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ABSTRACT We report a blind test of lattice-model-based
search strategies for finding global minima of model protein
chains. One of us (E.LS.) selected 10 compact conformations
of 48-mer chains on the three-dimensional cubic lattice and
used their inverse folding algorithm to design HP (H, hydro-
phobic; P, polar) sequences that should fold to those “target”
structures. The sequences, but not the structures, were sent to
the UCSF group (K.Y., KM.F,, P.D.T., H.S.C,, and K.A.D.),
who used two methods to attempt to find the globally optimal
conformations: “hydrophobic zippers” and a constraint-
based hydrophobic core construction (CHCC) method. The
CHCC method found global minima in all cases, and the
hydrophobic zippers method found global minima in some
cases, in minutes to hours on workstations. In 9 out of 10
sequences, the CHCC method found lower energy conforma-
tions than the 48-mers were designed to fold to. Thus the
search strategies succeed for the HP model but the design
strategy does not. For every sequence the global energy
minimum was found to have multiple degeneracy with 103 to
10° conformations. We discuss the implications of these
results for (i) searching conformational spaces of simple
models of proteins and (ii) how these simple models relate to
proteins.

Computer algorithms are emerging that attempt to predict the
three-dimensional structures of proteins from their amino acid
sequences (1-7). The best blind test of a folding algorithm is
the prediction of a protein structure that is already known to
someone but is not known to the predictor. Recently, proteins
have been modeled at low resolution as chains configured on
spatial lattices. Algorithms have arisen for inverse folding (8,
9) that design sequences to fold to a desired given conforma-
tion and for folding (1, 3, 10-12) that take sequences and
predict their native states. The virtue of lattice models is that
their native states can often be known exactly, many of their
properties are well understood, and in many respects, they
resemble those of real proteins. The best consistency check of
lattice model folding algorithms would be if someone “inverse
folded” a protein (i.e., designed a sequence to fold to a known
native state) and gave it to a “folder” to attempt to predict its
native state.

This is the idea behind the present paper. This work began
as a friendly wager. E.L.S. (representing the Harvard group)
proposed to design some 48-mer HP sequences (H, hydro-
phobic; P, polar; see refs. 13-15) that would fold to three-
dimensional simple cubic lattice target structures of his choice
and to give the sequences to the UCSF group (K.Y., KM.F,,
P.D.T., HS.C, and K.A.D.). The UCSF group would then
attempt to fold the sequences to the best possible structures,
based on the HP potential. By fold, we refer here only to
thermodynamics and not to kinetics: we mean that an algo-
rithm finds the lowest energy state, without consideration of
whether there is kinetic access to that state. For the present
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study, if structures with energies equal to or better than the
energy of the target (designed) structure were found, then this
would be considered successful folding. The UCSF group
would use two strategies: hydrophobic zippers (HZ) (10) and
a systematic assembly process using discrete geometry (con-
straint-based hydrophobic core construction, CHCC) (12, 16).
The Harvard group offered a six pack of beer if the UCSF
group could successfully fold 1 or more out of 10 sequences of
48-mers. This is a report of the results.

METHODS

HP Lattice Model. Proteins used in the HP lattice model are
specific sequences of H (hydrophobic) and P (polar) mono-
mers (13, 15, 17) configured on the three-dimensional simple
cubic lattice. Each chain configuration is a self-avoiding walk
on the lattice. Contacts between H monomers are favorable.
The energy E of a chain conformation is determined by the
number of H-H contacts h: E = — | e|h, where || is a positive
constant. (In this work E is given in units of |¢|.) The native
state of an HP sequence is defined as the set of conforma-
tion(s) with the largest possible number # of H-H contacts.
The energy of a native conformation is defined as E, and the
number of conformations with this energy is the native state
degeneracy gn.

Sequence Design. Inverse folding was performed by the
Harvard group by iterative Monte Carlo interchanging of
monomers, for a given target structure, until convergence to
a low-energy sequence was achieved. We call these target
structures “putative native states” (PNS) because initially it
was not known whether the designed sequences could fold to
conformations with lower energies than the PNS energy. The
details of the design method are given in refs. 9 and 18. Ten
sequences designed this way were sent to the UCSF group.
These sequences are listed in Fig. 1. The UCSF group was
given only the HP monomer sequences and not the target
structures, so that it could be a legitimate blind test. All 10
designed structures chosen by the Harvard group are maxi-
mally compact (see Fig. 2). The Harvard group also gave the
UCSF group the PNS energy Epns so that the UCSF group
could know if it had succeeded in meeting the criterion of
reaching either the PNS or a structure at least as good
energetically.

Folding of Designed Sequences. The UCSF group used two
procedures to find native states for the given sequences. The
first, HZ (10, 11), is an opportunistic process that begins with
randomly chosen H-H contacts that can be formed among
near neighbors in the sequence and zips up other H-H contacts
as they come into spatial proximity by virtue of preceding
contacts.

Two properties of HZ have previously been found. (i) HZ
can find global minima of short HP lattice model chains for
some sequences without exhaustive searching of conforma-

Abbreviations: HP, hydrophobic polar; HZ, hydrophobic zippers;
CHCC, constraint-based hydrophobic core construction; PNS, puta-
tive native states.
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Sequence (PNS Conformation) Epns

1. HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH -30
(RFFRBULBULDFFFRBUF LBBRRFRBBLDDRUFDFULFURDDLLLBB)

2. HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH  -30
(REFLBUFRBRDBRF FFLBUULBLFFDDRUURDRUBDBULBRDLLULD)

3. PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP  -31
(RFUBUFFRBDFDRUUBBUFFLLLDDRDLBUBUF UBRFRBDDRFDBLF )

4. PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP  -30
(RRFLLUFDRUUFRBBBDLLURFDRFDFRBUBDBUUFFFDLLDLUUBB)

5. PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH  -30
(RFLFUBBRFFFLDRBRUULBRDDRBLUULLFFFRRRBBBDFFFLDRB)

6. HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH  -30
(RFFRBUUULFDBBDLUFFUBBRRRFFLDRBBLDDRUFDFULLBLFDB)

7. PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH -31
(RRRFULDLUULFURDDLDBUBRULUFRBRRDDLUFRULFRDLDRDLL)

8. PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP  -31
(RRRFLUUFDRDFULLBLBBUFFRBDDLFRRF LLUURRRBBDBLLURR)

9. PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH  -30
(RRFFRUULDLLUUBRFDBRDBRDFUUBUFFLBBDLULDDRF DF LBUU)

10. PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH  -30
(RFLFUUUBRBLDFRRBRFFUBBLFFLDRDLDRBRFUBBDLUFLLBRU)

FiG. 1. HP sequences and PNS conformations of the 10 Harvard
sequences. The conformations are encoded in bond directions (U, up;
D, down; L, left; R, right; F, forward; B, backward). A three-
dimensional rendering of PNS conformations of sequences 2, 8, and 10
is shown in Fig. 2.

tional space (10). (ii) For longer chains, this method explores
compact conformations that have much hydrophobic cluster-
ing but does not always find native states, perhaps because of
computational limitations (19). Thus the present test is a useful
challenge for the method.

The second UCSF folding method, CHCC, is based on the
geometric properties of lattice chains (16). This approach
consists of (i) an optimization process that first determines a
tight upper bound on the number % of possible H-H contacts
(i.e., lower bound for the energy of the native state Ex) and
then (ii) construction of such conformations by assembling a
core of H residues with a minimal surface area, subject to
several constraints imposed by the sequence. This method
determines rigorously when conformations are at their global
minima. In addition to constructing native conformations
CHCC also gives a lower bound on the native state degeneracy
gn. The method is described in ref. 16, and the present
implementation is in ref. 12.

RESULTS

For each of the 10 designed sequences, Table 1 lists the PNS
energy Epns, the lowest energy found by the HZ method Eyz,
and the native state energy En and the lower bound on native

Table 1. Comparison of PNS energy Epns, the lowest energy
obtained by 10,000 HZ runs Eyz, and the native state energy En
and the lower bound gchxcc on native degeneracy gn by CHCC

Seq. Epns Enz En gcHCC
1 -30 -31 -32 1.5 X 10
2 -30 -32 -34 14 x 103
3 -31 =31 —-34 5% 103
4 -30 -30 -33 62 X 103
5 -30 -30 -32 54 x 103
6 =30 -29 -32 52 x 103
7 -31 -29 -32 59 x 103
8 =31 -29 -31 306 X 103
9 -30 -31 —-34 103

10 -30 -33 -33 188 x 103
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degeneracy g obtained by the CHCC approach. In Fig. 2 for
sequences 2, 8, and 10, we show the PNS conformation and a
representative native conformation found by the HZ and
CHCC algorithms. We found the following results.

The HZ Method Quickly Finds Conformations with the PNS
Energy. We generated 10,000 HZ pathways for each of the 10
sequences. HZ succeeded in 7 cases out of 10 in finding
conformations at least as good as the PNS conformations to
which they were designed to fold. For the remaining three
sequences, Monte Carlo kinetics of the Harvard group (18, 20)
found conformations having lower energy than any of the
10,000 HZ conformations (Table 2).

There Are Many Different Conformations That Have the
PNS Energy. HZ performed at UCSF and Monte Carlo
kinetics performed at Harvard turned up hundreds of con-
formations of each sequence that had the PNS energy. Thus
the design strategy is not creating sequences that will uniquely
fold to the target structures.

The reason for the design problems could be any of the
following possibilities, each of which is considered in more
detail in the Discussion below. (i) The simple interaction in the
HP model is too nonspecific for most sequences to have unique
native structures. Thus it would be impossible to design a
sequence, in the HP model, by any procedure, that would have
a unique native structure. In this connection, it is known that
using a multiletter code, rather than the binary HP code used
here, or even allowing both favorable and unfavorable inter-
monomer interactions fosters native uniqueness and dimin-
ishes the degeneracy of low-energy conformations (refs. 18 and
21 and H.S.C., unpublished results). (ii) The sequence design
algorithm used here is not optimal. It may not be sufficient to
merely interchange monomers during the design process,
keeping the HP composition fixed. (iii) It may be that not every
possible target conformation is “designable” in the HP model.
Earlier studies (8, 15) found that some compact conformations
simply cannot be uniquely encoded in any HP sequence. If so,
target conformations cannot be chosen arbitrarily, and se-
quence design also requires concurrent structure design in the
HP model.

The Target Structures Are Not Global Energy Minimum
Conformations of the Sequences. For 9 of the 10 sequences, the
CHCC approach (16) found conformations lower in energy
than the target conformations to which they were designed to
fold (Epns > En). HZ found lower energies in 4 out of 10 cases.
The Monte Carlo procedure found none of lower energy. The
true global minimum energies Ex (determined by the CHCC
method) are given in Table 1, and some representative con-
formations are shown in Fig. 2 along side the target confor-
mations. Thus the designed sequences will not fold to their
target structures because they are not stable states of those
sequences. In Table 1, we also show the CHCC-determined
lower bounds on the numbers of different conformations at the

Table 2. HZ end-state distributions for the 10 sequences at
various energies

Number of HZ end states

Enz Enz Enz Enz Euz

Seq. Euz Eyz +1 +2 +3 +4 +5
1 =31 1 8 84 423 1248 2134
2 -32 1 5 99 425 1145 2030
3 -31 6 44 191 689 1752 2674
4 -30 2 23 210 706 1667 3010
5 =30 2 30 166 548 1263 2093
6 -29 4 27 157 674 1788 2845
7 -29 12 55 239 782 1525 2395
8 -29 8 81 352 1060 2108 3186
9 -31 21 126 510 1272 2219 2587

10 -33 1 3 55 175 528 1073
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Sequence 10

FiG. 2. For sequences 2, 8, and 10, the respective PNS (Left) conformations and selected native conformations (Right) are shown.

global energy minimum (native state degeneracies gn). There
are at least approximately 103 to 10° global minima for each of
these HP sequences.

DISCUSSION

What do we learn from these results? First, the number of
global minima for these 10 48-mer HP sequences in three
dimensions is larger than 10°. Random pairwise structural
comparisons indicate that two ground-state conformations of
the same sequence have only 35-55% of H-H contacts in
common, on average (Table 3). This implies that these 10
sequences do not fold uniquely as biological sequences do. But
biological uniqueness seems likely to require some design, and
appropriate designs may not be encoded within these 10
sequences. What does “unique” mean? At higher resolution,
the “unique” native states of real proteins are themselves
ensembles involving small fluctuations around native-like en-
ergies and structures (22, 23). We believe that in coarse-
grained lattice models, these fluctuations should be captured
largely within a single lattice conformation. Hence, the con-
clusion that these 10 sequences do not fold uniquely refers to
large-scale structural diversity of the ground states, not to

small perturbations around a single “fold.” We point out that
other theorists are more agnostic about the nature of fluctu-
ations in native proteins (24). Honeycutt and Thirumalai (25)
have argued in agreement with Frauenfelder et al (26) that the
tier-zero substates or so-called taxonomic substates of folded
proteins may well correspond to slightly different overall folds.

How should we regard this high degeneracy of native
structures of these 10 sequences? Is ground-state conforma-
tional diversity characteristic of real random-sequence
polypeptides? We do not know. Designed polypeptides often
do not fold to unique structures (27). For both real polypep-
tides and lattice model sequences, there are good designs, with
little native conformational diversity, and bad designs (8). We
have found some HP sequences of 60—80 monomers that have
fewer than five native conformations (12), although we have
not yet found any that have only a single native conformation.
These particular HP sequences mimic real protein sequences
in having very limited native conformational diversity. Re-
placing two-letter codes (H and P, for example) by multiletter
codes undoubtedly helps reduce degeneracy, and this may be
more protein-like.

Second, the Harvard sequence design procedure does not
work for HP lattice model chains. The Harvard and UCSF
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Table 3. Comparison of ground-state conformations

Proc. Natl Acad. Sci. USA 92 (1995)

% pairs with given structural similarity

Seq.  100% 90% 80% 70%  60% 50% 40% 30% 20% 10% 0%
1 0.26 0.27 0.67 1.69 522 1852 3849 2963 526 000 0.00

3 1.86 1.78 173 284 1197 2276 4187 1332 185 001 0.00
7 7.00 1286 1065 994 1736 1278 1139 1637 165 0.00 0.00
10 1.89 0.94 352 416 9.24 38,60 33.68 793 0.03 0.00 0.00

For each sequence, 399 ground state conformations are randomly chosen for pairwise comparison of
H-H contact maps. Each table entry indicates the percentage of such pairs having a certain structural
similarity (0-100% as indicated), in terms of percentages of common H-H contacts. Each column of the
table indicates the range of similarity in increments of 10%. For example, for sequence 3, 2.84% of pairs
have 70-80% of their H-H contacts that are identical. Note that the same H-H contact map does not
usually map to the same conformation and does not even necessarily map to the same shape of the H core.
This is because the H residues are usually not connected among themselves. So, when the H-H contact
maps of two conformations differ, the conformations differ considerably.

groups interpret this somewhat differently. The Harvard
group believes that this same design strategy will work for
more protein-like models having 20 types of monomers rather
than 2 (18) and that it does not work here because the HP
model is not sufficiently protein-like. For sequences designed
by this method using a 20-letter code (18), Monte Carlo folding
simulations always lead to the PNS, indicating that it is likely
to be the true global energy minimum. The Harvard strategy
is based solely on the target structure and regards a mean-field
argument, described below, as insurance that no other con-
formations will be populated.

Real proteins may have larger “energy gaps” than the HP
model (9, 18). To describe energy gaps, consider an energy
level diagram. The set of native conformation(s) has the lowest
energy and thus they define the ground state. The set of next
lowest-energy conformations constitutes the “first excited”
state, the conformations of the next higher energy are the
“second excited” state, etc. Moving up the energy ladder can
lead to increasing numbers of conformations. In contrast, if
there were an energy gap, moving up the energy ladder from
the ground state would, at first, lead to unoccupied energy
levels (i.e., energies that are possible a priori but that are not
adopted by any conformation) until some particular energy
level, Ec, is reached, above which the numbers of conforma-
tions would increase rapidly. The existence of an energy gap
implies a two-state transition. Using the CHCC method, we
find that none of the 10 sequences has an energy gap; i.e., the
“first-excited” E = En + 1 levels of all 10 sequences are
occupied. However, it is the full density of states that funda-
mentally determines stability. In some applications, the latter
should be studied rather than just considering “gap” or “no
gap.”

For real proteins, which have local “excitations” (fluctua-
tions) near the global energy minimum (22, 23), the notion of
energy gap becomes more complex than in lattice models with
discrete energy levels. In some spin-glass model of proteins,
the energy gap is defined to be the difference between the
lowest energy of the random energy landscape and the energy
of the minimally frustrated native state (28—30). Energy gaps
and other spin-glass concepts have also been applied to protein
structure prediction in conjunction with associate-memory
Hamiltonians and with local Hamiltonians similar to those
used here (31, 32). We do not know how prevalent or rare
energy gaps might be in three-dimensional HP lattice proteins,
just as we do not know how common they are in random
polypeptide sequences. In two dimensions, short-chain exhaus-
tive simulations show that the fraction of sequences that have
unique ground states (i.e., a single lowest-energy lattice con-
formation) is approximately 2.5% (15, 33), and so far we have
found only six 18-monomer HP sequences in two dimensions
with both unique ground states and energy gaps (33). Much
less is known about three dimensions.

The UCSF group believes there may be a problem in the
Harvard design procedure. There are two criteria for design-
ing good sequences (8): a strategy must “design in” the target
structure, and it must also “design out” bad conformations
(sometimes called “negative design”). The UCSF group be-
lieves the Monte Carlo design method has no provision for
designing out bad conformations: it is an optimization in
sequence space at constant composition but not in conforma-
tion space. The basis for believing that bad conformations
would be designed out (9) is a mean-field theory of hetero-
polymers (34) that estimates the lower bound on energies of
nonnative conformations of an “average” sequence with a
given interaction potential among different monomer types.
According to this model, if the PNS energy of the designed
sequence is much lower than this bound, then the target
structure is likely the true native structure: unique, stable, and
with an energy gap (18). Applied to the HP interaction (18),
this theory predicts that most HP sequences will have numer-
ous conformations with energy lower than the PNS energy,
and these 10 sequences do. But this theory applies only to
ensemble-averaged sequences and only to maximally compact
conformations and relies on the resemblance of proteins to
random heteropolymers. It does not apply to specific se-
quences, so if protein-like behavior is a rare feature of
heteropolymer sequences, the theory would not apply.

In this regard, the HP model is at one end of a spectrum of
models: it has considerable conformational diversity at ener-
gies close to the global minimum, and yet, as indicated here,
it is possible to devise algorithms to find some global minima
conformations based only on sequence information. In models
with multiletter codes and energy gaps, perhaps simpler Monte
Carlo strategies (18) can design and fold model proteins, since
the landscapes are less rugged. The CHCC and HZ methods
are currently applicable only to the HP model.

This collaboration was restricted to the question of whether
particular computer algorithms, namely, HZ and CHCC, could
find global minima of energy landscapes in HP lattice models.
We did not consider other models of intrachain interactions,
other definitions of native states of proteins, or kinetic issues
of how folding might be limited by kinetic traps on the
conformational space, although it is clear that sequences with
large energy gaps (in several models) may be both fast folding
and stable at certain optimal intrachain interactions (9, 18, 20,
33). A stronger hypothesis has been suggested: that the
existence of an energy gap is a sufficient condition for a
sequence to fold rapidly (9, 18, 20).

CONCLUSIONS

While this challenge between Harvard and UCSF groups was
originally undertaken in fun, we believe there are several
useful conclusions that come from it. (i) The 10 HP lattice
sequences in this study have multiply-degenerate ground states
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and do not have unique native structures as in real proteins,
but they may represent the kind of conformational diversity
expected in real polypeptides of random amino acid sequences.
Although this study does not rule out the existence of HP
sequences that have unique three-dimensional native struc-
tures with energy gaps, it does suggest they are probably rare.
It is not known whether these properties are rare or common
among real polypeptides. Several lattice and spin-glass models,
including this one, indicate that the ability to fold to unique
states is not a property of arbitrary copolymer sequences; it
requires some design, biological or otherwise. An interesting
unsolved question is, What is the minimal number of monomer
types that would allow for unique, stable, and accessible native
conformations for at least a biologically significant fraction of
sequences and conformations? (i) The present study shows
that arbitrary HP sequences can be folded to many of their
global minima in minutes on present computer workstations.
(iéii) Our results imply that some care is required to design
sequences that do not fold to incorrect conformations. Real
proteins fold to unique stable accessible native states. Good
search strategies should be able to find such states for models
of rugged energy landscapes.
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