

• detailed presentation of the application + results

• conclusions and open problems

• references

2. A functional application illustrating the behaviour of the method(s) described in the report
or using the software tools selected for comparison.

Remarks.

• The papers suggested for references can be dowloaded from
http://www.info.uvt.ro/˜dzaharie/cne2013/proiecte

These papers should be used to start the study - other references could be used as well. The
report should be based on at least two references.

• The report should not contain paragraphs directly copied from other papers. The existence
of such paragraphs is considered to be plagiarism and such a report cannot be accepted. In
order to avoid plagiarism you should synthesize the main ideas using you own words.

7


