
Vol. 23 no. 2 2007, pages 156–161

doi:10.1093/bioinformatics/btl582BIOINFORMATICS ORIGINAL PAPER

Sequence analysis

Striped Smith–Waterman speeds database searches six times

over other SIMD implementations
Michael Farrar
Received on June 22, 2006; revised on November 13, 2006; accepted on November 14, 2006

Advance Access publication November 16, 2006

Associate Editor: Nikolaus Rajewsky

ABSTRACT

Motivation: The only algorithm guaranteed to find the optimal

local alignment is the Smith–Waterman. It is also one of the slowest

due to the number of computations required for the search. To

speed up the algorithm, Single-Instruction Multiple-Data (SIMD)

instructionshavebeenused toparallelize thealgorithmat the instruction

level.

Results: A faster implementation of the Smith–Waterman algorithm is

presented. This algorithm achieved 2–8 times performance improve-

ment over other SIMD based Smith–Waterman implementations.

On a 2.0 GHz Xeon Core 2 Duo processor, speeds of >3.0 billion cell

updates/s were achieved.

Availability: http://farrar.michael.googlepages.com/Smith-waterman

Contact: farrar.michael@gmail.com

1 INTRODUCTION

The Smith–Waterman (Smith and Waterman, 1981) algorithm is

one of the slowest and most sensitive sequence search algorithms.

As the size of the GenBank/EMBL/DDBJ double every 15 months

(Benson et al., 2000), faster implementations of the Smith–

Waterman algorithm are needed to keep pace. One recent opti-

mization has been adopting the algorithm to Single-Instruction

Multiple-Data (SIMD) microprocessors. A SIMD instruction is able

to perform the same operation on multiple pieces of data in parallel.

One of the first Smith–Waterman SIMD implementations was

Alpern et al. (1995). This approach divided the 64-bit Z-buffer

registers of the Intel Paragon i860 processor into four parts.

Each part of the register contained a value from four different

database sequences. A 6-fold speedup was achieved over the origi-

nal implementation.

Wozniak (1997) presented an implementation of the Smith–

Waterman algorithm running on the Sun Ultra SPARC using its

SIMD instructions, the Visual Instruction Set. The SIMD registers

contained values parallel to the minor diagonal. An advantage to

this implementation is that there are no conditional branches in the

inner loop. Therefore, the execution time is dependent on the length

of the query string and the database, not the scoring matrix or gap

penalties. A major drawback of this implementation is the query

profile must be computed for each database sequence. A speedup of

over two times was reported over the traditional implementation.

Rognes and Seeberg (2000) presented an implementation of

the Smith–Waterman algorithm running on the Intel Pentium

processor using the MMX SIMD instructions. The SIMD registers

contained values parallel to the query sequence. A major optimiza-

tion was computing the query profile once for the entire database

search. A disadvantage introduced by processing the values verti-

cally is that conditional branches are placed in the inner loop to

compute F. With conditional code the execution time is dependent

on the length of the query string and the database, the scoring

matrix and gap penalties. A speedup of over six times was reported

over an optimized non-SIMD implementation.

This paper presents a new Smith–Waterman implementation

where the SIMD registers are parallel to the query sequence,

but are accessed in a striped pattern. Like the Rognes implementa-

tion, the query profile is calculated once for the database search,

but the conditional F calculations are moved outside the inner

loop. Calculations speeds of >3.0 GCUPS are achieved. This is a

speedup of 2–8 times over the Wozniak and Rognes SIMD

implementations.

2 METHODS

2.1 Smith–Waterman algorithm

The algorithm used to compute the optimal local alignment is the Smith–

Waterman (Smith and Waterman, 1981) with the Gotoh (1982) improve-

ments for handling multiple sized gap penalties. The two sequences to be

compared, the query sequence and the database sequence, are defined as

Q¼ q1, q2 . . . qm and D¼ d1, d2 . . . dn. The length of the query sequence and

database sequence are m ¼ jQ j and n ¼ jD j , respectively. A scoring

matrix W(qi, dj) is defined for all residue pairs. Usually the weight W(qi, dj)

�0 when qi <> dj and W(qi, dj) > 0 when qi¼ dj. The penalty for starting a gap

and continuing a gap are defined as Ginit and Gext, respectively. The align-

ment scores ending with a gap along D and Q are E Equation (1) and F

Equation (2), respectively.

Ei‚ j ¼ max
Ei‚ j�1 � Gext

Hi‚ j�1 � Ginit

� �
ð1Þ

Fi‚ j ¼ max
Fi�1‚ j � Gext

Hi�1‚ j � Ginit

� �
ð2Þ

The alignment score for Hij where 1 � i � m and 1 � j � n is defined by

Equation (3).

Hi‚ j ¼ max

0

Ei‚ j

Fi‚ j

Hi�1‚ j�1 � Wðqi‚djÞ

8>><
>>:

9>>=
>>;

ð3Þ

The values for Hij, Eij and Fij are equal to 0 when i < 1 or j < 1.

2.2 Implementation

2.2.1 Striped query profile When calculating Hi, j the value from the

scoring matrix W(qi, dj) is added to Hi�1, j�1. To avoid the lookup of W(qi, dj)

for each cell, Rognes and Seeberg (2000) calculated a query profile parallel

to the query for each possible residue. The query profile is calculated just

156 � The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://farrar.michael.googlepages.com/Smith-waterman
http://bioinformatics.oxfordjournals.org/

once for each database search. Then the calculation of Hi, j requires just

an addition of the pre-calculated score to the previous Hi, j. The striped

Smith–Waterman implementation takes a similar approach by pre-

calculating the query profile, but with a different layout than Rognes (Fig. 1).

The layout used by the query profile is a striped access parallel to the

query sequence. The query is divided into equal length segments, S. The

number of segments, p, is equal to the number of elements being processed

in the SIMD register. When processing byte integers (8 bit values) the p¼ 16

and when processing word integers (16 bit values) p ¼ 8. The length of each

segment, t, is (jQ j + p � 1)/p. If the query is not long enough to fill all

the segments, t > jQ j , the segments are padded with null entries that have

a weight of zero. The query segments are defined as Sn ¼ qt(n�1)+1,

qt(n�1)+2, . . . , qt(n�1)+t where 1 � n � p.

Each element of the SIMD registers maps to one segment. The first

element in the vector maps to S1, the second element in the vector maps

to S2, till the last element in the vector maps to Sp. The vectors move

uniformly across the segments, so hHi, ji processes the i-th element of all

the segments. Equation (4) shows the segment layout when p ¼ 8 and the

elements processed by the SIMD register when i ¼ 2.

S1 ¼ q1 q2 q3 � � � qt
S2 ¼ qtþ1 qtþ2 qtþ3 � � � q2t

S3 ¼ q2tþ1 q2tþ2 q2tþ3 � � � q3t

S4 ¼ q3tþ1 q3tþ2 q3tþ3 � � � q4t

S5 ¼ q4tþ1 q4tþ2 q4tþ3 � � � q5t

S6 ¼ q5tþ1 q5tþ2 q5tþ3 � � � q6t

S7 ¼ q6tþ1 q6tþ2 q6tþ3 � � � q7t

S8 ¼ q7tþ1 q7tþ2 q7tþ3 � � � q8t

ð4Þ

The vectors making up the scoring profile W, like the H vectors, also

moves uniformly across the segments. The layout of the scoring profile,

when p ¼ 8, is:

hW1ji ¼ fWðq1‚djÞ‚ Wðqtþ1‚djÞ‚ � � � Wðq7tþ1‚djÞg‚

hW2ji ¼ fWðq2‚djÞ‚ Wðqtþ2‚djÞ‚ � � � Wðq7tþ2‚djÞg‚

� � � � � �
hWtji ¼ fWðqt‚djÞ‚ Wðq2t‚djÞ‚ � � � Wðq8t‚djÞg

The query profile is stored in memory on 16-byte boundaries. By aligning

the profile on a 16-byte boundary, the values are read with a single aligned

load instruction, which is faster than reading unaligned data. Figure 2 has the

pseudo code for generating the query profile.

Both the Wozniak (1997) and Rognes and Seeberg (2000) implementa-

tions have data dependencies between the previous H vector and the current

H vector, Figure 3. This is also true when calculating F. Before H or F are

calculated, the last element in the previous vector is moved to the first

element in the current vector. By using the striped query access, these

data dependencies are moved out of the inner loop and done just once in

the outer loop when processing the next database residue.

2.2.2 Smith–Waterman SIMD implementation The striped Smith–

Waterman implementation was written for Intel processors supporting

SSE2 instructions. The pseudo code for the implementation is shown in

Figure 5. The code was written in C using Intel’s SSE2 intrinsics for

portability.

To maximize the number of cells calculated per instruction, the SIMD

SSE2 registers are divided into their smallest unit possible. The 128-bit wide

registers are divided into 16 8-bit elements for processing. One instruction

can therefore operate on 16 cells in parallel. Dividing the register into 8-bit

elements limits the cell’s range from 0 to 255. In most cases, the scores fit in

the 8-bit range unless the sequences are long and similar. If a query’s score

exceeds the cells maximum, that query is recalculated using a higher

precision.

For those queries that do require a higher precision, the register is divided

into 8, 16-bit elements. This gives each cell a possible range from

0 to 65 535. The obvious drawback to using 16-bit elements is now each

instruction is processing half as many cells per instruction compared with

using 8-bit elements.

Due to limitations in the SSE2 instruction set, unsigned byte integers are

used in the 8-bit calculations. The SSE2 instruction set supports only

maximum on unsigned byte integers. Since the maximum instruction is

needed to compute E, F and H, unsigned bytes are used in the low precision

calculations. To use unsigned bytes, the query profile is biased to the smallest

value in the scoring matrix. After W is added to H, the bias is subtracted

from H. When the score is >255 � bias, the search is rerun with higher

precision calculations. This approach was used in the Rognes and Seeberg

(2000) implementation.

For the higher precision calculations signed short integers are used to

speed up the inner loop. When using signed integers, the initial E, F and

Fig. 2. Pseudo code for generating the query profile for SIMD registers

processing 16 elements.

Fig. 1. The memory layout for the query profile used by the striped and

Rognes implementations. The vectors in both implementations run parallel

to the query sequence, but the striped implementation access the query in a

stripped pattern unlike the sequential access for Rognes.

Striped Smith–Waterman algorithm

157

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

H values are biased by the minimum signed short integer value, �32 768

instead of 0. By biasing the initial value with its minimum possible value, the

complete range of the element can be used. When the search is done the bias

is added back to H returning a score between 0 and 65 535. Using signed

arithmetic, the weight is not biased, therefore the instruction subtracting bias

from H is not needed in the inner loop keeping calculation times down.

The Hi, j calculation is dependent on the previous value on the major

diagonal, Hi�1, j�1. To simplify the code for handling this dependency,

two buffers are allocated for storing the H values. On the first pass, one

buffer is used to read the previous H values and the other buffer is used to

store the new H values. On the next pass, the buffers are swapped, so the

input H buffer is now the output H buffer and vice-versa.

The computation of hHi, ji where 1 � i � T, is the addition of the weight

hWi, ji to hHi�1, j�1i to access the H values on the major diagonal. If i¼ 1 then

hHT, ji is shifted to the left by one element and added to hW1, ji. Figure 4

shows the data dependencies between the last H vector and the first H vector

of the next column. The inner loop therefore no longer requires the extra

operations to insert the H value into the next SIMD register. The only

shifting of H is done once in the outer loop to get hHT, ji in the correct order.

The computation of hEi, ji where 1 � i � T, is the subtraction of the gap

extension penalty, Gext, from hEi, j�1i to access the E values to the left of the

current cells. If i ¼ 1 then zeros are used for the value of E.

The computation of hFi, ji where 1 � i � T, is the subtraction of the gap

extension penalty, Gext, from hFi�1, ji to access the F-values above the

current cells. If i ¼ 1 then the initial calculation of hF1, ji is dependent

on hFT, ji shifted to the left by one. Since the values of hF1, ji are unknown

until the inner loop has completed, zeros are substituted and any errors

introduced are corrected in a second pass.

2.2.3 Lazy F evaluation For most cells in the matrix, F remains at

zero and does not contribute to the value of H. Only when H is greater than

Ginit + Gext will F start to influence the value of H. In many instances the

second pass at correcting errors introduced by F is not necessary. Figure 5

has the pseudo code for the lazy F loop. After the inner loop has completed

hFT, ji is checked against the values of hH1, ji to see if the second pass is

necessary. The values in hFT, ji are shifted to the left by one and if any

elements are greater than hH1, ji � Ginit, then H is recalculated because F can

change the value of H.

The second pass loop is executed until all elements in F are less than

H � Ginit. If this loop processes all the segments without an early exit, an

additional pass might be needed to recalculate F. Since each element in the

vector represents a different segment of the query sequence, after processing

the last vector hFT, ji, the values in hFT, ji are shifted to the left by one to move

their values to the next segment. Figure 6 shows the data dependencies

between the last F vector and the first. If any elements in hFT, ji are still

greater than hH1, ji � Ginit, the loop is executed again. This loop is repeated

until all elements in F are below the threshold.

One advantage of this approach is all branches are moved out of the inner

loop to the outer loop. Modern processors use branch prediction to limit the

impact of branching on the run time. As execution pipelines get deeper to

support higher clock rates, the penalty for a misprediction increases and

therefore conditional branches should be eliminated if possible (Intel,

Optimization Ref. Man.). The execution pipeline on the Pentium 4 is

documented as being twice as long as for the Pentium III, which should

indicate that the branch misprediction penalty is at least 20 cycles (Hinton

et al., 2001).

3 RESULTS

To get meaningful comparisons of the different execution times, a

test framework was developed to use both the Wozniak (1997) and

Rognes and Seeberg (2000) Smith–Waterman implementations

along with the striped algorithm presented in this paper. All

three Smith–Waterman implementations were written in C using

Intel SSE2 intrinsic functions. The programs were compiled using

Microsoft Visual C++ 2005 with optimization set for maximum

speed. By using SSE2 intrinsic functions instead of assembler,

the compiler was responsible for optimizations, such as register

usage, instruction selection and instruction scheduling.

The programs were tested on a 2.0 GHz Xeon Core 2 Duo

processor with 2 GB of RAM running Windows XP SP2. The

program was run as a single-threaded application, so the number

of CPU cores had no affect on the execution time. All queries were

run against Swiss-Prot release 49.1 comprising 75 841 138 amino

acids in 208 005 sequence entries. To test the different Smith–

Waterman implementations, 11 query sequences were used ranging

is size from 143 to 567 amino acids. These sequences were used

to test other algorithms including BLAST 2 (Altschul et al., 1997)

and SWMMX (Rognes and Seeberg, 2000) Smith–Waterman

implementation.

To test the different Smith–Waterman implementations, three

different tests were run using different scoring matrices and

different gap penalties. The two scoring matrices used in the

testing were BLOSUM62 and BLOSUM50 (Henikoff et al.,
1992). The two scoring matrices were used to test the runtime

performance of the Rognes and striped implementations. One factor

affecting the runtime performance of the Rognes and striped

implementations is the scoring matrix. If the H values get above

Ginit, then the F values need to be calculated. The other factor

affecting the number of F calculations is the gap penalties. One

Fig. 4. Data dependencies between the last H vector and the first H vector of

the next column. The values in the last H vector are shifted to the left so the

values are aligned with the next segment over.

Fig. 3. Data dependencies between SIMD registers holding the H and F
values with the Rognes and Wozniak implementations. The last element

in the previous vector is inserted in the current vector when calculating

the next H and F vectors.

M.Farrar

158

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

test uses different gap penalties to show the runtime characteristics

of the different implementations. The higher the gap open and gap

extension penalties, the fewer iterations are needed to calculate F.

The Wozniak implementation is not affected by different scoring

matrices or gap penalties, since there are no conditional calculations

of F. An additional comparison was run comparing the execution

times of the striped Smith–Waterman and different search programs

using heuristic algorithms. All tests were run three times with the

minimum scan time used as the final result. The MCUP rating

(million cell updates per second) was calculated by jQ j � jD j /
ScanTime/10 6.

For the first test, the scoring matrix BLOSUM62 with a gap-open

penalty of 10 and a gap-extension penalty of 1 were used. The same

scoring matrix and gap penalties were used to evaluate BLAST2 and

SWMMX. The search times for each of the 11 query sequences are

shown in Figure 7. The Wozniak implementation completed the

search in 821 s with an average of 352 MCUPS and a peak of 367

MCUPS. The Rognes implementation turns in a better search time

of 354 s with an average of 816 MCUPS and a peak of 865 MCUPS.

Finally, the striped implementation completed the search in 113 s

with an average of 2553 MCUPS and a peak of 2998 MCUPS.

The next test used the same gap penalty, 10 � k, but utilized the

BLOSUM50 scoring matrix. The results are shown in Figure 8.

With the higher H scores, more time was spent calculating the

value of F. The Wozniak implementation stayed the same taking

a total of 821 seconds still averaging 351 MCUPS with a peak of

367 MCUPS. The Rognes implementation turned in a slightly better

time of 771 s with the average MCUPS dropping to 374 with a peak

of 419 MCUPS. The striped implementation was also affected by

the higher H values taking 159 s to run the search averaging 1817

MCUPS with a peak of 2256 MCUPS.

The third test used the same 11 query sequences with the

BLOSUM50 and BLOSUM62 scoring matrices, but with four

different gap penalties, 10 � k, 10 � 2k, 14 � 2k and 40 � 2k.

The total search times for all of the 11 query sequences are shown in

Figure 9. With a large gap penalty of 40 � 2k, most of the F
calculations were skipped for the Rognes and striped implementa-

tions, basically testing just the efficiency of the inner loop. The

Fig. 5. The pseudo code for the striped Smith–Waterman implementation,

when processing 16 elements per SIMD register. The code is made up of the

inner loop, which does the basic dynamic programming calculations followed

by the lazy F loop to correct any errors to H.

Fig. 6. The Data dependencies between the last F vector and the first. The

values in the last F vector are shifted to the left so the values are aligned with

the next segment over.

Striped Smith–Waterman algorithm

159

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Wozniak implementation total search time was 13.68 min. The

search times for the Rognes implementation using the gap penalty

of 40 � 2k, took 2.31 min for both scoring matrices, a 60–80%

improvement over the 10 � k times. The striped implementation

using the gap penalty of 40 � 2k took 1.51 min, only a 20–40%

improvement over the 10 � k times.

The final comparison is against heuristic programs FASTA

34t26b4 (Pearson and Lipman, 1988) and NCBI BLAST 2.2.14

(Altschul et al., 1997). The executables used in testing were down-

loaded from their respective web sites, the University of Virginia

and the NCBI. For a more meaningful comparison, SSEARCH was

modified to use the striped Smith–Waterman implementation. All

the searches were run using the BLOSUM50 scoring matrix and gap

penalties of 10 � 2k. The options for all programs were to display

the top 500 scores with no alignments. The search times for the

11 query sequences are shown in Figure 10. FASTA was run with

both ktup ¼ 1 and 2. On the whole, the striped Smith–Waterman

was faster than FASTA, more than 50% faster when ktup ¼ 2 and

four time faster when ktup ¼ 1. SSEARCH averaged about 30%

slower runtimes when compared to BLAST.

4 DISCUSSION

Due to the number of iterations in the Smith–Waterman (Smith and

Waterman, 1981) calculations, reducing the number of instructions in

the inner loop had a significant effect on the execution time. By using

pre-calculated weights, removing the SIMD register data dependen-

cies and moving all branches out of the inner loop, the striped Smith–

Waterman has a very efficient inner loop. This paper presents an

efficient SIMD implementation of the dynamic programming

algorithm that might be adapted to other biological problems.

The current implementation uses block substitution matrices as

the scoring matrix. The implementation could easily be adapted to

use other types of scoring functions, such as position-specific scor-

ing matrices (PSSM) (Gribskov et al., 1987) and possibly profile

hidden Markov model (profile HMM) (Eddy, 1999). The profiles

need to be re-arranged in the same stripped-pattern as the query

profiles in order to work with this implementation.

Another possible use for this algorithm, in addition to database

searches, would be for aligning two sequences. Other software

packages use a SIMD implementation to find high scoring matches

and then use a scalar Smith–Waterman to align the two sequences.

Fig. 7. The calculation times for the different Smith–Waterman implementa-

tions using the BLOSUM62 scoring matrix with a gap penalty of 10 � k.

Fig. 8. The calculation times for the different Smith–Waterman implementa-

tions using the BLOSUM50 scoring matrix with a gap penalty of 10 � k.

Fig. 9. Total calculation times for the different Smith–Waterman implemen-

tations using BLOSUM50 and BLOSUM62 with gap penalties of 10 � k,

10 � 2k, 14 � 2k and 40 � 2k.

Fig. 10. Search times for different programs using heuristic algorithms and

SSEARCH using the striped Smith–Waterman implementation. The searches

were run using the BLOSUM50 scoring matrix with a gap penalty of 10� 2k.

M.Farrar

160

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

This implementation could easily be modified to find the high score

and the location of the scoring sequence. The location could then be

used in the Hirschberg algorithm (Chao et al., 1994) to align the two

sequences. This would allow faster alignments of larger sequences

in linear space.

Dynamic programming is used for global alignment (Needleman

and Wunsch, 1970) as well as local alignment. Other uses include

assembling DNA sequence data from the fragments from auto-

mated sequencing machines (Anson and Myers, 1997), and to

determine the intron/exon structure of eukaryotic genes (Gelfand

and Royberg, 1993). It is also used to predict the secondary structure

of functional RNA genes or regulatory elements (Zuker, 1989).

All of these problems might benefit from an efficient SIMD

implementation of the dynamic programming algorithm.

ACKNOWLEDGEMENTS

I thank William Pearson for providing the source code for

SSEARCH, which was used in the initial prototyping of the striped

Smith–Waterman implementation.

Conflict of Interest: none declared.

REFERENCES

Alpern,B., Carter,L. and Gatlin,K.S. (1995) Microparallelism and high performance

protein matching. In: Proceedings of the 1995 ACM/IEEE Supercomputing

Conference, 3–8 December 1995, San Diego, California. Available at: http://

www-cse.ucsd.edu/users/carter/Micro/sc95.html (Accessed Dec 4, 2006).

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Anson,E.L. and Myers,G.W. (1997) Realigner: a program for refining DNA sequence

multi-alignments. In: Procedings of the 1st ACM Conference on Computational

Molecular Biology, ACM Press, New York, pp. 9–16.

Benson,D.A. et al. (2000) Genbank. Nucleic Acids Res., 28, 15–18.

Chao,K.M., Hardison,R.C. and Miller,W. (1994) Recent developments in linear-space

alignment methods: a survey. J. Comput. Biol., 4, 271–291.

Eddy,S. (1999) Profile hidden Markov models. Bioinformatics, 14, 755–763.

Gelfand,M.S. and Roytberg,M.A. (1993) A dynamic programming approach for

predicting the exon–intron structure. Biosystems, 30, 173–182.

Gotoh,O. (1982) An improved algorithm for matching biological sequences. J. Mol.

Biol., 162, 705–708.

Gribskov,M., McLachlan,A.D. and Eisenberg,D. (1987) Profile analysis: detection of

distantly related proteins. Proc. Natl Acad. Sci. USA, 84, 4355–4358.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from protein

blocks. Proc. Natl Acad. Sci. USA, 89, 10915–10919.

Hinton,G., Sager,D., Upton,M., Boggs,D., Carmean,D., Kyker,A. and Roussel,P.

(2001) The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal

Q1, 2001.

Intel (2004), IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic

Architecture, Available at: http://www.intel.com/products/processor/manuals/

index.htm (Accessed Dec 4, 2006).

Intel (2005), IA-32 Intel Architecture Software Developer’s Manual Volume 2B:

Instruction Set Reference, N-Z, Available at: http://www.intel.com/products/

processor/manuals/index.htm (Accessed Dec 4, 2006).

Intel (2005), IA-32 Intel Architecture Optimization Reference Manual, Available at:

http://www.intel.com/products/processor/manuals/index.htm (Accessed Dec 4,

2006).

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48,

443–453.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence com-

parison. Proc. Natl Acad. Sci. USA, 85, 2444–2448.

Rognes,T. and Seeberg,E. (2000) Six-fold speed-up of Smith–Waterman sequence

database searches using parallel processing on common microprocessors.

Bioinformatics, 16, 699–706.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subse-

quencees. J. Mol. Biol., 147, 195–197.

Wozniak,A. (1997) Using video-oriented instructions to speed up sequence compari-

son. Comput. Appl. Biosci., 13, 145–150.

Zuker,M. (1989) On finding all suboptimal foldings of an RNA molecule. Science, 244,

48–52.

Striped Smith–Waterman algorithm

161

 at B
iblioteca C

entrala U
niversitara din T

im
isoara on A

pril 27, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/
http://www.intel.com/products/processor/manuals/index.htm
http://bioinformatics.oxfordjournals.org/

