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ABSTRACT A Monte Carlo-minimization method has
been developed to overcome the multiple-minima problem. The
Metropolis Monte Carlo sampling, assisted by energy minimi-
zation, surmounts intervening barriers in moving through
successive discrete local minima in the multidimensional energy
surface. The method has located the lowest-energy minimum
thus far reported for the brain pentapeptide [Met5]enkephalin
in the absence of water. Presumably it is the global minimum-
energy structure. This supports the concept that protein folding
may be a Markov process. In the presence of water, the
molecules appear to exist as an ensemble of different confor-
mations.

Optimization procedures are required for an ultimate under-
standing as to how interatomic interactions lead to the folded,
most-stable conformation of a protein from a linear polypep-
tide chain. A major problem in locating the global minimum
of the empirical potential function that describes the confor-
mations of a protein arises from the existence of many local
minima in the multidimensional energy surface: the multiple-
minima problem (1). This problem exists even for a system as
small as a terminally blocked amino acid and becomes
aggravated as the size of the system increases. Whereas
algorithms are available for minimizing a function of many
variables, none exist for passing from one local minimum,
over an intervening barrier, to the next local minimum-and
ultimately to the global minimum-in a many-dimensional
space (1, 2). Several procedures have been developed to
overcome this problem (1); these include the "buildup"
method (3), optimization of electrostatics (4), relaxation of
dimensionality (5, 6), adaptive importance sampling Monte
Carlo (7-10), pattern recognition based on factor analysis of
protein data (11, 12), use of distance constraints (13), and use
of short-, medium-, and long-range interactions (14). Most of
these procedures have been tested so far on short oligo-
peptides (up to 20 residues, in some cases), and their possible
extension to proteins containing of the order of 100 residues
would be of great interest. In our continual search for
procedures to overcome this problem, we have developed an
approach that appears to work very efficiently on the pen-
tapeptide [Met5]enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH)
and hopefully can be extended to larger structures. The
application of this procedure to enkephalin is reported here.
The multiple-minima problem is not unique to protein

folding but arises in many other fields of biology, chemistry,
and physics whenever complexity appears (e.g., for intrin-
sically heterogeneous systems with a large number of strong-
ly coupled degrees of freedom). A protein, composed of
chemically distinct amino acids in a unique sequence, is a
heterogeneous system that is fundamentally different from a
homopolymer, and its many degrees offreedom contribute to

the formidable difficulty of the multiple-minima problem.
From a computational point of view, the multiple-minima
problem is reminiscent of the NP (nondeterministic polyno-
mial time) problem (15), in that the total number of possible
conformations is an exponential function of the total number
of degrees of freedom.
The approach taken here combines the power of conven-

tional energy minimization (16) to find local minima and that
of the Metropolis Monte Carlo method (17) in global
combinatorial optimization (18). When implemented, it gen-
erates a Markov walk on the hyperlattice of all (discrete)
energy minima, with Boltzmann transition probabilities. The
working hypothesis ("Markovian hypothesis") underlying
this method is (i) protein folding is a Markov process with
Boltzmann transition probabilities and (ii) for a natural
biologically active protein, such a Markov process leads to a
unique absorbing state (19) (one in which equilibrium is
reached after a sufficiently long time and in which the
stationary probability of occurrence approaches unity), cor-
responding to the native structure of a protein. The method
has been tested extensively on [Met5]enkephalin, with inter-
action energies computed by the ECEPP/2 (empirical con-
formational energy program for peptides) algorithm (20-22).
In the absence of water, the Monte Carlo-minimization
procedure converges consistently to the same global mini-
mum (a type II' p-bend structure, the central two residues of
which are Gly-Phe) for as many as 12 random starting
conformations (and an additional one selected to have a
different ,-bend structure). In the presence of water, the
molecule undergoes considerable structural fluctuations,
with no unique stable structure, suggesting that a large
ensemble of distinct conformations coexist at equilibrium.

THE MONTE CARLO-MINIMIZATION METHOD
Motivation. Experimental studies (23) have demonstrated

that a protein is not a static structure but instead undergoes
fluctuations. Based on photodissociation studies of carbon
monoxide bound to myoglobin, it has been suggested that a
protein can exist in a large number of conformational
substates separated by barriers, with transitions among
substates constituting equilibrium fluctuations (24). A recent
molecular dynamics study of myoglobin (25) reported the
existence ofmany minima in the vicinity ofthe native protein;
these corresponded to relative reorientations of the a-helices
coupled with rearrangements of the side chains, as a conse-
quence of the internal dynamics of the protein. It follows, as
a necessary condition that a structure be stable, that the
native conformation of a protein must be stable not only
against small disturbances but also against larger-scale ther-
mal fluctuations; i.e., the native structure must be able to
recover from any thermal impulse, even though the latter
may (temporarily) lead to a different local minimum-energy

*A portion of this work was presented at the Biophysical Society
meeting, New Orleans, LA, February, 1987.
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structure. A structure determined by energy minimization
alone, which is stable only against small distortions, is very
likely to be thermally unstable and hence cannot be admitted
as a candidate for the native structure. These considerations
suggest that thermal fluctuations play an indispensable role in
selecting the native structure.
The fact that a protein in a thermodynamic environment

can fold into its native structure within a time scale of
milliseconds to seconds implies that, ifwe can reproduce the
natural processes theoretically or at least simulate their
essential and most relevant features (mainly thermal fluctu-
ations and energetic processes), we may be able to devise a
sufficiently efficient method to fold a protein.

Since a Metropolis Monte Carlo (26) method simulates
natural thermal processes, by taking into account both
random fluctuations and energetic considerations, it might be
applicable to protein folding. The successful application of
the simulated annealing method (18), which is essentially a
Metropolis Monte Carlo simulation technique with an artifi-
cial "temperature," to the computationally difficult "trav-
eling-salesman problem" [which is in the class of NP prob-
lems (15)] is very similar to the multiple-minima problem, in
that the total number of possible solutions is a nonpolynomial
function of the number of cities.
A straightforward application of the Metropolis Monte

Carlo method to polypeptides, however, has proven to be
very inefficient (7, 27, 28), or even impossible, because we
have to search a high-dimensional conformational space
rather than discrete states. Conventional Metropolis Monte
Carlo samples the whole space by making small increments
in each step. The large energy barriers in the conformational
space of a protein make such a method impractical because,
for most of the time, the sampling is confined to a very
restricted region of the whole conformational space. A
different type of Monte Carlo algorithm (7-9) is an alternative
approach to this problem. To overcome these difficulties, we
have developed the Monte Carlo-minimization method,
which randomly samples only the discrete set of energy
minima instead of the whole conformational space.

Implementation. The method consists of three compo-
nents.

Step i. The first is a Monte Carlo sampling strategy, which
satisfies the ergodicity requirement; i.e., any local minimum
is accessible from any other one after a finite number of
random sampling steps. In addition to this thermodynamic
condition, we find it necessary to restrict the random sam-
pling to only a few variables at each time in order to maintain
sampling efficiency and to simulate the kinetic nature (26)
(i.e., the short time correlations) of natural thermal processes
in which physical fluctuations are localized. Even with these
two requirements, there is still considerable freedom to
choose the form of the sampling technique. We have chosen
to make a completely random change (-180° s 6 s 1800) in
one randomly selected dihedral angle 6 (where 6 stands for 4,
q,, W, or the X values of the given residue) among all the
variable dihedral angles of the molecule. The choice of
random changes in two randomly picked dihedral angles was
also tested and led to the same global minimum for
[Met5]enkephalin, but the acceptance ratio (about 20%) was
considerably lower than when one variable at a time was
chosen (about 45%); this inefficiency arises because this
modified procedure samples the energetically unfavorable
regions more frequently. In this step, a possible stochastic
event is generated, leading to a conformation that generally
is not at a local minimum.

Step ii. The randomly chosen conformation of step i is then
subjected to conventional minimization with the SUMSL
routine (16) using the ECEPP/2 energy function (20-22) to
reach the nearest local minimum (a state on the hyperlattice
of all energy minima).

Step iii. This local minimum is examined by the Metropolis
criterion (17) to compare it with the previously accepted local
minimum to update the current conformation. As a conse-
quence, the transition probabilities of the series of local
minima generated in the Markov process satisfy the Boltz-
mann distribution (17, 26). Then step i is repeated to continue
the iteration process, which generates a Markov sequence
with Boltzmann probabilities.
The energy minimization (step ii) is the most time-con-

suming part ofthe whole procedure and consumes about 95%
of the overall computational time. For a sample run on
[Met5]enkephalin on an IBM-3090 computer, one Monte
Carlo-minimization iteration (steps i to iii), involving about
100 energy evaluations, took about 4 sec. An arbitrary cut-off
of 10,000 iterations was needed for frequent convergence to
the global minimum, for a total time of about 10 hr; in some
runs, convergence occurred in as little as 1 hr.
The procedure described above pertains to calculations

carried out in the absence of water. In the presence of water,
the method is basically the same, except that the "energy"
in the above procedure is replaced by the "total energy" [i.e.,
the sum ofthe ECEPP energy and an empirical hydration free
energy (29)]. Since energy minimization involving such
hydration, terms is extremely time-consuming, we decided
not to include the hydration term in the energy minimization
(step ii), to speed up the procedure; instead, after minimi-
zation of the ECEPP energy, the hydration free energy was
included in the total energy at the local minimum, for the
selection of the current conformation by the Metropolis
criterion (step iii).

RESULTS

[Met5JEnkephalin in the Absence of Water. Twenty-four
variable backbone and side-chain dihedral angles are re-
quired to specify the conformation of [Met5]enkephalin. The
total number of possible local minima in its conformational
energy surface is estimated to be more than 324, or 1011.
Nevertheless, the apparent global minimum of this peptide
(Fig. 1; a type II' ,8-bend involving Gly-Gly-Phe-Met) was
first located by the Monte Carlo-minimization method in 4 hr
and was subsequently also achieved by another independent
method developed in this laboratory (6). To show that the
structure in Fig. 1 has a high probability of being the global
minimum, we repeated the procedure by starting from 16
additional independently generated random conformations
(chosen from the whole conformational space) and from one
conformation that was selected arbitrarily to have a 8-bend
in a location different from that of the global minimum (i.e.,
involving Tyr-Gly-Gly-Phe). Within 10,000 iterations, 12 out
of 17 randomly generated initial conformations, plus the
arbitrarily selected 83-bend structure, led to the same global
minimum-energy structure that had identical values (within
0.5°) of all backbone and side-chain dihedral angles 4, 4i, cl,
and x's and identical energies (within 0.01 kcal/mol) (Table
1). The other five randomly initiated conformations had not
yet converged (within 10,000 iterations, or about 10 hr on the
IBM-3090) and all had energies at least 2.0 kcal/mol higher
than that at the global minimum and shapes that differed
considerably from the global-minimum structure at the times
that these five runs were terminated. These results clearly
demonstrate the power of the Monte Carlo-minimization
procedure to reach the apparent global minimum from
random starting conformations that are distinctively differ-
ent.
Based on the fact that 12 out of 17 random starting

conformations converged to the same lowest-energy struc-
ture, the probability of finding another structure with energy
lower than that at the apparent global minimum is estimated
to be less than 0.01%. These results demonstrate that the
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FIG. 1. Stereoview of the global minimum-energy structure of [Met5]enkephalin in the absence of water, located by the Monte
Carlo-minimization method (at -20'C and 40'C) using the ECEPP/2 parameters. It is a type II' ,8-bend involving Gly-Gly-Phe-Met.

Monte Carlo-minimization procedure is free of bias in the
choice of starting conformations. This situation is probably
encountered because our method generates a Markov pro-
cess with presumably good ergodic properties (which, by
definition, is independent of the initial state after a long
enough time), as a result of the random change in a randomly
chosen variable, followed by energy minimization to bypass
large energy barriers. In principle, the global minimum can be
reached from any starting conformation after a long enough
time needed to reach equilibrium; these results demonstrate
that the required time is a practical one for this pentapeptide
with presently available computers.
The global minimum-energy structure has been reached at

more than one temperature, within a range of -200C to 400C.
Four of the 17 runs from random starting conformations were
carried out at 40'C, and one of them reached the global
minimum. The remaining 13 were carried out at -20'C, and
11 of them reached the global minimum. The one run from a
nonrandom start was carried out at 40'C and reached the
global minimum. At these temperatures, fluctuations are
significantly large; structures with energies up to 2 kcal/mol
above the global minimum occurred quite frequently in these
simulations. In fact, fluctuating structures surrounding the
global minimum [with minor variations (usually within 100) in
a few variables] generally occur more frequently than the
global minimum itself (even after the first appearance of the
global minimum), a natural statistical mechanical phenome-
non. Nevertheless, the global minimum appears sufficiently
frequently to indicate convergence of the algorithm and
establishment of thermal equilibrium. It is worth noting that
fluctuating changes in some dihedral angles can be as large as
600 without a major increase in energy. Our experience with
this algorithm thus far shows that it is most efficient (in
reaching the global minimum, in the absence of water) at the
lower end of the temperature range explored (i.e., at -200C).
Table 1. Global minimum-energy structure of [Met5]enkephalin
in the absence of water

Dihedral angles, degrees
Residue 0 wW Xl x2 X3 X4
Tyr-1 -86 156 -177 -173 79 -166
Gly-2 -154 83 169
Gly-3 84 -74 -170
Phe-4 -13 19 -174 59 95
Met-5 -164 160 -180 53 175 -180 -59
The conformational energy is -12.90 kcal/mol, based on the latest

ECEPP/2 parameters (21, 22).

[Met5]Enkephalin in the Presence of Water. As many as five
runs of the Monte Carlo-minimization have been performed
to simulate [Met5]enkephalin in water at 20'C; each run
involved more than 10,000 iterations. Four out of the five
runs were carried out from random starting conformations;
the other one started from the global-minimum structure in
the absence of water. In contrast to the results in the absence
of water, where the Monte Carlo-minimization converged
consistently to the same global minimum for [Met5]enkepha-
lin, all of the five runs led to different conformations with
comparable total "energies" (ECEPP energy plus hydration
free energy). Among the sequence ofaccepted conformations
for each run of 10,000 iterations, we were not able to identify
any stable structure that occurred with significant frequency.
These results indicate that [Met5]enkephalin in water at 20'C
is likely to be in an "unfolded" state, in which a large
ensemble of distinct conformations coexist at equilibrium.
The validity of this suggestion can be tested experimentally-
e.g., by comparing the circular dichroism or nuclear magnetic
resonance spectrum of [Met5]enkephalin in solution with that
in ordered structures-as in various crystalline environ-
ments.

DISCUSSION
The apparent success of the Monte Carlo-minimization
method in locating the global minimum-energy structure of
[Met5]enkephalin in the absence of water (the fluctuating
neighborhood, which also happens to be the most populated
in the temperature range investigated) may have implications
for the dynamic processes involved in protein folding. Al-
though this method involves an artificial sampling strategy,
some key features of the procedure may reflect the process
by which the multiple-minima problem is overcome in nature.
The Monte Carlo-minimization method is an implementa-

tion of the underlying working hypothesis stated earlier (we
propose that it be called the Markovian hypothesis): protein
folding is a Markov process whose transition probabilities
satisfy the detailed balance (26) (equilibrium between two
states) required by equilibrium statistical mechanics; the
folded structure of a biologically active protein corresponds
to an absorbing state, or a tight set of neighboring absorbing
states, of the Markov process in a given thermodynamic
environment. This hypothesis implies both that proteins fold
by a Markov process with Boltzmann transition probabilities
and that the native conformations are stochastically stable
with respect to random fluctuations. As an operational
hypothesis, it may describe the way proteins fold in nature
and may be used as the basis of a method to predict the
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structures of native proteins. Under such a hypothesis, the
unfolding of a protein is exactly the same physical process as
protein folding, except that the absorbing state(s) diffuses out
as a result of different thermodynamic conditions. In the
following discussion, we shall concentrate only on protein
folding, although the physical picture is the same for unfold-
ing.
The Monte Carlo-minimization is one of many possible

procedures used to implement the Markovian hypothesis by
generating a Markov process with Boltzmann transition
probabilities, to simulate natural protein folding. The artifi-
ciality and arbitrariness of the (ergodic) random sampling
strategy in this method becomes irrelevant as the Markov
process approaches equilibrium in the long-time limit: the
equilibrium probabilities are independent of the particular
choice of sampling strategy. The existence of an absorbing
state of the Markov process would guarantee convergence of
such a procedure to the thermally most stable structure from
any starting conformation.
The formalism of a Markov process is a simple description

of a nonequilibrium stochastic process whose long-time limit
leads to the equilibrium behavior (19, 26). At the beginning of
real protein folding, the transition probabilities may not
satisfy detailed balance; i.e., they may not obey the
Boltzmann distribution. But, since protein folding occurs on
a time scale much longer than that needed for (spatial and
temporal) local equilibrium, under the assumption that fold-
ing is a Markov process the initial nonequilibrium character
of the transition probabilities is forgotten after a long enough
time; thus, the Monte Carlo-minimization procedure with
Boltzmann transition probabilities may be an accurate sim-
ulation of a real folding process on a long time scale.

If the Markovian hypothesis of protein folding is correct,
then protein folding has both thermodynamic and kinetic
features. The transition probabilities are thermodynamic in
origin, due to local equilibrium among individual variables
within the time scale of thermal transitions. On the longer
time scales needed for equilibration among more degrees of
freedom (characteristic of real protein folding), however, the
thermally accessible conformations at any given moment are
always limited, depending on the conformation at the imme-
diate past, under the assumption that physical fluctuations
are local with coherence at any time extending to only a few
among the many variables. (At equilibrium, an instantaneous
large-scale change involving all degrees of freedom is con-
sidered to be unphysical and is not allowed to occur in our
Monte Carlo-sampling procedure.) These features, especially
the rapid equilibrium among individual degrees of freedom
and the relatively long-time structural correlations for many
degrees offreedom, are characteristic of large heterogeneous
systems.

Furthermore, it can be demonstrated that the thermody-
namic hypothesis (30) and the kinetic hypothesis (31) of
protein folding can be incorporated into the Markovian
hypothesis as two specific cases. For a given protein in water,
the relaxation time of the Markov (folding) process is well
defined, corresponding to the time needed for full equilibra-
tion of the total system. If this relaxation time is shorter than
the experimental time scale, then the thermodynamic hy-
pothesis holds (i.e., protein folding is thermodynamically
controlled); if otherwise, then the kinetic hypothesis is true
(i.e., protein folding is a kinetically controlled process).
As an implementation of the Markovian hypothesis, the

Monte Carlo-minimization method owes its efficiency to the
interplay between random fluctuations (through Monte Carlo
sampling) and directional energetic processes (by energy
minimization and the Metropolis criterion). One aspect ofthis
interplay manifests itself in the balance of thermodynamic
and kinetic features. Fluctuations must be present, yet they
must be localized (i.e., incremental or gradual); otherwise, an

energetically favorable structure would be too difficult to find
or too easy to lose. To obtain an efficient procedure, we have
limited the Monte Carlo sampling along the trajectory to a few
variables each time, allowing large changes in these few
variables even though real protein folding may simultaneous-
ly sample all degrees of freedom with small fluctuational
amplitudes. Another more obvious aspect of this interplay is
through the balance of entropic and energetic processes (i.e.,
random sampling and energy minimization-plus-Metropolis
criterion) at a finite temperature. To illustrate this, let us
consider two extreme cases in the Monte Carlo-minimization
method. Suppose the temperature is close to infinity, so that
the energetic processes are not important in selecting the
energy minima. Then the Monte Carlo-minimization simu-
lates purely random fluctuations. It is just an exhaustive
random walk on the whole hyperlattice of energy minima;
therefore, it is not efficient. Now, suppose the temperature is
close to absolute zero. Under this condition, only structures
with energy lower than the present one are accepted by the
Metropolis criterion. The acceptance ratio is so low that
fluctuations do not play a significant role: the protein could
be trapped in some local minima for a long time. This is the
problem encountered in many other global minimization
methods (32-34), which correspond to the Monte Carlo-
minimization procedure at absolute zero. At an optimal
temperature (which is system-dependent), both random fluc-
tuations and energetic processes are important in locating the
global minimum. The computational time needed to reach the
global minimum depends critically on the physical nature of
the problem (i.e., on the interaction energies and the tem-
perature), along with a dependence on the sampling strategy,
starting conformations, and intermediate stochastic se-
quences produced by the random-number generator.
The possibility that protein folding is a Markov process

was investigated previously (35) on the basis of Monte Carlo
studies of a two-dimensional lattice model of proteins, but
prior to the development of our Monte Carlo-minimization
method, it has not been possible to implement this hypothesis
directly on a realistic system (e.g., [Met5]enkephalin) using
realistic energy parameters (e.g., ECEPP) to test out the
implied consequences of this hypothesis for a real protein.
The thermalization procedure of Levitt and Warshel (36) is

similar to our Monte Carlo-minimization method. There is,
however, one major difference: the thermal fluctuations in
their procedure are distributed uniformly; these do not satisfy
the Boltzmann distribution, so energetically unfavorable
structures (local minima) are likely to arise. In contrast, the
Metropolis criterion used in our method ensures that the
fluctuations obey the Boltzmann distribution, which is cru-
cial in stochastically driving a protein toward a folded
structure under favorable thermodynamic conditions, by
eliminating thermally unstable conformations. In a changing
thermodynamic environment, it is again this Metropolis
criterion, which is critically important in mediating a
folding-unfolding transition in a protein. In fact, the Metrop-
olis criterion is the distinguishing factor between the Monte
Carlo-minimization method discussed in this paper and other
stochastic minimization methods (32-34, 36, 37); in the latter
case, the dynamic process of equilibrium thermal transitions
during structure formation is not adequately addressed.
The Monte Carlo-minimization method formulated in this

article is based on classical mechanics and classical statistical
mechanics, although the potential energy function used may
be of quantum mechanical origin. Entropic contributions to
the statistical weight of a structure, which are measured by
the relative frequency of occurrence of the structure in a long
enough Monte Carlo-minimization simulation, are automat-
ically taken into account through Monte Carlo random
sampling. This method is best adapted to study long-time and
global properties of proteins undergoing large-scale structur-
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al changes. In contrast, molecular dynamics gives us better
pictures of the detailed dynamics of proteins, although it is
usually limited to short time scales (of the order of picosec-
onds) with a given starting conformation. Because the Monte
Carlo-minimization method can overcome energy barriers by
random changes and reminimization, it can be viewed as

operating on a "renormalized" or "coarse-grained" time
scale characteristic of thermally activated processes; there-
fore, it is more relevant than molecular dynamics (as cur-

rently practiced) in studies of structural changes on a time
scale longer than that of elementary thermal transitions, in
particular in studies of protein folding.

PERSPECTIVES
Protein folding is a prototypical example of the self-organi-
zation of complex systems in nature. The application of the
Monte Carlo-minimization method to oligopeptide folding
not only provides us with insights into the physical nature of
protein folding but also may be a powerful predictive scheme
for elucidating native protein structures, once we know
precisely all relevant energy parameters: the interactions
among protein constituents, that between protein constitu-
ents and water, and that between water molecules. Further-
more, as a method capable of studying large-scale structural
changes, of which protein folding is only one example, the
Monte Carlo-minimization method may be of value in the
investigation of properties and structure-function relation-
ships of proteins. Since the method is a simple and general
approach to global optimization of any continuous function
(2), it should be applicable to many other important problems
where the multiple-minima problem appears [e.g., determi-
nation of the structures of other biomolecules and those of
organic molecules, of complex surfaces (38), and of chemical
reaction pathways (39)]. These applications require only a

knowledge of realistic parameters characterizing the inter-
actions and proper identification of the degrees offreedom of
the system, which are just the same information needed in
conventional energy minimization. It remains to be seen

whether the Monte Carlo-minimization procedure can be
extended efficiently to larger polypeptide (protein) struc-
tures, with the incorporation of realistic interaction terms to
take hydration into account.
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