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1.1 Introduction

A protein is a complex biological macromolecule composed of a sequence of amino acids.
Proteins play key roles in many cellular functions. Fibrous proteins are found in hair, skin,
bone, and blood. Membrane proteins are found in cells’ membranes, where they mediate the
exchange of molecules and information across cellular boundaries. Water-soluble globular
proteins serve as enzymes that catalyze most cellular biochemical reactions.

Amino acids are joined end-to-end during protein synthesis by the formation of peptide
bonds (see Figure 1.1). The sequence of peptide bonds forms a “main chain” or “backbone”
for the protein, off of which project the various side chains. Unlike the structure of other
biological macromolecules, proteins have complex, irregular structures. The sequence of
residues in a protein is called its primary structure. Proteins exhibit a variety of motifs
that reflect common structural elements in a local region of the polypeptide chain: α-
helices, β-strands, and loops—often termed secondary structures. Groups of these secondary
structures usually combine to form compact globular structures, which represent the three-
dimensional tertiary structure of a protein.

The functional properties of a protein depend on its three-dimensional structure. Pro-
tein structure prediction (PSP) is therefore a fundamental challenge in molecular biology.
Despite the fact that the structures of thousands of different proteins have been deter-
mined [10], protein structure prediction in general has proven to be quite difficult. The
central dogma of protein science is that the primary structure of a protein determines its
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FIGURE 1.1: The peptide bond joining two amino acids when synthesizing a protein.

tertiary structure. Although this is not universally true (e.g. some proteins require chap-
erone proteins to facilitate their folding process), this dogma is tacitly assumed for most of
the computational techniques used for predicting and comparing the structure of globular
proteins.

Many computational techniques have been developed to predict protein structure, but
few of these methods are rigorous techniques for which mathematical guarantees can be
described. Most PSP methods employ enumeration or search strategies, which may require
the evaluation of exponentially many protein structures. This observation has led many
researchers to ask if PSP problems are inherently intractable.

Lattice models have proven to be extremely useful tools for reasoning about the com-
plexity of PSP problems. By sacrificing atomic detail, lattice models can be used to extract
essential principles, make predictions, and unify our understanding of many different prop-
erties of proteins [18]. One of the important approximations made by lattices is the dis-
cretization of the space of conformations. While this discretization precludes a completely
accurate model of protein structures, it preserves important features of the problem of com-
puting minimum energy conformations. For example, the related search problem remains
difficult and preserves essential features of the conformational space. Consequently, meth-
ods that generate low-energy conformations of proteins for lattice models provide insight
into the protein folding process.

In this paper, we review results developed in the past decade that rigorously address the
computational complexity of protein structure prediction problems in simple lattice models.
We consider analyses of (1) intractability, (2) performance-guaranteed approximations and
(3) methods that generate exact solutions, and we describe how the lattice models used in
these analyses have evolved. Early mathematical analyses of PSP lattice models considered
abstract formulations that had limited practical impact, but subsequent work has led to
results that (a) apply to more detailed models, (b) consider lattices with greater degrees of
freedom, (c) demonstrate the robustness of intractability and approximability, and (d) solve
problems with general search frameworks. Our discussion complements the recent review by
Chandru et al. [13], who more briefly survey this literature but provide more mathematical
detail concerning some of the results in this area.

We begin by describing the the hydrophobic-hydrophilic model (HP model) [17, 29],
which is one of the most extensively studied lattice models. Next, we review a variety
of results that explore the possible computational intractability of PSP using techniques
from computational complexity theory. These results show that the PSP problem is NP-
hard in many simple lattice models, and thus widely believed to be intractable. Because
of these hardness results, efficient performance-guaranteed approximation algorithms have
been developed for the PSP problem in several lattice models. In particular, many variants
of the HP model have been considered, allowing for different degrees of hydrophobicity,
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explicit side chains and different lattice structures. Finally, we summarize recent efforts to
develop exact protein structure prediction methods that provably guarantee that optimal
(or near-optimal) structures are found. Although enumerative search methods have been
employed for many years, mathematical programming techniques like integer programming
and constraint programming offer the possibility of generating optimal protein structures
for practical protein sequences.

1.2 Hydrophobic-Hydrophilic Lattice Models

The discretization of the conformational space implicit in lattice models can be leveraged to
gain many insights into the protein folding process [18]. For example, the entire conforma-
tional space can be enumerated, enabling the study of the folding code. This discretization
also provides mathematical structure that can be used to analyze the computational com-
plexity of PSP problems.

A lattice-based PSP model represents conformations of proteins as non-overlapping em-
beddings of the amino-acid sequence in the lattice. Lattice models can be classified based
on the following properties:

1. The physical structure, which specifies the level of detail at which the protein se-
quences are represented. The structure of the protein is treated as a graph whose
vertices represent components of the protein. For example, we can represent a
protein with a linear-chain structure [18] that uses a chain of beads to represent
the amino acids.

2. The alphabet of types of amino acids that are modelled. For example, we could
use the 20 naturally occurring types of amino acids, or a binary alphabet that
categorizes amino acids as hydrophobic (non-polar) or hydrophilic (polar).

3. The set of protein sequences that are considered by the model. The set of natu-
rally occurring proteins is clearly a subset of the set of all amino acid sequences,
so it is natural to restrict a model to similar subsets.

4. The energy formula used, which specifies how pairs of amino acid residues are
used to compute the energy of a conformation. For example, this includes contact
potentials that only have energy between amino acids that are adjacent on the
lattice, and distance-based potentials that use a function of the distance between
points on the lattice. Many energy formulas have energy parameters that can be
set to different values to capture different aspects of the protein folding process.

5. The lattice, in which protein conformations are expressed; this determines the
space of possible conformations for a given protein. For example, the cubic
and diamond lattices have been used to describe protein conformations (see Fig-
ure 1.2).

One of the most studied lattice models is the HP model [17, 29]. This lattice model
simplifies a protein’s primary structure to a linear chain of beads. Each bead represents an
amino acid, which can be one of two types: H (hydrophobic, i.e. nonpolar) or P (hydrophilic,
i.e. polar). This model abstracts the hydrophobic interaction, one of the dominant forces
in protein folding. Although some amino acids are not hydrophilic or hydrophobic in all
contexts, the model reduces a protein instance to a string of H’s and P’s that represents the
pattern of hydrophobicity in the protein’s amino acid sequence. Despite its simplicity, the
model is powerful enough to capture a variety of properties of actual proteins and has been
used to discover new properties. For example, proteins in this model collapse to compact
states with hydrophobic cores and significant amounts of secondary and tertiary structure.
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FIGURE 1.2: Examples of crystal lattices: (a) cubic, (b) diamond, (c) cubic with planar diagonals,
(d) hexagonal, (e) triangular and (f) face-centered-cubic.

For simplicity, we denote H by “1” and P by “0”, so the alphabet used in an HP model
is A = {0, 1}. The set of protein instances typically considered for this model is the set
of binary sequences σ = {0, 1}+. Each sequence s ∈ σ corresponds to a (hypothesized)
hydrophobic-hydrophilic pattern of a protein sequence. The HP model uses contact energies
between pairs of amino acids: two amino acids can contribute to the protein’s energies if
they lie on adjacent points in the lattice. Thus the energy formula used in the HP model
is an energy matrix, E = (e(a, b))a,b∈A, where e(a, b) = −1 if a = b = 1, and e(a, b) = 0
otherwise. The HP model studied by Dill and his colleagues models protein conformations
as linear chains of beads folded in the 2D square or 3D cubic lattices.

Much of our review of the computational complexity of PSP focuses on the HP model,
because it has been so widely studied. Additionally, a variety of extensions of the HP model
have been considered in an effort to make these PSP results more practically relevant. For
example, Agarwala et al. [1] consider an extension of the HP model that allows for various
degrees of hydrophobicity.

More general structures have also been considered than the standard linear-chain model.
One example is a simple side-chain structure that uses a chain of beads to represent the
backbone; amino acids are represented by beads that connect to a linear backbone with a
single edge [11, 25, 28]. Figure 1.3 contrasts the structure of linear and side-chain confor-
mations in the HP model.

Although most work on the HP model has focused on the 2D square and 3D cubic lattices,
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(a) (b) (c)

FIGURE 1.3: Illustrations of conformations for: (a) the standard HP model on the square lattice,
(b) the HP model with side chains on the square lattice, and (c) the HP tangent
spheres model with side chains. Black denotes a hydrophobic amino acid, white
denotes a hydrophilic amino acid, and gray denotes a backbone element.

the computational complexity of PSP for the HP model has been studied for a variety of
different lattices, including the triangular lattice (see Figure 1.2(e)) [1], the face centered
cubic (FCC) lattice (see Figure 1.2(f)) [1, 25], the cubic lattice with diagonal edges on each
face (see Figure 1.2(c)) [28], and general crystallographic lattices [27]. Off-lattice variants of
the HP model have also been explored by treating a protein structure as a set of connected
spheres, with a contact interaction potential that is identical to the standard HP model (see
Figure 1.3(c)) [25]. The term off-lattice is used because the protein is not actually folded on
a lattice. Conformations on a given lattice can clearly be translated into conformations in
this off-lattice model, and near-optimal conformations on triangular and FCC lattices are
closely related to near-optimal off-lattice conformations.

1.3 Computational Intractability

Exhaustive search of a protein’s conformational space is clearly not a feasible algorithmic
strategy. The number of possible conformations is exponential in the length of the protein
sequence, and powerful computational hardware would not be capable of searching this
space for even moderately large proteins. This observation led Levinthal to raise a question
about the paradoxical discrepancy between the enormous number of possible conformations
and the fact that most proteins fold within seconds to minutes [36]. While these observations
appear contradictory, they can be reconciled by noting that they may simply point to the
lack of knowledge that could be used to design an efficient search algorithm (see Ngo et
al. [36] for further discussion of this issue). Computational analyses of PSP address this
lack of knowledge by providing insight into the inherent algorithmic difficulty of folding
proteins.

The native conformation of a protein is the conformation that determines its biological
function. Following the thermodynamic hypothesis [19], computational models of protein
folding are typically formulated to find the global minimum of a potential energy function.
In lattice models, an energy value is associated with every conformation taking into account
particular neighborhood relationships of the amino acids on the lattice. Consequently, given
a lattice model L and sequence s, the PSP problem is to find a conformation of s in L with
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minimal energy.
Computational intractability refers to our inability to construct efficient (i.e., polynomial-

time) algorithms that can solve a given problem. Here, “inability” refers to both the present
state-of-the-art of algorithmic research as well as possible mathematical statements that no
such algorithms exist. Customary statements about the intractability of a problem are
made by showing that the problem is NP-hard. It is widely believed that a polynomial-time
algorithm does not exist for any NP-hard problem, since the class of NP-hard optimization
problems includes a wide variety of notoriously difficult combinatorial optimization prob-
lems. The best known algorithm for any NP-hard problem requires an exponential number
of computational steps, which makes these problems “practically intractable.”

1.3.1 Initial Results

PSP has been shown to be NP-hard for various lattice models. Initial intractability analyses
of PSP considered models that captured PSP problems in rather limited and unrealistic
ways. We survey these analyses and then critique these PSP results in the following two
sections.

Fraenkel [20] present a NP-hardness results for a physical model in which each amino
acid is represented as a bead connected to a backbone. The protein must be embedded in
a cubic lattice subject to pairwise constraints on the beads, i.e. specified pairs of beads,
including pairs of beads on the backbone, are required to be at a fixed distance in the
embedding. These specified pairs comprise a contact graph. The alphabet consists of three
types that represent the charges associated with the amino acids: -1, 0, 1. The model uses
a distance-dependent energy formula that computes the product of the charges divided by
distance. The energy is the sum over all edges in the contact graph.

Ngo and Marks [35] present a NP-hardness result for a molecular structure prediction
problem that encompasses protein structures. This model considers a chain molecule of
atoms that is to be embedded in a diamond lattice. The energy formula is based upon
a typical form of the empirical potential-energy function for organic molecules, which is a
distance-dependent function.

Paterson and Przytycka [37] present a NP-hardness result for a physical model in which
each amino acid is represented as a bead along a chain that is to be embedded in a cubic
lattice. A contact energy formula is used, so a pair of amino acids contributes to the
conformational energy only if they are adjacent on the lattice. This energy formula has
contact energies of one for contacts between identical residues and zero otherwise. The
amino acid types in this model are not limited a priori, so instances of this model can
represent instances of many specific contact-based PSP problems. However, we note below
that this generality is actually a weakness of the model.

Finally, Unger and Moult [43] present a NP-hardness result for a physical model in which
each amino acid is represented as a bead along a chain that is to be embedded in a cubic
lattice with planar diagonals. The energy formula is a simple form of the empirical potential
energy-function for organic molecules, which is a distance-dependent calculation. This NP-
hardness result can be generalized to the Bravais lattices (which includes the cubic lattice),
as well as the diamond and fluorite lattices [24].

1.3.2 Robust Results

It is difficult to provide strong recommendations for particular PSP formulations because
accurate potential energy functions are not known. While various analytic formulations use
potentials that capture known features of “the” potential function, the most appropriate
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analytic formulation of the potential energy for PSP remains an area of active research [15,
44]. Consequently, robust algorithmic results are particularly important for lattice-based
PSP models.

Computational robustness refers to the independence of algorithmic results from partic-
ular settings. In the context of NP-completeness, robustness refers to the fact that a class
of closely related problems can be described, all of which are NP-complete. The members
of the class of problems are typically distinguished by some parameter(s) that form a set
of reasonable alternate formulations of the same basic problem. Intractability results for
PSP can be robust in two different ways [26]. First, an intractability result can be robust
to changes in the lattice. The analysis of the PSP problem formulation posed by Unger and
Moult [43], which uses a simplified empirical energy potential, can be generalized to show
that this PSP problem is NP-hard for any finitely representable lattice [26].

Second, an intractability result can be robust to changes in the energy. Consider a PSP
formulation with an objective of the form

n∑

i=2

i−1∑

j=1

Csi,sj g (|fi − fj |) , (1.1)

where g : Q → R is an energy potential that monotonically increases to zero (in an inversely
quadratic fashion) as the distance between amino acids increases. This model can be viewed
as a special case of the model examined by Unger and Moult [43], and the class of func-
tions g includes widely used pairwise potential functions like the Lennard-Jones potential.
Additionally, the use of the distance |fi − fj | makes this energy formulation translationally
invariant, which is consistent with practical emperical energy models. For any function g
and for an appropriate discretization of the L2 norm, this PSP problem is NP-hard [26].
Additionally, this result can be generalized to show that this PSP problem is also NP-hard
if the protein is modeled with explicit side-chains instead of as a simple linear chain.

1.3.3 Finite-Alphabet Results

A significant weakness of almost all of the models used in these intractability results is
that the alphabet of amino acid types used to construct protein sequences is unbounded
in size.∗ Let an amino acid type be defined by the pattern of interactions it exhibits with
all other amino acids. These PSP problems allow for problem instances for which the
number of amino acid types are not bounded. For example, a PSP formulation that uses
Equation (1.1) allows for O(n2) amino acid types because the interaction between amino
acids i and j is defined in part by the matrix coefficient Csi,sj , which can assume any value.

Consequently, the previous models do not accurately model physically relevant PSP prob-
lems, for which there are 20 naturally occurring amino acid types. To address this concern,
several authors have developed complexity analyses for models with a finite set of amino
acids. For example, a PSP problem for which protein sequences are defined from a set of 12
amino acid types and the conformational energy is computed using a contact potential was
proved to be NP-hard [2]. Nayak, Sinclair and Zwick [32] consider a string folding problem
with a very large alphabet of amino acids, using a technique that “converts” a hardness

∗Fraenkel’s model [20] uses a finite number of amino acid types, but it allows the protein chain to be
embedded in a lattice without forcing subsequent amino acids to lie in close proximity on the lattice,
thereby leading to biologically implausible conformations for certain amino acid sequences.
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proof for a model with an unbounded number of amino acids to a hardness proof in a model
with a bounded number of amino acids. Crescenzi et al. [16] and Berger and Leighton [9]
prove that PSP in the simple HP-model is NP-hard for the 2D square and 3D cubic lattices,
respectively.

1.4 Performance-Guaranteed Approximation Algorithms

Performance guaranteed approximation algorithms complement intractability analyses by
demonstrating that near-optimal solutions can be efficiently computed. An approximation
algorithm has a multiplicative asymptotic approximation ratio of α if the solutions gener-
ated by the algorithm are within a factor of α of the optimum. Performance guaranteed
approximation methods have been developed for a variety of HP lattice models, as well as
some natural generalizations of the HP model.

1.4.1 HP Model

Performance guaranteed approximation algorithms have been developed for the HP model
on the 2D square lattice, 3D cubic lattice, triangular lattice and the face-centered-cubic
(FCC) lattice [1, 23, 31, 33, 34]. These approximation algorithms take an HP sequence
s ∈ {0, 1}+, and form a conformation on the lattice. Recall that the energy of a conformation
is the number of hydrophobic-hydrophobic contacts: hydrophobics (1’s) that are adjacent
on the lattice but not adjacent on the string.

Square Lattice

The PSP problem in the HP model takes as input an HP sequence S, which can be viewed
as a binary string (H=1, P=0). The objective is to find a folding of the string s that forms
a self-avoiding walk on a specified lattice and maximizes the number of contacts. Figure 1.4
illustrates an optimal conformation for a binary string on the 2D square lattice (i.e. with
the maximum number of contacts). Let E [s] denote the number of 1’s in even positions
in the sequence s (even-1’s) and let O[s] denote the number of 1’s in odd positions in s
(odd-1’s). Additionally, let

X[s] = min{E [s],O[s]}. (1.2)

Due to the fact that the square lattice is bipartite, each even-1 in s can have contacts only
with odd-1’s in s and vice-versa. In any conformation of s on the 2D square lattice, each
1 in the string s that is not in the first or last position on the string can have at most two
contacts. Thus, an upper bound on the maximum number of contacts in any conformation
of s on the 2D square lattice is:

2 ·X[s] + 2. (1.3)

The first approximation algorithm developed for the PSP problem on the square lattice
has an approximation ratio of 1/4 [23]. For a given sequence s, this algorithm first finds
a point p in s such that at least half the odd-1’s are in one substring on one side of p
(the odd substring) and at least half the even-1’s are on the other side of p (the even
substring). Then, the odd substring is embedded in the square lattice such that all odd-1’s
in the odd substring have the same y-coordinate and the even substring is embedded in a
complementary fashion (see Figure 1.5). This conformation yields at least X[s]/2 contacts,
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FIGURE 1.4: An optimal conformation for the string 0010100001011010 on the 2D square lattice.
This conformation has four contacts.

odd side p even side

p

even sideodd side

FIGURE 1.5: Illustration of a conformation generated by a simple 1/4-approximation algorithm
for the HP model on the square lattice.

which is 1/4 of optimal. Mauri, Piccolboni and Pavesi [31] describe an algorithm that also
has an approximation ratio of 1/4, which they argue works better in practice.

The approximation ratio for this problem can be improved to 1/3 [33]. For simplicity,
we consider even-length sequences s for which O[s] = E [s]. This approximation algorithm
creates conformations as folded loops, where the end-points are adjacent on the lattice. For
example, the conformation in Figure 1.5 can be viewed as a folded loop. The first step in
the algorithm is to find a point p such that as we move clockwise in the loop starting at
point p, we encounter at least as many odd-1’s as even-1’s and as we go counter-clockwise,
we encounter at least as many even-1’s as odd-1’s.

Let BO be the distance between the first pair of consecutive odd-1’s encountered as we
go in the clockwise direction starting at point p and let BE be the distance between the first
pair of consecutive even-1’s encountered as we go in the counter-clockwise direction. We
sketch the algorithm in Figure 1.6. In cases (a) and (b) of Step 2, we form three contacts
and use at most four even- and odd-1’s and “waste” at most four even- and odd-1’s, i.e.
we waste even-1’s that occur on the odd side and vice-versa. In cases (c) and (d), we form
two contacts and use at most three even- and odd-1’s and waste at most three even- and
odd-1’s. Since there are at most 2O[s] + 2 = O[s] + E [s] + 2 contacts, this gives a 1/3
approximation ratio.



1-10

Step 1:

p

Step 2:

BO = 1, BE = 1 BO ≥ 3, BE ≥ 3 BO ≥ 3, BE = 1 BO = 1, BE ≥ 3

(a)

(b)

(c) (d)

Step 3: Repeat Step 2 until even and odd sides meet.

FIGURE 1.6: The steps used in the 1/3-approximation algorithm for the folding problem in the
HP model on the square lattice.

Cubic Lattice

In any folding of a sequence s on the 3D cubic lattice, each 1 in the string s that is not
in the first or last position can have at most four contacts. Thus, an upper bound on the
maximum number of contacts in any conformation of s on the 3D cubic lattice is:

4 ·X[s] + 2. (1.4)

The 1/4-approximation algorithm described above can be generalized to an approximation
algorithm for the problem on the 3D cubic lattice [23]. Suppose the odd side of s has at
least k odd-1’s and the even side has at least k even-1’s, i.e. k ≥ X[s]/2. Then we can
divide the odd side into segments with

√
k odd-1’s and divide the even side into segments

with
√

k even-1’s. This approximation algorithm repeats the 2D folding algorithm
√

k times
in adjacent planes, i.e. the first pair of segments is folded in the plane z = 0, then next in
the plane z = 1, etc. In the resulting conformation, each of X[s]/2 − c

√
X[s] odd-1’s has

at least 3 contacts for some constant c. Thus, this algorithm has an approximation ratio of
3/8− Ω(1/

√
X[s]).

Another approximation algorithm, based on different geometric ideas, improves on this
absolute approximation guarantee [34]. In this algorithm, the string s is divided into two
substrings so that one substring contains at least half the odd-1’s and the other substring at
least half the even-1’s. Each substring is folded along two different diagonals, as shown in
Figure 1.7. All but a constant number of odd-1’s from the odd substring get three contacts.
These geometric ideas can be used to obtain a slightly improved approximation ratio of
.37501, which shows that 3/8 is not the best approximation guarantee that can be obtained
for this problem, despite the fact that it was the best guarantee known for the past decade.
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z=0

z=1

x

y z

FIGURE 1.7: An illustration of a conformation generated by folding substrings along diagonals
of the cubic lattice.

Triangular and FCC Lattices

One undesirable feature of the square lattice is that a contact must be formed between
hydrophobics with different parities. There is no such parity restriction in real protein
folds. This issue is discussed by Agarwala et al. [1], who suggest that the triangular lattice
is more suitable to model protein folding. They give simple 1/2-approximation algorithms
and a 6/11-approximation algorithm that uses an improved upper bound. Agarwala et al.
generalize these results to a 3D triangular lattice that is equivalent to the FCC lattice, for
which they describe an algorithm with an approximation ratio of 3/5.

1.4.2 HP Model with Side-Chains

Performance guaranteed approximation algorithms have also been developed for an HP
model that explicitly represents side chains [26, 28]. This lattice model represents the
conformation of a protein using a subclass of branched polymers called “branched combs.”
A homopolymer version of this model was introduced by Bromberg and Dill [11], who
argued that linear lattice models fail to capture properties of protein folding, like side chain
packing, that affect the stability of the native protein structure. The HP side chain model
treats the backbone of the protein as a linear chain of beads. Connected to each bead on
the backbone is a bead that represents an amino acid, and each of these side chain beads
is labelled hydrophobic or hydrophilic.

Figure 1.3(b) illustrates a conformation of the HP side chain model on the square lattice.
Note that there are no interactions between backbone elements and side-chain elements, so
the energy of such a conformation is simply the number of contacts between hydrophobic
side chains on the lattice. Further, note that adjacent side chains can contribute energy in
this model, which is a fundamental difference induced by the branched combs structure.
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Figure 1.8 illustrates the repeated conformational structure produced by an approxima-
tion algorithm for the problem on the square lattice [25]. The folding point for this algorithm
is selected in the same manner as for the linear chain model, and thus this structure can
be constructed in linear time. This algorithm guarantees that for a string s, bX[s]/4c
hydrophobic-hydrophobic contacts are formed between the two halves of the conformation.
Since each hydrophobic side chain can have at most three contacts, this algorithm has a
1/12 approximation ratio.

FIGURE 1.8: An illustration of the conformations generated by an approximation algorithm for
the HP side chain model on the square lattice.

A similar algorithm for the 3D cubic lattice can also be developed [25]. This approxima-
tion algorithm also divides the protein at a folding point, but it then attempts to create a
3D fold with four columns of hydrophobics in the core. Figure 1.9 illustrates the structure
of one of these columns, as well as how the protein sequence forms a hydrophobic core. The
hydrophobic core is formed by threading each half of the protein sequence through the four
columns in an anti-parallel fashion (e.g. up - down - up - down). In this conformation, it
contains at least 4 dX[s]/2e − 20 contacts for a sufficiently large sequence s. Since each hy-
drophobic side chain can have at most five contacts, this algorithm as a 4/10 approximation
ratio.

These approximation results have been generalized to lattices that do not have the parity
restriction imposed by the cubic lattice: the FCC lattice and the cubic lattice with facial
diagonals (which Heun calls the extended cubic lattice (ECL)) [25, 28]. Both of these
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(a) (b)

FIGURE 1.9: Illustration of the conformations generated by an approximation algorithm for the
HP side chain model on the cubic lattic: (a) the 3D structure of a single column,
and (b) a perspective of the core generated by interlacing the columns.

lattices allow any hydrophobic amino acids to be in contact with any other hydrophobic
amino acid. Thus if there are N(s) hydrophobic amino acids in a sequence s then we can
obtain upper bounds of 9N(s)/2 contacts for the FCC lattice and 7N(s) contacts for the
ECL.

These approximation algorithms are very similar in that they both place all hydrophobic
side chains in a set of columns, with an algorithm that forms the conformation in a linear
fashion (layer by layer or column by column). The hydrophobic columns form a distinct
hydrophobic core, with an irregular outer layer of hydrophilic side chains. For example,
Figure 1.10 illustrates a conformation generated by an approximation algorithm for the
FCC lattice [25], which generates eight columns of hydrophobics. These tight hydrophobic
cores guarantee that these approximation algorithms have an approximation ratio of 31/36
on the FCC lattice and 59/70 on the ECL.

Heun [28] also considers approximation algorithms that are tailored to the characteristics
of sequences commonly found in the SWISS-PROT protein database. Specifically, Heun
considers HP sequences that can be decomposed into blocks of 6 hydrophobics of the form
σ = P l1H . . . P l6H where

• either there exists i ∈ {2, 3, . . . , 6} such that li = 0, or
• there exists i, j ∈ {1, 2, . . . , 6}, i 6= j, such that li + lj ≤ 3.

Heun notes that over 96% of the sequences in SWISS-PROT can be decomposed into blocks
of 6 hydrophobics with this character, and he describes an approximation algorithm for the
ECL with an approximation ratio of 37/42.

1.4.3 Off-Lattice HP Model

The HP tangent spheres models are simple PSP models that do not use a lattice but are
analogous to the standard HP model [25]. Because the conformations in these models are
not defined within a lattice, these models are termed off-lattice models. In these models, the
graph that represents the protein is transformed to a set of tangent spheres of equal radius
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FIGURE 1.10: Illustration of the conformation generated by an approximation algorithm for the
HP side chain model on the FCC lattice. The structures generated by Heun’s
approximation algorithm on the extended cubic lattice have a similar structure,
with 10 hydrophobic columns in the core.

(or circles in two dimensions). Every vertex in the graph is replaced by a sphere, and edges
in the graph are translated to constraints that force spheres to be tangent in a conformation
(see Figure 1.3(c)). The linear chain model represents the protein as a sequence of spheres on
a string, consecutive spheres being tangent, which are labelled hydrophobic or hydrophilic.
The side chain model represents the backbone as in the linear chain model, but now every
sphere in the backbone is tangent to a side chain sphere that models the physical presence of
that amino acids side chain. The side chain spheres are labelled hydrophobic or hydrophilic.
A hydrophobic-hydrophobic contact in such a model is obtained when two hydrophobic-
spheres are tangent.

The tangent spheres side chain model generalizes the HP model in the sense that for any
lattice a conformation on that lattice represents a possible off-lattice conformation. Thus
HP tangent spheres models can be analyzed rigorously by transferring algorithmic analyses
from various lattice HP-models to the off-lattice setting. In 2D, the maximum number of
spheres that can be tangent to a single sphere is 6. Thus a hydrophobic sphere in a linear
chain can be tangent to at most 4 other hydrophobic spheres. The arrow-folding algorithm
described by Agarwala et al. [1] can be used to construct a conformation (with the linear
sphere chain) that has at least N(s)− 3 hydrophobic-hydrophobic contacts. Consequently,
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this algorithm has a 1/4 approximation ratio for the HP tangent spheres model.
To analyze the performance of the HP tangent spheres model in three dimensions, recall

that for a set of identical spheres in 3D the maximum number of spheres that can be tangent
to a single fixed sphere is 12. This is the so-called the 3D kissing number. From this we
can conclude that a hydrophobic sphere in a linear chain can be tangent to only 10 other
hydrophobic spheres, and a hydrophobic side chain sphere in a side chain model can be
tangent to only 11 other hydrophobic side chain spheres. Thus each hydrophobic sphere
in a linear chain can contribute at most 5 contacts and each hydrophobic side chain can
contribute at most 11/2 contacts.

The star-folding algorithm described by Agarwala et al. [1] can be used to construct a FCC
conformation (with the linear sphere chain) that has 8N(s)/3 hydrophobic-hydrophobic
contacts (ignoring boundary conditions). Consequently, this algorithm has a 8/15 approx-
imation ratio for the HP tangent spheres model. Similarly, the approximation for the
FCC side chain model [25] can be used to construct a conformation that has at least 31
N(s)/8 − 42 contacts (for sufficiently long sequences). Consequently, this algorithm has a
31/44 approximation ratio for the HP tangent spheres model with side chains.

1.4.4 Robust Approximability for HP Models on General Lattices

The results that we have surveyed in this section demonstrate that near-optimal protein
structures can be quickly constructed for a variety of HP lattice models as well as simple
off-lattice protein models. This naturally begs the question of whether approximability is a
general property of HP lattice models. Results that transcend particular lattice frameworks
are of significant interest because they can say something about the general biological prob-
lem with a higher degree of confidence. In fact, it is reasonable to expect that there will
exist algorithmic invariants across lattices that fundamentally relate to the protein folding
problem, because lattice models provide alternative discretizations of the same physical
phenomenon.

Two “master” approximation algorithms have been developed for bipartite and non-
bipartite lattices that demonstrate how approximation algorithms can be applied to a wide
range of lattices [27]. These master approximation algorithms provide a generic template for
an approximation algorithm using only a sublattice called a latticoid, a structured sublattice
that in which a skeleton of hydrophobic contacts can be constructed. Further, the analysis
of these algorithms includes a complexity theory for approximability in lattices that can
be used to transform PSP algorithms in one lattice into PSP algorithms in another lattice
such that we can provide a performance guarantee on the new lattice.

Figure 1.11 represents two possible latticoids of the square lattice. The bipartite master
approximation algorithm selects a folding point in the same fashion used for the 2D HP
model [23], and a hydrophobic core is similarly made by pairing odd and even hydrophobics
along two faces of the conformation. The central row in these latticoids indicates the points
at which hydrophobic contacts can be made by the master approximation algorithm.

The latticoids in Figure 1.11 can be embedded into a wide range of crystal lattices to
provide a performance guaranteed approximation algorithm for the HP model. To illustrate
this, consider the diamond lattice, whose unit cell is shown in Figure 1.2(b). Figure 1.12
illustrates how the latticoid in Figure 1.11(a) can be embedded into this lattice to ensure
that at least bX[s]/4c hydrophobic-hydrophobic contacts are formed.

The bipartite and non-bipartite master approximation algorithms have performance guar-
antees for a class of lattices that includes most of the lattices commonly used in simple ex-
act PSP models [27]: square and cubic lattices [18, 22, 39], diamond (carbon) lattices [40],
face-centered-cubic lattice [14], and the 210 lattice used by Skolnick and Kolinkski [41].
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(a)

(b)

FIGURE 1.11: Illustrations of two latticoids of the square lattice. Dark lines indicate edges that
are used in some protein conformation and dashed lines indicate remaining edges in
the square lattice. The contact edges are the bolded edges in the central horizontal
row.



Protein Structure Prediction with Lattice Models 1-17

FIGURE 1.12: Illustration of a latticoid embedding into the diamond crystal lattice.

Additionally, their analysis provides performance guarantees for a wide range of crystal-
lographic lattices: Bravais lattices like the triclinic and triagonal lattices [38], the flourite
lattice, 3D close packed lattices, the body centered cubic lattic and the hexagonal lattice.
These results demonstrate that approximability is a general feature of HP models on crystal
lattices.

1.4.5 Accessible Surface Area Lattice Model

Solvent accessible area (ASA) describes the surface area over which contact between protein
and solvent can occur. The concept of the solvent accessible surface of a protein molecule
was originally introduced by Lee and Richards [30] as a way of quantifying hydrophobic
burial. Subsequently, ASA and similar measures have been integrated into a variety of
empirical potentials for PSP. This potential is qualitatively different from the HP model in
that it favors hydrophobic burial rather than hydrophobic-hydrophobic interactions.

We describe new performance guaranteed approximation algorithms for the ASA lattice
model with a linear chain model on the triangular lattice. As with the HP model, this
model considers protein sequences s ∈ {H,P}+. On a lattice, the ASA for a protein
conformation can be modelled by the number of unoccupied lattice points that are adjacent
to hydrophobic amino acids. Since there exist sequences for which the ASA is zero (i.e. all
hydrophobics can be buried), it is not possible to develop an approximation algorithm that
guarantees a multiplicative approximation ratio. Consequently, we treat this as a covering
problem for the hydrophobics in a HP sequence.

Let ASA(s) refer to the number of covered hydrophobics in a conformation, which is
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the value we will attempt to maximize. If a sequence s has N(s) hydrophobics, then
ASA(s) ≤ 4N(s)+2 on the triangular lattice because each amino acid has four neighboring
lattice points that are not covered by the chain itself (except for the endpoints). Let NHP (s)
denote the number of H-P contacts in a conformation, and let NHH(s) denote the number
of H-H contacts. Note that ASA(s) = NHP (s) + 2NHH(s), since a single hydrophobic-
hydrophobic contact represents the fact that two hydrophobics are being covered. Now
consider the conformation of a chain folded back on itself (a simple U-fold). All but 3
hydrophobics in this conformation are guaranteed to have two contacts. Consequently,
NHP (s) + 2NHH(s) ≥ 2N(s) − 6, so an algorithm that generates this conformation has a
1/2 approximation ratio. A similar analysis applies for a U-fold on the 2D square lattice,
so an algorithm that generates that conformation has a 1/2 approximation ratio.

FIGURE 1.13: Illustration of conformations generated by the second approximation algorithm in
the ASA model on a triangular lattice.

Now consider the conformation in Figure 1.13, which treats the protein as a circular con-
formation that is molded into a square shape. If the protein sequence has n amino acids, then
approximately n−4

√
n amino acids lie strictly within this conformation and are completely

buried. Now consider the linear-time algorithm that shifts the protein sequence through the
circular conformation to find the shift that minimizes the number of hydrophobics on the ex-
terior of this conformation. The conformation of this shifted minimal sequence has at most
4N(s)/

√
n exposed hydrophobics. Thus we have NHP (s)+2NHH(s) ≥ 4N(s)−16N(s)/

√
n,

from which it follows that we have an approximation ratio of 1. This implies that asymptot-
ically all but an o(1) fraction of the hydrophobic amino acids are buried in this algorithm.
Note that the conformation in Figure 1.13 can be embedded in the 2D square lattice. A
similar analysis shows that an algorithm that generates this conformation has an approxi-
mation ratio of 1. Furthermore, this result naturally generalizes to the 3D cubic and FCC
lattices, since you can create similarly compact structures for which the surface area is
dominated by the volume.

1.5 Exact Methods

Solving PSP problems exactly is an important practical goal because the lowest-energy
structure determines the biological functionality of a protein. Although PSP has been
proven NP-hard for many different lattice models, this does not preclude the development
of practical tools for many protein sequences. Since exhaustive enumeration is clearly not
practical even for relatively small protein sequences, several search techniques have been
developed to solve PSP for simple lattices models. In each of these methods, the lattice
structure is exploited to mathematically limit the search process.
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1.5.1 Enumeration of Hydrophobic Cores

Yue and Dill [45] developed the first exact method for exactly finding globally optimal
protein structures on HP lattice models. The surface area of the hydrophobic core is eas-
ier to estimate (given partial information about the final conformation) than the number
of hydrophobic-hydrophobic contacts, and that the core surface area and the number of
contacts are related one-to-one. Yue and Dill developed the constrained hydrophobic core
construction (CHCC) algorithm, which enumerates all possible shapes of the region con-
taining all hydrophobic amino acids for a sequence. This enumeration of the possible hy-
drophobic cores is done so that core shapes with a smaller surface area are enumerated
before core shapes with a larger surface area. For every core shape, CHCC enumerates all
positions of the monomers that fit into the given core shape. CHCC uses some conditions
(or constraints) to reduce the size of the search tree.

The CHCC has been effectively applied to exactly solve PSP problems for HP sequences
with up to 80 amino acids. Perhaps the greatest limitation of this method is that it is specif-
ically tailored for the HP-model on the cubic lattice. Consequently, this basic algorithmic
approach has not been effectively generalized to other simple lattice models for PSP.

1.5.2 Constraint Programming

Backofen et al. [3, 4, 5, 6, 7, 8] provide a declarative formulation of the HP lattice model,
which is solved using constraint programming. Constraint programming is a relatively new
programming technique that integrates a declarative definition of a problem (e.g. PROLOG)
with an inherently concurrent programming paradigm, since all constraints are handled in
parallel. The search strategy is not fixed in constraint programming, and systems like
Oz [42] offer a flexible environment for defining a search strategy. Constraint programming
offers a flexible framework for solving PSP on simple lattice models, and Backofen et al.
have described declarative formulations for the HP models on the cubic and FCC lattices,
as well as an extended HP model on the cubic lattice.

We illustrate the type of declarative formulation used for constraint programming to
define feasible conformations in the cubic lattice. Consider variables Xi, Yi and Zi that
indicate the position of the i-th amino acid in the lattice. Without loss of generality we can
restrict the amino acids with the following constraint:

∀i, Xi ∈ [1 . . . (2 · length(s))]
∧

Yi ∈ [1 . . . (2 · length(s))]
∧

Zi ∈ [1 . . . (2 · length(s))],

where length(s) is the length of the HP sequence. We clearly need to satisfy the constraint
∀i 6= j, (Xi, Yi, Zi) 6= (Xj , Yj , Zj) in a feasible conformation. Additionally, amino acids must
be consecutively placed on the lattice. We can enforce this constraint using variables Xdiffi,
Ydiffi and Zdiffi, which represent the difference of the x, y and z coordinates between amino
acid i and i + 1. The constraints

∀i, Xdiffi = |Xi −Xi+1|
∀i, Ydiffi = |Yi −Yi+1|
∀i, Zdiffi = |Zi − Zi+1|

define the values of these variables, and the constraint ∀i, 1 = Xdiffi+Ydiffi+Zdiffi ensures
that the distance between consecutive amino acids is one.

Backofen et al. apply a search algorithm that is a combination of a branch-and-bound
search together with a constrain-and-generate principle, which is common for constraint
programming. The branching process selects a variable var to branch on and then creates
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two branches for some value var: (1) var =: val, and (2) var 6=: val. Subsequently, these
branches are evaluated using a constraint programming system to evaluate the effected
variables according to the constraints, which results in an association of smaller value ranges
to some (or many) variables. Further, the search tree may be pruned when an inconsistent
conformation is generated. The bounding calculation used in this search requires a problem-
specific calculation, based on the feasible domain for a subproblem.

Backofen et al [3, 4, 5, 6, 7, 8] have evaluated constraint programming implementations
for HP lattice models using the Oz language [42]. These methods have effectively solved
problems of up to 200 amino acids (using pre-calculated hydrophobic cores) within a few
seconds. Additionally, these tools have been used to enumerate optimal conformations for
the HP cubic model, for which it appears to be more effective than the CHCC algorithm.

1.5.3 Integer Programming

A standard approach for finding exact solutions for hard optimization problems is to model
them as integer programs and try to solve these programs to optimality using techniques
from the field of integer programming such as branch and bound. Additionally, linear pro-
gramming relaxations of integer programs often provide efficiently computable non-trivial
upper bounds.

Several integer programming formulations have been developed for the PSP problem in
the HP model [12, 21, 13]. We illustrate the type of linear constraints used for integer
programming to define feasible conformations in the square lattice. Without loss of gener-
ality, we can restrict the conformations to lattice points L = {1, 2, . . . , n2}, such that the
coordinates are of the form:

yp =
⌊

p− 1
n

⌋
and xp = p− 1 − nyp for p ∈ L.

Let N (p) denote the lattice points adjacent to a point p (whose distance is one away), and
let vip be a binary decision variable that is one if the i-th amino acid is placed at point p on
the lattice, and zero otherwise. Now every residue must be placed on a lattice point, which
is enforced by the following constraint:

∑

p∈L
vip = 1 , i = 1, . . . , n.

Similarly, each point cannot have more than one amino acid placed at it, which is enforced
by the constraint:

n∑

i=1

vip ≤ 1 , ∀p ∈ L.

Finally, we can enforce the connectivity between consecutive amino acids with the following
two constraints:

∑

q∈N (p)

vi+1,q ≥ vip , i = 1, . . . , n− 1, p ∈ L
∑

q∈N (p)

vi−1,q ≥ vip , i = 2, . . . , n, p ∈ L.

These constraints define a convex region that represents valid solutions if we relax the
constraint that the vip are binary. This observation provides a mechanism for computing
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lower bounds on the minimum energy of a conformation with integer program formulations,
for which the lower bound can be computed with linear programming methods.

Linear programming relaxations can provably provide bounds that are at least as strong
as the simple combinatorial bound 1.3 and some IP formulations may strengthen this bound
even further [12]. Although integer programming formulations have been used to compute
such bounds, these formulations can have many variables, which may limit their application
to large-scale problems. Additionally, it is not clear whether these integer programming
formulations can be used to solve large-scale instances of the PSP problems exactly.

1.6 Conclusions

There are many ways that these analyses and methods for PSP problems can be im-
proved. For example, no intractability analysis has been developed for the HP model on
the triangular or FCC lattices. There is wide agreement that these lattices are more practi-
cally relevant for PSP because they do not impose the artificial parity found in the square
and cubic lattices, so such an intractability analysis would be quite interesting. Similarly,
exact methods have not been developed for models like the HP side chain model, which
capture greater physical detail. We expect that studies of (near-) optimal conformations in
this model would provide significant insight into PSP (e.g. by studying the degeneracy of
the optimal solution in these problems).

Improving bounds on lattice models could fundamentally improve our assessment for
approximation algorithms. For example, there are strings for which the best conformation
on the 2D square lattice achieves only half of the upper bound in Equation 1.3 [33], so this
bound is demonstrably weak. However, integer programming formulations may provide
a general technique for improving these bounds for specific sequences. The bounds for
the HP tangent spheres model might also be improved by generalizing the bound analysis
of triangular and FCC lattices. In the triangular and FCC lattices, the bounds on the
maximal number of contacts can be tightened by noting that “conflicts” occur between some
hydrophobics and non-hydrophobics, thereby limiting the total number of hydrophobic-
hydrophobic contacts. However, in 3D it is possible to have 12 spheres touching a given
sphere without any pair of them being tangent, so the notion of a “conflict” needs to be
generalized in this case to tighten simple upper bounds.

Researchers analyzing PSP in lattice models have increasingly considered detailed models
and methods that can be applied to a variety of lattice models. This trend is motivated
by the desire to provide robust mathematical insight into protein models that is generally
independent of a particular lattice formulation. Analyses that achieve this goal provide
greater insight into general PSP complexity, which is not bound by lattice constraints and
for which precise empirical energy potentials are not known.

One interesting direction for the analysis of PSP is to consider methods that are tailored
to biologically plausible amino acid sequences. Thus we need to develop complexity analyses
like Heun’s approximation algorithm that is tailored to protein-like sequences. For example,
the possible intractability of PSP remains an open question if PSP is restricted in this
manner.

Similarly, we expect that methods that can solve more detailed protein models will provide
more insight into real protein structures. For example, side chain lattice models are clearly
more representative of the structure of actual proteins than linear chain models. However,
the analysis of side chain models with variable-size side chains could more accurately capture
the complexity of solving side chain packing problems. Additionally, this type of PSP
formulation could capture the fact that the hydrophobicity of a side chain is related to its
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surface area. PSP with variable hydrophobicities has been briefly considered by Agarwala
et al. [1], who consider protein structures as linear chains.

Finally, the connection between lattice models and off-lattice models needs to be devel-
oped further to more directly impact real-world PSP problems. Performance guaranteed
algorithms for the FCC lattice can provide performance guarantees for closely related off-
lattice protein models. This is a first step towards a more comprehensive analysis that
uses lattice models to provide mathematical insight into off-lattice models. For example,
we conjecture that lattice-based search methods like constraint programming can be ef-
fectively hybridized with optimizers for standard empirical energy potentials to perform a
more effective global search of protein structures.
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