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Abstract
With the consensus human genome sequenced and many other sequencing projects at varying

stages of completion, greater attention is being paid to the genetic differences among

individuals and the abilities of those differences to predict phenotypes. A signi®cant obstacle to

such work is the dif®culty and expense of determining haplotypes ± sets of variants genetically

linked because of their proximity on the genome ± for large numbers of individuals for use in

association studies. This paper presents some algorithmic considerations in a new approach for

haplotype determination: inferring haplotypes from localised polymorphism data gathered from

short genome `fragments.' Formalised models of the biological system under consideration are

examined, given a variety assumptions about the goal of the problem and the character of

optimal solutions. Some theoretical results and algorithms for handling haplotype assembly

given the different models are then sketched. The primary conclusion is that some important

simpli®ed variants of the problem yield tractable problems while more general variants tend to

be intractable in the worst case.

INTRODUCTION
With complete genome sequences now

available for humans1,2 as well as many

other important organisms, a major

challenge for the ®eld will be applying

genomic data to locate genetic variants, or

polymorphisms, that are predictive of

disease. Of particular interest have been

the single nucleotide polymorphisms

(SNPs) at which a single DNA base varies

from one individual to another. SNP

maps for use in association studies have

been generated by Celera1 and by public

sequencing efforts.3±5 Individual SNPs can

themselves be combined into haplotypes,

sets of polymorphisms in a region that

tend to be inherited together because of

their proximity on the genome. Recent

work indicates that haplotypes generally

have more information content than

individual SNPs,6 but they are

substantially more dif®cult to determine

than genotypes or individual SNPs.

In practice, there are several methods

for determining haplotypes, each with

some strengths and weaknesses.

Classically, pedigree information has been

used to infer probable haplotypes,7,8

providing an inexpensive but inaccurate

method. In addition, sequencing of clones

of a region of interest can directly

determine haplotypes,9,10 an accurate but

slow and expensive process. Ruano et al.11

introduced a direct experimental method

to determine haplotypes through dilution

of DNA samples to single molecules,

followed by polymerase chain reaction

(PCR) ampli®cation, greatly reducing the

cost of producing accurate haplotypes.

Computational methods have sought to

further reduce the cost of determining

haplotypes of many individuals by

inferring probable haplotypes given more

easily obtained genotype information.

Parsimony methods12,13 formulate the

problem as a combinatorial optimisation

in which a program attempts to explain a

data set with as few haplotypes as possible,
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handling large haplotypes and large data

sets but potentially giving incomplete

results. Statistical algorithms14±18 use

inexact methods to ®nd solutions to more

complicated statistical models. These

statistical methods give data that is

generally more complete than what

parsimony methods offer, but potentially

less accurate.

This paper discusses algorithmic issues

in applying an alternative method for

haplotying based on the data and

methodology of shotgun sequence

assembly.19,20 Speci®cally, we examine

how haplotypes over long regions can be

determined from short (single-stranded)

sequence fragments, each covering only a

few polymorphic sites. Figure 1 illustrates

the general idea of how short fragments

aligned to a genome sequence can be

partitioned into two sets using con¯icting

SNP values between fragments, with the

two sets determining the distinct

haplotypes. The input data can come

directly from a shotgun sequencing

project (post-assembly) or might be

generated speci®cally by a resequencing

effort for the purpose of large-scale

haplotyping. Haplotypes assembled by our

method might be used for validation of a

fragment assembly, as `seed data' to

improve the performance of other

computational methods, or directly in

disease association studies. This paper ®rst

presents some theoretical models of this

`SNP haplotype assembly problem' under

different assumptions and objectives. We

then describe some results on the hardness

of the problems and methods for tractable

variants. Finally, we discuss directions for

future progress on this problem.

SNP ASSEMBLY PROBLEMS
A SNP assembly is a tuple (S , F , R)

that consists of a set S of n SNPs, a set

F of m fragments, and a covering

relation R: S 3 F ! fO, A, Bg
indicating whether s does not occur on f

Figure 1: An illustration of partitioning
fragments by SNP alleles: (a) a set of
hypothetical fragments aligned according to
overlaps; (b) the fragments with SNP loci
marked; (c) the fragments set partitioned
into two haplotypes according to SNP allele
values
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(denoted with O) and, if occurring, with

which ¯avour of s (A or B) occurs. The

set of proper SNPs is S � � fs 2 S j9 f ,

f 9 2 F : R(s, f ) � A ^ R(s, f 9) � Bg,
and the set of proper fragments is

F � � f f 2 F j9s 2 S : R(s, f ) 6� Og.
Assuming an ordering on

S � fsigi�1...n and F � f f igi�1...m, the

SNP matrix is the m 3 n matrix over

fO, A, Bg with values R(sj, f i) at row i

column j.

Although not always the case, in some

important applications (eg SNP assemblies

arising from gapless fragments such as

expressed sequence tags (ESTs), R has a

consecutive 1s property (or C1P), where

there exists an ordering of S (called a

consecutive 1s ordering) such that for each

row of the SNP matrix, the non-O values

are all consecutive.

A haplotyping is a partition of F into

two blocks H1, H2 called haplotypes. We

say that a SNP assembly is feasible when

there exists a haplotyping such that

8s 2 S , 8 f , f 9 2 Hi: (R(s, f ) �
R(s, f 9)) _ (R(s, f ) � O) _
(R(s, f 9) � O), for i � 1, 2.

A fundamental problem in SNP

analysis is, for any SNP assembly,

A � (S , F , R), to ®nd a nearby

assembly A � (S , F , R) that is feasible

and a minimum of some objective

function obj(A, A). There are a variety

of optimisation criteria that one might

apply to SNP assembly problems, eg:

· MFR (minimum fragment removal):

A � (S , F , RjS 3F ), where

F � F and obj(A, A � jF ÿ F .

· MSR (minimum SNP removal):

A � (S , F , RjS 3F ), where

S � S and obj(A, A � jS ÿ S .

· MISR (minimum implicit SNP

removal): A � (S , F , RjS 3F )
,

where F � F and

obj(A, A � ÿjS �j calculated with

respect to A.

· MIFR (minimum implicit fragment

removal): A � (S , F , RjS 3F ),

where S � S and

obj(A, A � ÿjF �j.

· MEC (minimum error correction):

A � (S , F , R), where obj(A, A �
jfs 2 S , f 2 F : R(s, f ) 6� R(s, f )gj.

We will return to some of these problems

in later sections.

Con¯ict graphs
We de®ne the fragment con¯ict graph,

GF � (V , E) with nodes V � F and

edge set E � f( f , f 9)j9s 2 S , (R(s, f )

6� O) ^ (R(s, f 9) 6� O) ^ (R(s, f ) 6�
R(s, f 9))g. If the SNP problem is feasible,

then GF is bipartite, since a given

haplotyping H1, H2 de®nes the shores of

GF . Conversely, if GF is bipartite with

shores H1 and H2, then H1, H2 can be

taken as a partition of F de®ning a

haplotyping, and thus the SNP assembly is

feasible. Figure 2 shows an example.

We de®ne the SNP con¯ict graph,

GS � (V , E) with nodes V � S and

edge set E � S 3 S de®ned by

(s1, s2) 2 E iff s1, s2 2 S � and there

exists f 1, f2 2 F such that the four

element multiset fR(si, f i)g consists of 3

As and 1 B or 3 Bs and 1 A.

Theorem 1 Lancia When the SNP matrix

has the consecutive 1s property, then the

following hold:

· GS is a perfect graph.

· GF is bipartite iff GS is an independent

set.

THEORY AND
ALGORITHMS
We restate here the theory given by

Lancia et al.21 relating to the

computational complexity of the various

feasibility problems described in the

previous section.

In general, they are NP-hard.
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Theorem 2 For a general SNP matrix:

· MFR equivalent to MAX Induced

Bipartite Subgraph

· MSR, MEC reduce from MAXCUT

which makes them intractable.

The other NP-hardness results remain

open.

The theorem relies on the following

lemma.

Lemma 1 Con¯ict graph generality

Let G � (V , E). Then there exists a SNP

assembly, A � (S , F , R), such that

GF � G.

Proof: Let F � V and S � E, with

R(v1, e) � A and R(v2, e) � B for

e � (v1, v2) 2 E.

QED

Thus general SNP assemblies imply no

additional constraints on their fragment

con¯ict graphs.

The MAX Induced Bipartite Subgraph

problem is: for a given graph G � (V , E)

®nd the largest subset of nodes, V 2 V ,

such that GjV is bipartite. If we let

G � GF and identify V with F , the

nodes retained in MFR, the equivalence

is clear.

The reduction to MSR from

MAXCUT requires the observation that

the edge-induced subgraph of a cut is a

bipartite subgraph. Following the

construction of the generality lemma, the

SNP assembly A constructed such that

GF � G has the property that the

removal of a SNP in A removes an edge

in G. Thus, one can produce a maximal

cut by taking the cut S ÿ S . The

reduction to MEC requires the

observation that for A constructed

according to the lemma, for a graph G,

the removal of an edge in G corresponds

to changing one A to B or vice versa.

Some of the optimisation problems

simplify with additional assumptions:

Theorem 3 When the SNP matrix has the

consecutive 1s property, then the MFR, MSR

and MISR problems are polynomial.

Sketch

We assume that there are no fragments

that are contained in other fragments, ie

8 f1, f 2 2 F , 9s 2 S : (R( f2, s) 6� O)

^ (R( f 1, s) 6� R( f 2, s)), and that S has

been given a consecutive 1s ordering. Let

F( f ) 2 S be the ®rst SNP for which

R( f , B( f )) 6� O and let L( f ) 2 S be

the last SNP for which R( f , B( f )) 6� O.

We construct a directed graph on the

fragments D � (F , E) with edges

E � f( f 1, f2)jF( f 1) < F( f2) ^
(R( f 1, s) � R( f 2, s), 8F( f 2) < s

< L( f 1))g, ie an arc from f 1 to f2 exists if

f2 starts no earlier than f 1 and has no

mismatches with f 1 over their non-O

range.

It is clear that a solution to MFR,

F � H1 [ H2, is a pair of node-disjoint

paths H1, H2 such that jH1j � jH2j is

Figure 2: An example SNP matrix, with
fragments 1 to 9, and its associated fragment
con¯ict graph (Os omitted)
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maximised. In order to ®nd such paths we

turn D into an instance of a maximum

cost ¯ow problem, where the cost of the

¯ow is equal to the number of nodes

visited. This can be solved in polynomial

time. MISR can also be solved as a

maximum cost ¯ow problem on D if the

edges are given weights corresponding to

the number of SNPs they add to the path.

For MSR, one can ®rst prove theorem

1. A solution of MSR is a maximum

independent set of GS . For perfect

graphs, a maximum independent set can

be found in polynomial time.

QED.

In practice and in simulation, our data

are not generally C1P, so we have used

`branch-and-bound' algorithms and more

sophisticated `branch-and-cut' algorithms,

obtaining optimal results very often. Our

experimental data came from the

fragments which were used by Celera in

its human assembly,1 and our simulated

data were the result of simulated shotgun

fragments (using the program described in

Myers22), aligned in their correct assembly

for some typical public sequences. The

data are generally not C1P, and thus one

would not expect optimal results from our

algorithms. It remains open whether there

is a less restrictive condition than C1P

that gives polynomial complexity and

explains why such algorithms work so

well.

Multiple optima
What is a greater issue than the

computational complexity of SNP

assembly problems is the myriad optima

that can result. It has been our

observation that producing an optimum

solution to a SNP assembly problem is

insuf®cient to deliver relevant insights

into the data, and what seems to deliver

good insight are statements relevant to all

optima.

Consider a feasible SNP assembly

A � (S , F , R) where GF has multiple

graph components, GF �
SK

i�1 Gi where

K is the number of components. Since

GF is bipartite, the components Gi are all

bipartite, with shores H1i and H2i. From

these, one can construct 2K haplotypings

of A by H1 �
SK

i�1 H pi
i and

H2 �
SK

i�1 H(3ÿ pi) i where the phasing

vector ( p1, p2, . . . , pK ) is an arbitrary

element of f1, 2gK . Since most SNP

assembly problems in practice have

multicomponent GF or multicomponent

GF arise in the optima for nearby feasible

A, this uniqueness up to phase is a

shortcoming of the data that cannot be

removed without additional intervention,

without which, fragments can only be

assigned local haplotypes identi®ed with the

Hf1,2gi.
Multicomponent-based degeneracies

are not the only source of non-

uniqueness. There can be an exponential

number of nearby feasible A with

signi®cantly different characteristics. For

an infeasible SNP assembly A, there may

be many optimal nearby A. Our example

instance of MFR from Figure 2 has ®ve

nearby optima corresponding to the

removal of f3, 7g, or 3 and one of f8, 9g,
or 7 and one of f1, 2g, as illustrated in

Figure 3. As we see here, the degeneracy

is not simply a question of independently

breaking odd cycles, but there is a

coupling to the removals which

confounds a simple representation of the

solutions beyond an enumeration of each

case.

There are conservative strategies that

one may apply to MFR in order to obtain

consensus results from multiple optima.

One is to determine a conservatively

reduced fragment set F̂ � TF , where

the intersection is taken over all optimal

solutions F , effectively removing all

optimal removal sets from F . The

resulting SNP assembly Â would be

feasible, but probably not optimal. It is

useful for inferring those characteristics

common to all A. This is illustrated in

Figure 3 where these fragments are

highlighted. From such a presentation,

one is made aware that f1, 2, 3, 7, 8, 9g
are suspicious and that, in every optimal

removal, the fragments f4, 6g segregate

together and away from fragment 5. In

the case of MFR, computing the

intersection of the optima can be done
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indirectly, avoiding the total

enumeration.

In order to produce inferences based

on the SNP data that are insensitive to the

arbitrary choice of optima made by an

implementation of the optimisation, it is

necessary to produce some conservative

post-processed result. We consider the

correct way to construct such results an

open problem.

Branch-and-bound algorithm
We have formulated the above ideas into

a branch-and-bound algorithm for ®nding

the intersection of all optimal solutions for

MFR. The core of the algorithm is

described by the following pseudo-code:

graph G

node_set D Æ
score s optima(Æ, 1)

foreach node v in G

if (optima(fvg, 1) � s)

D D� v
return G ÿ D

where,

score s � function optima (node_set R,

score b)

if jRj > b

return1
else if G ÿ R has an odd length

cycle C

n � b

foreach node v in C

n min{n, optima(R � v,b)}

return n

else

return jRj

The central function, optima, ®nds the

smallest number of nodes one can remove

from G to make it bipartite. It ®nds this

number by searching the tree of possible

solutions, aborting any branch of the tree

that is too deep to lead to a better

optimum than the best it had observed up

to that point. It then locates any node v
removed on any optimal solution by

testing whether initially removing v from

G changes the optimal solution. If it does

Figure 3: The example SNP matrix, with
`suspicious' fragments highlighted, and an
enumeration of the optimal removals
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not, then there must have been an

optimal solution in which v was removed.

Although this procedure requires

exponential time in the number of

fragments in the worst case, we have

found it in practice to be quite ef®cient

on real and realistic simulated data.

To understand how the algorithm

works, consider the example problem

illustrated in Figures 2 and 3. When

optima is run on all of G, it might ®rst

quickly locate a solution of size 3, for

example the removal of nodes 1, 3 and 7.

At that point, it would look only for size

2 solutions, eventually locating, for

example, the solution removing nodes 3

and 7. It would then look only for size 1

solutions, quickly determining that no

one node's removal would make the

graph bipartite. It would thus give the

®nal answer of 2. The algorithm would

then examine the graph with node 1

initially removed. It would then

determine that it can still ®nd a size 2

solution by removing node 7, showing

that node 1 must lie on an optimal

solution. Proceeding in this manner for

nodes 2 to 9, it would determine that

initially removing any of nodes 1, 2, 3, 7,

8 or 9 still results in a size 2 solution and

that therefore those nodes each lie in

some optimal solution. That would leave

us with a core graph of nodes 4, 5 and 6

from which to infer haplotypes.

Several techniques have been explored

for accelerating the basic algorithm. An

initial upper bound is established by using

a greedy graph-colouring heuristic,

allowing us to avoid an early search of

high-cost solutions. We also

experimented with reformulating the

graph problem as an integer program

(a computationally intractable class of

optimisation problem) which can be

relaxed to a computationally tractable

linear program. The solution to the linear

program, run within each call to the

optima function, establishes a lower

bound on the solution cost which can be

used to prune away sub-trees that cannot

lead to optimal solutions. While this and

similar more sophisticated methods would

be expected to be more ef®cient on

dif®cult problem instances, the simpler

methods proved to be considerably faster

on real data sets. In fact, an exhaustive

enumeration of all possible optimal

solutions ± achieved by searching the

branch-and-bound tree for solutions at

least as good as the best seen rather than

strictly better than the best seen ± tended

to be even faster. That simpler methods

tended to work better in practice than

more sophisticated ones re¯ects the fact

that the real data sets we examined were

generally very close to bipartite.

DISCUSSION
A common theme of the theoretical

results is that these problems have easy

special cases but harder general cases.

Even the easiest variants can correspond

to real-world problem variants; for

example, SNP matrices generated from

EST sequences will be C1P and therefore

polynomially solvable for the MFR,

MSR, and MISR problems. Other

important problem variants do not,

however, fall into the known polynomial

subsets of the problem space, and an

important avenue of future work will

therefore be ®lling in the gaps between

the variants we have already characterised

to try to locate further tractable but

realistic subsets of the problem space. In

practice, we have found heuristic methods

for generalised fragment removal to work

ef®ciently in almost all cases when run on

real data, suggesting that appropriately

formulated models may show the problem

to be manageable for all reasonable data. It

remains to be seen if a model can be

constructed that captures the

complications of real data that led to our

general formulations but are suf®ciently

specialised so as to yield theoretically

tractable problems.

As the dif®culties with `optimal'

solutions reveal, there is room for better

formulations of the problem. Our

objective functions do not yet fully

capture what we consider an ideal

solution to the problem, suggesting a need

for better de®nitions. Furthermore, there
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are many problem details that could be

incorporated into models as we get a

better grasp on the simpler variants. In

particular, some accounting could be

considered of the relative con®dences we

may have in particular fragments or

particular DNA bases of fragments.

Furthermore, it may be that we will

continue to need multiple variants

depending on the source of experimental

data (eg, shotgun fragments versus EST

sequences) and on the goal of the

haplotyping project.

Even if we continue to work with hard

general cases, there is room for

improvement in heuristic methods. To

date, we have developed only simple

variants of such methods and only for

MFR. More sophisticated techniques for

the different problem variations may yield

solutions that work more ef®ciently for

our speci®c problems, either in the worst

case or in the average case of `biologically

realistic' data, a concept that remains to be

rigorously formalised.

A ®nal concern is the need for data.

While the methods we describe are

intended to work with data fortuitously

available as the output of automated

sequencers, haplotyping may become

important enough to merit data

generation methods more speci®cally

tuned to the nature of haplotyping. To do

so would require understanding how the

nature of fragment data might be changed

to improve its suitability for haplotyping

and how experimental methods might

generate such data.
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