
Package ‘rgp’
August 8, 2014

Version 0.4-1

Title R genetic programming framework

Description RGP is a simple modular Genetic Programming (GP) system build in
pure R. In addition to general GP tasks, the system supports Symbolic
Regression by GP through the familiar R model formula interface. GP
individuals are represented as R expressions, an (optional) type system
enables domain-specific function sets containing functions of diverse
domain- and range types. A basic set of genetic operators for variation
(mutation and crossover) and selection is provided.

Author Oliver Flasch, Olaf Mersmann, Thomas Bartz-Beielstein, Joerg Stork,Martin Zaefferer

Maintainer Oliver Flasch <oliver.flasch@fh-koeln.de>

License GPL-2

URL http://rsymbolic.org/projects/show/rgp

LazyData yes

Depends R (>= 3.0.0), utils

Imports emoa (>= 0.5-0)

Suggests igraph (>= 0.5.5), rrules (>= 0.1-0), rgpui (>= 0.1-0),snowfall (>= 1.84-4)

Date

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-08-08 14:05:23

1

http://rsymbolic.org/projects/show/rgp

2 R topics documented:

R topics documented:
rgp-package . 4
arithmeticFunctionSet . 4
arity . 5
arity.primitive . 5
breed . 6
buildingBlock . 7
buildingBlockTag . 7
commonSubexpressions . 8
crossover . 10
customDist . 11
dataDrivenGeneticProgramming . 11
do.call.ignore.unused.arguments . 13
embedDataFrame . 14
exprChildrenOrEmptyList . 15
exprDepth . 15
exprLabel . 16
exprShapesOfDepth . 17
exprToPlotmathExpr . 18
extractAttributes . 18
first . 19
formatSeconds . 19
functionSet . 20
functionVariablePresenceMap . 22
funcToIgraph . 22
funcToPlotmathExpr . 23
geneticProgramming . 24
gridDesign . 26
inputVariablesOfIndividual . 27
insertionSort . 27
integerToLogicals . 28
inversePermutation . 28
is.sType . 29
iterate . 30
joinElites . 30
latinHypercubeDesign . 31
mae . 31
makeAgeFitnessComplexityParetoGpSearchHeuristic 32
makeArchiveBasedParetoTournamentSearchHeuristic 33
makeClosure . 34
makeCommaEvolutionStrategySearchHeuristic . 35
makeEmptyRestartCondition . 35
makeFunctionFitnessFunction . 36
makeHierarchicalClusterFunction . 37
makeLocalRestartStrategy . 37
makeNaryFunctionFitnessFunction . 38
makePopulation . 39

R topics documented: 3

makeRegressionFitnessFunction . 40
makeSeSymbolicFitnessFunction . 41
makeStepsStopCondition . 42
makeTinyGpSearchHeuristic . 43
makeTournamentSelection . 43
MapExpressionNodes . 45
mse . 46
multiNicheGeneticProgramming . 46
multiNicheSymbolicRegression . 48
mutateFunc . 50
new.alist . 53
new.function . 54
nmse . 54
nondeterministicRanking . 55
normalize . 55
normalizedDesign . 56
orderByParetoCrowdingDistance . 56
orderByParetoMeasure . 57
paretoFrontKneeIndex . 57
plotFunction3d . 58
plotFunctions . 59
plotParetoFront . 60
plotPopulationFitnessComplexity . 60
popfitness . 61
predict.symbolicRegressionModel . 62
print.sType . 62
randchild . 63
randelt . 63
randexprGrow . 64
randexprTypedGrow . 65
randfunc . 66
randfuncTyped . 67
randterminalTyped . 68
rangeTypeOfType . 68
rgpBenchmark . 69
rmse . 69
rsquared . 70
r_mae . 70
r_sse . 71
r_ssse . 71
safeDivide . 72
seSymbolic . 72
seSymbolicFunction . 73
smse . 74
sortBy . 74
sortByRange . 75
sortByRanking . 75
sortByType . 76

4 arithmeticFunctionSet

splitList . 76
sse . 77
ssse . 78
st . 78
sType . 79
subDataFrame . 80
subexpressions . 81
summary.geneticProgrammingResult . 81
symbolicRegression . 82
tabulateFunction . 84
toName . 85

Index 86

rgp-package The RGP package

Description

RGP is a simple yet flexible modular Genetic Programming system for the R environment. The
system implements classical untyped tree-based genetic programming as well as more advanced
variants including, for example, strongly typed genetic programming and Pareto genetic program-
ming.

Author(s)

Oliver Flasch <oliver.flasch@fh-koeln.de>, Olaf Mersmann <olafm@statistik.tu-dortmund.de>,
Thomas Bartz-Beielstein <thomas.bartz-beielstein@fh-koeln.de>, Martin Zaefferer <martin.zaefferer@fh-koeln.de>,
Joerg Stork <joerg.stork@fh-koeln.de>

arithmeticFunctionSet Default function- and constant factory sets for Genetic Programming

Description

arithmeticFunctionSet is an untyped function set containing the functions "+", "-", "*", and "/".
expLogFunctionSet is an untyped function set containing the functions "sqrt", "exp", and "ln".
trigonometricFunctionSet is an untyped function set containing the functions "sin", "cos", and
"tan". mathFunctionSet is an untyped function set containing all of the above functions.

Usage

arithmeticFunctionSet

expLogFunctionSet

arity 5

Format

NULL

Details

numericConstantSet is an untyped constant factory set containing a single constant factory that
creates numeric constants via calls to runif(1, -1, 1).

Note that these objects are initialized in the RGP package’s .onAttach function.

arity Determine the number of arguments of a function

Description

Tries to determine the number of arguments of function.

Usage

arity(f)

Arguments

f The function to determine the arity for.

Value

The arity of the function f.

arity.primitive Determine the number of arguments of a primitive function

Description

Tries to determine the number of arguments of a primitive R function by lookup in a builtin table.

Usage

arity.primitive(f)

Arguments

f The primitive to determine the arity for.

Value

The arity of the primitive f.

6 breed

breed Breeding of GP individuals

Description

Breeds GP individuals by repeated application of an individual factory function. individualFactory.
The breedingFitness must be a function of domain logical (a single boolean value) or numeric
(a single real number). In case of a boolean breeding function, candidate individuals are cre-
ated via the individualFactory function and tested by the breedingFitness predicate until the
breedingFitness predicate is TRUE or breedingTries tries were done, in which case the last in-
dividual created and tested is returned. In case of a numerical breeding function, breedingTries
individuals are created and evaluated by the breedingFitness function. The individual with the
minimal breeding fitness is returned.

Usage

breed(individualFactory, breedingFitness, breedingTries, warnOnFailure = TRUE,
stopOnFailure = FALSE)

Arguments

individualFactory

A function of no parameters that returns a single GP individual.

breedingFitness

Either a function that takes a GP individual as its only parameter and returns a
single logical value or a function that takes a GP individual as its only parameter
and returns a single real value.

breedingTries The number of breeding steps to perform. In case of a boolean breedingFitness
function, the actual number of breeding steps performed may be lower then this
number (see the details).

warnOnFailure Whether to issue a warning when a boolean breedingFitness predicate was
not fulfilled after breedingTries tries.

stopOnFailure Whether to stop with an error message when a boolean breedingFitness pred-
icate was not fulfilled after breedingTries tries.

Value

The GP individual that was bred.

buildingBlock 7

buildingBlock Support for GP buidling blocks

Description

Building blocks are a means for protecting expression subtrees from modification through variation
operators. Often, certain functional units, represented as expression subtrees in GP individuals,
should stay intact during evolutionary search. Building blocks at the leafs of expressions can be
introduced by adding them to the input variable set. Support for building blocks is planned for a
future release of RGP.

Usage

buildingBlock(expr, hardness = 1)

buildingBlockq(expr, hardness = 1)

Arguments

expr The expresion to transform to a building block.

hardness The strength of the protection against varition inside the building block. Must
be a numeric in the interval [0.0, 1.0]. A hardness of 1.0 (the default) means
that the building block will never be subject to variation.

Details

buildingBlock transforms an R expression to a building block to be used as an element of the
input variable (or function) set. The parameter hardness (a numerical value in the interval [0.0 ,
1.0]) determines the protection strength against variation inside the building building block. When
hardness is set to 1.0 (the default), the building block will never be subject to variaton through
mutation or crossover. buildingBlockq is equivaltent to buildingBlock, but quotes it’s argument
expr first.

Value

A building block.

buildingBlockTag Building block tags

Description

To implement buidling blocks, i.e. subexpression protected from variation, expression nodes may
be tagged with buildingBlockTags. TODO

8 commonSubexpressions

Usage

buildingBlockTag(x)

buildingBlockTag(x) <- value

hasBuildingBlockTag(x)

Arguments

x An expression node.

value The value of the building block tag. Must be a numerical in the interval [0.0
1.0].

commonSubexpressions Similarity and Distance Measures for R Functions and Expressions

Description

These functions implement several similarity and distance measures for R functions (i.e. their
body expressions). TODO check and document measure-theoretic properties of each measure de-
fined here TODO these distance measures are metrics, some of them are norm-induced metrics
commonSubexpressions returns the set of common subexpressions of expr1 and expr2. This is
not a metric by itself, but can be used to implement several subtree-based similarity metrics. of
expr1 and expr2. sizeWeightedNumberOfcommonSubexpressions returns the number of com-
mon subexpressions of expr1 and expr2, weighting the size of each common subexpression. Note
that for every expression e, sizeWeightedNumberOfcommonSubexpressions(e , e) == exprVisitationLength(
e). normalizedNumberOfCommonSubexpressions returns the ratio of the number of common
subexpressions of expr1 and expr2 in relation to the number of subexpression in the larger expres-
sion of expr1 and expr2. normalizedSizeWeightedNumberOfcommonSubexpressions returns
the ratio of the size-weighted number of common subexpressions of expr1 and expr2 in relation
to the visitation length of the larger expression of expr1 and expr2. NCSdist and SNCSdist are dis-
tance metrics derived from normalizedNumberOfCommonSubexpressions and normalizedSizeWeightedNumberOfCommonSubexpressions
respectively. differingSubexpressions, and codenumberOfDifferingSubexpressions are duals
of the functions described above, based on counting the number of differing subexpressions of
expr1 and expr2. The possible functions "normalizedNumberOfDifferingSubexpressions" and
"normalizedSizeWeightedNumberOfDifferingSubexpressions" where ommited because they are al-
ways equal to NCSdist and SNCSdist by definition. trivialMetric The "trivial" metric M(a, b)
that is 0 iff a == b, 1 otherwise. normInducedTreeDistance Uses a norm on expression trees and
a metric on tree node labels to induce a metric M on expression trees A and B: If both A and B
are empty (represented as NULL), M(A, B) := 0. If exactly one of A or B is empty, M(A, B) :=
"the norm applied to the non-empty tree". If neither A or B is empty, the difference of their root
node labels (as measured by labelDistance) is added to the sum of the differences of the children.
The children lists are padded with empty trees to equalize their sizes. The summation operator can
be changed via distanceFoldOperator. normInducedFunctionDistance Is wrapper that applies
normInducedTreeDistance to the bodies of the given functions.

commonSubexpressions 9

Usage

commonSubexpressions(expr1, expr2)

numberOfCommonSubexpressions(expr1, expr2)

normalizedNumberOfCommonSubexpressions(expr1, expr2)

NCSdist(expr1, expr2)

sizeWeightedNumberOfCommonSubexpressions(expr1, expr2)

normalizedSizeWeightedNumberOfCommonSubexpressions(expr1, expr2)

SNCSdist(expr1, expr2)

differingSubexpressions(expr1, expr2)

numberOfDifferingSubexpressions(expr1, expr2)

sizeWeightedNumberOfDifferingSubexpressions(expr1, expr2)

trivialMetric(a, b)

normInducedTreeDistance(norm, labelDistance = trivialMetric,
distanceFoldOperator = NULL)

normInducedFunctionDistance(norm, labelDistance = trivialMetric,
distanceFoldOperator = NULL)

Arguments

expr1 An R expression.

expr2 An R expression.

a An R object.

b An R object.

norm A norm to derive a tree distance metric from.

labelDistance A metric for measuring distances of tree node labels, i.e. function names or
constants.

distanceFoldOperator

The operator used by normInducedTreeDistance to combine the measures
subtree distances, defaults to ‘+‘.

10 crossover

crossover Random crossover (recombination) of functions and expressions

Description

Replace a random subtree of func1 (expr1) with a random subtree of func2 (expr2) and return the
resulting function (expression), i.e. the modified func1 (expr1). crossoverexpr handles crossover
of expressions instead of functions. crossoverexprFast is a fast (i.e. implemented in efficient C
code) albeit less flexible variant of crossoverexpr. crossoverTyped and crossoverexprTyped
only exchage replace subtress if the sTypes of their root nodes match. crossoverTwoPoint is a
variant of crossover that swaps subtrees at uniform randomly selected points and returns both
children. crossoverexprTwoPoint works analogously for expressions.

Usage

crossover(func1, func2, crossoverprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

crossoverexpr(expr1, expr2, crossoverprob)

crossoverexprFast(expr1, expr2)

crossoverexprTwoPoint(expr1, expr2)

crossoverTyped(func1, func2, crossoverprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

crossoverexprTyped(expr1, expr2, crossoverprob)

Arguments

expr1 The first parent R expression.

func1 The first parent R function.

expr2 The second parent R expression.

func2 The second parent R function.

crossoverprob The probability of crossover at each node of the first parent function (expres-
sion).

breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.

Details

All RGP recombination operators operating on functions have the S3 class c("recombinationOperator", "function").

customDist 11

Value

The child function (expression) or functions (expressions).

customDist A dist function that supports custom metrics

Description

This function computes and returns the distance matrix computed by using the given metric to
compute the distances between the rows of a data list or vector. Note that in contrast to dist, x
has to be a vector and the the distance metric is an arbitrary function that must be symmetric and
definite.

Usage

customDist(x, metric, diag = FALSE, upper = FALSE)

Arguments

x A vector or list of objects.

metric A metric, i.e. a function of two arguments that returns a numeric. Note that a
metric must be definite and symmetric, otherwise the results will be undefined.

diag TRUE iff the diagonal of the distance matrix should be printed by print.dist.

upper TRUE iff the upper triangle of the distance matrix should be printed by print.dist.

Value

A distance matrix.

See Also

dist

dataDrivenGeneticProgramming

Data-driven untyped standard genetic programming

Description

Perform an untyped genetic programming using a fitness function that depends on a R data frame.
Typical applications are data mining tasks such as symbolic regression or classification. The task is
specified as a formula and a fitness function factory. Only simple formulas without interactions are
supported. The result of the data-driven GP run is a model structure containing the formulas and an
untyped GP population. This function is primarily an intermediate for extensions. End-users will
probably use more specialized GP tools such as symbolicRegression.

12 dataDrivenGeneticProgramming

Usage

dataDrivenGeneticProgramming(formula, data, fitnessFunctionFactory,
fitnessFunctionFactoryParameters = list(),
stopCondition = makeTimeStopCondition(5), population = NULL,
populationSize = 100, eliteSize = ceiling(0.1 * populationSize),
elite = list(), extinctionPrevention = FALSE, archive = FALSE,
functionSet = mathFunctionSet, constantSet = numericConstantSet,
crossoverFunction = NULL, mutationFunction = NULL,
restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(),
searchHeuristic = makeAgeFitnessComplexityParetoGpSearchHeuristic(),
breedingFitness = function(individual) TRUE, breedingTries = 50,
progressMonitor = NULL, verbose = TRUE)

Arguments

formula A formula describing the task. Only simple formulas of the form response ~ variable1 + ... + variableN
are supported at this point in time.

data A data.frame containing training data for the GP run. The variables in formula
must match column names in this data frame.

fitnessFunctionFactory

A function that accepts two parameters, a codeformula, data (given as a model
frame) and the additional parameters given in fitnessFunctionFactoryParameters
and returns a fitness function.

fitnessFunctionFactoryParameters

Additional parameters to pass to the fitnessFunctionFactory.

stopCondition The stop condition for the evolution main loop. See makeStepsStopCondition
for details.

population The GP population to start the run with. If this parameter is missing, a new GP
population of size populationSize is created through random growth.

populationSize The number of individuals if a population is to be created.

eliteSize The number of elite individuals to keep. Defaults to ceiling(0.1 * populationSize).

elite The elite list, must be alist of individuals sorted in ascending order by their first
fitness component.

extinctionPrevention

When set to TRUE, the initialization and selection steps will try to prevent du-
plicate individuals from occurring in the population. Defaults to FALSE, as this
operation might be expensive with larger population sizes.

archive If set to TRUE, all GP individuals evaluated are stored in an archive list archiveList
that is returned as part of the result of this function.

functionSet The function set.

constantSet The set of constant factory functions.
crossoverFunction

The crossover function.

do.call.ignore.unused.arguments 13

mutationFunction

The mutation function.
restartCondition

The restart condition for the evolution main loop. See makeEmptyRestartCon-
dition for details.

restartStrategy

The strategy for doing restarts. See makeLocalRestartStrategy for details.
searchHeuristic

The search-heuristic (i.e. optimization algorithm) to use in the search of solu-
tions. See the documentation for searchHeuristics for available algorithms.

breedingFitness

A "breeding" function. This function is applied after every stochastic opera-
tion Op that creates or modifies an individal (typically, Op is a initialization,
mutation, or crossover operation). If the breeding function returns TRUE on the
given individual, Op is considered a success. If the breeding function returns
FALSE, Op is retried a maximum of breedingTries times. If this maximum
number of retries is exceeded, the result of the last try is considered as the result
of Op. In the case the breeding function returns a numeric value, the breeding
is repeated breedingTries times and the individual with the lowest breeding
fitness is considered the result of Op.

breedingTries In case of a boolean breedingFitness function, the maximum number of re-
tries. In case of a numerical breedingFitness function, the number of breed-
ing steps. Also see the documentation for the breedingFitness parameter.
Defaults to 50.

progressMonitor

A function of signature function(population, fitnessfunction, stepNumber, evaluationNumber,bestFitness, timeElapsed)
to be called with each evolution step.

verbose Whether to print progress messages.

Value

A model structure that contains the formula and an untyped GP population.

See Also

geneticProgramming

do.call.ignore.unused.arguments

A variant of do.call that ignores unused arguments

Description

A variant of do.call that ignores unused arguments

14 embedDataFrame

Usage

do.call.ignore.unused.arguments(what, args, quote = FALSE,
envir = parent.frame())

Arguments

what What to call (either a function or a character vector naming a function in envir.

args The args for the call, these may include arguments not used by what.

quote Whether to quote the arguments.

envir The environment within which to evaluate the call.

Value

The result of the call.

embedDataFrame Embed columns in a data frame

Description

Embeds the columns named cols in the data frame x into a space of dimension dimension.

Usage

embedDataFrame(x, cols = NULL, dimension = 1)

Arguments

x The data frame containing the columns to embed.

cols A vector a list of the names of the columns to embed.

dimension The additional dimensions to generate when embedding.

Value

The data frame, augmented with embedded columns, shortended by dimension rows.

exprChildrenOrEmptyList 15

exprChildrenOrEmptyList

Return the Children of an Expression or the Empty List if there are
None

Description

Internal tool function that returns the children expressions of an R expression or the empty list if
there are no children, i.e. if the expression is atomic or NULL. If the expression is a "function"
expression, i.e. an expression that would evaluate to a function, exprChildrenOrEmptyList will
return the function body expression as the only child.

Usage

exprChildrenOrEmptyList(expr)

Arguments

expr The expression to return the children for.

Value

The expression’s children as a list, or the empty list if there are none.

exprDepth Complexity measures for R functions and expressions

Description

exprDepth returns the depth of the tree representation ("exression tree") of an R expression. funcDepth
returns the tree depth of the body expression of an R function. exprSize returns the number
of nodes in the tree of an R expression. exprLeaves returns the number of leave nodes in the
tree of an R expression. exprCount returns the number of tree nodes in an R expression match-
ing a given predicate. funcSize returns the number of nodes in the body expression tree of an
R function. funcLeaves returns the number of leave nodes in the body expression tree of an
R function. funcCount returns the number of nodes in an R function body expression match-
ing a given predicate. exprVisitationLength returns the visitation length of the tree of an R
expression. The visitation length is the total number of nodes in all possible subtrees of a tree.
funcVisitationLength returns the visitation length of the body expression tree of an R function.
fastExprVisitationLength and fastFuncVisitationLength are variants written in optimized
C code. The visitation length can be interpreted as the size of the expression obtained by substi-
tuting all inner functions by their function bodies (see "Crossover Bias in Genetic Programming",
Maarten Keijzer and James Foster).

16 exprLabel

Usage

exprDepth(expr)

funcDepth(func)

exprSize(expr)

exprLeaves(expr)

exprCount(expr, predicate = function(node) TRUE)

funcSize(func)

funcLeaves(func)

funcCount(func, predicate = function(node) TRUE)

exprVisitationLength(expr, intermediateResults = FALSE)

fastExprVisitationLength(expr, intermediateResults = FALSE)

funcVisitationLength(func, intermediateResults = FALSE)

fastFuncVisitationLength(func, intermediateResults = FALSE)

Arguments

expr An R expression.
func An R function.
predicate An R predicate (function with range type logical).
intermediateResults

Whether to return complexity measures for all subtrees also.

exprLabel Return the "label" at the Root Node of an Expression Tree

Description

Internal tool function that returns the function name if expr is a call, or otherwise just expr itself.

Usage

exprLabel(expr)

Arguments

expr The expression to return the root label for.

exprShapesOfDepth 17

Value

The expression’s root label.

exprShapesOfDepth Upper bounds for expression tree search space sizes

Description

These functions return the number of structurally different expressions or expression shapes of a
given depth or size that can be build from a fixed function- and input-variable set. Here, "ex-
pression shape" means the shape of an expression tree, not taking any node labels into account.
exprShapesOfDepth returns the number of structurally different expression shapes of a depth ex-
actly equal to n. exprShapesOfMaxDepth returns the number of structurally different expression
shapes of a depth less or equal to n. exprsOfDepth returns the number of structurally different
expressions of a depth exactly equal to n. Note that constants are handled by conceptually substit-
ing them with a fresh input variable. exprShapesOfMaxDepth returns the number of structurally
different expressions of a depth less or equal to n. Note that constants are handled by concep-
tually substiting them with a fresh input variable. exprShapesOfSize, exprShapesOfMaxSize,
exprsOfSize, exprsOfMaxSize are equivalents that regard expression tree size (number of nodes)
instead of expression tree depth.

Usage

exprShapesOfDepth(funcset, n)

exprShapesOfMaxDepth(funcset, n)

exprsOfDepth(funcset, inset, n)

exprsOfMaxDepth(funcset, inset, n)

exprShapesOfSize(funcset, n)

exprShapesOfMaxSize(funcset, n)

exprsOfSize(funcset, inset, n)

exprsOfMaxSize(funcset, inset, n)

Arguments

funcset The function set.

inset The set of input variables.

n The fixed size or depth.

18 extractAttributes

exprToPlotmathExpr Convert any expression to an expression that is plottable by plotmath

Description

Tries to convert a GP-generated expression expr to an expression plottable by plotmath by replac-
ing GP variants of arithmetic operators by their standard counterparts.

Usage

exprToPlotmathExpr(expr)

Arguments

expr The GP-generated expression to convert.

Value

An expression plottable by plotmath.

extractAttributes Extract a given attribute of all objects in a list and tag that list with
the list of extracted attributes

Description

Extract a given attribute of all objects in a list and tag that list with the list of extracted attributes

Usage

extractAttributes(x, extractAttribute, tagAttribute = extractAttribute,
default = NULL)

Arguments

x A list with objects containing the attribute attribute.
extractAttribute

The attribute to extract from all objects in the list x.

tagAttribute The name of the attribute for x holding the list of extracted attributes.

default A default value to return if an object in x has no attribute attribute.

Value

The list x, tagged with a new attribute tagAttribute.

first 19

first Functions for Lisp-like list processing

Description

Simple wrapper functions that allow Lisp-like list processing in R: first to fifth return the first
to fifth element of the list x. rest returns all but the first element of the list x. is.empty returns
TRUE iff the list x is of length 0. is.atom returns TRUE iff the list x is of length 1. is.composite
returns TRUE iff the list x is of length > 1. contains return TRUE iff the list x contains an element
identical to elt.

Usage

first(x)

rest(x)

second(x)

third(x)

fourth(x)

fifth(x)

is.empty(x)

is.atom(x)

is.composite(x)

contains(x, elt)

Arguments

x A list or vector.
elt An element of a list or vector.

formatSeconds Format time and data values into human-readable character vectors

Description

These functions convert date and time values into human-readable character vectors. formatSeconds
formats time values given as a numerical vector denoting seconds into human-readable character
vectors, i.e. formatSeconds(70) results in the string "1 minute, 10 seconds".

20 functionSet

Usage

formatSeconds(seconds, secondDecimals = 2)

Arguments

seconds A numeric vector denoting seconds.

secondDecimals The number of decimal places to show for seconds. Defaults to 2.

Value

A character vector containg a human-readable representation of the given date/time.

functionSet Functions for defining the search space for Genetic Programming

Description

The GP search space is defined by a set of functions, a set of input variables, a set of constant
constructor functions, and some rules how these functions, input variables, and constants may be
combined to form valid symbolic expressions. The function set is simply given as a set of strings
naming functions in the global environment. Input variables are also given as strings. Combina-
tion rules are implemented by a type system and defined by assigning sTypes to functions, input
variables, and constant constructors.

Usage

functionSet(..., list = NULL, parentEnvironmentLevel = 1)

inputVariableSet(..., list = NULL)

constantFactorySet(..., list = NULL)

pw(x, pw)

hasPw(x)

getPw(x, default = 1)

S3 method for class 'functionSet'
c(..., recursive = FALSE)

S3 method for class 'inputVariableSet'
c(..., recursive = FALSE)

S3 method for class 'constantFactorySet'
c(..., recursive = FALSE)

functionSet 21

Arguments

... Names of functions or input variables given as strings.

list Names of functions or input variables given as a list of strings.

parentEnvironmentLevel

Level of the parent environment used to resolve function names.

recursive Ignored when concatenating function- or input variable sets.

x An object (function name, input variable name, or constant factory) to tag with
a probability pw.

pw A probability weight.

default A default probability weight to return iff no probability weight is associated with
an object.

Details

Function sets and input variable sets are S3 classes containing the following fields: $all contains a
list of all functions, or input variables, or constant factories. $byRange contains a table of all input
variables, or functions, or constant factories, indexed by the string label of their sTypes for input
variables, or by the string label of their range sTypes for functions, or by the string label of their
range sTypes for constant factories. This field exists mainly for quickly finding a function, input
variable, or constant factory that matches a given type.

Multiple function sets, or multiple input variable sets, or multiple constant factory sets can be
combined using the c function. functionSet creates a function set. inputVariableSet creates an
input variable set. constantFactorySet creates a constant factory set.

Probability weight for functions, input variables, and constants can be given by tagging constant
names, input variables, and constant factory functions via the pw function (see the examples). The
predicate hasPw can be used to check if an object x has an associated probability weight. The
function getPw returns the probability weight associated with an object x, if available.

Value

A function set or input variable set.

Examples

creating an untyped search space description...
functionSet("+", "-", "*", "/", "exp", "log", "sin", "cos", "tan")
inputVariableSet("x", "y")
constantFactorySet(function() runif(1, -1, 1))
creating an untyped function set with probability weights...
functionSet(pw("+", 1.2), pw("-", 0.8), pw("*", 1.0), pw("/", 1.0))

22 funcToIgraph

functionVariablePresenceMap

Variable Presence Maps

Description

Counts the number of input variables (formal arguments) present in the body of a individual func-
tion. Applied to a population of individuals, this information is useful to identify driving variables
in a modelling task. functionVariablePresenceMap returns a (one row) variable presence map
for a function, populationVariablePresenceMap returns a variable presence map for a population
of RGP individuals (a list of R functions).

Usage

functionVariablePresenceMap(f)

populationVariablePresenceMap(pop)

Arguments

f A R function to return a variable presence map for.

pop A RGP population to return a variable presence map for.

Value

A data frame with variables (formal parameters) in the columns, individuals (function) in the rows
and variable counts in the cells.

funcToIgraph Visualization of functions and expressions as trees

Description

The following functions plot R expressions and functions as trees. The igraph package is required
for most of these functions. exprToGraph transforms an R expression into a graph given as a
character vector of vertices V and a even-sized numeric vector of edges E. Two elements i and
i+1 in E encode a directed edge from V[i] to V[i+1]. funcToIgraph and exprToIgraph return an
igraph graph object for an R function or an R expression.

Usage

funcToIgraph(func)

exprToIgraph(expr)

exprToGraph(expr)

funcToPlotmathExpr 23

Arguments

func An R function.

expr An R expression.

Value

The result (see the details section).

See Also

funcToPlotmathExpr

funcToPlotmathExpr Convert a function to an expression plottable by plotmath

Description

Tries to convert a function func to an expression plottable by plotmath by replacing arithmetic
operators and "standard" functions by plottable counterparts.

Usage

funcToPlotmathExpr(func)

Arguments

func The function to convert.

Value

An expression plottable by plotmath.

See Also

funcToIgraph

24 geneticProgramming

geneticProgramming Standard typed and untyped genetic programming

Description

Perform a standard genetic programming (GP) run. Use geneticProgramming for untyped genetic
programming or typedGeneticProgramming for typed genetic programming runs. The required
argument fitnessFunction must be supplied with an objective function that assigns a numerical
fitness value to an R function. Fitness values are minimized, i.e. smaller values denote higher/better
fitness. If a multi-objective selectionFunction is used, fitnessFunction return a numerical
vector of fitness values. The result of the GP run is a GP result object containing a GP population
of R functions. summary.geneticProgrammingResult can be used to create summary views of a
GP result object. During the run, restarts are triggered by the restartCondition. When a restart is
triggered, the restartStrategy is executed, which returns a new population to replace the current one
as well as a list of elite individuals. These are added to the runs elite list, where fitter individuals
replace individuals with lesser fittness. The runs elite list is always sorted by fitness in ascending
order. Only the first component of a multi-criterial fitness counts in this sorting. After a GP run, the
population is inserted into the elite list. The elite list is returned as part of the GP result object.

Usage

geneticProgramming(fitnessFunction, stopCondition = makeTimeStopCondition(5),
population = NULL, populationSize = 100, eliteSize = ceiling(0.1 *
populationSize), elite = list(), functionSet = mathFunctionSet,
inputVariables = inputVariableSet("x"), constantSet = numericConstantSet,
crossoverFunction = crossover, mutationFunction = NULL,
restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(),
searchHeuristic = makeAgeFitnessComplexityParetoGpSearchHeuristic(lambda =
ceiling(0.5 * populationSize)), breedingFitness = function(individual) TRUE,
breedingTries = 50, extinctionPrevention = FALSE, archive = FALSE,
progressMonitor = NULL, verbose = TRUE)

typedGeneticProgramming(fitnessFunction, type,
stopCondition = makeTimeStopCondition(5), population = NULL,
populationSize = 100, eliteSize = ceiling(0.1 * populationSize),
elite = list(), functionSet, inputVariables, constantSet,
crossoverFunction = crossoverTyped, mutationFunction = NULL,
restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(populationType = type),
searchHeuristic = makeAgeFitnessComplexityParetoGpSearchHeuristic(),
breedingFitness = function(individual) TRUE, breedingTries = 50,
extinctionPrevention = FALSE, archive = FALSE, progressMonitor = NULL,
verbose = TRUE)

geneticProgramming 25

Arguments

fitnessFunction

In case of a single-objective selection function, fitnessFunction must be a
single function that assigns a numerical fitness value to a GP individual rep-
resented as a R function. Smaller fitness values mean higher/better fitness. If
a multi-objective selection function is used, fitnessFunction must return a
numerical vector of fitness values.

type The range type of the individual functions. This parameter only applies to
typedGeneticProgramming.

stopCondition The stop condition for the evolution main loop. See code makeStepsStopCondition
for details.

population The GP population to start the run with. If this parameter is missing, a new GP
population of size populationSize is created through random growth.

populationSize The number of individuals if a population is to be created.
eliteSize The number of elite individuals to keep. Defaults to ceiling(0.1 * populationSize).
elite The elite list, must be alist of individuals sorted in ascending order by their first

fitness component.
functionSet The function set.
inputVariables The input variable set.
constantSet The set of constant factory functions.
crossoverFunction

The crossover function.
mutationFunction

The mutation function.
restartCondition

The restart condition for the evolution main loop. See makeEmptyRestartCon-
dition for details.

restartStrategy

The strategy for doing restarts. See makeLocalRestartStrategy for details.
searchHeuristic

The search-heuristic (i.e. optimization algorithm) to use in the search of solu-
tions. See the documentation for searchHeuristics for available algorithms.

breedingFitness

A "breeding" function. This function is applied after every stochastic opera-
tion Op that creates or modifies an individal (typically, Op is a initialization,
mutation, or crossover operation). If the breeding function returns TRUE on the
given individual, Op is considered a success. If the breeding function returns
FALSE, Op is retried a maximum of breedingTries times. If this maximum
number of retries is exceeded, the result of the last try is considered as the result
of Op. In the case the breeding function returns a numeric value, the breeding
is repeated breedingTries times and the individual with the lowest breeding
fitness is considered the result of Op.

breedingTries In case of a boolean breedingFitness function, the maximum number of re-
tries. In case of a numerical breedingFitness function, the number of breed-
ing steps. Also see the documentation for the breedingFitness parameter.
Defaults to 50.

26 gridDesign

extinctionPrevention

When set to TRUE, the initialization and selection steps will try to prevent du-
plicate individuals from occurring in the population. Defaults to FALSE, as this
operation might be expensive with larger population sizes.

archive If set to TRUE, all GP individuals evaluated are stored in an archive list archiveList
that is returned as part of the result of this function.

progressMonitor

A function of signature function(population, objectiveVectors, fitnessFunction, stepNumber, evaluationNumber,bestFitness, timeElapsed, ...)
to be called with each evolution step. Seach heuristics may pass additional in-
formation via the ... parameter.

verbose Whether to print progress messages.

Value

A genetic programming result object that contains a GP population in the field population, as well
as metadata describing the run parameters.

See Also

summary.geneticProgrammingResult, symbolicRegression

gridDesign Create a regular grid design matrix

Description

Returns a n = length(points)**dimension times m = dimension matrix containing the coordinates of
sample points from a hypervolume of the given dimension. Points are sampled in a grid defined by
the vector points.

Usage

gridDesign(dimension, points = seq(from = 0, to = 1, length.out = 10))

Arguments

dimension The number of columns in the design matrix to create.

points A vector of points to sample at in each dimension.

Value

The regular grid design matrix.

inputVariablesOfIndividual 27

inputVariablesOfIndividual

Functions for analysing GP individuals

Description

inputVariablesOfIndividual returns a list of input variables in inset that are used by the GP
individual ind.

Usage

inputVariablesOfIndividual(ind, inset)

Arguments

ind A GP individual, represented as a R function.

inset A set of input variables.

insertionSort Sorting algorithms for vectors and lists

Description

These algorithms sort a list or vector by a given order relation (which defaults to <=). insertionSort
is a stable O(n^2) sorting algorithm that is quite efficient for very small sets (less than around 20
elements). Use an O(n*log(n)) algorithm for larger sets.

Usage

insertionSort(xs, orderRelation = NULL)

Arguments

xs The vector or list to sort.

orderRelation The orderRelation to sort xs by (defaults to `<=`). This relation by should
reflexive, antisymetric, and transitive.

Value

The vector or list xs sorted by the order relation orderRelation.

28 inversePermutation

integerToLogicals Tools for manipulating boolean functions

Description

integerToBoolean converts a scalar positive integer (or zero) to its binary representation as list of
logicals. booleanFunctionVector returns the boolean vector of result values of f, given a boolean
function f. numberOfDifferentBits given two lists of booleans of equal length, returns the num-
ber of differing bits. makeBooleanFitnessFunction given a boolean target function, returns a
fitness function that returns the number of different places in the output of a given boolean function
and the target function.

Usage

integerToLogicals(i, width = floor(log(base = 2, i) + 1))

booleanFunctionAsList(f)

numberOfDifferentBits(a, b)

makeBooleanFitnessFunction(targetFunction)

Arguments

i A scalar positive integer.

width The with of the logical vector to return.

f A boolean function.

a A list of booleans.

b A list of booleans.

targetFunction A boolean function.

Value

The function result as described above.

inversePermutation Calculate the inverse of a permutation

Description

Returns the inverse of a permutation x given as an integer vector. This function is useful to turn a
ranking into an ordering and back, for example.

is.sType 29

Usage

inversePermutation(x)

Arguments

x The permutation to return the inverse for.

Value

The inverse of the permutation x.

See Also

rank, order

is.sType Check if an object is an sType

Description

Returns TRUE iff its argument is an sType.

Usage

is.sType(x)

Arguments

x The object to check.

Value

TRUE iff x is an sType.

30 joinElites

iterate Repeatedly apply a function

Description

Repeatedly apply a function f to an argument arg, additional arguments ... are supplied un-
changed in each call. E.g. iterate(3, foo, 42.14, "bar") is equivalent to foo(foo(foo(42.14, "bar"), "bar"), "bar").

Usage

iterate(n, f, arg, ...)

Arguments

n The number of times to apply f, must be >= 0. If 0, arg is returned.

f The function to apply.

arg The argument to repeatedly apply f to.

... Additional argument to pass to f at each application.

Value

The result of repeatedly applying f.

joinElites Join elite lists

Description

Inserts a list of new individuals into an elite list, replacing the worst individuals in this list to make
place, if needed.

Usage

joinElites(individuals, elite, eliteSize, fitnessFunction)

Arguments

individuals The list of individuals to insert.

elite The list of elite individuals to insert individuals into. This list must be sorted
by fitness in ascending order, i.e. lower fitnesses first.

eliteSize The maximum size of the elite.
fitnessFunction

The fitness function.

latinHypercubeDesign 31

Value

The elite with individuals inserted, sorted by fitness in ascending order, i.e. lower fitnesses
first.

latinHypercubeDesign Create a latin hypercube design (LHD)

Description

Produces a LHD matrix with dimension columns and size rows.

Usage

latinHypercubeDesign(dimension, size = max(11 * dimension, 1 + 3 * dimension +
dimension * (dimension - 1)/2 + 1), lowerBounds = replicate(dimension, 0),
upperBounds = replicate(dimension, 1), retries = 2 * dimension)

Arguments

dimension Dimension of the problem (will be no. of columns of the result matrix).

size Number of design points, defaults to max(11 * dimension,1 + 3 * dimension + dimension * (dimension - 1) / 2 + 1).

lowerBounds Numeric vector of length dimension giving lower bounds for sampling, defaults
to c(0.0, ...).

upperBounds Numeric vector of length dimension giving upper bounds for sampling, defaults
to c(1.0, ...).

retries Number of retries, which is the number of trials to find a design with the lowest
distance, default is 2 * dimension.

Value

A LHD matrix.

mae Mean absolute error (MAE)

Description

Mean absolute error (MAE)

Usage

mae(x, y)

32 makeAgeFitnessComplexityParetoGpSearchHeuristic

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The MAE between x and y.

makeAgeFitnessComplexityParetoGpSearchHeuristic

Age Fitness Complexity Pareto GP Search Heuristic for RGP

Description

The search-heuristic, i.e. the concrete GP search algorithm, is a modular component of RGP.
makeAgeFitnessComplexityParetoGpSearchHeuristic creates a RGP search-heuristic that im-
plements a generational evolutionary multi objective optimization algorithm (EMOA) that selects
on three criteria: Individual age, individual fitness, and individual complexity.

Usage

makeAgeFitnessComplexityParetoGpSearchHeuristic(lambda = 50,
crossoverProbability = 0.5, enableComplexityCriterion = TRUE,
enableAgeCriterion = FALSE, ndsParentSelectionProbability = 0,
ndsSelectionFunction = nds_cd_selection, complexityMeasure = function(ind,
fitness) fastFuncVisitationLength(ind), ageMergeFunction = max,
newIndividualsPerGeneration = if (enableAgeCriterion) 50 else 0,
newIndividualsMaxDepth = 8, newIndividualFactory = makePopulation)

Arguments

lambda The number of children to create in each generation (50 by default).
crossoverProbability

The crossover probability for search-heuristics that support this setting (i.e. TinyGP).
Defaults to 0.5.

enableComplexityCriterion

Whether to enable the complexity criterion in multi-criterial search heuristics.
enableAgeCriterion

Whether to enable the age criterion in multi-criterial search heuristics.
ndsParentSelectionProbability

The probability to use non-dominated sorting to select parents for each genera-
tion. When set to 0.0, parents are selected by uniform random sampling without
replacement every time. Defaults to 1.0.

ndsSelectionFunction

The function to use for non-dominated sorting in Pareto GP selection. Defaults
to nds_cd_selection.

makeArchiveBasedParetoTournamentSearchHeuristic 33

complexityMeasure

The complexity measure, a function of signature function(ind, fitness)
returning a single numeric value.

ageMergeFunction

The function used for merging ages of crossover children, defaults to max.
newIndividualsPerGeneration

The number of new individuals per generation to insert into the population. De-
faults to 50 if enableAgeCriterion == TRUE else to 0.

newIndividualsMaxDepth

The maximum depth of new individuals inserted into the population.
newIndividualFactory

The factory function for creating new individuals. Defaults to makePopulation.

Value

An RGP search heuristic.

makeArchiveBasedParetoTournamentSearchHeuristic

Archive-based Pareto Tournament Search Heuristic for RGP

Description

The search-heuristic, i.e. the concrete GP search algorithm, is a modular component of RGP.
makeArchiveBasedParetoTournamentSearchHeuristic creates a RGP search-heuristic that im-
plements a archive-based Pareto tournament multi objective optimization algorithm (EMOA) that
selects on three criteria: Individual fitness, individual complexity and individual age.

Usage

makeArchiveBasedParetoTournamentSearchHeuristic(archiveSize = 50,
popTournamentSize = 5, archiveTournamentSize = 3, crossoverRate = 0.95,
enableComplexityCriterion = TRUE, complexityMeasure = function(ind,
fitness) fastFuncVisitationLength(ind),
ndsSelectionFunction = nds_cd_selection)

Arguments

archiveSize The number of individuals in the archive, defaults to 50.
popTournamentSize

The size of the Pareto tournaments for selecting individuals for reproduction
from the population.

archiveTournamentSize

The size of the Pareto tournaments for selecting individuals for reproduction
from the archive.

34 makeClosure

crossoverRate The probabilty to do crossover with an archive member instead of mutation of
an archive member.

enableComplexityCriterion

Whether to enable the complexity criterion in multi-criterial search heuristics.

complexityMeasure

The complexity measure, a function of signature function(ind, fitness)
returning a single numeric value.

ndsSelectionFunction

The function to use for non-dominated sorting in Pareto GP selection. Defaults
to nds_cd_selection.

Value

An RGP search heuristic.

makeClosure Create a new R closure given a function body expression and an argu-
ment list

Description

Creates a R closure (i.e. a function object) from a body expression and an argument list. The
closure’s environment will be the default environment.

Usage

makeClosure(fbody, fargs, envir = globalenv())

Arguments

fbody The function body, given as a R expression.

fargs The formal arguments, given as a list or vector of strings.

envir The new function closure’s environment, defaults to globalenv().

Value

A formal argument list, ready to be passed via formals.

makeCommaEvolutionStrategySearchHeuristic 35

makeCommaEvolutionStrategySearchHeuristic

Comma Evolution Strategy Search Heuristic for RGP

Description

The search-heuristic, i.e. the concrete GP search algorithm, is a modular component of RGP.
makeCommaEvolutionStrategySearchHeuristic creates a RGP search-heuristic that implements
a (mu, lambda) Evolution Strategy. The lambda parameter is fixed to the population size. TODO
description based on Luke09a

Usage

makeCommaEvolutionStrategySearchHeuristic(mu = 1)

Arguments

mu The number of surviving parents for the Evolution Strategy search-heuristic.
Note that with makeCommaEvolutionStrategySearchHeuristic, lambda is
fixed to the population size, i.e. length(pop).

Value

An RGP search heuristic.

makeEmptyRestartCondition

Evolution restart conditions

Description

Evolution restart conditions are predicates (functions that return a single logical value) of the signa-
ture function(population, fitnessFunction, stepNumber, evaluationNumber,bestFitness, timeElapsed).
They are used to decide when to restart a GP evolution run that might be stuck in a local optimum.
Evolution restart conditions are objects of the same type and class as evolution stop conditions.
They may be freely substituted for each other.

Usage

makeEmptyRestartCondition()

makeStepLimitRestartCondition(stepLimit = 10)

makeFitnessStagnationRestartCondition(fitnessHistorySize = 100,
testFrequency = 10, fitnessStandardDeviationLimit = 1e-06)

makeFitnessDistributionRestartCondition(testFrequency = 100,
fitnessStandardDeviationLimit = 1e-06)

36 makeFunctionFitnessFunction

Arguments

stepLimit The step limit for makeStepLimitRestartCondition.
fitnessHistorySize

The number of past best fitness values to look at when calculating the best fitness
standard deviation for makeFitnessStagnationRestartCondition.

testFrequency The frequency to test for the restart condition, in evolution steps. This parameter
is mainly used with restart condititions that are expensive to calculate.

fitnessStandardDeviationLimit

The best fitness standard deviation limit for makeFitnessStagnationRestartCondition.

Details

makeEmptyRestartCondition creates a restart condition that is never fulfilled, i.e. restarts will
never occur. makeStepLimitRestartCondition creates a restart condition that holds if the number
if evolution steps is an integer multiple of a given step limit. restarts will never occur. makeFitnessStagnationRestartCondition
creates a restart strategy that holds if the standard deviation of a last fitnessHistorySize best fit-
ness values falls below a given fitnessStandardDeviationLimit. makeFitnessDistributionRestartCondition
creates a restart strategy that holds if the standard deviation of the fitness values of the individuals
in the current population falls below a given fitnessStandardDeviationLimit.

makeFunctionFitnessFunction

Create a fitness function from a reference function of one variable

Description

Creates a fitness function that calculates an error measure with respect to an arbitrary reference
function of one variable on the sequence of fitness cases seq(from, to, length = steps).
When an indsizelimit is given, individuals exceeding this limit will receive a fitness of Inf.

Usage

makeFunctionFitnessFunction(func, from = -1, to = 1, steps = 128,
errorMeasure = rmse, indsizelimit = NA)

Arguments

func The reference function.
from The start of the sequence of fitness cases.
to The end of the sequence of fitness cases.
steps The number of steps in the sequence of fitness cases.
errorMeasure A function to use as an error measure, defaults to RMSE.
indsizelimit Individuals exceeding this size limit will get a fitness of Inf.

Value

A fitness function based on the reference function func.

makeHierarchicalClusterFunction 37

makeHierarchicalClusterFunction

Clustering Populations for Niching

Description

These functions create clusterFunctions for multiNicheGeneticProgramming and multiNicheSymbolicRegression.
makeHierarchicalClusterFunction returns a clustering function that uses Ward’s agglomerative
hierarchical clustering algorithm hclust.

Usage

makeHierarchicalClusterFunction(distanceMeasure = NULL, minNicheSize = 1)

Arguments

distanceMeasure

A distance measure, used for calculating distances between individuals in a pop-
ulation.

minNicheSize The minimum number of individuals in each niche.

Value

A clusterFunction for clustering populations.

See Also

multiNicheGeneticProgramming, multiNicheSymbolicRegression

makeLocalRestartStrategy

Evolution restart strategies

Description

Evolution restart strategies are functions of the signature function(fitnessFunction,population, populationSize, functionSet, inputVariables, constantSet)
that return a list of two obtjects: First, a population that replace the run’s current population. Sec-
ond, a list of elite individuals to keep.

Usage

makeLocalRestartStrategy(populationType = NULL,
extinctionPrevention = FALSE, breedingFitness = function(individual) TRUE,
breedingTries = 50)

38 makeNaryFunctionFitnessFunction

Arguments

populationType The sType of the replacement individuals, defaults to NULL for creating untyped
populations.

extinctionPrevention

Whether to surpress duplicate individuals in newly initialized populations. See
geneticProgramming for details.

breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.

Details

makeLocalRestartStrategy creates a restart strategy that replaces all individuals with new in-
dividuals. The single best individual is returned as the elite. When using a multi-criterial fitness
function, only the first component counts in the fitness sorting.

makeNaryFunctionFitnessFunction

Create a fitness function from a n-ary reference function

Description

Creates a fitness function that calculates an error measure with respect to an arbitrary n-ary reference
function based sample points generated by a given designFunction. When an indsizelimit is
given, individuals exceeding this limit will receive a fitness of Inf.

Usage

makeNaryFunctionFitnessFunction(func, dim, designFunction = gridDesign,
errorMeasure = rmse, indsizelimit = NA, ...)

Arguments

func The reference function. Its single argument must be numeric vector of length
dim and it must return a scalar numeric.

dim The dimension of the reference function.

designFunction A function to generate sample points. Its first argument must be dim. Defaults
to gridDesign.

errorMeasure A function to use as an error measure, defaults to RMSE.

indsizelimit Individuals exceeding this size limit will get a fitness of Inf.

... Additional arguments to the designFunction.

Value

A fitness function based on the reference function func.

makePopulation 39

See Also

latinHypercubeDesign, gridDesign,

makePopulation Classes for populations of individuals represented as functions

Description

makePopulation creates a population of untyped individuals, whereas makeTypedPopulation cre-
ates a population of typed individuals. fastMakePopulation is a faster variant of makePopulation
with fewer options. print.population prints the population. summary.population returns a
summary view of a population.

Usage

makePopulation(size, funcset, inset, conset, maxfuncdepth = 8,
constprob = 0.2, breedingFitness = function(individual) TRUE,
breedingTries = 50, extinctionPrevention = FALSE, funcfactory = NULL)

fastMakePopulation(size, funcset, inset, maxfuncdepth, constMin, constMax)

makeTypedPopulation(size, type, funcset, inset, conset, maxfuncdepth = 8,
constprob = 0.2, breedingFitness = function(individual) TRUE,
breedingTries = 50, extinctionPrevention = FALSE, funcfactory = NULL)

S3 method for class 'population'
print(x, ...)

S3 method for class 'population'
summary(object, ...)

Arguments

size The population size in number of individuals.

type The (range) type of the individual functions to create.

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

constMin For fastMakePopulation, the minimum constant to create.

constMax For fastMakePopulation, the maximum constant to create.

maxfuncdepth The maximum depth of the functions of the new population.

constprob The probability of generating a constant in a step of growth, if no subtree is
generated. If neither a subtree nor a constant is generated, a randomly chosen
input variable will be generated. Defaults to 0.2.

40 makeRegressionFitnessFunction

breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.
extinctionPrevention

When set to TRUE, initialization will try to prevent duplicate individuals from
occurring in the population. Defaults to FALSE, as this operation might be ex-
pensive with larger population sizes.

funcfactory A factory for creating the functions of the new population. Defaults to Koza’s
"ramped half-and-half" initialization strategy.

x The population to print.

object The population to summarize.

... Additional parameters to the print or summary (passed on to their default im-
plementation).

Value

A new population of functions.

makeRegressionFitnessFunction

Create a fitness function for symbolic regression

Description

Creates a fitness function that calculates an error measure with respect to a given set of data vari-
ables. A simplified version of the formula syntax is used to describe the regression task. When an
indsizelimit is given, individuals exceeding this limit will receive a fitness of Inf.

Usage

makeRegressionFitnessFunction(formula, data, envir, errorMeasure = rmse,
indsizelimit = NA, penalizeGenotypeConstantIndividuals = FALSE,
subSamplingShare = 1)

Arguments

formula A formula object describing the regression task.

data An optional data frame containing the variables in the model.

envir The R environment to evaluate individuals in.

errorMeasure A function to use as an error measure, defaults to RMSE.

indsizelimit Individuals exceeding this size limit will get a fitness of Inf.
penalizeGenotypeConstantIndividuals

Individuals that do not contain any input variables will get a fitness of Inf.

makeSeSymbolicFitnessFunction 41

subSamplingShare

The share of fitness cases
s

sampled for evaluation with each function evaluation.

0 < s ≤ 1

must hold, defaults to 1.0.

Value

A fitness function to be used in symbolic regression.

makeSeSymbolicFitnessFunction

Create a fitness function based on symbolic squared error (SE)

Description

Creates a fitness function that calculates the squared error of an individual with respect to a reference
function func. When an indsizelimit is given, individuals exceeding this limit will receive a
fitness of Inf.

Usage

makeSeSymbolicFitnessFunction(func, lower, upper, subdivisions = 100,
indsizelimit = NA)

Arguments

func The reference function.

lower The lower limit of integraion.

upper The upper limit of integraion.

subdivisions The maximum number of subintervals for numeric integration.

indsizelimit Individuals exceeding this size limit will get a fitness of Inf.

Value

A fitness function based on the reference function func.

42 makeStepsStopCondition

makeStepsStopCondition

Evolution stop conditions

Description

Evolution stop conditions are predicates (functions that return a single logical value) of the signa-
ture function(population, stepNumber, evaluationNumber, bestFitness,timeElapsed).
They are used to decide when to finish a GP evolution run. Stop conditions must be members
of the S3 class c("stopCondition", "function"). They can be combined using the functions
andStopCondition, orStopCondition and notStopCondition.

Usage

makeStepsStopCondition(stepLimit)

makeEvaluationsStopCondition(evaluationLimit)

makeFitnessStopCondition(fitnessLimit)

makeTimeStopCondition(timeLimit)

andStopCondition(e1, e2)

orStopCondition(e1, e2)

notStopCondition(e1)

Arguments

stepLimit The maximum number of evolution steps for makeStepsStopCondition.
evaluationLimit

The maximum number of fitness function evaluations for makeEvaluationsStopCondition.
fitnessLimit The minimum fitness for makeFitnessStopCondition.
timeLimit The maximum runtime in seconds for makeTimeStopCondition.
e1 A stop condition.
e2 A stop condition.

Details

makeStepsStopCondition creates a stop condition that is fulfilled if the number of evolution steps
exceeds a given limit. makeEvaluationsStopCondition creates a stop condition that is fulfilled
if the number of fitness function evaluations exceeds a given limit. makeFitnessStopCondition
creates a stop condition that is fulfilled if the number best fitness seen in an evaluation run undercuts
a certain limit. makeTimeStopCondition creates a stop condition that is fulfilled if the run time (in
seconds) of an evolution run exceeds a given limit.

makeTinyGpSearchHeuristic 43

makeTinyGpSearchHeuristic

Tiny GP Search Heuristic for RGP

Description

The search-heuristic, i.e. the concrete GP search algorithm, is a modular component of RGP.
makeTinyGpSearchHeuristic creates an RGP search-heuristic that mimics the search heuristic
implemented in Riccardo Poli’s TinyGP system.

Usage

makeTinyGpSearchHeuristic(crossoverProbability = 0.9, tournamentSize = 2)

Arguments

crossoverProbability

The crossover probability for search-heuristics that support this setting (i.e. TinyGP).
Defaults to 0.9.

tournamentSize The size of TinyGP’s selection tournaments.

Value

An RGP search heuristic.

makeTournamentSelection

GP selection functions

Description

A GP selection function determines which individuals in a population should survive, i.e. are se-
lected for variation or cloning, and which individuals of a population should be replaced. Single-
objective selection functions base their selection decision on scalar fitness function, whereas multi-
objective selection functions support vector-valued fitness functions. Every selection function takes
a population and a (possibly vector-valued) fitness function as required arguments. It returns a list
of two tables selected and discarded, with columns index and fitness each. The returned list
also contains a single integer numberOfFitnessEvaluations that contains the number of fitness
evaluations used to make the selection (Note that in the multi-objective case, evaluating all fitness
functions once counts as a single evaluation). The first table contains the population indices of the
individuals selected as survivors, the second table contains the population indices of the individuals
that should be discarded and replaced. This definition simplifies the implementation of steady-
state evolutionary strategies where most of the individuals in a population are unchanged in each
selection step. In a GP context, steady-state strategies are often more efficient than generational
strategies.

44 makeTournamentSelection

Usage

makeTournamentSelection(tournamentSize = 10,
selectionSize = ceiling(tournamentSize/2), tournamentDeterminism = 1,
vectorizedFitness = FALSE)

makeMultiObjectiveTournamentSelection(tournamentSize = 30,
selectionSize = ceiling(tournamentSize/2), tournamentDeterminism = 1,
vectorizedFitness = FALSE,
rankingStrategy = orderByParetoCrowdingDistance)

makeComplexityTournamentSelection(tournamentSize = 30,
selectionSize = ceiling(tournamentSize/2), tournamentDeterminism = 1,
vectorizedFitness = FALSE,
rankingStrategy = orderByParetoCrowdingDistance,
complexityMeasure = fastFuncVisitationLength)

Arguments

complexityMeasure

The function used to measure the complexity of an individual.
tournamentSize The number of individuals to randomly select to form a tournament, defaults to

10 in the single-objective case, 30 in the multi-objective case.
selectionSize The number of individuals to return as selected.
tournamentDeterminism

The propability p for selecting the best individual in a tournament, must be in
the interval (0.0, 1.0]. The best individual is selected with propability p, the
second best individual is selected with propability p * (1 - p), the third best
individual ist selected with propability p * (1 - p)^2, and so on. Note that setting
tournamentDeterminism to 1.0 (the default) yields determistic behavior.

vectorizedFitness

If TRUE, the fitness function is expected to take a list of individuals as input and
return a list of (possible vector-valued) fitnesses as output.

rankingStrategy

The strategy used to rank individuals based on multiple objectives. This function
must turn a fitness vector (one point per column) into an ordering permutation
(similar to the one returned by order). Defaults to orderByParetoCrowdingDistance.

Details

makeTournamentSelection returns a classic single-objective tournament selection function. makeMultiObjectiveTournamentSelection
returns a multi-objective tournament selection function that selects individuals based on multiple
objectives. makeComplexityTournamentSelection returns a multi-objective selection function
that implements the common case of dual-objective tournament selection with high solution quality
as the first objective and low solution complexity as the second objective.

Value

A selection function.

MapExpressionNodes 45

MapExpressionNodes Common higher-order functions for transforming R expressions

Description

MapExpressionNodes transforms an expression expr by replacing every node in the tree with the
result of applying a function f. The parameters functions, inners, and leafs control if f should
be applied to the function symbols, inner subtrees, and leafs of expr, respectively. MapExpressionLeafs
and MapExpressionSubtrees are shorthands for calls to MapExpressionNodes. expr. an expres-
sion expr. expr, given as list of nodes and and list of vertices. Each vertex is represented as a pair
of indices into the list of nodes. AllExpressionNodes checks if all nodes in the tree of expr satisfy
the predicate p (p returns TRUE for every node). This function short-cuts returning FALSE as soon
as a node that does not satisfy p is encountered. AnyExpressionNode checks if any node in the
tree of expr satisfies the predicate p. This function short-cuts returning TRUE as soon as a node that
satisfies p is encountered. subtreeAt returns the subtree at index. replaceSubtreeAt replaces
the subtree at index with replacement and returns the result.

Usage

MapExpressionNodes(f, expr, functions = TRUE, inners = FALSE,
leafs = TRUE)

MapExpressionLeafs(f, expr)

MapExpressionSubtrees(f, expr)

FlattenExpression(expr)

subtrees(expr, functions = FALSE, inners = TRUE, leafs = TRUE)

expressionGraph(expr)

AllExpressionNodes(p, expr)

AnyExpressionNode(p, expr)

subtreeAt(expr, index)

replaceSubtreeAt(expr, index, replacement)

Arguments

f The function to apply.

functions Whether to apply f to the function symbols of expr. Defaults to TRUE.

inners Whether to apply f to the inner subtrees of expr. Defaults to FALSE.

leafs Wheter to apply f to the leafs of expr. Defaults to TRUE.

46 multiNicheGeneticProgramming

p The predicate to check.

expr The expression to transform.

index An in-order subtree index starting from 0 (the root).

replacement An expression.

Value

The transformed expression.

mse Mean squared error (MSE)

Description

Mean squared error (MSE)

Usage

mse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The MSE between x and y.

multiNicheGeneticProgramming

Cluster-based multi-niche genetic programming

Description

Perform a multi-niche genetic programming run. The required argument fitnessFunction must
be supplied with an objective function that assigns a numerical fitness value to an R function.
Fitness values are minimized, i.e. smaller values mean higher/better fitness. If a multi-objective
selectionFunction is used, fitnessFunction return a numerical vector of fitness values. In
a multi-niche genetic programming run, the initial population is clustered via a clusterFunction
into numberOfNiches niches. In each niche, a genetic programming run is executed with passStopCondition
as stop condition. These runs are referred to as a parallel pass. After each parallel pass, the niches
are joined again using a joinFunction into a population. From here, the process starts again with
a clustering step, until the global stopCondition is met. The result of the multi-niche genetic pro-
gramming run is a genetic programming result object containing a GP population of R functions.
summary.geneticProgrammingResult can be used to create summary views of a GP result object.

multiNicheGeneticProgramming 47

Usage

multiNicheGeneticProgramming(fitnessFunction,
stopCondition = makeTimeStopCondition(25),
passStopCondition = makeTimeStopCondition(5), numberOfNiches = 2,
clusterFunction = groupListConsecutive, joinFunction = function(niches)
Reduce(c, niches), population = NULL, populationSize = 100,
eliteSize = ceiling(0.1 * populationSize), elite = list(),
functionSet = mathFunctionSet, inputVariables = inputVariableSet("x"),
constantSet = numericConstantSet, crossoverFunction = crossover,
mutationFunction = NULL, restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(),
searchHeuristic = makeAgeFitnessComplexityParetoGpSearchHeuristic(),
progressMonitor = NULL, verbose = TRUE, clusterApply = sfClusterApplyLB,
clusterExport = sfExport)

Arguments

fitnessFunction

In case of a single-objective selection function, fitnessFunction must be a
single function that assigns a numerical fitness value to a GP individual rep-
resented as a R function. Smaller fitness values mean higher/better fitness. If
a multi-objective selection function is used, fitnessFunction must return a
numerical vector of fitness values.

stopCondition The stop condition for the evolution main loop. See makeStepsStopCondition
for details.

passStopCondition

The stop condition for each parallel pass. See makeStepsStopCondition for
details.

numberOfNiches The number of niches to cluster the population into.
clusterFunction

The function used to cluster the population into niches. The first parameter of
this function is a GP population, the second paramater an integer representing
the number of niches. Defaults to groupListConsecutive.

joinFunction The function used to join all niches into a population again after a round of
parallel passes. Defaults to a function that simply concatenates all niches.

population The GP population to start the run with. If this parameter is missing, a new GP
population of size populationSize is created through random growth.

populationSize The number of individuals if a population is to be created.

eliteSize The number of "elite" individuals to keep. Defaults to ceiling(0.1 * populationSize).

elite The elite list, must be alist of individuals sorted in ascending order by their first
fitness component.

functionSet The function set.

inputVariables The input variable set.

constantSet The set of constant factory functions.

48 multiNicheSymbolicRegression

searchHeuristic

The search-heuristic (i.e. optimization algorithm) to use in the search of solu-
tions. See the documentation for searchHeuristics for available algorithms.

crossoverFunction

The crossover function.
mutationFunction

The mutation function.
restartCondition

The restart condition for the evolution main loop. See makeFitnessStagnation-
RestartCondition for details.

restartStrategy

The strategy for doing restarts. See makeLocalRestartStrategy for details.

progressMonitor

A function of signature function(population, objectiveVectors, fitnessFunction, stepNumber, evaluationNumber,bestFitness, timeElapsed, ...)
to be called with each evolution step. Seach heuristics may pass additional in-
formation via the ... parameter.

verbose Whether to print progress messages.

clusterApply The cluster apply function that is used to distribute the parallel passes to CPUs
in a compute cluster.

clusterExport A function that is used to export R variables to the nodes of a CPU cluster,
defaults to sfExport.

Value

A genetic programming result object that contains a GP population in the field population, as well
as metadata describing the run parameters.

See Also

geneticProgramming, summary.geneticProgrammingResult, symbolicRegression

multiNicheSymbolicRegression

Symbolic regression via multi-niche standard genetic programming

Description

Perform symbolic regression via untyped multi-niche genetic programming. The regression task is
specified as a formula. Only simple formulas without interactions are supported. The result of the
symbolic regression run is a symbolic regression model containing an untyped GP population of
model functions.

multiNicheSymbolicRegression 49

Usage

multiNicheSymbolicRegression(formula, data,
stopCondition = makeTimeStopCondition(25),
passStopCondition = makeTimeStopCondition(5), numberOfNiches = 2,
clusterFunction = groupListConsecutive, joinFunction = function(niches)
Reduce(c, niches), population = NULL, populationSize = 100,
eliteSize = ceiling(0.1 * populationSize), elite = list(),
individualSizeLimit = 64, penalizeGenotypeConstantIndividuals = FALSE,
functionSet = mathFunctionSet, constantSet = numericConstantSet,
selectionFunction = makeTournamentSelection(),
crossoverFunction = crossover, mutationFunction = NULL,
restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(), progressMonitor = NULL,
verbose = TRUE, clusterApply = sfClusterApplyLB,
clusterExport = sfExport)

Arguments

formula A formula describing the regression task. Only simple formulas of the form
response ~ variable1 + ... + variableN are supported at this point in
time.

data A data.frame containing training data for the symbolic regression run. The
variables in formula must match column names in this data frame.

stopCondition The stop condition for the evolution main loop. See makeStepsStopCondition
for details.

passStopCondition

The stop condition for each parallel pass. See makeStepsStopCondition for
details.

numberOfNiches The number of niches to cluster the population into.
clusterFunction

The function used to cluster the population into niches. The first parameter of
this function is a GP population, the second paramater an integer representing
the number of niches. Defaults to groupListConsecutive.

joinFunction The function used to join all niches into a population again after a round of
parallel passes. Defaults to a function that simply concatenates all niches.

population The GP population to start the run with. If this parameter is missing, a new GP
population of size populationSize is created through random growth.

populationSize The number of individuals if a population is to be created.

eliteSize The number of "elite" individuals to keep. Defaults to ceiling(0.1 * populationSize).

elite The elite list, must be alist of individuals sorted in ascending order by their first
fitness component.

individualSizeLimit

Individuals with a number of tree nodes that exceeds this size limit will get a
fitness of Inf.

penalizeGenotypeConstantIndividuals

Individuals that do not contain any input variables will get a fitness of Inf.

50 mutateFunc

functionSet The function set.

constantSet The set of constant factory functions.
selectionFunction

The selection function to use. Defaults to tournament selection. See makeTour-
namentSelection for details.

crossoverFunction

The crossover function.
mutationFunction

The mutation function.
restartCondition

The restart condition for the evolution main loop. See makeFitnessStagnation-
RestartCondition for details.

restartStrategy

The strategy for doing restarts. See makeLocalRestartStrategy for details.
progressMonitor

A function of signature function(population, objectiveVectors, fitnessFunction, stepNumber, evaluationNumber,bestFitness, timeElapsed, ...)
to be called with each evolution step. Seach heuristics may pass additional in-
formation via the ... parameter.

verbose Whether to print progress messages.

clusterApply The cluster apply function that is used to distribute the parallel passes to CPUs
in a compute cluster.

clusterExport A function that is used to export R variables to the nodes of a CPU cluster,
defaults to snowfall’s sfExport.

Value

An symbolic regression model that contains an untyped GP population.

See Also

predict.symbolicRegressionModel, geneticProgramming

mutateFunc Random mutation of functions and expressions

Description

RGP implements two sets of mutation operators. The first set is inspired by classical GP sys-
tems. Mutation strength is controlled by giving mutation probabilities: mutateFunc mutates a
function f by recursively replacing inner function labels in f with probability mutatefuncprob.
mutateSubtree mutates a function by recursively replacing inner nodes with newly grown sub-
trees of maximum depth maxsubtreedepth. mutateNumericConst mutates a function by per-
turbing each numeric (double) constant c with probability mutateconstprob by setting c := c +
rnorm(1,mean = mu, sd = sigma). Note that constants of other typed than double (e.g
integers) are not affected.

mutateFunc 51

Usage

mutateFunc(func, funcset, mutatefuncprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateSubtree(func, funcset, inset, conset, mutatesubtreeprob = 0.1,
maxsubtreedepth = 5, breedingFitness = function(individual) TRUE,
breedingTries = 50)

mutateNumericConst(func, mutateconstprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50, mu = 0,
sigma = 1)

mutateFuncTyped(func, funcset, mutatefuncprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateSubtreeTyped(func, funcset, inset, conset, mutatesubtreeprob = 0.1,
maxsubtreedepth = 5, breedingFitness = function(individual) TRUE,
breedingTries = 50)

mutateNumericConstTyped(func, mutateconstprob = 0.1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateChangeLabel(func, funcset, inset, conset, strength = 1,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateInsertSubtree(func, funcset, inset, conset, strength = 1,
subtreeDepth = 2, breedingFitness = function(individual) TRUE,
breedingTries = 50)

mutateDeleteSubtree(func, funcset, inset, conset, strength = 1,
subtreeDepth = 2, constprob = 0.2,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateChangeDeleteInsert(func, funcset, inset, conset, strength = 1,
subtreeDepth = 2, constprob = 0.2, iterations = 1,
changeProbability = 1/3, deleteProbability = 1/3,
insertProbability = 1/3, breedingFitness = function(individual) TRUE,
breedingTries = 50)

mutateDeleteInsert(func, funcset, inset, conset, strength = 1,
subtreeDepth = 2, constprob = 0.2, iterations = 1,
deleteProbability = 0.5, insertProbability = 0.5,
breedingFitness = function(individual) TRUE, breedingTries = 50)

mutateFuncFast(funcbody, funcset, mutatefuncprob = 0.1)

mutateSubtreeFast(funcbody, funcset, inset, constmin, constmax, insertprob,
deleteprob, subtreeprob, constprob, maxsubtreedepth)

52 mutateFunc

mutateNumericConstFast(funcbody, mutateconstprob = 0.1, mu = 0, sigma = 1)

Arguments

func The function to mutate randomly.

funcbody The function body to mutate randomly, obtain it via body(func).

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

mutatefuncprob The probability of trying to replace an inner function at each node.
mutatesubtreeprob

The probability of replacing a subtree with a newly grown subtree at each node.
maxsubtreedepth

The maximum depth of newly grown subtrees.
mutateconstprob

The probability of mutating a constant by adding rnorm(1) to it.

strength The number of individual point mutations (changes, insertions, deletions) to
perform.

subtreeDepth The depth of the subtrees to insert or delete.

constprob The probability of creating a constant versus an input variable.

insertprob The probability to insert a subtree.

deleteprob The probability to insert a subtree.

constmin The lower limit for numeric constants.

constmax The upper limit for numeric onstants.

mu The normal distribution mean for random numeric constant mutation.

sigma The normal distribution standard deviation for random numeric constant muta-
tion.

subtreeprob The probability of creating a subtree instead of a leaf in the random subtree
generator function.

iterations The number of times to apply a mutation operator to a GP individual. This can
be used as a generic way of controling the strength of the genotypic effect of
mutation.

changeProbability

The probability for selecting the mutateChangeLabel operator.
deleteProbability

The probability for selecting the mutateDeleteSubtree operator.
insertProbability

The probability for selecting the mutateInsertSubtree operator.
breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.

new.alist 53

Details

mutateFuncTyped, mutateSubtreeTyped, and mutateNumericConstTyped are variants of the
above functions that only create well-typed result expressions.

mutateFuncFast, mutateSubtreeFast, mutateNumericConstFast are variants of the above un-
typed mutation function implemented in C. They offer a considerably faster execution speed for the
price of limited flexibility. These variants take function bodies as arguments (obtain these via R’s
body function) and return function bodies as results. To turn a function body into a function, use
RGP’s makeClosure tool function.

The second set of mutation operators features a more orthogonal design, with each individual op-
erator having a only a small effect on the genotype. Mutation strength is controlled by the integral
strength parameter. mutateChangeLabel Selects a node (inner node or leaf) by uniform random
sampling and replaces the label of this node by a new label of matching type. mutateInsertSubtree
Selects a leaf by uniform random sampling and replaces it with a matching subtree of the exact depth
of subtreeDepth. mutateDeleteSubtree Selects a subree of the exact depth of subtreeDepth by
uniform random sampling and replaces it with a matching leaf. mutateChangeDeleteInsert Ei-
ther applies mutateChangeLabel, mutateInsertSubtree, or mutateDeleteSubtree. The prob-
ability weights for selecting an operator can be supplied via the ...Probability arguments (probability
weights are normalized to a sum of 1). mutateDeleteInsert Either applies mutateDeleteSubtree
or mutateInsertSubtree. The probability weights for selecting an operator can be supplied via
the ...Probability arguments (probability weights are normalized to a sum of 1). The above functions
automatically create well-typed result expressions when used in a strongly typed GP run.

All RGP mutation operators have the S3 class c("mutationOperator", "function").

Value

The randomly mutated function.

new.alist Create a new function argument list from a list or vector of strings

Description

Creates a formal argument list from a list or vector of strings, ready to be assigned via formals.

Usage

new.alist(fargs)

Arguments

fargs The formal arguments, given as a list or vector of strings.

Value

A formal argument list, ready to be passed via formals.

54 nmse

new.function Create a new function stub

Description

Creates and returns a new function stub without capturing any environment variables.

Usage

new.function(envir = globalenv())

Arguments

envir The new function closure’s environment, defaults to globalenv().

Value

A new function that does not take any arguments and always returns NULL.

Note

Always use this function to dynamically generate new functions that are not clojures to prevent hard
to find memory leaks.

nmse Normalized mean squared error (NMSE)

Description

Calculates the MSE between vectors after normalizing them into the interval [0, 1].

Usage

nmse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The NMSE between x and y.

nondeterministicRanking 55

nondeterministicRanking

Create a nondeterministic ranking

Description

Create a permutation of the sequence s = 1:l representing a ranking. If p = 1, the ranking will
be completely deterministic, i.e. equal to 1:l. If p = 0, the ranking will be completely random.
If 0 < p < 1, the places in the ranking will be determined by iterative weighted sampling without
replacement from the sequence s := 1:l. At each step of this iterated weighted sampling, the first
remaining element of s will be selected with probability p, the second element with probability
p * (1 - p), the third element with probability p * (1 - p) ^ 2, and so forth.

Usage

nondeterministicRanking(l, p = 1)

Arguments

l The numer of elements in the ranking.

p The "degree of determinism" of the ranking to create.

Value

A ranking permutation of the values 1:l.

normalize Normalize a vector into the interval [0, 1]

Description

Normalize a vector into the interval [0, 1]

Usage

normalize(x)

Arguments

x The vector to normalize, so that each element lies in the interval [0, 1].

Value

The normalized vector.

56 orderByParetoCrowdingDistance

normalizedDesign Create a normalized design matrix

Description

Produces a normalized design and calculates the minimal distance if required. Returns a design is a
matrix with dim columns and size rows.

Usage

normalizedDesign(dimension, size, calcMinDistance = FALSE)

Arguments

dimension Dimension of the problem (will be no. of columns of the result matrix).

size Number of points with that dimension needed. (will be no. of rows of the result
matrix).

calcMinDistance

Indicates whether a minimal distance should be calculated.

Value

List L consists of a matrix and nd (if required) a minimal distance.

orderByParetoCrowdingDistance

Rearrange points via Pareto-based rankings

Description

Returns a permutation that rearranges points, given as columns in a value matrix, via Pareto-based
ranking. Points are ranked by their Pareto front number. In orderByParetoCrowdingDistance,
ties are then broken by crowding distance, in orderByParetoHypervolumeContribution, ties are
broken by hypervolume contribution.

Usage

orderByParetoCrowdingDistance(values)

orderByParetoHypervolumeContribution(values)

Arguments

values The value matrix to return the ordering permutation for. Each column represents
a point, each row a dimension.

orderByParetoMeasure 57

Value

A permutation to rearrange values based on a Pareto based ranking.

orderByParetoMeasure Rearrange points via an arbitrary Pareto-based ranking

Description

Returns a permutation that rearranges points, given as columns in a value matrix, via Pareto-based
ranking. Points are ranked by their Pareto front number, ties are broken by the values of measure.

Usage

orderByParetoMeasure(values, measure = crowding_distance)

Arguments

values The value matrix to return the ordering permutation for. Each column represents
a point, each row a dimension.

measure The measure used for ranking points that lie on the same Pareto front, defaults
to crowding_distance.

Value

A permutation to rearrange values based on a Pareto based ranking.

paretoFrontKneeIndex Find the knee of a two dimensional pareto front

Description

Given a matrix m of two rows and n columns, representing solutions of a two-dimensional optimiza-
tion problem, returns the column index of the point with minimum euclidean distance to the utopia
point. The utopia point is the point consisting of the row minima of m. NA or NaN values of m are
ommited.

Usage

paretoFrontKneeIndex(m, normalize = TRUE)

Arguments

m A matrix of two rows and n columns, representing the solutions of a two-dimensional
optimization problem.

normalize Whether to normalize both objectives to the interval of [0, 1], defaults to TRUE.

58 plotFunction3d

Value

The knee point index, i.e. the column index in m of the point of minimum euclidean distance to the
utopia point.

Examples

m1 <- matrix(runif(200), ncol = 100)
plot(t(m1))
points(t(m1[,emoa::nds_rank(m1) == 1]), col = "red", pch = 16)
pKnee <- m1[, paretoFrontKneeIndex(m1)]
points(t(pKnee), col = "green4", pch = 16)

plotFunction3d Plot a 2D function as a 3D surface

Description

Creates and shows and perspective plot of a 2D function of either the form z = f(x, y) or z =
f(xv), where xv is a numeric of length 2.

Usage

plotFunction3d(func = function(x) sum(x^2), lo = c(0, 0), up = c(1, 1),
samples = 10, palette = gray.colors(256), ...)

Arguments

func A 2D function to plot.

lo A vector of lower limits of the plot (one entry for each dimension).

up A vector of upper limits of the plot (one entry for each dimension).

samples The number of samples in each dimension.

palette The color palette, use NULL to disable.

... Graphic parameters for persp.

plotFunctions 59

plotFunctions Show an overlayed plot of multiple functions

Description

Creates and shows and overlayed plot of one or more functions of one variable y = f(x).

Usage

plotFunctions(funcs, from = 0, to = 1, steps = 1024, type = "l",
lty = 1:5, lwd = 1, lend = par("lend"), pch = NULL, col = 1:6,
cex = NULL, bg = NA, xlab = "x", ylab = "y",
legendpos = "bottomright", bty = "n", ...)

Arguments

funcs A list of functions of one variable to plot.

from The left bound of the plot, i.e. the minimum x value to plot.

to The right bound of the plot, i.e. the maximum x value to plot.

steps The number of steps, or samples, to plot.

type The plot type (e.g. l = line) as passed on to matplot.

lty The line types as passed on to matplot.

lwd The line widths as passed on to matplot.

lend The line end cap types as passed on to matplot.

pch The plot chars as passed on to matplot.

col The plot colors as passed on to matplot.

cex The character expansion sizes as passed on to matplot.

bg The background (fill) colors as passed on to matplot.

xlab The x axis label as passed on to matplot.

ylab The y axis label as passed on to matplot.

legendpos The position of the legend, passed as the x parameter to legend.

bty The box type parameter of the legend, passed as the bty parameter to legend.

... Graphic parameters for par and further arguments to plot. For example, use
the main parameter to set a title.

Examples

plotFunctions(list(function(x) sin(x),
function(x) cos(x),
function(x) 0.5*sin(2*x)+1),

-pi, pi, 256)

60 plotPopulationFitnessComplexity

plotParetoFront Plot a GP Pareto Front

Description

Plots fitness/complexity/age Pareto fronts for multi-objective GP. The z-coordinate represents in-
dividual age and is shown in form of a color scale, where younger individuals are bright green,
individuals with age maxZ are black. Individuals not on the first Pareto front are shown as small
gray circles, regardless of age.

Usage

plotParetoFront(x, y, z, indicesToMark = integer(), maxZ = 50,
main = sprintf("Population Pareto Front Plot (% Individuals)", length(x)),
...)

Arguments

x A vector of type numeric representing individual fitness.

y A vector of type numeric representing individual complexity.

z A vector of type integer representing individual age.

indicesToMark A index vector of points to mark with red crosses.

maxZ The individual age at the large end of the age color scale.

main The plot’s title.

... Graphic parameters for par and further arguments to plot. For example, use
the main parameter to set a title.

See Also

funcToIgraph

plotPopulationFitnessComplexity

Fitness/Complexity plot for populations

Description

Plots the fitness against the complexity of each individual in a population.

Usage

plotPopulationFitnessComplexity(pop, fitnessFunction,
complexityFunction = fastFuncVisitationLength, showIndices = TRUE,
showParetoFront = TRUE, hideOutliers = 0, ...)

popfitness 61

Arguments

pop A population to plot.

fitnessFunction

The function to calculate an individual’s fitness with.

complexityFunction

The function to calculate an individual’s complexity with.

showIndices Whether to show the population index of each individual.

showParetoFront

Whether to highlight the pareto front in the plot.

hideOutliers If N = hideOutliers > 0, hide outliers from the plot using a "N * IQR"
criterion.

... Additional parameters for the underlying call to plot.

popfitness Calculate the fitness value of each individual in a population

Description

Calculate the fitness value of each individual in a population

Usage

popfitness(pop, fitnessfunc)

Arguments

pop A population of functions.

fitnessfunc The fitness function.

Value

A list of fitness function values in the same order as pop.

62 print.sType

predict.symbolicRegressionModel

Predict method for symbolic regression models

Description

Predict values via a model function from a population of model functions generated by symbolic
regression.

Usage

S3 method for class 'symbolicRegressionModel'
predict(object, newdata, model = "BEST",
detailed = FALSE, ...)

Arguments

object A model created by symbolicRegression.

newdata A data.frame containing input data for the symbolic regression model. The
variables in object$formula must match column names in this data frame.

model The numeric index of the model function in object$population to use for
prediction or "BEST" to use the model function with the best training fitness.

detailed Whether to add metadata to the prediction object returned.

... Ignored in this predict method.

Value

A vector of predicted values or, if detailed is TRUE, a list of the following elements: model the
model used in this prediction response a matrix of predicted versus respone values RMSE the RMSE
between the real and predicted response

print.sType Prints a sType and returns it invisible.

Description

Prints a sType and returns it invisible.

Usage

S3 method for class 'sType'
print(x, ...)

randchild 63

Arguments

x The sType to print.

... Optional parameters to print are ignored in this method.

randchild Select random childs or subtrees of an expression

Description

randchild returns a uniformly random direct child of an expression. randsubtree returns a uni-
formly random subtree of an expression. Note that this subtree must not be a direct child.

Usage

randchild(expr)

randsubtree(expr, subtreeprob = 0.1)

Arguments

expr The expression to select random childs or subtrees from.

subtreeprob The probability for randsubtree to select a certain subtree instead of searching
further via an recursive call.

randelt Choose a random element from a list or vector

Description

Returns a unformly random chosen element of the vector or list x.

Usage

randelt(x, prob = NULL)

Arguments

x The vector or list to chose an element from.

prob A vector of probability weights for obtaining the elements of the vector or list
being sampled.

Value

A uniformly random element of x.

64 randexprGrow

randexprGrow Creates an R expression by random growth

Description

Creates a random R expression by randomly growing its tree. In each step of growth, with proba-
bility subtreeprob, an operator is chosen from the function set funcset. The operands are then
generated by recursive calls. If no subtree is generated, a constant will be generated with probability
constprob. If no constant is generated, an input variable will be chosen randomly. The depth of
the resulting expression trees can be bounded by the maxdepth parameter. randexprFull creates a
random full expression tree of depth maxdepth. The algorithm is the same as randexprGrow, with
the exception that the probability of generating a subtree is fixed to 1 until the desired tree depth
maxdepth is reached.

Usage

randexprGrow(funcset, inset, conset, maxdepth = 8, constprob = 0.2,
subtreeprob = 0.5, curdepth = 1)

randexprFull(funcset, inset, conset, maxdepth = 8, constprob = 0.2)

Arguments

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

maxdepth The maximum expression tree depth.

constprob The probability of generating a constant in a step of growth, if no subtree is
generated. If neither a subtree nor a constant is generated, a randomly chosen
input variable will be generated. Defaults to 0.2.

subtreeprob The probability of generating a subtree in a step of growth.

curdepth (internal) The depth of the random expression currently generated, used inter-
nally in recursive calls.

Value

A new R expression generated by random growth.

randexprTypedGrow 65

randexprTypedGrow Creates an R expression by random growth respecting type constraints

Description

Creates a random R expression by randomly growing its tree. In each step of growth, with proba-
bility subtreeprob, an operator is chosen from the function set funcset. The operands are then
generated by recursive calls. If no function of matching range type exists, a terminal (constant or
input variable) will be generated instead. If no subtree is generated, a constant will be generated
with probability constprob. If no constant is generated, an input variable will be chosen randomly.
The depth of the resulting expression trees can be bounded by the maxdepth parameter. In contrast
to randexprGrow, this function respects sTypes of functions, input variables, and constant factories.
Only well-typed expressions are created. randexprTypedFull creates a random full expression tree
of depth maxdepth, respecting type constraints.

Usage

randexprTypedGrow(type, funcset, inset, conset, maxdepth = 8,
constprob = 0.2, subtreeprob = 0.5, curdepth = 1)

randexprTypedFull(type, funcset, inset, conset, maxdepth = 8,
constprob = 0.2)

Arguments

type The (range) type the created expression should have.

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

maxdepth The maximum expression tree depth.

constprob The probability of generating a constant in a step of growth, if no subtree is
generated. If neither a subtree nor a constant is generated, a randomly chosen
input variable will be generated. Defaults to 0.2.

subtreeprob The probability of generating a subtree in a step of growth.

curdepth (internal) The depth of the random expression currently generated, used inter-
nally in recursive calls.

Value

A new R expression generated by random growth.

66 randfunc

randfunc Creates an R function with a random expression as its body

Description

Creates an R function with a random expression as its body

Usage

randfunc(funcset, inset, conset, maxdepth = 8, constprob = 0.2,
exprfactory = randexprGrow, breedingFitness = function(individual) TRUE,
breedingTries = 50)

randfuncRampedHalfAndHalf(funcset, inset, conset, maxdepth = 8,
constprob = 0.2, breedingFitness = function(individual) TRUE,
breedingTries = 50)

Arguments

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

maxdepth The maximum expression tree depth.

exprfactory The function to use for randomly creating the function’s body.

constprob The probability of generating a constant in a step of growth, if no subtree is
generated. If neither a subtree nor a constant is generated, a randomly chosen
input variable will be generated. Defaults to 0.2.

breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.

Value

A randomly generated R function.

randfuncTyped 67

randfuncTyped Creates a well-typed R function with a random expression as its body

Description

Creates a well-typed R function with a random expression as its body

Usage

randfuncTyped(type, funcset, inset, conset, maxdepth = 8, constprob = 0.2,
exprfactory = randexprTypedGrow, breedingFitness = function(individual)
TRUE, breedingTries = 50)

randfuncTypedRampedHalfAndHalf(type, funcset, inset, conset, maxdepth = 8,
constprob = 0.2, breedingFitness = function(individual) TRUE,
breedingTries = 50)

Arguments

type The range type of the random function to create.

funcset The function set.

inset The set of input variables.

conset The set of constant factories.

maxdepth The maximum expression tree depth.

constprob The probability of generating a constant in a step of growth, if no subtree is
generated. If neither a subtree nor a constant is generated, a randomly chosen
input variable will be generated. Defaults to 0.2.

exprfactory The function to use for randomly creating the function’s body.

breedingFitness

A breeding function. See the documentation for geneticProgramming for de-
tails.

breedingTries The number of breeding steps.

Value

A randomly generated well-typed R function.

68 rangeTypeOfType

randterminalTyped Create a random terminal node

Description

Create a random terminal node

Usage

randterminalTyped(typeString, inset, conset, constprob)

Arguments

typeString The string label of the type of the random terminal node to create.

inset The set of input variables.

conset The set of constant factories.

constprob The probability of creating a constant versus an input variable.

Value

A random terminal node, i.e. an input variable or a constant.

rangeTypeOfType Return the range type if t is a function type, otherwise just return t

Description

Return the range type if t is a function type, otherwise just return t

Usage

rangeTypeOfType(t)

Arguments

t The type to extract the range type from.

Value

The range type.

rgpBenchmark 69

rgpBenchmark Utility functions for testing and benchmarking the RGP system

Description

rgpBenchmark measures the number of fitness evaluations per second performed by geneticProgramming.
A number of samples experiments are performed.

Usage

rgpBenchmark(fitnessFunction = function(ind) 0, samples = 1, time = 10,
...)

evaluationsPerSecondBenchmark(f, samples = 1, time = 10, ...)

Arguments

f The function under test.
fitnessFunction

The fitness function to pass to the call to geneticProgramming.

samples The number of indpendent measurements to perform, defaults to 1.

time The time in seconds a sample lasts, defaults to 10 seconds.

... Options as passed to the function under test.

Details

evaluationsPerSecondBenchmark measures the number of times a function can be called per
second in a tight loop.

Value

The number of fitness evaluations per second performed by RGP.

rmse Root mean squared error (RMSE)

Description

Root mean squared error (RMSE)

Usage

rmse(x, y)

70 r_mae

Arguments

x A numeric vector or list.
y A numeric vector or list.

Value

The RMSE between x and y.

rsquared Coefficient of determination (R^2)

Description

Coefficient of determination (R^2)

Usage

rsquared(x, y)

Arguments

x A numeric vector or list.
y A numeric vector or list.

Value

The coefficient of determination (R^2) between x and y.

r_mae R version of Mean absolute error (MAE)

Description

R version of Mean absolute error (MAE)

Usage

r_mae(x, y)

Arguments

x A numeric vector or list.
y A numeric vector or list.

Value

The MAE between x and y.

r_sse 71

r_sse R version of Sum squared error (SSE)

Description

R version of Sum squared error (SSE)

Usage

r_sse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The SSE between x and y.

r_ssse R version of Scaled sum squared error (sSSE)

Description

R version of Scaled sum squared error (sSSE)

Usage

r_ssse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The sSSE between x and y.

72 seSymbolic

safeDivide Some simple arithmetic and logic functions for use in GP expressions

Description

safeDivide a division operator that returns 0 if the divisor is 0. safeLn a natural logarithm operator
that return 0 if its argument is less then 0. ln is the natural logarithm. positive returns true if its
argument is greater then 0. ifPositive returns its second argument if its first argument is positive,
otherwise its third argument. ifThenElse returns its second argument if its first argument is TRUE,
otherwise its third argument.

Usage

safeDivide(a, b)

safeSqroot(a)

safeLn(a)

ln(a)

positive(x)

ifPositive(x, thenbranch, elsebranch)

ifThenElse(x, thenbranch, elsebranch)

Arguments

a A numeric value.

b A numeric value.

x A numeric value.

thenbranch The element to return when x is TRUE.

elsebranch The element to return when x is FALSE.

seSymbolic Symbolic squared error (SE)

Description

Given to functions f and g, returns the area the squared differences between f and g in the integra-
tion limits lower and upper.

seSymbolicFunction 73

Usage

seSymbolic(f, g, lower, upper, subdivisions = 100)

Arguments

f An R function.

g An R function with the same formal arguments as f.

lower The lower limit of integraion.

upper The upper limit of integraion.

subdivisions The maximum number of subintervals for numeric integration.

Value

The area of the squared differences between f and g, or Inf if integration is not possible in the
limits given.

seSymbolicFunction Symbolic squared error function (SE)

Description

Given two functions f and g, returns a function whose body is the symbolic representation of the
squared error between f and g, i.e. function(x) (f(x) - g(x))^2.

Usage

seSymbolicFunction(f, g)

Arguments

f An R function.

g An R function with the same formal arguments as f.

Value

A function representing the squared error between f and g.

74 sortBy

smse Scaled mean squared error (SMSE)

Description

Calculates the MSE between vectors after scaling them. Beware that this error measure is invariant
to scaling with negative constants, i.e. the multiplicative inverse of the true functions also receives
an error of 0. See http://www2.cs.uidaho.edu/~cs472_572/f11/scaledsymbolicRegression.
pdf for details.

Usage

smse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The NMSE between x and y.

sortBy Sort a vector or list by the result of applying a function

Description

Sorts a vector or a list by the numerical result of applying the function byFunc.

Usage

sortBy(xs, byFunc)

Arguments

xs A vector or list.

byFunc A function from elements of xs to numeric.

Value

The result of sorting xs by byfunc.

http://www2.cs.uidaho.edu/~cs472_572/f11/scaledsymbolicRegression.pdf
http://www2.cs.uidaho.edu/~cs472_572/f11/scaledsymbolicRegression.pdf

sortByRange 75

sortByRange Tabulate a list of functions or input variables by the range part of their
sTypes

Description

Tabulate a list of functions or input variables by the range part of their sTypes

Usage

sortByRange(x)

Arguments

x A list of functions or input variables to sort by range sType.

Value

A table of the objects keyed by their range sTypes.

sortByRanking Sort a vector or list via a given ranking

Description

Reorders a vector or list according to a given ranking ranking.

Usage

sortByRanking(xs, ranking = rank(xs))

Arguments

xs The vector or list to reorder.

ranking The ranking to sort xs by, defaults to rank(xs).

Value

The result of reordering xs by ranking.

76 splitList

sortByType Tabulate a list of functions or input variables by their sTypes

Description

Tabulate a list of functions or input variables by their sTypes

Usage

sortByType(x)

Arguments

x A list of functions or input variables to sort by sType.

Value

A table of the objects keyed by their sTypes.

splitList Splitting and grouping of lists

Description

Functions for splitting and grouping lists into sublists. splitList splits a list l into max(groupAssignment)
groups. The integer indices of groupAssignment determine in which group each element of l
goes. groupListConsecutive splits l into numberOfGroups consecutive sublists (or groups).
groupListDistributed distributes l into numberOfGroups sublists (or groups). flatten flat-
tens a list l of lists into a flat list by concatenation. If recursive is TRUE (defaults to FALSE), flatten
will be recursively called on each argument first. intersperse joins two lists xs and ys into a list
of pairs containig every possible pair, i.e. intersperse(xs, ys) equals the product list of xs and
ys. The pairConstructor parameter can be used to change the type of pairs returned.

Usage

splitList(l, groupAssignment)

groupListConsecutive(l, numberOfGroups)

groupListDistributed(l, numberOfGroups)

flatten(l, recursive = FALSE)

intersperse(xs, ys, pairConstructor = list)

sse 77

Arguments

l A list.

xs A list.

ys A list.

pairConstructor

The function to use for constructing pairs, defaults to list.

groupAssignment

A vector of group assignment indices.

numberOfGroups The number of groups to create, must be <= length(l)

recursive Whether to operate recursively on sublists or vectors.

Value

A list of lists, where each member represents a group.

sse Sum squared error (SSE)

Description

Sum squared error (SSE)

Usage

sse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The SSE between x and y.

78 st

ssse Scaled sum squared error (sSSE)

Description

Scaled sum squared error (sSSE)

Usage

ssse(x, y)

Arguments

x A numeric vector or list.

y A numeric vector or list.

Value

The sSSE between x and y.

st Type constructors for types in the Rsymbolic type system

Description

These functions create types for the Rsymbolic type system, called sTypes from here on. These
functions are used mostly in literal expressions denoting sTypes. st creates a base sType from a
string. A base sType is a type without any further structure. Example include st("numeric"),
st("character") or st("logical"). %->% creates a function sType, i.e. the type of function,
from a vector of argument sTypes and a result sType. A function sType has domain and range
containing its argument and result types. Every sType has a string field containing a unambiguous
string representation that can serve as a hash table key. STypes can be checked for equality via
identical. sObject is the root of the sType hierarchy, i.e. the most general type.

Usage

st(baseTypeName)

domainTypes %->% rangeType

sObject

sType 79

Arguments

baseTypeName The name of the base sType to create.

domainTypes The domain sType of a function sType.

rangeType The range sType of a function sType.

Format

List of 2
$ base : chr "sObject"
$ string: chr "sObject"
- attr(*, "class")= chr [1:3] "sBaseType" "sType" "character"

Value

The created sType.

See Also

sTypeInference

Examples

st("numeric")
list(st("numeric"), st("numeric")) \%->\% st("logical")
is.sType(st("logical"))

sType Inference of sTypes

Description

RGP internally infers the sTypes of compound expressions like function applications and func-
tion definitions from the sTypes of atomic expressions. The sTypes of building blocks are de-
fined by the user via the %::% operator and are stored in the package-internal global variable
rgpSTypeEnvironment. sType calculates the sType of the R expression x. sTypeq quotes its
argument x before calling sType. SType inference of function definitions relies on a typed stack
of formal arguments of getSTypeFromFormalsStack and setSTypeOnFormalsStack get or set the
sType of a formal argument x and a formalsStack, respectively.

Usage

sType(x, typeEnvir = rgpSTypeEnvironment, returnNullOnFailure = FALSE)

configureSTypeInference(constantSTypeFunction = NA)

calculateSTypeRecursive(x, typeEnvir = rgpSTypeEnvironment,
formalsStack = list(), returnNullOnFailure = FALSE)

80 subDataFrame

sTypeq(x, typeEnvir = rgpSTypeEnvironment, returnNullOnFailure = FALSE)

getSTypeFromFormalsStack(x, formalsStack)

setSTypeOnFormalsStack(x, value, formalsStack)

hasStype(x)

x %::% value

Arguments

x The object to operate on.

value An sType.

typeEnvir The type environment, containing user-supplied sTypes of building blocks.

formalsStack A stack of formal arguments with their sTypes.
returnNullOnFailure

Return NULL on failure instead of stopping, defaults to FALSE.
constantSTypeFunction

A function of one parameter to be used to calculate constant types. If set to NA
(the default), types of constants are named after the constant’s R class.

Details

The function configureSTypeInference is used to configure the type inference engine for special
needs.

See Also

sTypeConstructors

subDataFrame Select a continuous subframe of a data frame

Description

Return a continuous subframe of the data frame x containing size * nrow(x) rows from the start,
center, or end.

Usage

subDataFrame(x, size = 1, pos = "START")

subexpressions 81

Arguments

x The data frame to get a subframe from.

size The size ratio of the subframe. Must be between 0 and 1.

pos The position to take the subframe from. Must be "START", "CENTER", or "END".

Value

A subframe of x.

subexpressions Functions for decomposing and recombining R expressions

Description

subexpressions returns a list of all subexpressions (subtrees) of an expression expr.

Usage

subexpressions(expr)

Arguments

expr An R expression.

Value

The decomposed or recombined expression.

summary.geneticProgrammingResult

Summary reports of genetic programming run result objects

Description

Create a summary report of a genetic programming result object as returned by geneticProgramming
or symbolicRegression, for example.

Usage

S3 method for class 'geneticProgrammingResult'
summary(object, reportFitness = FALSE,
orderByFitness = TRUE, ...)

82 symbolicRegression

Arguments

object The genetic programming run result object to report on.

reportFitness Whether to report detailed fitness values of each individual in the result popu-
lation. Note that calculating fitness values may take a long time. Defaults to
FALSE. Either way, basic fitness values for each individual is reported.

orderByFitness Whether the report of the result population should be ordered by fitness. This
does not have an effect if reportFitness is set to FALSE. Defaults to TRUE.

... Ignored in this summary function.

See Also

geneticProgramming, symbolicRegression

symbolicRegression Symbolic regression via untyped standard genetic programming

Description

Perform symbolic regression via untyped genetic programming. The regression task is specified
as a formula. Only simple formulas without interactions are supported. The result of the sym-
bolic regression run is a symbolic regression model containing an untyped GP population of model
functions.

Usage

symbolicRegression(formula, data, stopCondition = makeTimeStopCondition(5),
population = NULL, populationSize = 100, eliteSize = ceiling(0.1 *
populationSize), elite = list(), extinctionPrevention = FALSE,
archive = FALSE, individualSizeLimit = 64,
penalizeGenotypeConstantIndividuals = FALSE, subSamplingShare = 1,
functionSet = mathFunctionSet, constantSet = numericConstantSet,
crossoverFunction = NULL, mutationFunction = NULL,
restartCondition = makeEmptyRestartCondition(),
restartStrategy = makeLocalRestartStrategy(),
searchHeuristic = makeAgeFitnessComplexityParetoGpSearchHeuristic(),
breedingFitness = function(individual) TRUE, breedingTries = 50,
errorMeasure = rmse, progressMonitor = NULL, envir = parent.frame(),
verbose = TRUE)

Arguments

formula A formula describing the regression task. Only simple formulas of the form
response ~ variable1 + ... + variableN are supported at this point in
time.

data A data.frame containing training data for the symbolic regression run. The
variables in formula must match column names in this data frame.

symbolicRegression 83

stopCondition The stop condition for the evolution main loop. See makeStepsStopCondition
for details.

population The GP population to start the run with. If this parameter is missing, a new GP
population of size populationSize is created through random growth.

populationSize The number of individuals if a population is to be created.

eliteSize The number of elite individuals to keep. Defaults to ceiling(0.1 * populationSize).

elite The elite list, must be alist of individuals sorted in ascending order by their first
fitness component.

extinctionPrevention

When set to TRUE, the initialization and selection steps will try to prevent du-
plicate individuals from occurring in the population. Defaults to FALSE, as this
operation might be expensive with larger population sizes.

archive If set to TRUE, all GP individuals evaluated are stored in an archive list archiveList
that is returned as part of the result of this function.

individualSizeLimit

Individuals with a number of tree nodes that exceeds this size limit will get a
fitness of Inf.

penalizeGenotypeConstantIndividuals

Individuals that do not contain any input variables will get a fitness of Inf.
subSamplingShare

The share of fitness cases
s

sampled for evaluation with each function evaluation.

0 < s ≤ 1

must hold, defaults to 1.0.

functionSet The function set.

constantSet The set of constant factory functions.
crossoverFunction

The crossover function.
mutationFunction

The mutation function.
restartCondition

The restart condition for the evolution main loop. See makeEmptyRestartCon-
dition for details.

restartStrategy

The strategy for doing restarts. See makeLocalRestartStrategy for details.
searchHeuristic

The search-heuristic (i.e. optimization algorithm) to use in the search of solu-
tions. See the documentation for searchHeuristics for available algorithms.

breedingFitness

A "breeding" function. This function is applied after every stochastic opera-
tion Op that creates or modifies an individal (typically, Op is a initialization,
mutation, or crossover operation). If the breeding function returns TRUE on the

84 tabulateFunction

given individual, Op is considered a success. If the breeding function returns
FALSE, Op is retried a maximum of breedingTries times. If this maximum
number of retries is exceeded, the result of the last try is considered as the result
of Op. In the case the breeding function returns a numeric value, the breeding
is repeated breedingTries times and the individual with the lowest breeding
fitness is considered the result of Op.

breedingTries In case of a boolean breedingFitness function, the maximum number of re-
tries. In case of a numerical breedingFitness function, the number of breed-
ing steps. Also see the documentation for the breedingFitness parameter.
Defaults to 50.

errorMeasure A function to use as an error measure, defaults to RMSE.
progressMonitor

A function of signature function(population, fitnessValues, fitnessFunction, stepNumber, evaluationNumber,bestFitness, timeElapsed)
to be called with each evolution step.

envir The R environment to evaluate individuals in, defaults to parent.frame().

verbose Whether to print progress messages.

Value

An symbolic regression model that contains an untyped GP population.

See Also

predict.symbolicRegressionModel, geneticProgramming

tabulateFunction Tabulate an n-ary function

Description

Creates a data frame of values for the n-ary function f at the sample locations given in

Usage

tabulateFunction(f, ...)

Arguments

f The function to tabulate.

... For each dimension, a vector of sample points to calculate f at.

Value

A data frame of function values of f.

toName 85

toName Functions for handling R symbols / names

Description

toName converts a character string x to an R symbol / name, while copying all attributes iff copyAttributes
is TRUE. In the case that x is not a character string, a copy of the object is returned as-is. extractLeafSymbols
returns the set of symbols (names) at the leafs of an expression expr. The symbols are returned as
character strings.

Usage

toName(x, copyAttributes = TRUE)

extractLeafSymbols(expr)

Arguments

x The object to operate on.

expr An R expression.

copyAttributes Whether to copy all attributes of x to the result object.

Value

The result.

Index

∗Topic datasets
arithmeticFunctionSet, 4
st, 78

∗Topic package
rgp-package, 4

%->% (st), 78
%::% (sType), 79

AllExpressionNodes
(MapExpressionNodes), 45

andStopCondition
(makeStepsStopCondition), 42

AnyExpressionNode (MapExpressionNodes),
45

arithmeticFunctionSet, 4
arity, 5
arity.primitive, 5

booleanFunctionAsList
(integerToLogicals), 28

breed, 6
buildingBlock, 7
buildingBlockq (buildingBlock), 7
buildingBlockTag, 7
buildingBlockTag<- (buildingBlockTag), 7

c, 21
c.constantFactorySet (functionSet), 20
c.functionSet (functionSet), 20
c.inputVariableSet (functionSet), 20
calculateSTypeRecursive (sType), 79
commonSubexpressions, 8
configureSTypeInference (sType), 79
constantFactorySet (functionSet), 20
contains (first), 19
crossover, 10
crossoverexpr (crossover), 10
crossoverexprFast (crossover), 10
crossoverexprTwoPoint (crossover), 10
crossoverexprTyped (crossover), 10

crossoverTyped (crossover), 10
customDist, 11

data.frame, 12, 49, 62, 82
dataDrivenGeneticProgramming, 11
differingSubexpressions

(commonSubexpressions), 8
dist, 11
do.call.ignore.unused.arguments, 13

embedDataFrame, 14
evaluationsPerSecondBenchmark

(rgpBenchmark), 69
expLogFunctionSet

(arithmeticFunctionSet), 4
exprChildrenOrEmptyList, 15
exprCount (exprDepth), 15
exprDepth, 15
expressionGraph (MapExpressionNodes), 45
exprLabel, 16
exprLeaves (exprDepth), 15
exprShapesOfDepth, 17
exprShapesOfMaxDepth

(exprShapesOfDepth), 17
exprShapesOfMaxSize

(exprShapesOfDepth), 17
exprShapesOfSize (exprShapesOfDepth), 17
exprSize (exprDepth), 15
exprsOfDepth (exprShapesOfDepth), 17
exprsOfMaxDepth (exprShapesOfDepth), 17
exprsOfMaxSize (exprShapesOfDepth), 17
exprsOfSize (exprShapesOfDepth), 17
exprToGraph (funcToIgraph), 22
exprToIgraph (funcToIgraph), 22
exprToPlotmathExpr, 18
exprVisitationLength (exprDepth), 15
extractAttributes, 18
extractLeafSymbols (toName), 85

fastExprVisitationLength (exprDepth), 15

86

INDEX 87

fastFuncVisitationLength (exprDepth), 15
fastMakePopulation (makePopulation), 39
fifth (first), 19
first, 19
flatten (splitList), 76
FlattenExpression (MapExpressionNodes),

45
formals, 34, 53
formatSeconds, 19
formula, 11, 12, 48, 49, 82
fourth (first), 19
funcCount (exprDepth), 15
funcDepth (exprDepth), 15
funcLeaves (exprDepth), 15
funcSize (exprDepth), 15
functionSet, 20
functionVariablePresenceMap, 22
funcToIgraph, 22, 23, 60
funcToPlotmathExpr, 23, 23
funcVisitationLength (exprDepth), 15

geneticProgramming, 10, 13, 24, 38, 40, 48,
50, 52, 66, 67, 69, 81, 82, 84

getPw (functionSet), 20
getSTypeFromFormalsStack (sType), 79
gridDesign, 26, 38, 39
groupListConsecutive, 47, 49
groupListConsecutive (splitList), 76
groupListDistributed (splitList), 76

hasBuildingBlockTag (buildingBlockTag),
7

hasPw (functionSet), 20
hasStype (sType), 79
hclust, 37

identical, 78
ifPositive (safeDivide), 72
ifThenElse (safeDivide), 72
inputVariableSet (functionSet), 20
inputVariablesOfIndividual, 27
insertionSort, 27
integerToLogicals, 28
intersperse (splitList), 76
inversePermutation, 28
is.atom (first), 19
is.composite (first), 19
is.empty (first), 19
is.sType, 29

iterate, 30

joinElites, 30

latinHypercubeDesign, 31, 39
legend, 59
ln (safeDivide), 72

mae, 31
makeAgeFitnessComplexityParetoGpSearchHeuristic,

32
makeArchiveBasedParetoTournamentSearchHeuristic,

33
makeBooleanFitnessFunction

(integerToLogicals), 28
makeClosure, 34, 53
makeCommaEvolutionStrategySearchHeuristic,

35
makeComplexityTournamentSelection

(makeTournamentSelection), 43
makeEmptyRestartCondition, 13, 25, 35, 83
makeEvaluationsStopCondition

(makeStepsStopCondition), 42
makeFitnessDistributionRestartCondition

(makeEmptyRestartCondition), 35
makeFitnessStagnationRestartCondition,

48, 50
makeFitnessStagnationRestartCondition

(makeEmptyRestartCondition), 35
makeFitnessStopCondition

(makeStepsStopCondition), 42
makeFunctionFitnessFunction, 36
makeHierarchicalClusterFunction, 37
makeLocalRestartStrategy, 13, 25, 37, 48,

50, 83
makeMultiObjectiveTournamentSelection

(makeTournamentSelection), 43
makeNaryFunctionFitnessFunction, 38
makePopulation, 39
makeRegressionFitnessFunction, 40
makeSeSymbolicFitnessFunction, 41
makeStepLimitRestartCondition

(makeEmptyRestartCondition), 35
makeStepsStopCondition, 42, 83
makeTimeStopCondition

(makeStepsStopCondition), 42
makeTinyGpSearchHeuristic, 43
makeTournamentSelection, 43, 50
makeTypedPopulation (makePopulation), 39

88 INDEX

MapExpressionLeafs
(MapExpressionNodes), 45

MapExpressionNodes, 45
MapExpressionSubtrees

(MapExpressionNodes), 45
matplot, 59
mse, 46
multiNicheGeneticProgramming, 37, 46
multiNicheSymbolicRegression, 37, 48
mutateChangeDeleteInsert (mutateFunc),

50
mutateChangeLabel (mutateFunc), 50
mutateDeleteInsert (mutateFunc), 50
mutateDeleteSubtree (mutateFunc), 50
mutateFunc, 50
mutateFuncFast (mutateFunc), 50
mutateFuncTyped (mutateFunc), 50
mutateInsertSubtree (mutateFunc), 50
mutateNumericConst (mutateFunc), 50
mutateNumericConstFast (mutateFunc), 50
mutateNumericConstTyped (mutateFunc), 50
mutateSubtree (mutateFunc), 50
mutateSubtreeFast (mutateFunc), 50
mutateSubtreeTyped (mutateFunc), 50

NCSdist (commonSubexpressions), 8
new.alist, 53
new.function, 54
nmse, 54
nondeterministicRanking, 55
normalize, 55
normalizedDesign, 56
normalizedNumberOfCommonSubexpressions

(commonSubexpressions), 8
normalizedSizeWeightedNumberOfCommonSubexpressions

(commonSubexpressions), 8
normInducedFunctionDistance

(commonSubexpressions), 8
normInducedTreeDistance

(commonSubexpressions), 8
notStopCondition

(makeStepsStopCondition), 42
numberOfCommonSubexpressions

(commonSubexpressions), 8
numberOfDifferentBits

(integerToLogicals), 28
numberOfDifferingSubexpressions

(commonSubexpressions), 8

order, 29
orderByParetoCrowdingDistance, 56
orderByParetoHypervolumeContribution

(orderByParetoCrowdingDistance),
56

orderByParetoMeasure, 57
orStopCondition

(makeStepsStopCondition), 42

par, 59, 60
paretoFrontKneeIndex, 57
persp, 58
plot, 61
plotFunction3d, 58
plotFunctions, 59
plotmath, 18, 23
plotParetoFront, 60
plotPopulationFitnessComplexity, 60
popfitness, 61
populationVariablePresenceMap

(functionVariablePresenceMap),
22

positive (safeDivide), 72
predict.symbolicRegressionModel, 50, 62,

84
print, 40
print.population (makePopulation), 39
print.sType, 62
pw (functionSet), 20

r_mae, 70
r_sse, 71
r_ssse, 71
randchild, 63
randelt, 63
randexprFull (randexprGrow), 64
randexprGrow, 64
randexprTypedFull (randexprTypedGrow),

65
randexprTypedGrow, 65
randfunc, 66
randfuncRampedHalfAndHalf (randfunc), 66
randfuncTyped, 67
randfuncTypedRampedHalfAndHalf

(randfuncTyped), 67
randsubtree (randchild), 63
randterminalTyped, 68
rangeTypeOfType, 68
rank, 29

INDEX 89

replaceSubtreeAt (MapExpressionNodes),
45

rest (first), 19
rgp-package, 4
rgpBenchmark, 69
rmse, 69
rsquared, 70

safeDivide, 72
safeLn (safeDivide), 72
safeSqroot (safeDivide), 72
second (first), 19
seSymbolic, 72
seSymbolicFunction, 73
setSTypeOnFormalsStack (sType), 79
sizeWeightedNumberOfCommonSubexpressions

(commonSubexpressions), 8
sizeWeightedNumberOfDifferingSubexpressions

(commonSubexpressions), 8
smse, 74
SNCSdist (commonSubexpressions), 8
sObject (st), 78
sortBy, 74
sortByRange, 75
sortByRanking, 75
sortByType, 76
splitList, 76
sse, 77
ssse, 78
st, 78
sType, 79
sTypeq (sType), 79
subDataFrame, 80
subexpressions, 81
subtreeAt (MapExpressionNodes), 45
subtrees (MapExpressionNodes), 45
summary, 40
summary.geneticProgrammingResult, 26,

48, 81
summary.population (makePopulation), 39
symbolicRegression, 11, 26, 48, 62, 81, 82,

82

tabulateFunction, 84
third (first), 19
toName, 85
trivialMetric (commonSubexpressions), 8
typedGeneticProgramming

(geneticProgramming), 24

	rgp-package
	arithmeticFunctionSet
	arity
	arity.primitive
	breed
	buildingBlock
	buildingBlockTag
	commonSubexpressions
	crossover
	customDist
	dataDrivenGeneticProgramming
	do.call.ignore.unused.arguments
	embedDataFrame
	exprChildrenOrEmptyList
	exprDepth
	exprLabel
	exprShapesOfDepth
	exprToPlotmathExpr
	extractAttributes
	first
	formatSeconds
	functionSet
	functionVariablePresenceMap
	funcToIgraph
	funcToPlotmathExpr
	geneticProgramming
	gridDesign
	inputVariablesOfIndividual
	insertionSort
	integerToLogicals
	inversePermutation
	is.sType
	iterate
	joinElites
	latinHypercubeDesign
	mae
	makeAgeFitnessComplexityParetoGpSearchHeuristic
	makeArchiveBasedParetoTournamentSearchHeuristic
	makeClosure
	makeCommaEvolutionStrategySearchHeuristic
	makeEmptyRestartCondition
	makeFunctionFitnessFunction
	makeHierarchicalClusterFunction
	makeLocalRestartStrategy
	makeNaryFunctionFitnessFunction
	makePopulation
	makeRegressionFitnessFunction
	makeSeSymbolicFitnessFunction
	makeStepsStopCondition
	makeTinyGpSearchHeuristic
	makeTournamentSelection
	MapExpressionNodes
	mse
	multiNicheGeneticProgramming
	multiNicheSymbolicRegression
	mutateFunc
	new.alist
	new.function
	nmse
	nondeterministicRanking
	normalize
	normalizedDesign
	orderByParetoCrowdingDistance
	orderByParetoMeasure
	paretoFrontKneeIndex
	plotFunction3d
	plotFunctions
	plotParetoFront
	plotPopulationFitnessComplexity
	popfitness
	predict.symbolicRegressionModel
	print.sType
	randchild
	randelt
	randexprGrow
	randexprTypedGrow
	randfunc
	randfuncTyped
	randterminalTyped
	rangeTypeOfType
	rgpBenchmark
	rmse
	rsquared
	r_mae
	r_sse
	r_ssse
	safeDivide
	seSymbolic
	seSymbolicFunction
	smse
	sortBy
	sortByRange
	sortByRanking
	sortByType
	splitList
	sse
	ssse
	st
	sType
	subDataFrame
	subexpressions
	summary.geneticProgrammingResult
	symbolicRegression
	tabulateFunction
	toName
	Index

