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I. INTRODUCTION

Under the appropriate solvent and temperature conditions, globular pro-
teins adopt a well-defined three-dimensional structure [1-3] that is capaple
of performing a specific biochemical or structural task not only in a living
cell [4] but also in vitro. This unique three-dimensional structure is
encoded in the protein amino acid sequence. The question of how to relate
the sequence to the native structure is commonly referred to as the protein
folding problem [5,6]. It is widely believed that proteins obey the “ther-
modynamic hypothesis” that says that the native conformation of a protein
state corresponds to a global free-energy minimum, which is dictated by the
various interactions present in a system comprised of proteins and solvent
[7,8]. Unfortunately, due to the complexity of the interactions within pro-
teins and between proteins and the surrounding solvent, the task of finding
this free-energy minimum in the myriad of multiple minima in the free-
energy landscape [9,10] is extremely difficult.

While molecular dynamics (MD) simulations have proven to be very
powerful for studying numerous aspects of protein dynamics and structure
[11-13], this technique cannot yet access the millisccond-to-second time-
scales required for folding even a small protein. To address this timescale
gap, one has to simplify the protein model by reducing the number of
degrees of freedom. Such approaches assume that the basic physics could be
reproduced in model systems that employ “uniled atoms” and cflective
solvent models. On the basis of recent work, it has become apparent that
the crux of the solution to the protein folding problem docs not lic in
whether a reduced protein model is used, but rather in the development of
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potentials that can recognize a native-like statc from a misfolded state, and
techniques that can explore the relevant regions of conformational space
[14-20]. In this review chapter, we describe approaches that address these
difficultics, and focus in particular on Monte Carlo based approaches to
conlonmational sampling.

1. PROTEIN REPRESENTATION, FORCE FIELD, AND
SAMPLING PROTOCOLS

Various levels of simplification of the protcin's structure and encrgy surface
have been assumed. As a result, different aspects of the protein folding
problem can be addressed by computer simulations. Somewhat arbitrarily,
we divide protein models into three classes: simple, exact models; protein-
like modcls; and realistic protein models. Roughly speaking, the level of
structural detail taken into account increases in parallel with the classi-
fication scheme. At the same time, the resulting simulations become more
and more expensive, and analysis of the particular model is less com-
prehensive. In what follows, we start from the description of simple, exact
models that can be studied in great detail. Then, we outline studies of some-
what more complex models of protein-like systems. Finally, realistic protein
models arc described. Since this issue is devoted to the application of
Monle Carlo methods in chemical physics, we focus our attention on
studics that cmployed Monte Catlo techniques as the conformational sam-
pling protocol. However, for completeness, models studied by means of dif-
ferent sampling methods, but which are amenable to investigation by a
Monlte Carlo-based methodology, will be also mentioned.

A. Sampling Protocols
1. General Considerations

Exploration of the conformational space of protein models could be done
using diffcrent computational techniques. These include MD [21], Brown-
jan dynamics [22,23], Monte Carlo methods [24-27], and other simulation
or oplimization techniques such as genctic algorithms [25,28-31).

2. Monte Carlo Sampling Methods

To address the conformational sampling problem, reduced protein models
use techniqucs that allow for a faster and more cfficient exploration of
protein conformational space than can be provided by MD. Here, various
Monte Carlo techniques are commonly used [32,33]. In a well-designed
Monte Carlo sampling mcthod, rclatively large conformational changes
occur in a single itcration of the simulation algorithm; therefore, the numer-
ous local minima of the energy surfacc are more casily surmounted.
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The well-known Metropolis Monte Carlo (MMC) prooedl!re .ram.iomly
samples conformational space according to the Boltzmann distribution of
(distinguishable) conformations [34]:

P= exp(-—k—?) (2.1a)

In order to generate this distribution in asymmetric MMC, the lrapsitipp
probability P, ; from an “old” conformation i to a “new” conformation j is
controlled by the energy difference AE;; = E; — E, via

—AE
pi;= min{l, exp(——k—,r-—“)} (2.1b)

Obviously, this technique is very sensitive to the presence of energy bar-
riers. To ensure adequate sampling, typically a collection of elemental
moves involving end moves and collective motions of two to four bonds are
performed randomly. In addition, small distance motions of a large, ran-
domly selected part of the chain are employed. T'he key to a successful
dynamic Monte Carlo protocol is to include a sufficiently large move set so
that no element of structure is artificially frozen in space.

To enhance the sampling efliciency, Hao and Scheraga have employed
the entropy-sampling Monte Carlo method (ESMC) in their study of sim-
plified protein models [35-37]. ESMC was originally proposed by Lee [38.]
in the context of a simple Ising model, which is closely related to the mu.lu-
canonical MC technique of Berg and Neuhaus {39]. Since the lf)rmulatgon
of Hao and Scheraga [35-37] is the most straightforward, we briefly review
their approach; additional details are found in }hc chapl.er “Entropy Sam-
pling Monte Carlo for Polypeptides and Pro(el.ns.“ Unlike MMC, ESMC
generates an artificial distribution of states that is contn:olled by the con[or-
mational entropy as a function of the energy of a particular conformation

E;:
PEMC = exp(::gk(—EQ) (2.2a)
The transilion probability can be formally writlen as
—AS
prEse = min{l, exp(——,—‘il)} (2.2b)

where AS, ; is the entropy difference between cnergy levels i e}nd J respec-
tively. At the beginning of the simulation, the entropy is unknown;
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however, from a density-of-states energy histogram, H(E), an estimate, J(E),
for the entropy S(E) can be iteratively generated. After a sufficient number
of runs, all states are sampled with the same frequency. Then, the histogram
of H(E) becomes MNal, and the curve of J(E) + constant approaches the true
SIE)/E curve. ESMC offers the advantage that one can discern whether the
simulation has converged over the sampled energy range, and, if so, one has
dircctly determined the frec-energy of the system (within a constant).
However, a potentially serious problem with ESMC is its computational
cosl. Kolinski et al. [40] have described a means of increasing the rate of
convergence of the simulation. The basic idea is to first run a standard
dynamic Monle Carlo folding simulation to provide a library of “seed”
structures, and then, periodically, randomly select one of these conforma-
lions and introduce it into the conformational pool used to construct the
SIE)/E curve. In praclice, this technique works quite well.

3. Use of Dynamic Monte Carlo to Simulate Protein D ynamics

As demonstrated by Orwoll and Stockmayer [41], a proper sequence of
small, random conformational changes of lattice polymers conslitutes a
solulion of a stochastic equation of motion. Of course, the same move sets
could be generalized lo off-lattice models. However, in all cascs, the
problem of ergodicity has to be taken into consideration. This problem
could be especially dangerous for low-coordination-number lattices. With a
high-coordination-number lattice and correspondingly large number of
allowed local conformational transitions, the risk of a serious ergodicity
problem becomes negligible [42]. A properly designed scheme for local con-
formational transitions allows simulations of the long-time dynamics of
modec! polymeric systems [43-45], with results consistent with MD [46].
The design of an efficient model of Monte Carlo dynamics for off-lattice
modecls is a nontrivial task. When using all-atom models with the standard
scimiempirical force fields, the local conformational transitions usually
introduce very small changes in chain geometry and are usually uncor-
related with the nature of the energy surface. Consequently, the efficiency of
such MC algorithms is not much better than standard MD. An cfective sct
of local moves has to be able to pass over (or rather lo neglect) the inter-
vening narrow-width, local energy maxima (which may be of considerable
height). Such “smart” moves have lo take into account and cxploit specific
corrclations of rolational degrees of frecdom [medium-range phi-psi (¢-¢)
correlations] over some portion of the polypeptide backbone. One such
algorithm has been recently claborated on by Elofsson et al. [31]. An even
more radical approach to local moves has been proposcd by Knapp et al.
[25,26,30], who assumed a rigid-body represcntation of peptide boud plates
and developed an algorithm that allows for the collective motion of a few
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peptide units. The moves can interpolate between deep encrgy minima for
phi-psi correlated potentials. When the tertiary interactions are neglected,
the model reproduces Rouse dynamics [47,48] of denatured polypeptide
chains, that is, the correct long-time dynamics of a polymer in the free
draining limit [25,26,30]. Of course, long-range interactions can be intro-
duced, and the model could be employed in folding studies [49]. Efficient
local continuous-space deformations of polypeptide chains also have been
investigated by Baysal and Meirovitch [50]. These developments are
cxpected o extend the applicability of Monte Carlo off-lattice models in
computational studies of protein dynamics and protein folding processes.

Lattice Monte Carlo dynamics of proteins could be studied at various
levels of generalization. The dynamics of simple lattice models and equiva-
lent continuous protein-like models led to a reasonable approximation of
the main features of the denatured state and gives some insight into protein
folding pathways [51-53]). More detailed models can provide additional
information on the cflect of short-range intcractions on polypeplide
dynamics at various temperatures, and consequently at various distances
from the native state. It has been shown that a high-coordination-lattice
discretization of protein conformational space [16,17,20,4042] leads to
Rouse-like dynamics [48] in the denatured state [54]. It was possible to
investigate the effect of the short- and long-range cooperativity on the
dynamic properties of denatured proteins [55). Also, the dynamics near the
transition state of medium-resolution protein models have been analyzed
[16,42,56]. These experiments indicate that high-resolution models could be
a powerful tool for model studies of the long-time dynamics of real proteins.
The approach is an alternative to the off-latticc models of protein long-time
dynamics.

In summary, the recent developments allow Monte Carlo simulations of
protein dynamics in their denatured state, in the intermediate states and in
the folded state. In the latter case, where the fine details are of major inter-
est, standard MD techniques are usually supcrior to the Monte Carlo
reduced model approaches.

B. Simple, Exact Models

Simple, cxact models [51] consist of simple lattice polymers or helero-
polymers where each amino acid in the hypothetical protein is represented
by a bead occupying a single lattice point. Because of their simplicity, these
models have generated considerable attention [57,58].

Short homopolymeric chains restricted to a simple square lattice and to
a simple cubic lattice have been studicd by Chan and Dill [59-61]. For
very small systems, all compact conformations could be enumerated. Not
surprisingly, significant intrachain entropy loss occurs on collapse. Expand-

. m
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cd conformations could be samplcd by a simple Monte Carlo scheme
employing various local and global conformational transitions [62]. Chan
and Dill suggested that some short-range backbone correlations, similar to
protein sccondary structure, may be induced solely due to chain com-
pactncss [59,60]. This postulate was later questioned [55,63-66]. Also, an
carlier computer study of the collapse transition in long flexible lattice
homopolymers did not indicate any local ordering of the chain segments
[44]. Interestingly, it has been shown that the collapse transition of semi-
flexible polymers leads to substantial and cooperative local ordering in the
compact statc [43,67,68].

Much could be lcarned from computer studies of simple, exact hetero-
polymeric modcls of proteins. A classic example is the HP model intro-
duced by Dill and co-workers [61,69,70]. In this modcl, a simple cubic
lattice chain consists of two kinds of beads, H (P), corresponding to non-
polar hydrophobic (polar) residues. Nonbonded nearest neighbor contacts
of two hydrophobic (HH) residues contribute a constant negative encrgy.
HP and PP contacts are assumed to be inert. A similar model (AB model)
has been investigated by Shakhnovich and co-workers [71,72]. In this case,
all residucs are attractive; however, the energy of attractive interactions was
lower for pairs of the same type (AA or BB) than for diffcrent residue pairs
(AB). Most simulations were dono on 27-mer systems with the target struc-
ture being a 3 x 3 x 3 compact cube.

Both modcls have similar properties and mimic some gencral features of
globular protcins. Not all sequences undergo a collapse transition to a well-
defined compact state (neglecting the existence of mirror-image structures
that emerge as a result of lack of chiral energy terms in these simple
models). This is in accord with the idea that only a small fraction of pos-
sible amino acid sequences form well defined globular structures [70,72-76].
Moreover, only a small fraction of HP or AB scquences are “good
folders.” In cases of such “good folders,” the collapse transition is very coo-
peralive. Various sequences of simple, exact models exhibit difTerent folding
pathways [76-78]. The folding pathways may suggest (on a very general
level) how real proteins reduce their conformational space during the
folding process [79-82].

Recent studies of larger-size, simple cubic lattice hetcropolymers [83]
show that with increasing protein sizc, the folding pathway bccomes more
complex. In these modcls, the initial hydrophobic collapse stage has been
followed by a finer structure fixation involving the rcarrangement of the
surface residucs. Some signatures of such a two-stage folding mecchanism
also havc been observed in 27-mer AB- or HP-type systems [81,84,85].
These larger-model systems permit a more meaningful albeit, duc to lattice
restriclions, still very biased modeling of protein secondary structure.
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Longer cubic lattice heteropolymeric chains may also mimic some aspects
of multidomain protein folding [86].

Camacho and Thirumalai [87] investigated the effect of strong covale'nt
interactions (disulfide bonds) on the folding pathway of a minimal Ialllc'e
model. They found that the folding rate is fastest when a proper balance.ls
achieved between effective hydrophobic intcractions and the strength of dis-
ulfide bonds. This rationalizes how weak denaturing conditions can acceler-
ate the folding process of real crosslinked proteins.

Finally, it should be pointed out that simple, exact r.no‘dels. could be.used
to test new sampling methodologies [88-90] or optimizalion techniques
[84,91]. A good example is the work by Hao anc.i §cheraga [9%]..where
pairwisc contact energy parameters have becn optimized .lo maximize the
stability of the native state with respect to other conformations for a 27-mer
chain composed of 10 different residues types [92]. o ' )

The tolerance of the protein folding process to noise in lhq mteraphon
parameters and sequence modifications [93] was e}lso studied using a
3 x 3 x 4 target structure [94]. The conclusions were in agreement with t‘he
qualitative picture of real protein folding dynamics and'lhermod)fna.mlcs
[93]. Such studies are important because they may provide some m§|ghls
into how specific the protein sequence has to be in order to maintain the
structural uniqueness of the native conformation. . '

It is also possible to design a simple, exact modcl xmh side chains [95].
As would be expected, the presence of side chains increases the entropy
difference between folded and unfolded states. The possible effects of some-
what more complex and cooperative interactions have also been investi-

ated [96]. o

& ExlEns:i've studies of simple, exact models have provided new insights
into general principles governing protein folding dynamics, t!lcrmodyna-
mics, and the relationship between protcin sequence and protein structure.
The importance of hydrophobic collapse in the initial stage of lht': protein
folding process is clearly visible in a majority of the preceding styc}tes. As. in
real proteins, foldable sequences in simple, exact modg[s exhl})xt specific
amino acid patterns of hydrophobic and hy(!r‘ophlhc residues. The
sequences of these models control not only the stability of the glol?ular state
but also the dynamics of folding. Very likely these and other important
generalizations of computer studics stimulated the development of new
theoretical descriptions of the protein folding process [58,85,97-102].

C. Protein-Like Models

The simple, exact models described in the previous section employ n.carf.:sl-
neighbor interactions as the only amino acid scquence specific contribution
to the conformational energy. Consequently, the dominance of nonpolar

MONTE CARLO APPROACHES 10 PROTEIN FOLDING PROBLEM 211

tertimy interactions in protein folding is implicitly assumed in these models.
Shott-tange (i.c., local down the chain) intcractions are a priori neglected,
or mure precisely, they implicitly arise from inherent restrictions imposcd
by the usc of a very low-coordination-number lattice. In this scclion, we
describe a class of more complex, protein-like models that trics to address
the interplay between secondary and tertiary interactions, a feature charac-
teristic of rcal proteins. Thus, they account for a wider variety of inter-
actions that control protein folding dynamics, thermodynamics, and the
structural uniqueness of the native state. They also attempt to more realisti-
cally mimic aspects of the geometry of the major sccondary structurc motifs
that oceur in proteins. However, these are not faithful models of real pro-
teins bhecausc they lack the ability to reproduce the detailed chain geometry
and packing of supersecondary structural clements. In this respect, such
protcin-like models are similar to simple, exact models, but here the sccond-
ary structure and interaclion scheme arc better defined. We separatcly
review lattice and continuous space models of such protein-like systems.

1. Lattice Models of Protein-Like Systems

In their pionecring investigations, Go and co-workers [103-105] investi-
gated the dynamics and thermodynamics of square lattice chains as highly
idcalized protein-like systems. Three types of interactions were considered:
short-range sccondary structure conformaltional propensitics, long-range
conlact polentials (similar to that employed in simple, exact modecls), and
hydrophobic potentials. The sampling scheme consisted of various types of
conformational transitions controlied by the Metropolis Monte Carlo algo-
rithm. The results of thesé and other studies [106,107] showed that long-
range inferaclions consistent with the assumed target struclure increase
folding cooperativity. In contrast, short-range (but also native-like) inter-
aclions decrease folding cooperativity, but accelerate the folding process.
All intcractions inconsistent with the target structure decrease the folding
rate. Similar conclusions were drawn from geometrically more complex
models with a similar interaction scheme [108].

Systematic diamond lattice, Monte Carlo studics of various types of
interactions and their effects on folding thermodynamics, structure and sta-
bility, and folding mechanism have been done by Kolinski et al. [43,67,68]
and Skolnick et al. [109-117] The interaction scheme was gradually modi-
ficd, when necessary, so as Lo reproduce various features of protein folding,
In the simplest model, they investigated the interplay betwcen short- and
long-range interactions for various homopolymeric chain lengths. Short-
range inleractions were modceled as a prefcrence for the trans conformation,
Long-range interactions (i.c., thosc that arc local in space, but far apart
down the chain) werc simulated by an energetic preference for contacts

|
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between nonbonded chain units. Flexible polymers (having lhf: same a
priori probability of all rotational isomeric slalf.s) of any finite length
undergo a continuous transition to a compact, disordered globular state
[44,67]. This is typical for all flexible polympr systems [l'18,119]. Semi-
flexible polymers exhibited a qualitatively different behavior. When the
ratio of short-range interactions (the stiffness parameter) to long-range
interactions exceeds some critical (but moderate) value, the c?llaps? tran-
sition for moderate length chains (50-200 units) bccomps dlsconlmuogs
(pseudo-first-order). There is a cooperative incrc:}sc of the apparent f:haln
stiffness on collapse, and the globular statc exhibits almost perfect orienta-
tional ordering [67]. Under the same conditions, longer polymcr§ form
several ordered domains [68]. This closely resembles the formall?n of
multiple domains in real proteins. 1t could be expgcted that for sufficiently
long chains, the collapse transition is again continuous. In all cascs, the
compact globular state of homopolymers was not unique [43].

Introducing ncutral (flexible and ncutral with respect to the long-range
contacts) turn regions lecads (o a unique, minimal, I'o.u‘r-mtfmbcr (B-barrel
globular state. Furthermore, the conformational lransnllqn is of the all-pf-
nonc type [109,111]. When robust pattcrns of hydrophobic gnd hydrophilic
residucs were introduced and/or when the native conformation of the turns
was favored, in all folding simulations, it was possible to reproduce the
nontrivial, six-member, Greek key, f-barrel topology [110,112]. The
folding scenario could be described as on-site assen.1bly, where already
folded fragments of native structure serve as a folding scaffold for the
remaining portions of the modecl chain [110,113]. ' )

In a similar way, the minimal requirements for the folding of all typical
topologies of four-helix bundles were elucidated [lltit-ll6].. In all th-ese
studies, the folding process was accelerated when an orientational coupling
of long-range interactions had been implemented to model hyd.rogcn bpnd
interactions. The effects of hydrogen bonds and other polar mter.actlon.s
incorporated into a very simple protein-like model have .also beer_l investi-
gated by O'Toole et al. [120]. Finally, the diamond lattice protein .mot"lel
has also been used to investigate the possible differences between in vivo
and in vitro lolding of typical protein motifs [117].

The diamond lattice representation of a protein, while rea.sonable for
idealized models of § and « proteins, cannot reproduce the c.ham geometry
of more complex motifs such as «/f protcins. To remove this fundamental
limitation, the chess-knight model [54] of the protein backbong was dev:il-
oped. In contrast to a diamond lattice model, it allows all possible protcin
folding motifs to be represented at low resolution [121]. Thg forc.e {icld
requircments for a unique native statc arc cssentially the same in this fincr
lattice represcntation as for diamond lattice models.
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The aforementioned studies indicated the crucial importance of the
proper balance between short-range versus long-range interactions in order
o obtain the requisite cooperativily of the folding process, as well as a
unique native state. They also show that the sequence information required
for a piven structure is rather robust. In addition, a scquential, on sitc,
mechanvan of folding was preferred in all cascs. Qualitatively, these findings
arc in agrcement with conclusions from simple, exact models and cven more
50 with thosc of Go and co-workers [104]; however, they arc more detailed
because of the use of more complex modcls.

Brower ct al. [122] investigated the chain-length dependence of the time
required to find the global energy minimum in the framework of various
high-coordination-number lattice modecls and a simple interaction scheme.
It has been found that the folding time when simple simulated anncaling is
uscd increases cxponcentially with the chain length. This points out the
neeessily of more cfficient sampling algorithms for the conformational
scarch in nontrivial protein models. In this respect, Finkelstein et al. [123-
125] have proposed a very interesting Monte Carlo model of protein

asscmbly, where larger polypeptide fragments are moved around to find an
optimal structure.

2. Continuous Models of Protein-Like § ystems

Valuable insights into the thermodynamics and mechanisms of protein
assembly come from Monte Carlo and Brownian dynamics studies of
simple, continuous protein-like models. For cxample, Rey and Skolnick
[126] studied a series of reduced models of four-helix bundles. They investi-
galed the role of the balance between short- and long-range interactions in
the folding pathways, and the stability and structural uniqueness of the
four-helix bundle folding motif. Monte Carlo simulations for various types
of modcls enabled a qualitative assessment of the role of side chains in
protein structure fixation. The results have been generalized into a phase
diagram describing various regimes of polypeptide behavior. Possible impli-
cations for real protein folding and the design of artificial proteins have also
been discussed. In related work, Rey and Skolnick [127] demonstrated that
the dynamics and folding pathways of various simple folding motifs studied
via Brownian dynamics and Monte Carlo dynamics are qualitatively the
same. Moreover, the gencral dynamical characteristics of these continuous
modcls were essentially the same as for related lattice models studied by
means of lattice Monte Carlo [127].

Continuous models of minimal B sheets have been investigated by
Moate Carlo simulated anncaling [128] and by Brownian dynamics [23,52,
53,129]. The design of the B-barrel gecometry and the essential fcatures of
the force ficld are complementary to the diamond lattice models of Skolnick
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et al. that were studicd much earlier [109,111]]. Again, the behavior of
lattice and continuous models are qualitatively the same [23,52,53,129].
More recently, the coil-to-f-sheet transition and its cooperativity and rela-
tion to existing theories has been studied via Monte Carlo simulations on a
reduced continuous model [130].

D. Models of Real Proteins
1. Continuous Models

To make protein folding simulations computationally tractable, the protein
model must be simplified [131]. Among the earliest examples of such
models is the original approach of Levitt and Warshel [22]. There the poly-
peptide main chain was reduced to its a-carbon trace, and side chains
modeled as single united atoms. Long-range interactions were counted only
for pairs of side chains and approximated by a Lennard-Jones potential. A
constant value of the planar angle between the two consecutive pseudo-
bonds of the a-carbon trace has been assumed. This is a simplification since
real proteins exhibit a bimodal distribution of this angle. The local degrees
of freedom were the dihedral angles of the a-carbon trace. The torsional
potentials associated with these degrees of freedom were derived from a
conformational analysis of several “representative” dipeptides. The model
has been used in folding simulations of bovine pancreatic trypsin inhibitor.
Simulations were done by means of Brownian dynamics; however, the
Monte Carlo method could be used as well as for conformational sampling.
Similar models have been developed and studied by Kuntz et al. [132],
Robson and Osguthorpe [133], and Hagler and Honig [134]. The work of
Hagler and Honig showed that similar quality structures of BPTI could be
obtained using a sequence code reduced to just two types of amino acids.
Another example of a continuous reduced model is due to Wilson and
Doniach [24]. They assumed a fixed planar conformation of peptide bonds,
and the main chain was allowed to change its conformation by rotation
around the phi (¢) and psi () angles. A single united atom representation
of each side group also has been assumed. The importance of their work
lies in the systematic application of a knowledge-based force ficld, an idca
applied previously to other aspects of the protein folding problem [135,136].
Short-range interactions were simulated by restricting the allowed values
of the phi-psi angles to those commonly obscrved conformations in known
folded protein structures. For long-range (lcrtiary) interactions, they
derived distance dependent pairwise potentials based on a statistical
analysis of the regularitics in known globular protein structures. Conforma-
tional sampling was done using simulated thermal annealing within the
framework of a Mectropolis-lypc Monte Carlo scheme. They performed
folding simulations of crambin both with and without assumed knowledge
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of the native sccondary structure. Overall, the accuracy of the predicted
structures was very low. However, the predicled seccondary structure was to
a large extent in agrecement with that of the native protein and elements of a
protein-like hydrophobic core were formed. Also, the native-like pattern of
cysline crosslinks was observed.

The accuracy of a reduced protein representation could be improved by
taking intv account some internal degrees of freedom of the side chains
[137]. For cxample, larger side chains could be represented by two united
atoms [138]. Alternatively, an all-atom representation of the main chain
could be employed with a reduced representation of the side chains [28).
Using this kind of representation and more elaborate statistical potentials,
the structure of short peptides such as melittin, pancreatic polypeptide
inhibitor, apamin [28], PPT, and PTHrP [138] have been predicted with
an accuracy ranging from 1.7-A root-mean-square deviation, (RMSD)
(mcasured for the a-carbon positions) for the small single helix of melittin to
4.5-A RMSD for larger peptides.

Reduced continuous-space models were also employed in studics of the
various aspects of protein [27,139] or polypeptide [49,140,141] folding.

2. Discretized, Lattice Models

Lattice models have proved to be extremely useful in studies of simple,
cxacl models and somewhat more complex models of protein-like systems.
Similarly, the conformational space of a real protein could be discretized
and explored in a very efficient way by various versions of Monte Carlo
sampling techniques. Depending on the assumcd lcvel of discretization and
model of force field, various levels of accuracy can be achieved. For
example, simple lattice models of real proteins were studied by Ueda et al.
[108], Krigbaum and Lin [142), Dashevskii [143], Covell [ 144], Covell and
Jernigan [145], Hinds and Levitt {146], and others.

As mentioned before, the studies of protein-like models by Go et al.
(103,104,107] provided a plausible explanation for the origin of protein
folding cooperativity and the role played by short- and long-range inter-
actions in both folding and stability. Monte Carlo studies of a latticc model
of lysozyme [108] provided a very nice demonstration of these findings
applied to a real protein. The target structure of this 129-residue protein
was represcuted by 116 simple cubic lattice main-chain units plus an addi-
tional 15 lattice points for somc larger side chains. Thus, there was no
onc-{o-one correspondence between the model and the real protein struc-
tural units, bul the overall gcometry and dense packing of the native struc-
ture was reproduced with reasonable accuracy.

Krigbaum and Lin [142] studicd a bec (body-centered cubic) lattice
model of PTI. Their simulations dcmonstrated that some overall features of

Lo
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the native fold (at lcast for very small structurcs) coulq be reprodchd using
only a one-body, centrosymmetric potential that describes the burial prefer-
ence of various amino acids.

Covell and Jernigan [145] enumerated all possible compact conl"orm.a-
tions of several small proteins restricted 1o an fcc (face-centered cubic)
lattice (one residue-per-lattice sitc). Using pairwise inlcractipns:, they found
that the native-like conformation could be always found wglhm 2% of l!le
lowest-energy lattice structures. Very much in this sfpiril. Hinds ?nd Levitt
[146] used a diamond lattice to scarch compact chain conformations where
the lattice defines a chain tracing, but each lattice vertex nef:d not corre-
spond to a single residue. Subsequently, Covell [144] inve'sugaled simple
cubic lattice chains. However, now a more elaborate interaction scheme was
used, which consisted of pairwise interactions, surface exposure ‘tetms and a
packing density regularizing term. These potentials were derived from a
statistical analysis of a protein structural database. During Monte Carlo
simulations, which employed various local and global moves, the mo$1c|
chains rapidly collapsed to compact states having some features of native
proteins. ) o

Kolinski and Skolnick [42,147] devcloped a series of high-coordination
lattice protein models that are capable of describing protein structures at
various levels of resolution. The simplest of these, the chess-kmght' model
[54], assumes an a-carbon representation of the polypeptide chain. The
model enabled Monte Carlo folding pathway simulations of complex real
protein structures, including plastocyanin and two TIM barrels. In .lhese
simulations [148,149], the model force ficld consisted of short-range .mlt':r-
actions, biased toward the target native sccondary structure, and pairwise
interactions belween side chains delined according to the Miyazawa-
Jernigan [139] hydrophobicity scale.

One problem wilh low-resolution lattice models is their spatial anisot-
ropy [15]. That is, a given secondary structural element may be represented
by substantially different lattice structures as the element assumes various
orientations on the lattice. In the hybrid 210-lattice model of protein back-
bone, this disadvantage has, to a large cxtent, been removed, mostly due to
the larger set of basis vectors (56) employed in building the a-carbon trace.
This lattice representation has about a 1.0-A coordinate RMSD from the
corresponding native a-carbon coordinates. The relatively accurate main-
chain representation enabled the construction of a side-chain rotamer
library. Side chains are represented as single spheres and their various posi-
tions, with respect to the main chain, simulated various rotamers of cach
amino acid. The model force ficld has been derived from the appropriate
stalistics of high-resolution crystallographic structures. Short-range inter-
actions consisted of several types of terms that reflect secondary propen-
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sitics of vanious amino acids. A somewhat similar potential has been
recently investigated by DeWitte and Shakhnovich (150). Tertiary inter-
actiens arc described by amino acid-specific burial terms, pair terms, and
several kinds of multibody, knowledge-based contributions that act to regu-
larice protein structure. These consisted of a cooperative modc! of a hydro-
gen bond network (cmploying geometric criteria similar (o that of Levitt
and Greer [151]), and several types of amino acid pair-specific and four-
budy packing correlations based on side-chain contact palterns scen in
globular proteins [152]. This force ficld was accurate enough to cnable the
reproducible de novo folding of several simple proteins, starting from a
tandom expanded conformation [16,18].

A flincr 310-hybrid lattice model employs a 90-vector basis set for «-
cathon trace representation. This model can reproduce the geometry of

_ nalive proteins with an average a-carbon RMSD of 0.6-0.7 A. The general

principles of the force field were similar to that of the 210-hybrid lattice
model. However, the more accurate geometric representation cnabled a
better knowledge-based modecling of short-range interactions [20] and
the more straightforward design of hydrogen bonding [17,40]. As a
resull, the folding of more complex protein structures became possible
[19:40,42,56,153-155). Single sccondary-structurc elements, such as long
helices, assembled during the Monte Carlo simulations with an accuracy in
the range of 1.0-20 A RMSD. The model also predicted some simple
protcin structures whose coordinate RMSD from native ranged from 2.0 to
5.0 A, depending on protein size.

3. Complementary Insights from V arious Models

The preceding outline shows that very different continuous and discretized
models of proteins and protcin-likc systems have been used (o address
closcly related problems of protein physics. Which are better for the study
of protein folding dynamics, thermodynamics or folding patterns? The
answer depends on the particular aspects of the protein folding problem to
be addressed. Certainly, the fine gcometric details of protcin conformation
could be better reproduced by continuous models. Thus, when dealing with
small peptides, a properly designed continuous, reduced protcin model
should be more uscful than a latticc model. This is especially true for short-
range correlations that are much casier to account for in conlinuous
modcls. What about larger systems, such as protcins? When small-scale
conformational transitions are of interest, a continuous-space model is
again the natural choice. However, when dcaling with large-scale conforma-
tional transitions, cspecially in simulations of folding from the denatured
state, discrelized, laltice models offer several distinct advantages. First,
becausc of the lattice structure itsclf, the conformational spacc is a priori
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pattitioned, and onc avoids many local, and perhaps irrclevant, energy bar-
riers. Second, local conformational transitions could be predefined and used
during simulations in a very effeclive way. Moreover, the conformational
encrgy computation could be accelerated by precalculating many com-
ponents just once and storing the results in a table. Becausc of the last two
attributes of the lattice models, lattice Monte Carlo simulations could be a
couple of orders of magnitude faster than simulations in an otherwise
equivalent, continuous-space model [42,127]. However, when designing a
lattice model, it is always necessary to carefully analyze the possible effects
of the lattice anisotropy and the discrete structure of conformational space
[15). Recently, much progress has been achicved in various methods of
discretization [156,157] of protein conformational space [42] and in the
analysis of the fidelity of such discretizations [14,156,158-160].

Reduced models of proteins and protcin-likc modcls utilize various levels
of generalization. On one side there are the simple, exact models that can be
analyzed in great detail. The simple cubic lattice representation of polypep-
tide chains reflects the very fundamental role of the close, crystal-like
packing of protein structures. It has been shown that the folding transition
of cubic lattice copolymers responds in a reasonable way to scquence varia-
tion. For some protein-like scquences, unique compact states represented
the minimum of conformational energy. If so, it is very likely that simple,
exact models properly mimic the most general physics of hydrophobic col-
lapse and packing complementarity of globular proteins. With a proper
model of chain dynamics, the most fundamental features of protein folding
pathways also could be studied [41].

However, in spite of their many virtues, it appears that the simple, exact
models do not sufficiently account for a rather important feature of poly-
peptides and prolteins, specifically, the complex interplay between short-
and long-range interactions associated with the presence of a main chain
and side chains. The importance of this aspect of protein structure and
dynamics has been addressed in an excellent short review by Honig and
Cohen [161]. On the most trivial level, it should be pointed out that pro-
teins are rather stifl polymers. In the range of chain length and conforma-
tional stiffness typical of proteins, semiflexible lattice homopolymers
undergo a first-order collapse transition (o a highly ordered, globular state
[67). This is perhaps the most fundamental aspect of protein folding
physics that has to be demonstrated by any prolcin-like system. Further-
more, the “decoration” of protein-like models with sequence specific short-
and long-range intcractions (and also with some more complex protein-like
geometrical correlations) leads to a structural fixation of compact states
characteristic of rcal proteins. Finally, if the tertiary structure of a real
protein is to be predicted, the model must be capable of representing the
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geometry of the native state at an acceptable level of resolution.

What, then, is the relationship between models of various levels of gencr-
alization? ‘I hey arc complementary for scveral reasons. First, they address
various aspects of the protein folding problem. The gencral insights from
studics of the simple, exact models and protein-like models provide guide-
lines for designing reduced force ficlds in more detailed models. On the
other hand, conformational space cannot be explored with high accuracy
when many structural details are taken into account. In such cases, only a
limited number of folding simulations could be performed. Consequently, it
is morc dilficult to derive a quantitative description of protcin folding
dynamics and thermodynamics. However, one can address numerous
important aspects of protein physics using thesc more complex models.
When appropriate, the predictions of such models also can be tested experi-
menlally.

Ill. PROTEIN FOLDING THERMODYNAMICS

A. Nature of the Interactions

A key question is what types of interactions are important for protein sta-
bility. Protein backbones contain polar groups that either form hydrogen
bonds wilh water or with other backbone or side-chain atoms; the free
cnergy cost for the absence of hydrogen bonds is substantiat [162]. Thus,
hydrogen bonds play an important structural regularizing role in proteins
[42]. In addition, individual residues exhibit differential secondary structur-
al preferences. The secondary structure found in protein fragments,
although small, is nonetheless present and can be significant [163]. Such
intrinsic secondary structural preferences act both to assist in the early
states of folding and to reduce the configurational entropy of compact
statcs [110]. Another important interaction is the hydrophobic eflfect that
acts o sequester hydrophobic molecules within the interior of the protein
[8]. Furthermorc, amino acid pair-specific interactions and higher-order
tertiary and quatcrnary interactions may be responsible for the selection of
the native fold or the destabilization of an alternative structure [164]. Such
interactions may be electrostatic in origin or arise from the complex inter-
play of potentials of mean force. Thus, there are a variety of interactions
present in a globular protcin, and the native structure is the result of a
balance of such terms.

B. Extent of Frustration in Native Conformations

The thermodynamic hypothesis [1,7] that native proteins arc in a global
minimum of frece encrgy is now gencrally accepted. Since the native state
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has a relatively low conformational entropy, they arc.in a minimum of con-
formational energy; however, the larger corresponding entropy of solvent
molecules also has to be kept in mind [165]. Of course, this does not mean
that all interactions in a globular protein stabilize the native state. There is
always compelition between some interactions. For example, some penta-
peptide fragments [166] can adopt different secondary slru_ctures in various
proteins. This means that the observed native structure is a compromise
between short-range secondary propensities and tertiary interactions. A
similar analysis could bc performed for other inleracllon.s in protcins.
Hydrophobic residues are not always buried, and po}ar resxduc§ could be
found in otherwise mainly hydrophobic core proteins. Somenmcs,‘such
“defects” are essential for structural uniquencss and can cause a “com-
pensation” effect—the destabilization of one part of a protein increases the
stability in another part. This leads us to very important question: What
are the molecular reasons for protein structural uniqueness and the coo-
perativity of the folding process?

C. Origin of Cooperativity and Two-State Thermodynamic Behavior in
Protein Folding

Typically, the in vitro folding of a single domain globular protein .resembles
a first-order phase transition in the sense that the lhgrmodyngmtc proper-
ties undergo an abrupt change, and the population of mtermgdlales a! equi-
librium is very low. In other words, the process is cooperative af\d is we‘ll
described by a two-state model [8]. The first attempts to explain protein
folding cooperativity focused on the formation of. secondz.ar.y sln.lcture.
Theoretical and experimental analysis of coil-helix lransnl!ons .mdeed
proved that the process is cooperative [167]. However, lhe‘hehx-cml tran-
sition is always continuous [168], and thus it cannot explain the two-state
behavior of the protein folding transition.

Simulations of protein-like models with target short- and long-rfu_lge
interactions [103,104,107,108,110] demonstrated that the at?rupt transition
is due lo strong native-like tertiary interactions. Native-like short-range
interactions increased the stability of the globular state; however, they
appeared to decrease folding cooperativity. The dominant role of the long-
range interactions for folding cooperativity also has been demonstrated in
studies of simple, exact models. Shakhnovich et al. [57,71—73,‘169,170],
Bryngelson et al. [85,99,100], and others [65,75,78,84,171,]7?] pon_llcd out
the importance of the entire cnergy landscape for the protein folding coo-
perativity. In this context, a cooperative all-or-nonc.transmm’ also could be
expected for systems with many competing inlcracllgns provided Il}at there
is a well-pronounced cnergy minimumy corresponding to the nalive state
[65,75,78,84,172].
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An inleresting realization of such an cnergy landscape is provided by
semiflexible polymer models. As was suggested by mean ficld considerations
[173,174], semiflexible polymers should undergo a pseudo-first-order phase
transition. This has been quantitatively illustrated in Monte Carlo studics
of homaopolymeric lattice systems by Kolinski et al. [43,67,68). Thus, a coo-
perative collapse transition may also result from the interplay between non-
specific short-1ange and uniform long-range interactions.

A very convincing explanation of protcin folding cooperalivity has been
given recently by Hlao and Scheraga [35]. They uscd the entropy-driven
Monte Carlo (1:5MC) method [38] to investigate the collapse transition in
the chess-knight model [54] of a minimal g-barrel protein (sce the chaplter
“Entropy Sampling Monte Carlo for Polypeptides and Protcins™). Their
model force ficld consisted of short-range interactions, a qualitative model
of hydrogen bonding and pairwise side-cain interactions. The side chains
lacked internal degrees of freedom. Computer experiments demonstrated
that some amino acid scquences exhibit an abrupt first-order transition
from a random cvil state to a well-defined globular state. The cooperalivily
of the folding process emerged from a characteristic depletion of the
system’s conformational entropy as a function of conformational energy as
onc moves away from the native state. More random sequences exhibited a
continuous collapse transition [36]. Sequence-specific long-range inter-
actions were responsible for the protein-like, all-or-none folding, while the
shorl-range interactions only contributed to the stability of the globular
state [37].

A similar study on a somewhat more complex 310-hybrid lattice model
of an idcalized Greek-key fold has been performed by Kolinski et al.
[40,42]. The model force field consisted of knowledge-based, short-range
interactions that quantitatively reproduced secondary propensitics of
various sequences, a cooperative model of hydrogen bonds, and several

(also knowledge-based) types of tertiary interactions. The model employs a
single united-atom multiple-rotamer representation of the sidc chains. A
first-order transition has been obtained only when the explicil cooperativity
of the side-chain interactions was taken into account. These cooperative
terms had the form of four-body potentials preferring protein-like side-
chain packing arrangements. The transition-state of such a cooperalive
modecl has an overall conformation very similar to that of the native state
with most of the native sccondary structurc (in a sensc of loose intcractions
of expanded fi strands); however, the average volume is larger. The folding
transition was associated with the fine-tuning of side-chain packing accom-
panicd by small rcarrangements of the cntire structure. Such “side-chain
fixation™ increased the relative contribution of the multibody intcractions
and produced a unique native state. Since the cooperative interactions con-
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tribute very little to the transition-state encrgy, they acted by providing a
suflicient energy gap from native for the all-or-none transition to emerge.
Interestingly, the native state still had a substantial energetic degencracy
(and thereby a substantial entropy) with a large number of conformations
having essentially the same hydrophobic core packing. However, these
simply reflect small structural differences that arise mostly in the loop and
turn regions. The first-order transition was duc to the change of the confor-
mational entropy as a funclion of energy. The entropy changed most
rapidly near the transition-state. The conformational entropy of the side
chains may play a very important role in the late stages of the folding
process [40,42). This picture of the transition state is consistent with many
experimental facts and with the theoretical postulatc that the molten
globule is a general transition state in protein assembly [169,175-184].

All these studies seem o indicate that the cooperativity of the folding
process is due to the specific pattern of tertiary interactions and/or the spe-
cific interplay between short- and long-range intcractions. This may appcar
to be a trivial statement, but detailed analysis of the results from the simple,
exact model, protein-like models and reduced models of real proteins
show several specific requirements for the protein folding cooperativity. It
is very encouraging that over the entire spectrum of theoretical model
studies of the protein folding process, these requirements essentially overlap
[35-37,51,83,92,95]. Naturally, various models place different stress on
the specific interactions that may control protein folding and structural
uniqueness.

IV. TERTIARY STRUCTURE PREDICTION

Knowledge of protein structure is important for understanding their bio-
logical functions. However, the number of known protein sequences is
many times larger than the number of solved three-dimensional structures.
Thus, the ability to predict protein structure from amino acid sequence is
one of the most challenging goals of contemporary molecular biology. Con-
siderable progress toward a solution of the protein folding problem has
been made recently, although a complete solution is not yet in hand. One
area of such progress has been through the use of threading approaches
that are designed to match a sequence to the most compatible structure in a
library of known prolein structurcs [185]. Here, we limit oursclves to
methods based on the direct search,of protein conformational space, and
focus mainly on Monte Carlo and closely related methods.

A. Peptides and Cyclic Peptides

At first glance, it may appear that the problem of structure prediction in
]
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small peptides should be much simpler than in globular proteins. To some
extent this is (ric. On other hand, a minimum-energy conformation of a
peplide may dilfer very little from the manifold of competing conforma-
tions. Thus, the accuracy requirements are greater for the force field. In this
respect. Scherapa and co-workers [186] have developed a semicmpirical
force ficld (EC1:PP) [187] that is particularly well suited for studics of oli-
gopeplides, where the shorl-range interactions may dominatc the structural
propertics. Using various minimization [9,10,29,91,188-190] and simulation
techniques  [191,192], the conformational space of (Mctlenkcphalin
[191,193], the cyclic decapeptide gramicidin S, cyclic hexaglycine, and the
20-residue membranc-bound fragment of melittin [194], alamethicin, and
other peptides and small proteins [195-198) have been investigated in
detail. Possiblc effects of the solvent environment also have been analyzed.
Good-quality structure predictions of various coiled-coil and peptide
crystal structures also have been achieved [186,199,200). Although not all
of these works have employed a Monte Carlo search mcthodology, we list
them to provide an overview of the present status of the oligopeptide struc-
ture prediction ficld.

Using a statistical polential and a genetic algorithm as the optimization
proccdure, Sun has achieved a relatively high resolution (1.66-A) RMSD for
the 20-residuc membranc fragment of meclittin) prediction of a few oligopep-
tides [28]. However, as demonstrated by Hansmann and Okamoto (201},
peptide conformational space could be effectively explored by a Monte
Carlo multicanonical algorithm. Okamoto [202] employed the ECEPP
potential and a simulated anncaling Monte Carlo procedure to estimate the
helix-forming tendencies of several nonpolar amino acids within the context
of homooligopcptides. Such an approach can perhaps be used to obtain
better semicmpirical short-range interaction potentials for use in protein
simulations. Finally, a very interesting Monte Carlo minimization pro-
cedure has been employed by Meirovitch et al. [203-205] for the determi-
nation of peptide conformations in solution from averaged NMR (nuclear
magnelic resonance) spectra.

This bricl overview shows that for particular applications, Monte Carlo
methods and other minimization methods could be complcmentary to stan-
dard molecular dynamics methods (sec some reviews on MD techniques
and applications 1o proteins and peptides) [11,12,206].

B. Proteins

1. De Novo Approaches

Carly attempts at de novo predictions of protein structure focused on a few
small proteins. In spite of the rather simple test cases, the obtained struc-
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tures were of low resolution [22,24,132]. It is interesting that the simple
cubic lattice simulations of Covell [144] led o a similar accuracy. Also, a
very simple lattice representation has been employed in the work of Hinds
and Levitt [146]. These results suggest that the proper design of the inter-
aclion scheme is no less important than the accuracy of the geometrical
representation [207,208]. The more elaborate Monte Carlo model of Wall-
qvist and Ullner [138] allowed for the prediction of the 36-residue PPT
structure with an accuracy of 4.5-A RMSD. This is the same accuracy as
obtained by Sun [28] via a completely different search procedure.

An interesting hierarchical Monte Catlo procedure for the prediction of
protein structures has been proposed recently by Rose et al. {209]. Their
model employs an all-atom representation of the main chain and a crude
representation of the side groups interacting via a simple contact potential.
The method scems to be quite accurate in the prediction of protein second-
ary and supersccondary structure; however, the overall global accuracy of
the folded structures is rather fow.

Kolinski, Skolnick, and co-workers [16-18,42,56,147,153,155,210] have
developed high-coordination-number lattice models of protein conforma-
tion and dynamics. The method has been tested in de novo structure pre-
dictions of several small proteins, including protein A fragments, two
designed four-helix bundle proteins, a monomeric version of ROP, crambin
and several coiled-coil motifs (sece Section V.A). The Monte Carlo folding
procedure employed a simulated annealing protocol and a knowledge-
based force ficld derived from protein structural regularities [152,211-213].
For globular proteins, the accuracy of thesc predictions (measured as the
coordinate RMSD from the a-carbon trace of known structures) ranged
from 2.25 A for the B domain of protcin A and 4.0 A for crambin to about
5 A for the 120-residue ROP monomer. The obtaincd lattice folds were
consistent with an all-atom representation, and detailed atomic models
could always be reconstructed at virtually identical accuracy as the corre-
sponding lattice models [18,155,210]. This high-coordination-number
lattice model also has been uscd in de novo compuler-aided design (CAD)
[19,40] and in the redcsign of protcin topology [153,154]. However, the
method fails for larger protcins of complex topology. In these cases, frag-
ments of the protecin under consideration usually form native-like motifs;
however, topological crrors (wrong strand reversals, etc.) lead to globally
misfolded structures. The knowledge-based force field of these models seems
be qualitatively correct (it rccognizes most native folds in threading
experiments), but the native energy minimum is not very deep. Therefore,
the applicability of the model to structure prediction could be substantially
extended with the help of some theoretically or experimentatly derived
restraints.
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2. Prediction Using Known Secondary Structure and Correct Tertiary
Restraints

One possible way of improving tertiary structurc prediction is to use either
known or predicled secondary structural information. In that regard, using
an ofl-lattice model and exact knowledge of the secondary structure, Fries-
ner ct al. have successfully folded two four-helix bundle proteins, cyto-
chrome b562 and myohemerythrin [214]. Furthermore, assuming known
native sccondary structure, Dandekar and Argos [215,216] have reported
encouraging results for simple helical and B proteins using a genctic algo-
rithm (o scarch conformational space. Mumenthaler and Braun [217] have
developed a self-correcting distance gecometry method that also assumes
known sccondary structure. They successfully identificd the native topology
of six of cight helical protcins. There also have been a number of studics

‘that incorporate the known native sccondary structure and a limited

number of known and correct long-range restraints to predict the global
fold of a globular protein. In particular, Smith-Brown, Kominos, and Levy
[218] have modeled the protein as a chain of glycine residucs and used
Moutc Carlo as the scarch protocol. Reslraints arc encoded via a bihar-
monic polential, with folding forced to proceed sequentially via successive
implementation of the restraints. A number of proteins were cxamined. By
way of example, flavodoxin, a 138-residue a/f protein, was folded to a
structure whose backbone RMSD from native was 3.18 A for 147 restraints.
Another clTort to predict the global fold of a protcin from a limited number
of distance restraints is due to Aszodi ct al. [219]. This approach is very
much in the spirit of the work of Mumenthaler and Braun and is based on
distance geometry, where a set of cxperimental tertiary distance restraints
are supplementcd by a sct of predicied interresiduc distances. Here, these
distances are obtained from patterns of conserved hydrophobic amino acids
that have been cxtracted on the basis of multiple sequence alignments. In
general, they find that to assemble structures below 5-A RMSD, on average,
typically more than N/4 restraints are required, where N is the number of
residucs. Even then, the Aszodi ct al. [219] method has problems sclecting
out the correct fold from compcling alternatives. An advantage of the
Aszodi ¢t al. approach is that it is very rapid, with a typical calculation
taking on the order of minutcs on a typical contemporary workstation.
Turning to lattice-based methods that sample conformations via Montc
Carlo, the MONSSTER (modcling of new structures from secondary and
tertiary restraints) method for folding of protcins using a small number of
tertiary distance restraints and looscly defined knowledge of the sccondary
structure of rcgular fragments has been developed [220). The method
incorporates potentials reflecting statistical preferences for secondary struc-

S
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ture, side-chain burial and pair interactions, and a hydrogen bond potential
bascd on the a-carbon coordinates. Using this algorithm, several globular
proteins have been folded to moderale resolution native-like, compact
states. For example, flavodoxin, with 35 restraints, has been folded to struc-
tures whose average RMSD is 4.28 A, Plastocyanin with 25 long-range
restraints adopls conformations whose average RMSD is 544 A, These
results compare very favorably with the Aszodi et al. and Smith-Brown et
al. approaches [218,219]. In general, preliminary indications are that helical
proleins can be folded with roughly N/7 restraints, while f§ and aff proteins
require about N/4 restraints, where N is the number of residucs. Of course,
for any particular case, the accuracy depends on the location of the
restraints. This point requires additional investigation.

3. Method for Prediction of Tertiary Structure from Predicted Secondary
Structure and Tertiary Restraints

Recently, a procedure has been developed that does not rely on a priori
knowledge of the native conformation to fold a number of single-domain
proteins [221,222]. The procedure can be derived into two parts: restraint
dcerivation and structure assembly using the MONSSTER algorithm. With
respect to restraint derivation, using multiple scquence alignment, protein
sccondary structure is prediclted using the PHD method [223]. Regions
where the chain reverses global direction (U-turns) are predicted using the
method of Kolinski et al. [224] and override PHD predictions because they
have been shown to be highly accurate. Then, the multiple sequence align-
ment and the secondary structure prediction for the topological elements
between U-turns are combined to predict side-chain contacts. Such contact
map prediction is carried out in two stages. First, an analysis of correlated
mulations is carried out to identily pairs of topological elements of second-
ary structure (regions of the chain between U-lurns) that are in contact
[225]. The rationale is that in this way il is possible to restrict the predic-
lions to rigid elements of the core, for which the assumption of closeness in
space as reflected in the covariance of their mutational behavior is, in prin-
ciple, more valid. Then, inverse folding [226] is used to select compatible
fragments in contact, thereby enriching the number and identity of predict-
cd side-chain contacts. Parenthetically, we note that for topological ele-
ments that are known to touch, this procedure produces contacts of which
67% are correct within + 1 residue. This is of comparable accuracy to the
situation where the contacts are predicted. Of course, they do not employ
any information about the native structure in the prediction protocol. The
final outcome of the prediction protocol is a set of noisy secondary and
tertiary restraints.

The predicted sccondary and lertiary restraints are inputted to the
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MONSSTER mcthod described above. However, now restraint information
is predicted rather than being extracted from the native structure. Imple-
mentation of the restraints is carried out so as to take their low resolution
into account. l.ow-energy structures are then scarched for by simulated
anncaling. lollowed by isothermal refinement. Those structures having the
lowest average and minimum cnergics arc assigned as nalive.

The above protocol has been applied to the set of 17 prolcins. All arc
extrinsic to the set of proteins employed in the derivation of the potentials.
The average RMSD of the lowest-cnergy set of structures ranges from 2.8 A
for small helical proteins to roughly 6 A for # and mixed-molif proteins. In
all cases, the global topology is recovered. It is very important to emphasize
that all structural predictions use the identical parameler set and folding
protocol. Furthermore, they also considered one case, lctf, where both the
Rost-Sander prediction and the U-turn prediction protocol were poor.
Because of the ailure to identify the core regions ol the molccule, the corre-
lated mutation analysis yiclded only two terliary contacls (i.c., the protocol
failed). More generally, the range of validity of this prolocol remains to be
cstablishcd. Nevertheless, it is very encouraging that in the test case where
the alporithm was grossly incorrect, the result yiclded by the protocol was
that the molecule is not foldable. 1t is very important to have an algorithm
that indicales when it cannot be used; this preliminary result provides some
encouragement that this might be the case.

V. QUATERNARY STRUCTURE PREDICTION
A. Coiled Coil, De Nove Simulations

Theoretical studies of coiled-coil systems are surprisingly scarce. Neverthe-
less, coiled coils represent an important test bed for quaternary structure
prediction methods. Their quaternary structure consists simply of the side-
by-side association of a helices wrapped around each other with a slight
supertwist [227]. In the 1980s, Skolnick and Holtzer generalized the Zimm
Bragg helix-coil theory [167] to include interhelical interactions [228]. The
resulting phenomenological theory was able to predict the qualternary
structurc of tropomyosin and its fragments over a broad range of tem-
perature and pH. However, these studics were mainly limited to dimeric
coiled coils and required that the native structure be assumed. More
detailed atomic modeling of coiled coils commenced in 1991 when Nilges
and Brunger developed an automated algorithm for the prediction of
coiled-coil structure, based on the assumption thal the helices are parallel
and in register [200,229]. They applicd this approach to predict a structure
of the GCN4 leucine zipper, whose backbone atom RMSD from the subse-
quently solved crystal structure is 1.2 A. They concluded (hat given the




228 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

correct registration, the best packing of the hydrophobic residues in the
core dictates the detailcd gcometry. This obscrvalion was first made by
Crick in 1953. At about the same time, Novotny et al. [230] estimated the
stability of GCN4, fos, and jun leucine zippers from molccular mechanics
calculations. Their conclusions suggest that Leu in the d position of the
canonical coiled-coil heptet makes a major contribution to the stability of
dimers, whereas residues in the a positions are far less important. These
conclusions are supported by the studies of Zhang and Hermans on a
model leucine zipper [231]. Most recently, Harbury and Kim have devel-
oped a very simple and fast algorithm for predicting structures with ideal
coiled-coil geometry. Unfortunately, it will not work if the coiled coil
geometry is distorted [232]). To date, the only de novo simulations of
coiled-coil assembly that starts from a pair of random chains and results in
structures that are at the level of experimental resolution are those of Vieth
ct al. [17,155]. Starting from random denatured states and using their high-
coordination-number lallice protein model [17], they produced parallcl, in-
register folding conformations on lattice. Full atomic models are built and
refined using a molecular dynamics anncaling protocol. This produced
structures whose backbone RSMD from the crystal structure is 0.81 A.

B. Method for Prediction of Equilibrium Constants of Multimeric Helical
Proteins

Harbury et al. [233] have examined the shift in equilibrium among coiled-
coil dimers, trimers, and tetramers associated with varying the identity of
the residues of the hydrophobic residues in the coiled-coil heptad repeat of
the GCN4 leucine zipper. Victh and co-workers have developed a method
to calculate the equilibrium constant among a manifold of assumed confor-
mations (using a hybrid Monte Carlo-transfer matrix approach) [234].
When applied to the cight mutants studied by Harbury et al., their calcu-
lations are in agreement with experiment over the entire concentration
range for five of cight scquences, and over a portion of the concentration-
range, they are in agrecment for an additional two sequences. They find
that local, intrinsic secondary structure preferences and side-chain entropy
act to favor lower order multimers, whereas tertiary and quaternary inter-
actions act to favor higher-order multimers. The model also correctly pre-
dicted the state of association of a number of GNC4 leucine zipper
fragments [235], as well as the quaternary structure of the DNA binding
proteins fos and jun. Finally, they cxamined the coil-ser scquence designed
by Eisenberg, DeGrado, and co-workers. In agreement with the experiment,
an antiparallel, three-helix bundle is predicted to be the native conforma-
tion [236).
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VL. SIMULATION OF PEPTIDE INSERTION INTO
MEMBRANES

A. Small Proteins and Peptides

An off-latticc Monte Carlo dynamics simulation has been uscd to investi-
galc the behavior of filamentous bacteriophage coat proteins pfi and fd and
a number of peplides such as m26, melittin, and magainin2 in a model
membranc environment [237,238]. The objective is to predict the orienta-
tion, location and conformation of the proteins with respect to a model
lipid bilayer. The protein is represented by a chain of balls with centers at
the a catbons and whose radii are residue-dependent. Here, a continuous-
spacc model is used; that is, the a-carbon positions are not restricted to
lattice sites. The membrane is treated as a z-coordinate-dependent effective
potential representing the environments of waler, lipid-water interface and
lipid. ‘The hydrophobic interaction encrgy depends not only on amino acid
identity but also on its position in spacc. In this sct of simulations, the
membranc is modeled as an effcctive medium. The simulations begin with a
random conformation in the water portion of the box, and sampling occurs
using Montc Carlo dynamics. These simulations predict that despite the
very low scquence similarity between the major coat proteins of Pfl and fd
bacteriophages, their structures in a membrane environment are very
similar. This suggests that the hydrophobic cffect exerts an important influ-
ence on membrane protein structure. Focusing on fd by way of cxample,
the simulations predict that an amphipathic helix runs from residues § to
19, and that a transbilayer helix runs [rom residues 25 to 41. This is to be
compared with the experiment that indicated that the N-terminal amphi-
pathic hclix runs from residucs 7 to 20, and the transbilayer helix is located
between residues 23 and 42. Thus, good agreement with experiment is
found [239,240]. Similar agreement with experiment was found for the
other systems studied.

B. Translocation Across Model Membranes

A legitimate question concerns the limitations of a model where the mem-
brane is treated as an eflective medium. To explore this issuc, a series of
simulations were done where each lipid molecule in the bilayer was rep-
resented by a dumbbell, and the cffect of curvature on the transport of a
structureless polymer was explored [241]. Intercstingly, when the mem-
brane is highly curved, therc is almost irreversible transport from the
outside to the inside of the spherical vesicle. This arises from cntropic
effects. Basically, because the interior lcaflet is of lower density, after pen-
ctrating into the membrane, the polymer prefers to remain in this region. In

STt
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contrast, this cffect vanishcs when the membrane is treated as a structure-
less, hydrophobic medium. Thus, there may well be situations where the
structure of the membrane exerts important effects.

The translocation of a polymer driven by an external field bias of
strength & across a model membrane has also been investigated using
Monte Carlo mecthods [242]. Again, each lipid molecule is modeled as a
dumbbell. It is found that below a characlceristic field strength, &*, the mem-
brane is practically impermeable. In the high-field limit of ¢ > €*, the per-
meability is independent of the ficld strength. At low fields, the permeability
decreases according to exp(—&*/e). The translocation mechanism can be
understood as a Kramers process describing the escape of a particle over
potential barricrs.

VIl. PERSPECTIVES
A. Where Are We Now?

Computer studies of simple, cxact models [51,57,78], protein-like models,
and more realistic protein modecls have greatly increased our understanding
of the protein folding process and the stability of protein structures. For
example, Levinthal's paradox [243-245] secms to be rationalized by the
simulation results. It is now more or less clear how proteins partition their
conformational space, thereby sampling only a very small {raction of all
possible states [58]. Studies of simple, cxact models have demonstrated that
one such way of reducing the available conformational space is by hydro-
phobic collapse. Also, simple, exact models and protein-like models provide
a plausible explanation of why some sequences fold rapidly, whereas others
fold very slowly or not at all. Different folding scenarios can be now ration-
alized by analogy to a spin-glass [85,99,100,246].

From studies on somewhat more complex models, we have learned
about the interplay between the short- and long-range interactions
[35-37,40,42,103,104,107] and their possible role in both the thermodyna-
mics and kinetics of protein folding. The formation of sccondary structure
nuclei can also drastically reduce available conformational space, providing
a somewhat different (although in principle equivalent) explanation of
Levinthal's paradox. Actually, an opposite paradox, termed here the prox-
imity paradox, should bc addressed: Why docs a confined (by chain
conneclivity) molecular system consisting ol thousands of atoms (whose
degrees of conformational freedom are locally strongly coupled) require
times ranging from milliscconds o scconds to adopt its native slale,
whereas folding into an “almost correct” structure from the denatured state
is very rapid. The type of collective molccular mechanism responsible for
the “side-chain fixation” or molten globulc-native state transition is not yet
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known. Simulation studics [131], physical cxperiments on natural protcins
[247]., and thc investigation of artificial proteins [177,248-252] have started
to address this issue. Recent studies seem to indicate that the satisfactory
solution of this problem will require the analysis of the various lypes of
physical intcractions in proteins, including explicit multibody approx-
imations Lo fertiary interactions.

Protein structure prediction [253,254] is one of the major goals of com-
putational molccular biology. Up lo now, homology based and threading
mcthods have been the most successful [185,226,255-264]. However, due to
the increasing ratio of the number of known protcin sequences 1o the
numbcer of solved protein structures, the development of de novo (or
related) methods would be extremely valuable. To date, only limited, never-
theless encouraging, progress has been achicved in such direct approaches
{42,254]. Purcly dc novo predictions are now possible only for peptides
{186] and very small and structurally simple proteins [42,200,229]). It
appears that the most promising are the methods that employ knowledge-
based faclorization of protein interaction and structural regularities
[28.135,139,152,207,211,212,214,265,266]. Over the short term, hicrarchic
technigues that exploit evolutionary information and fragmentary experi-
mental data should become a standard tool for low-resolution protein
structure prediction [222,267].

B. Shortcomings of the Present Force Fields, Possible Refinements, and
Reformulations

The work of Novotny et al. [268] and others [269,270] has shown that the
classic, dctailed atomic force fields arc locally, but not necessary globally,
correct. It is unlikely that for these force ficlds the global minimum of con-
formaltional cnergy corresponds to the native state. On other hand, in many
cascs, cven an extremely simplified interaction scheme can match a
scquence to ils native structure in a threading experiment. In other words,
when a scquence is fitted to various protein-like structures, the demands on
the force field are much less. In such cases, the numcrous interactions that
make a polypeptide chain a protein become to a large extent irrelevant, and
only sequence specific components have to be correctly accounted for in
threading cxpcriments. The conclusion is rather simple—an cfficient force
ficld for simulation of the proicin folding process and, conscquently, for the
de novo prolcin structure prediction must discriminate against a majorily
of conformations that ncver occur in folded protcins. Otherwisc, a confor-
mational scarch procedure would mostly explore rather irrclevant portions
of the modcl conformational spacc. In the carly aticmpts to build reduced
models of proleins, this important fact was nol sufficicntly appreciated.
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Within the context of the above, let us try to formulate some nccessary
requirements for the design of a moderate resolution reduced model (based
on united-atom representation and knowledge-based potentials) of real pro-
teins and its force ficld:

1. The resolution of the model has to be at least on the level of 2 A.
Otherwise, packing complementarity of the side groups would be lost.

2. Short-range interactions (knowledge-based or semicmperical) must
account for the polypeptide chain’s conformational stiffness [20,42].
In other words, protein-like corrclations enforced by the potential
should extend over several residucs. This would considerably narrow
the available conformational space.

3. At least for main-chain units, a highly directional model of hydrogen
bond interactions (perhaps with an explicit cooperative term) has to
be designed [16,17,19,40,42,55]. Globular proteins have a regular
network of hydrogen bonds. The energy difference between a peptide
group hydrogen-bonded to water molecules and the same group
hydrogen-bonded to another peptide group is minor. However, the
free energy price for having non saturated hydrogen bonds in a
protein interior is large. Thus, the hydrogen bond network plays a
very important structure-regularizing role, eliminating the majority of
otherwise possible compact conformations of pol ypeplide chains.

4. Side chains (even when modeled as single-interaction spheres) should
have some conformational freedom that reflects their internal mobil-
ity in real proteins. Pairwise interaction potentials should be as spe-
cific as possible, and in the absence of explicit solvent, a burial
potential that reflects the hydrophobic effect may be necessary
[17,42].

5. Somehow, higher-order than pair, multibody interactions have to be
built into the model. Since unrestrained MD simulations with all
atom potentials lead to liquid-like (instead of native-like) packing of
side chains [269], it is rather unlikely that a protcin-like pattern of
side-group contacts would emecrge in a reduced model context
without tertiary structure-regularizing interactions. Such side-chain
multibody interactions provide a bias toward a protein-like packing.
The possible role of multibody corrclations for protein structure
modeling and recognition is starling to receive some attention
(16,17,40,42,56,153,154,213,271,272).

Of course, the specific realization of these proposed minimal require-
ments may differ in various models. Some other features may be necessary.

MONTE CARLO APPROACHES TO PROTEIN FOLDING PROBLEM 233

The practical realization of the preceding set of requircments allowed the
design of protein models that were capable of folding a subsct of small,
telatively simple proteins [16,42,56,155,210). Very likely, further progress
will depend on the development, refinement and consistent implementation
ol more complete knowledge-based force fields.

C. Promises of New Sampling Methods

Several recent developments in sampling methodology have increased the
aceuracy and reliability of Monte Carlo simulations of protein folding pro-
cesses. In standard Metropolis-type algorithms, sampling cfficicncy can be
immenscly improved by the application of “smart” local conformational
upnlates. This is truc for both off-lattice continuous-space models [25,30,31]
and for lattice models of protein chains [17,20,42]. These local moves, in
contrast lo purely random conformational updates, are designed in such a
way that the model system visits only the local conformational energy
minima; thus, it ignores all conformations that would be rejecled as a result
of steric overlaps, large distortions of valence angles, or other factors. Locai
minimization techniques [189] could be combined with the Metropolis
sampling scheme.

Recently developed high-coordination-number lattice models of protein
dynamics and structure have scveral methodological advantages. Such
modcls have an acceptable resolution, no worse than that of most off-lattice
teduced models. However, due to the usc of a lattice, the simulation algo-
tithms are much faster than those otherwise equivalent continuous-space
modcls. It also should be noted that the resolution of recently developed
reduced models is sufficient for hierarchical simulations. In these cases,
large-scale relaxation can be performed via Monte Carlo dynamics on a
reduced model and the intervening fragments of trajectory could be simu-
lated via the MD technique. It is easy to do fast projections of all-atom
modcls onto reduced models. Conversely, rebuilding all-atom structures
from a reduced representation could also be done rapidly with reliable
accuracy.

A novel approach to protcin conformation is the entropy-sampling
Monte Carlo method (ESMC), which is described in detail in another con-
tribution to this volume. The method provides a complete thermodynamic
description of protein modcls, but it is computationally quile cxpensive.
However, because of the underlying data-parallel structure of ESMC algo-
rithms, computations could be done on massively parallel compulers essen-
tially without thc communication overhead typical for the majority of other
simulation techniques. This technique will undoubtedly be applicd to
numcrous systems in the ncar luture.
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ViiI. CONCLUSIONS

Over the last decade, Monte Carlo-based approaches have proved to be a
powerful tool for addressing various aspects of the protein folding problem.
To date, their greatest impact has been in the application to reduced
protein models designed ecither to explore gencral questions of protein
folding or to predict low to modcrate resolution native structures. Because
dynamic Monte Carlo can effectively simulate dynamic processes, it has
provided numerous insights into the mcchanism by which proteins fold.
Both dynamic and entropy-sampling Monte Carlo have permitied the
investigation of the panoply of intcractions responsible for the unique
native structure characteristic of globular protcins. More rccently, thesc
methods have been applied with increased success to the prediction of
protein tertiary and quaternary structure. This is especially true when
knowledge-based, statistical potentials arc combined with evolutionary
information provided by multiple sequence alignments. Such combined
approaches are very likely to yicld additional progress in the protein
folding problem in the near future.

This review has emphasized the application of reduced models to prob-
lems of protein folding. Such models combined with Monte Carlo sampling
also could be used in the study of other biological processes, such as the
mechanism of virus assembly [273]. Furthermorc, Monte Carlo-driven,
reduced protein models could provide effective reaction coordinaltes, which
are then sampled by molecular dynamic simulations of atomic models. This
would combine the best of both approaches: the ability to simulate large-
scale, long-time proccsses and the ability to examine such processes at
atomic detail. Thus, by being employed in novel contexts, Monte Carlo-
based sampling approaches are likely to continuec to provide numerous
valuable insights into the behavior of biological systems.

REFERENCES

C. B. Anfinsen and H. A. Scheraga, Adv. Prot. Chem. 29, 205-300 (1975).

T. E. Creighton, Proteins: Structures and Molecular Properties, Freeman, New York,
1993.

. R. L. Jernigan, Curr. Opin. Struct. Biol. 2, 248-256 (1992).

. M. J. Gething and J. Sambrook, Nature 35S, 33-45 (1992).

O. B. Plitsyn, J. Prot. Chem. 6, 273-293 (1987).

. T. E. Creighton, Biockem. J. 270, 131-146 (1990).

. C. B. Anfinsen, Science 181, 223-230(1973).

. P. L. Privalov and S. J. Gill, Adv. Prot. Chem. 39, 191-235 (1988).

. L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem. 93, 3339-3346 (1989).

~

&~ oW

~N oW

O %o

MONTL CARLO APPROACHES TO PROTEIN FOLDING PROBLEM 235

10. D. R. Ripoll, 1. Picla, M. Vclasqucz, and H. A. Scheraga, Proteins 10, 188-198 (1991).

1. C. L. L Brooks, M. Karplus, and B. M. Peutilt, Proteins: A Theoretical Perspective of
Dynamic Structure and Thermodynamics, Wiley, New York, 1988.

12. M. Karplus and G. A. Petsko, Nature 347, 631-639 (1990).

13. J. A. McCammon, Rep. Prog. Phys. 47, 1-46 (1984).

14. B. Il Park and M. Levitt, J. Mol. Biol. 249, 493-507 (1995).

15. A. Godzik, A. Kolinski, and J. Skolnick, J. Comp. Chem. 14, 1194-1202 (1993).

16. A. Kolinski, A. Godzik, and J. Skolnick, J. Chem. Phys., 98, 7420-7433 (1993).

17. A. Kolinski and J. Skolnick, Proteins 18, 338-352 (1994).

18. ). Skolnick, A. Kolinski, C. Brooks Ill, A. Godzik, and A. Rey, Curr. Biol. 3, 414-423
(1993).

19. A. Kolinski, W. Galazka, and J. Skolnick, J. Chem. Phys. 103, 10286-10297 (1995).

20. A. Kolinski, M. Milik, J. Rycombel, and J. Skolnick, J. Chem. Phys. 103, 4312-4323
(1995).

21. Y. Zhou, C. K. Hall, and M. Karplus, Phys. Rev. Lett. 77, 2822-2825 (1996).

22. M. Levitt and A. Warshel, Nature 253, 694-698 (1975).

23. J. D. Honeycutt and D. Thirumalai, Proc. Natl. Acad. Sci. USA 87, 3526-3529 (1990).

24. C. Wilson and S. Doniach, Proteins 6, 193-209 (1989).

25. E. W. Knapp, J. Comp. Chem. 13, 793-798 (1992).

26. D. Hoflmann and E. W. Knapp, Phys. Rev. E 53, 4221-4224 (1996).

27. B. Lee, N. Kurochkina, and H. S. Kang, FASEB J. 10, 119-125 (1996).

28. S. Sun, Prot. Sci. 2, 762-785 (1993).

29. A. A. Rabow and H. A. Scheraga, Prot. Sci. S, 18001815 (1996).

30. E. W. Knapp and A. lrgens-Deftegger, J. Comp. Chem. 14, 19-29 (199)).

31. A. Elofsson, S. M. Le Grand, and D. Eisenberg, Proteins 23, 73-82 (1996).

32. K. Binder, Monte Carlo Methods in Statistical Physics, Springer-Verlag, Berlin, 1986.

33. K. Binder, paper, Institut Fiir Physik, Johannes Gutenberg-Universitit, Mainz, 1991.

J4. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem.
Phys. 51, 10871092 (1953).

35. M.-H. Hao and H. A. Scheraga, J. Phys. Chem. 98, 4940-4948 (1994).

36. M.-H. Hao and H. A. Scheraga, J. Phys. Chem. 98, 9882-9893 (1994).

37. M.-H. Hao and H. A. Scheraga, J. Chem. Phys. 102, 1334-1348 (1995).

38. J. Lee, Phys. Rev. Lett. 71, 211-214 (1993).

39. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9-12 (1991).

40. A. Kolinski, W. Galazka, and J. Skolnick, Proteins 26, 271-287 (1996).

41. R. A. Orwoll and W. H. Stockmayer, Adv. Chem. Phys. 15, 305-324 (1969).

42. A. Kolinski and J. Skolnick, Lattice Models of Protein Falding, Dynamics and Thermody-
namics, Landes, Austin, TX, 1996.

43. A. Kolinski, J. Skolnick, and R. Yaris, Biopolymers 26, 937-962 (1987).

44. A. Kolinski, J. Skolnick, and R. Yaris, Macromolecules 20, 438-440 (1987).

45. A. Kolinski, J. Skolnick, and R. Yaris, J. Chem. Phys. 86, 7164-7173 (1987).

46. A. Kolinski and J. Skolnick, J. Phys. Chem. 97, 3450 (1993).

47. P. E. J. Rouse, J. Chem. Phys. 21, 1272-1278 (1953).



236 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

48. R. Zwanzig, J. Chem. Phys. 60, 2717-2720 (1974).
49. D. Hoffmann and E. W. Knapp, Eur. Biophys. J. 24, 387-403 (1996).
50. C. Baysal and H. Meirovitch, J. Chem. Phys. 108, 7868-7871 (1996).

51. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan,
Prot. Sci. 4, 561-602 (1995).

52. Z. Guo and D. Thirumalai, J. Chem. Phys. 97, 525-536 (1992).

53. Z. Guo and D. Thirumalai, Biopolymers 36, 83-102 (1995).

54. A. Kolinski, M. Milik, and 3. Skolnick, J. Chem. Phys. 94, 3978~3985 (1991).
55. A. Kolinski and J. Skolnick, J. Phys. Chem. 97, 9412-9426 (1992).

56. A. Kolinski and J. Skolnick, Proteins 18, 353-366 (1994).

57. E. L. Shakhnovich, Folding & Design 1, R50-R 54 (1996).

58. M. Karplus and A. Sali, Curr. Opin. Struct. Biol. 5, 58-73 (1995).

59. H.S. Chan and K. A. Dill, Macromolecules 22, 4559-4573 ( 1989).

60. H.S. Chan and K. A. Dill, Proc. Natl. Acad. Sci. USA 87, 6388-6392 (1990).
61. H.S. Chan and K. A. Dill, J. Chem. Phys. 95, 3775-3787 (1991).

62. H.S. Chan and K. A. Dill, J. Chem. Phys. 99, 2116-2127 (1993).

63. L. M. Gregoret and F. E. Cohen, J. Mol. Biol. 219, 109-122 (1991).

64. M.-H. Hao, S. Rackovsky, A. Liwo, M. R. Pinkus, and H. A. Scheraga, Proc. Natl. Acad.
Sci. USA 89, 6614-6618 (1992).

65. N. D. Socci and J. N. Onuchic, J. Chem. Phys. 100, 1519-1528 (1994).

66. G. N. Hunt, L. M. Gregoret, and F. E. Cohen, J. Mol. Biol. 241, 214-225 (1994).

67. A. Kolinski, J. Skolnick, and R. Yaris, J. Chem. Phys. 85, 3585-3597 (1986).

68. A. Kolinski and J. Skolnick, Proc. Natl. Acad. Sci. USA 83, 7267-7271 (1986).

69. K. A. Dill, Biochemistry 24, 1501-1509 (1985).

70. K. F. Lau and K. A. Dill, Macromolecules 22, 3986-3997 (1989).

71. E. Shakhnovich, G. Farztdinov, and A. M. Gutin, Phys. Rev. Lett. 67, 1665-1668 1991).
72. E. I Shakhnovich and A. M. Gutin, Proc. Natl. Acad. Sci. US4 90, 7195-7199 (1993).
73. E. L. Shakhnovich and A. M. Gutin, Protein Eng. 6, 793-800 ( 1993).

74. M. E. Kellman, J. Chem. Phys. 105, 2500-2508 (1996).

75. A. Sali, E. Shakhnovich, and M. Karplus, J. Mol. Biol. 235, 1614-1636 (1994).

76. N. D. Socci, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys. 104, 5860-5868 (1996).

77. V. I. Abkevich, A. M. Gutin, and E. L. Shakhnovich, J. Chem. Phys. 101, 6052-6062
(1994).

78. A. Sali, E. Shakhnovich, and M. Karplus, Nature 369, 248-251 (1994).

79. P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Acad. Sci. USA 89, 8721-8725
(1992).

80. L. A. Mirny, V. Abkevich, and E. I. Shakhnovich, Folding & Design 1, 103-116 (1996).
81. H.S. Chan and K. A. Dill, J. Chem. Phys. 100, 9238-9257 (1994).

82. H.S. Chan and K. A. Dill, Proteins 24, 335-344 (1996).

83. A.R. Dinner, A. Sali, and M. Karplus, Proc. Natl. Acad. Sci. USA 93, 8356-8361 (1996).
84. N. D. Socci and J. N. Onuchic, J. Chem. Phys. 103 4732-4744 (1995).

85. J. D. Bryngelson, J. N. Onuchic, N. D). Socci, and P. G. Wolynes, Proteins 21, 167-195
(1995).

86.
87.
88,
89.
90,

9L

ra
93
94
95.
96.
97.

123.

MONTE CARLO APPROACHES TO PROTEIN FOLDING PROBLEM 237

V. 1. Abkevich, A. M. Gutin, and E. I. Shakhnovich, Prot. Sci. 4, 1167-1177 (1995).
C. J. Camacho and D). Thirumalai, Proteins, 22, 27-40 (1995).

E. M. O'Toole and A. Z. Panagiotopoulos, J. Chem. Phys. 97, 8644-8652 (1992).
I ¢ Beutler and K. A. Dill, Prot. Sci. 5, 2037-2043 (1996).

K. Yuc. K. M. Ficbig, P. D. Thomas, H. S. Chan, E. 1. Shakhnovich, and K. A. Dill, Proc.
Nutl. Avad. Sci. USA 92, 325-329 (1995).

M.-H. Hao and H. A. Scheraga, J. Phys. Chem. 100, 14540-14548 (1996).

M.-11. Hao and H. A. Scheraga, Proc. Nail. Acad. Sci. USA 93, 4984-4989 (1996).

V. L. Abkevich, A. M. Gutin, and E. . Shakhnovich, Folding & Design 1, 221-230 (1996).
A. V. P. de Araujo and T. C. Pochapsky, Folding & Design 1, 299-314 (1996).

S. Biomberg and K. A. Dill, Prot. Sci. 3, 997-1009 (1994).

S.-1. Segawa and T. Kawai, Biopolymers 25, 1815-1835 (1986).

M. Karplus and E. Shakhnovich, in Protein Folding, T. E. Creighton, ed., Freeman, New
York, 1992, pp. 127-196.

. 11. Frauenfelder and P. G. Wolynes, Phys. Today 417, 58-64 (1994).

. J. D. Bryngelson and P. G. Wolynes, Biopolymers 30, 117-188 (1990).

. J. D. Bryngelson, J. Chem. Phys. 100, 6038-6045 (1994).

. J. N. Onuchic, P. G. Wolynes, Z. Luthey-Schulten, and N. D. Socci, Proc. Natl. Acad. Sci.

USA 92, 2626-3630 (1995).

. A. V. Finkelstein, A. Y. Badretdinov, and A. M. Gutin, Proteins 23, 142-150 (1996).
. N. Go and H. Taketomi, Proc. Natl. Acad. Sci. USA 78, 559-563 (1978).
. N. Go, H. Abe, H. Mizuno, and H. Taketomi, eds., Protein Folding, Elsevier/North

Holland, Amsterdam, 1980.

. H. Taketomi, F. Karo, and N. Go, Biepolymers 27, 527-559 (1988).

. H. Taketomi, Y. Ueda, and N. Go, Int. J. Pept. Prot. Res. 1, 445-449 (1988).

. N. Go, Ann. Rev. Biophys. Biceng. 12, 183-210 (1983).

. Y. Ucda, H. Taketomi, and N. Go, Biepolymers 17, 15311548 (1978).

. J. Skolnick, A. Kolinski, and R. Yaris, Proc. Natl. Acad. Sci. USA 85, 5057 (1988).

J. Skolnick and A. Kolinski, Annu. Rev. Phys. Chem. 40, 207-235 (1989).

J. Skolnick, A. Kotinski, and R. Yaris, Biopolymers 28, 1059-1095 (1989).

J. Skolnick, A. Kolinski, and R. Yaris, Proc. Natl. Acad. Sci. USA 86, 1229-1233 (1989).
J. Skolnick and A. Kolinski, J. Mol. Biol. 212, 787-817 (1989).

A. Sikorski and J. Skolnick, Biopolymers 28, 1097-1113 (1989).

A. Sikorski and J. Skolnick, Proc. Natl. Acad. Sci. USA 86, 2668-2672 (1989).

A. Sikorski and J. Skolnick, J. Mol. Biol. 212, 819-836 (1990).

A. Sikorski and J. Skolnick, J. Mol. Biol. 215, 183-198 (1990).

A. Kolinski and A. Sikorski, J. Polym. Sci. Polym. Lett. Ed. 20, 177-179 (1982).

A. Kolinski and A. Sikorski, J. Polym. Sci. Polym. Chem. Ed. 22, 97-106 (1984).

. E. O'Toole, R. Venkataramani, and A. Z. Panagiotopoulous, AIChE J. 41, 954-958

(1995).

. J. Skolnick and A. Kolinski, J. Mol. Biol. 221, 499-531 (1991).
. R. C. Brower, G. Vasmaliz, M. Silverman, and C. Delisi, Biopolymers 33, 329-334 (1993).

A. V. Finkelstein and B. A. Reva, Nature 351, 497-499 (1991).




238 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

124. O. V. Galzitskaya and A. V. Finkelstcin, Prot Eng. 8, 883-892 (1994).

125. A. V. Finkelstein and B. A. Reva, Prot. Eng. 9, 387-397 (1996).

126. A. Rey and J. Skolnick, Proteins 16, 8-28 (1993).

127. A. Rey and J. Skolnick, Chem. Phys. 158, 199-219 (1991).

128. D. G. Garrett, K. Kastella and D. M. Ferguson, J. Am. Chem. Soc. 114, 6555-6556 (1992).

129. J. D. Honeycutt and D. Thirumalai, Biopolymers 32, 695-709 (1992).

130. F. Kano and H. Macda, Mol. Simul. 16, 261-274 (1996).

131. J. Skolnick and A. Kolinski, in Encyclopedia of Computational Chemistry, P. von Rauge
Schleyer and P. Kollman, eds., Wiley, New York, (in press) 1998.

132. 1. D. Kuntz, G. M. Crippen, P. A. Kollman, and D. Kimelman, J. Mol. Biol., 106, 983-
994 (1976).

133. B. Robson and D. J. Osguthorpe, J. Mol. Biol. 132, 19-51 (1979).

134. A. T. Hagler and B. Honig, Proc. Natl. Acad. Sci. USA 75, 554-558 (1978).

135. S. Tanaka and H. A. Scheraga, Macromolecules 9, 945-950 (1975).

136. G. M. Crippen and V. N. Viswanadhan, Int. J. Pept. Prot. Res. 25, 437-509 (1985).

137. F. Fogolari, G. Esposito, P. Viglino, and S. Cattarinussi, Biphys. J. 70, 1183-1197 (1996).
138. A. Wallqvist and M. Ullner, Proteins 18, 267-289 (1994).

139. S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534-552 (198S).

140. J. A. McCammon, S. H. Northrup, M. Karplus, and R. M. Levy, Biopolymers 19, 2033-
2045 (1980).

141. D. M. Ferguson and D. G. Garrel, in Adaptation of Simulated Annealing to Chemical
Optimization Problems, Vol. 15, by J. H. Kalivas, ed., Elsevier, New York, 1995.

142, W. R. Krigbaum and S. F. Lin, Macromolecules 18, 1135-1145 (1982).

143. V. G. Dashevskii, Molekulyarnaya Biologiya (Engl. transl), 14, 105117 (1980).
144. D. G. Covell, Proteins 14, 409-420 (1992).

145. D. G. Covell and R. L. Jernigan, Biochemistry 29, 3287-3294 (1990).

146. D. A. Hinds and M. Levitt, Proc. Natl. Acad. Sci. USA 89, 2536-2540 (1992).

147. J. Skolnick and A. Kolinski, in Computer Simulations of Biomolecular Systems. Theoretical
and Experimental Studies, W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, eds.,
ESCOM Science. Publishers B. V., Leiden, 1997.

148. J. Skolnick and A. Kolinski, Science 250, 1121-1125 (1990).

149. A. Godzik, J. Skolnick, and A. Kolinski, Proc. Natl. Acad. Sci. USA 89, 2629-2633 (1992).

150. R.S. DeWitte and E. L. Shakhnovich, Prot. Sci. 3, 15701581 (1994).

151. M. Levitt and J. Greer, J. Mol. Biol. 114, 181-293 (1977).

152. A. Godzik, J. Skolnick, and A. Kolinski, Prot. Eng. 6, 801-810 (1993).

153. K. A. Olszewski, A. Kolinski, and J. Skolnick, Prot. Eng. 9, 5-14 (1996).

154. K. A. Olszewski, A. Kolinski, and J. Skolnick, Proteins 25, 286-299 (1996).

I55. M. Vieth, A. Kolinski, C. L. Brooks 111, and J. Skolnick, J. Mol. Biol. 237, 361-367 (1994).

156. D. S. Rykunov, B. A. Reva, and A. V. Finkelstcin, Proteins 22, 100-109 (1995).

157. A. Monge, E. 1. P. Lathrop, J. R. Gunn, P. S. Shenkin, and R. A. Friesner, J. Mol. Biol.
247, 995-1012 (1995).

158. B. A. Reva, D. S. Rykunov, A. J. Olson, and A. V. Finkelstein, J. Comp. Biol, 2, 527-535
(1995).

MONTE CARLO APPROACHES TO PROTEIN FOLDING PROBLEM 239

159. B. A. Reva, A. V. Finkelstein, M. F. Sanncr, and A. ). Olson, Proteins 25, 379-388 (1996).

160. B. A. Reva, A. V. Finkelstein, D. S. Rykunov, and A. J. Olson, Proteins 26, 1-8 (1996).

161. 8. Honig and F. E. Cohen, Folding & Design 1, R17-R20 (1996).

162, Gi. D. Rose and R. Wolfenden, Amnue. Rev, Biophys. Biomol. Struct. 22, 381-415 (1993).

163. J. H. Dyson and P. E. Wright, Curr. Biol. 3, 60-65 (1993).

164. K. Lumb, J, aud P. Kim, S., Biochemistry 34, 8642-8648 (1995).

165. R. A. Abagyan, FEBS Lett. 325, 17-22 (1993).

166. P. Argos. J. Mol. Biol. 197, 331-348 (1987).

167. W. L. Zimm and J. K. Bragg, J. Chem. Phys. M, 526-535 (1959).

168. 1). Poland and H. A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers, Aca-
denic Press, New York, 1970.

169. E. 1. Shakhnovich and A. V. Finkelstein, Biopolymers 28, 1667-1680 (1989).

170. E. 1. Shakhnovich, Phys. Rev. Lett. 72, 3507-3910 ( 1994).

171. 1. Bahar and R. L. Jernigan, Biophys. J. 66, 467-481 (1994).

172. C.J. Camacho and D. Thirumalai, Proc. Natl. Acad. Sci. USA 90, 6369-6372 (1993).

173. C. B. Post and B. H. Zimm, Biopolymers 18, 1487-1501 ( 1979).

174. 1. C. Sanchez, Macromolecules 12, 980-988 ( 1979).

175. S. F. Betz, D. P. Raleigh, and W. F. DcGrado, Curr. Opin. Struct. Biol. 3, 601-610 (1993).

176. C. L. L. Brooks, Curr. Opin. Struct. Biol, 3, 92-98 (1993).

177. T. Handel and W. F. DeGrado, Biophys. J. 61, A265 (1992).

178. K. Kuwajima, Proteins 6, 87-103 (1989).

179. O. B. Ptitsyn, R. H. Pain, G. V. Semisotnov, E. Zerovnik, and O. I. Razgulyacv, FEBS
Lett. 262, 20-24 (1990).

180 D. P. Ralcigh and W. F. DeGrado, J. Am. Chem. Soc. 114, 10079-10081 (1992).

181. J. Skolnick, A. Kolinski, and A. Godzik, Proc. Natl. Acad. Sci. USA 90, 2099-2100 (1993).
182. A. V. Finkelstein and E. I. Shakhnovich, Biopolymers 29, 1681-1694 (1989).

183. R. L. Baldwin and H. Roder, Curr. Biol. 1, 219-220 (1991).

184. O. B. Ptitsyn, Curr. Opin. Struct. Biol. 5, 74-18 (1995).

185. A. Godzik, A. Kolinski, and J. Skolnick, J. Comp. Aided Mol. Design 7, 397-438 (1993).
186. M. Vasquez, G. Nemethy, and H. A. Scheraga, Chem. Rev. 94, 2183-2239 (1994).

187. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem. 719,
2361-2381 (1975).

188. M. H. Lambert and H. A. Scheraga, J. Comp, Chem. 10, 817-831 (1989).

189. Z. Liand H. A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611-6615 (1987).

190. H. Meirovitch, M. Vasquez, and H. A. Scheraga, Biopolymers 27, 1189-1204 (1988).
191. M. Viasquez and H. A. Scheraga, Biopolymers 24, 1437-1447 (1985).

192. H. A. Scheraga, M.-H. Hao, and J. Kostrowicki, in Methods in Protein Structure Analysis,
M. Z. Atassi and E. Appela, eds., Plenum Press, New York, 1995.

193. M. Vasquez, E. Mcirovitch, and H. Mcirovitch, J. Phys. Chem. 98, 9380-9382 (1994).

194. D. R. Ripoll and H. A. Scheraga, Biopolymers 30, 165-176 (1990).

195. A. Liwo, M. R. Pincus, R. ). Wawak, S. Rackovsky, and H. A. Scheraga, Prot. Sei. 2,
762-785 (1993).

196. A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, Prot. Sci. 2,




240

197.

198.
199.

200.
201,
202.
203.
204
205.
206.

207.
208.
209.
210.

211,
212,
213.
214.
215.
216.
217.
218.
219.
220.
221.
222,
223.
224,
225,
226.
227.
228.

229,
230.

231,

JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

2725-1731 (1993).

A. Liwo, S. Oldzicj, J. Ciarkowski, G. Kupryszewski, M. R. Pinkus, R. J. Wawak, §.
Rackovsky, and H. A. Scheraga, J. Prot. Chem. 13, 375-380 ( 1994).

B. Cheng, A. Nayeem, and H. A. Scheraga, J. Comp. Chem. 17, 1453-1480 (1996).

R. J. Wawak, K. D. Gibson, A. Liwo, and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 93
1743-1746 (1996).

M. Nilges and A. T. Brunger, Proteins 15, 133-146 (1993).

U. H. E. Hansmann and Y. Okamoto, J. Comp. Chem. 14, 1333-1338 (1993).
Y. Okamoto, Proteins 19, 14-23 (1994).

H. Meirovitch and E. Meirovitch, J. Phys. Chem. 99, 4847-4854 (1995).

E. Meirovitch and H. Meirovitch, Biopolymers 38, 68-88 (1996).

H. Meirovitch and E. Meirovitch, J. Phys. Chem. 100, 5123-5133 (1996).

W. F. van Gunsleren and P. K. Weiner, Computer Simulations of Biomolecular Systems.

Theoretical and Experimental Applications, ESCOM Science Publishers B.V., Leiden,
1989.

G. M. Crippen and M. E. Snow, Biopolymers 29, 1479-1489 (1990).
G. M. Crippen, Biochemistry 30, 4232-4237 (1991).
R. Srinivasan and G. D. Rose, Proteins 22, 81-99 (1995).

M. Vieth, A. Kolinski, C. L. Brooks, i1, and J. Skolnick, J. Mol. Biol. 251, 448-467
(1995).

A. Godzik, A. Kolinski, and J. Skolnick, Prot. Sci. 4, 2107-2117 (1995).

A. Godzik, Current Biol. 4, 363-366 (1996).

M. Milik, A. Kolinski, and J. Skolnick, Prot. Eng. 8, 225-236 (1995).

R. Friesner and J. R. Gunn, Annu. Rev. Biophys. Biomol. Struct. 25, 315-342 (1996).
B. Persson and P. Argos, J, Mol. Biol. 237, 182-192 (1994).

T. Dandekar and P. Argos, J. Mol. Biol. 256, 645-660 (1996).

C. Mumenthaler and W. Braun, Prot. Sci. 4, 863-871 (1995).

M. J. Smith-Brown, D. Kominos, and R. M. Levy, Prot. Eng. 6, 605-614 (1993).

A. Aszodi, M. J. Gradwell, and W. R. Taylor, J. Mol. Biol. 251, 308-326 (1995).

J. Skolnick, A. Kolinski, and A. R. Ortiz, J. Mol. Biol. 265, 217-241 (1997).

A. Ortiz, A. Kolinski, and J. Skolnick, J. Mol. Biol. 277, 419-448 (1998).

A. Ortiz, A. Kolinski, and J. Skolnick, Proc. Natl. Acad. Sci. USA 95, 1020-1025 (1998).
B. Rost and C. Sander, J. Mol. Biol. 232, 584-599 (1993).

A. Kolinski, J. Skolnick, A. Godzik, and W-P. Hu, Proteins 27, 290-308 (1997).

U. Gobel, C. Sander, R. Schneider, and A. Valencia, Proteins 18, 309-317 (1994).
A. Godzik, J. Skolnick, and A. Kolinski, J. Mol. Biol. 227, 227-238 (1992).

F. H. C. Crick, Acta Cryst. 6, 689-697 (1953).

A. Holtzer, M. E. Holtzer, and J. Skolnick, in Protein Folding. Deciphering the Second
Half of the Genetic Code, Vol. 4, L. M. Gierash, and J. King AAAS, Washington, DC,
1990, pp. 2401-2411.

M. Nilges and A. T. Brunger, Prot. Eng. 4, 649-659 (1991).

S. R. Krystek Jr., R. E. Bruccoleri, and J. Novotny, Int. J. Pept. Prot. Res. 38, 229-236
(1991).

L. Zhang and J. Hermans, Proteins 16, 384-392 (1993).

232.
233.
234,
235.
236.

237.
238.
239.

240,
241,
242,

243.

244.
245.

246.

247,

248.
249.
250.
251.

MON1) CARLO APPROACHES TO PROTEIN FOLDING PROBLEM 241

P. Harbury, 11, B. Tidor, and P. S. Kim, Proc. Natl. Acad. Sci. USA 92, 8408-8412 (1995).
P. 8. Harbuty, T. Zhang, P. S. Kim, and T. Alber, Science 262, 1401-1407 (1993).

M. Victh, A. Kolinski, and J. Skolnick, Biochememistry 35, 955-967 (1996).

K. 1. Lumb, C. M. Carr, and P. S. Kim, Biochemistry 33, 7361-7367 (1994).

I Lovejoy, S. Choe, D. K. McRorie, W. F. DeGrado, and D. Eisenberg, Science 259,
1:88-1293 (1993).

M. Milik and J. Skolnick, Proteins 15, 10-25 (1993).

M. Milik and J. Skolnick, Biophys J. 69, 1382-1386 (1995).

*. McDonngcll, K. Shon, Y. Kim , and S. Opella, J. Mol. Biol. 233, 447-463 (1993).

K. 1 Shon, Y. Kim, L. A. Colnago, and S. J. Opella, Science 252, 13031305 (1991).
A. Baumgartner and J. Skolnick, Phys. Rev. Lett. 74, 2142-2145 (1995).

A. Baumgartner and J. Skolnick, J. Phys. Chem. 98, 10655-10658 (1994).

C. Levinthal, J. Chim. Phys. 65, 44-45 (1968).

R. Zwanzig, A. Szabo, and B. Bagchi, Proc. Natl. Acad. Sci. USA 89, 20-22 (1992).

P. G. Wolynes, in Protein Folds. A Distance-Based Approach, H. Bohr and S. Brunak, ed.,
CRC Press, New York, 1996, pp. 3-17.

I*. G. Wolynes, in Physics of Biomaterials: Fluctuations, Selfc ly and Evolution, T.
Ristc and D. Sherrington, eds., Kluwer Academic Publishers, Nclhcrlands, 1996, pp. 235-
248.

D. Eliczer, P. A. Jennings, P. E. Wright, S. Doniach, K. O. Hodgson, and H. Tsuruta,
Science 270, 487-488 (1995).

W. F. DeGrado, Z. R. Wasserman, and J. D. Lear, Science 243, 622-628 (1989).
T. M. Handel, S. A. Williams, and W. F. DeGrado, Science 261, 879-885 (1993).
D. P. Raleigh, S. F. Betz, and W. F. DeGrado, J. Am. Chem. Soc. 117, 7558-7559 (1995).

C. Sandes, G. Vriend, F. Bazan, A. Horovitz, H. Nakamura, L. Ribas, A. V. Finkelstein,
A. Lockhart, R. Merki, L. J. Perry, Proteins 12, 105-110 (1992).

252, M. H. Hecht, J. S. Richardson, D. C. Richardson, and R. C. Ogden, Science 249, 884-891

253.
254,
255.
256.

257.
258.
259.
260,
261.

262.
263.
264.
265.

(1990).

G. Bohm, Biophys. Chem. 59, 1-32 (1996).

M. Levitt, Curr. Opin. Struct. Biol. 1, 224-229 (1991).

J. W. Ponder and F. M. Richards, J. Mol. Biol. 193, 775-791 (1987).

H. Flockner, M. Braxenthaler, P. Lackner, M. Jaritz, M. Ortner, and M. J. Sippl, Proteins
23, 376-386 (1996).

D. T. Jones, W. R. Taylor, and J. M. Thornton, Nature 358, 86-89 (1992).

R. Luethy, J. U. Bowie, and D. Eisenberg, Nature 356, 83-85 (1992).

S. H. Bryant and C. E. Lawrence, Proteins 16, 92-112 (1993).

S.J. Wodak and M. J. Rooman, Curr. Opin. Struct. Biol. 3, 247-259 (1993).

J. M. Thornton, T. P. Flores, D. T. Joncs, and M. B. Swindells, Nature 354, 105-106
(1991).

P. D. Thomas and K. A. Dill, J. Mol. Biol. 257, 457 -469 (1996).

M. 1. Sippl and S. Weitckus, Proteins 13, 258-271 (1992).

C. Chothia and A. Finkelstcin, Annu. Rev. Biockem. 59, 1007- 1039 (1990).

J. Richardson and D. C. Richardson, in Prediction of Protein Structure and the Principles
of Protein Conformation, G. D. Fasman, ed., Plenum Press, New York, 1989, pp. 1-99.




242 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

266. V. N. Maiorov and G. M. Crippen, Proteins 20, 167-173 (1994),

267. A. R. Oniz, W.-P. Hu, A. Kolinski, and J. Skolnick, J. Mol. Grapk. (in press).
268. J. Novotny, R. Brucolleri, and M. Karplus, J. Mol. Biol. 177, 787-818 (1984).
269. A. Elofsson and L. Nilsson, J. Mol. Biol. 223, 766-780 (1993).

270. S. DeBolt and J. Skolnick, Prot. Eng. 9, 637-655 (1996).

271. R. K. Singh, A. Tropsha, and 1. I. Vaisman, J. Comput. Biol. 3, 213-221 (1996).

272. A. Tropsha, R. K. Singh, I. I. Vaisman, and W. Zheng, in Pacifie Symposium on Bio-
computing’96, L. Hunter and T. E. Klein, eds, World Scientific, Singapore, 1996, pp.
614-623.

273. D. C. Rapaport, J. E. Johnson, and J. Skolnick, Biophys. J., submitted.

ENTROPY SAMPLIN
POLYPEPTIDE

HAROLD A. SCHERAG

Baker Laboratory of Chemistry, Co

Cconr

L. Introduction
Il The Microcanonical Approach 1o Pro
11 The Entropy Sampling Monte Carlo !
IV.  The Quazi-Ergodicity Problem in ES}
V. Effective Sampling Techniques for ES!
VL Applications of the ESMC Method 10
VIL. Comparisons with Related MC Methc

VIII. Conclusions

I. INTR(

Monte Carlo (MC) methods have be
lation studies of polypeptides and g2
our laboratory has developed and i
for treating different problems conc:
teins. These MC techniques can be
their objectives: those for finding the
peptide and those for studying the stz
In searching for the lowest-energ
major technical requirement for an
energy conformation as quickly as p.
method for finding the global-energy
one that samples the conformation
target region of the conformational

Advances in Chemical Physics, Volume 105, Mo.
by David M. Ferguson, J. llja Siepmann, and T
and Stuart A. Rice.

ISBN 0-471-19630-4 © 1999 John Wiley & S.




