Lattice Models: The Simplest Protein Model

The HP-Model (Lau & Dill, 1989)

- model only hydrophobic interaction
 - alphabet {*H*, *P*}; H/P = hydrophobic/polar
 - energy function favors HH-contacts
- structures are discrete, simple, and originally 2D
 - model only backbone (C- α) positions
 - structures are drawn (originally) on a square lattice \mathbb{Z}^2 without overlaps: Self-Avoiding Walk

Example

HP-Model Definition

Definition

The HP-model is a protein model, where

- Sequence $s \in \{H, P\}^n$
- Structure $\omega: [1..n] \to L$ (e.g. $L = \mathbb{Z}^2, L = \mathbb{Z}^3$), s.t.

1. for all
$$1 \le i < n$$
:
 $d(\omega(i), \omega(i+1)) = d_{\min}(L)$ $[d_{\min}(\mathbb{Z}^2) = 1]$
2. for all $1 \le i < j \le n$: $\omega(i) \ne \omega(j)$

• Energy function $E(s, \omega) = \sum_{1 \le i < j \le n} E_{s_i, s_j} \Delta(\omega(i), \omega(j)),$

where
$$E = \begin{array}{c|c} H & P \\ \hline H & -1 & 0 \\ P & 0 & 0 \end{array}$$

and $\Delta(p,q) = \begin{cases} 1 & \text{if } d(p,q) = d_{\min}(L) \\ 0 & otherwise \end{cases}$

HP-Model Definition

Definition

The HP-model is a protein model, where

- Sequence $s \in \{H, P\}^n$
- Structure $\omega: [1..n] \rightarrow L$ (e.g. $L = \mathbb{Z}^2, L = \mathbb{Z}^3$), s.t.

1. for all
$$1 \le i < n$$
:
 $d(\omega(i), \omega(i+1)) = d_{\min}(L) \quad [d_{\min}(\mathbb{Z}^2) = 1]$
2. for all $1 \le i < j \le n$: $\omega(i) \ne \omega(j)$

• Energy function $\mathsf{E}(s,\omega) = \sum_{1 \le i < j \le n} \mathsf{E}_{s_i,s_j} \Delta(\omega(i),\omega(j)),$

where
$$E = \frac{\begin{vmatrix} H & P \\ -1 & 0 \\ P & 0 & 0 \end{vmatrix}$$

and $\Delta(p,q) = \begin{cases} 1 & \text{if } d(p,q) = d_{\min}(L) \\ 0 & otherwise \end{cases}$

Structures in the HP-Model

Sequence HPPHPH

5.Will, 18.417, Fall 2011

How many structures are there? Self-avoiding Walks of the Square Lattice (without Symmetry)

Naive enumeration not possible. Even NP-complete:

- B. Berger, T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) Model is NP-complete. RECOMB'98
- P. Crescenzi. D. Goldman. C. Paoadimitriou. A. Piccolbom, and M. Yakakis. On the complexity of protein folding. RECOMB'98

How many structures are there? Self-avoiding Walks of the Square Lattice (without Symmetry)

Naive enumeration not possible. Even NP-complete:

- B. Berger, T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) Model is NP-complete. RECOMB'98
- P. Crescenzi. D. Goldman. C. Paoadimitriou. A. Piccolbom, and M. Yakakis. On the complexity of protein folding. RECOMB'98

Constraint Programming (CP)

- Model and solve *hard combinatorial problems* as CSP by search and propagation
- cf. ILP, but CP offers more flexible modeling and differs in solving strategies

Definition

A Constraint Satisfaction Problems (CSP) consists of

- variables $\mathcal{X} = \{X_1, \dots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Commercial Impact of Constraints Programming

Michelin and Dassault, Renault	Production planning
Lufthansa, Swiss Air,	Staff planning
Nokia	Software configuration
Siemens	Circuit verification
French National Railway Company	Train schedule

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_i = i$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for i, i' = 1..4 and $i \neq i'$)

 $X_i \neq X_{i'}$ (no horizontal attack) $i - X_i \neq i' - X_{i'}$ (no attack in first diagonal) $i + X_i \neq i' + X_{i'}$ (no attack in second diagonal)

$$X_1 \quad X_2 \quad X_3 \quad X_4$$

$$X_1, \dots, X_4$$

 $D(X_i) = \{1, \dots, 4\}$ for $i = 1..4$
 $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

$$X_1 \quad X_2 \quad X_3 \quad X_4$$

$$X_1, \dots, X_4$$

$$D(X_1) = \{1\}, D(X_i) = \{1, \dots, 4\} \text{ for } i = 2..4$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

• •

$$X_1, \dots, X_4$$

$$D(X_1) = \{1\}, D(X_2) = \{3, 4\}, D(X_3) = \{2, 4\}, D(X_4) = \{2, 3\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

. .

$$X_1, \dots, X_4$$

$$D(X_1) = \{1\}, D(X_2) = \{3, 4\}, \frac{D(X_3)}{D(X_3)} = \{4\}, D(X_4) = \{2, 3\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

× /

、 /

$$X_1, \dots, X_4$$

$$D(X_1) = \{1\}, D(X_2) = \{3, 4\}, \frac{D(X_3)}{D(X_3)} = \{\}, D(X_4) = \{2, 3\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

$$X_1 \quad X_2 \quad X_3 \quad X_4$$

$$X_1, \dots, X_4$$

 $D(X_i) = \{1, \dots, 4\}$ for $i = 1..4$
 $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

$$X_1 \quad X_2 \quad X_3 \quad X_4$$

$$X_1, \dots, X_4$$

$$D(X_1) = \{2\}, D(X_i) = \{1, \dots, 4\} \text{ for } i = 2..4$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

• •

$$X_1, \dots, X_4$$

$$D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1, 3\}, D(X_4) = \{1, 3, 4\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

• •

S.Will, 18.417, Fall 2011

$$X_1, \dots, X_4$$

$$D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1\}, D(X_4) = \{3, 4\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

、 /

• •

$$X_1, \dots, X_4$$

$$D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1\}, \frac{D(X_4)}{i} = \{3\}$$

$$X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$$

、 /

• •

Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions.

A solution of the COP is a solution of the CSP that maximizes/minimizes f.

Solving by Branch & Bound Search Idea of B&B:

- Backtrack & Propagate as for solving the CSP
- Whenever a solution *s* is found, add constraint "next solutions must be better than *f*(*s*)".

Exact Prediction in 3D cubic & FCC

The problem

IN: sequence s in $\{H, P\}^n$ HHPPPHHPHHPPHHPPHHPPHHPPHHPPHH OUT: self avoiding walk ω on cubic/fcc lattice with minimal HP-energy $E_{HP}(s, \omega)$

A First Constraint Model

• Variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ and *HHContacts* $\begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}$ is the position of the *i*th monomer $\omega(i)$

Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n,\ldots,n\}$$

Constraints

- 1. positions *i* and i + 1 are neighbored (chain)
- 2. all positions differ (self-avoidance)
- 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- (Add Symmetry Breaking)
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

The Advanced Approach: Cubic & FCC

Steps

- 1. Core Construction
- 2. Mapping

The Advanced Approach: Cubic & FCC

Steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

Computing Bounds

- Prepares the construction of cores
- How many contacts are possible for *n* monomers, if freely distributed to lattice points
- Answering the question will give information for core construction
- Main idea: split lattice into layers consider contacts
 - within layers
 - between layers

Layers: Cubic & FCC Lattice

S.Will, 18.417, Fall 2011

Layers: Cubic & FCC Lattice

Contacts

Contacts =

Layer contacts + Contacts between layers

• Bound Layer contacts: Contacts $\leq 2 \cdot n - a - b$

- Bound Contacts between layers
 - cubic: one neighbor in next layer
 Contacts ≤ min(n₁, n₂)
 - FCC: four neighbors in next layer

i - points

S.Will, 18.417, Fall 2011

i-points

Layer $L_1 : n_1, a_1, b_1, m_{nc1}, m_{nt1}, m_{x1}$ Number of *i*-points #i in L_1

$$#4 = n_1 - a_1 - b_1 + 1 + m_{nc1}$$

$$#3 = m_{x1} - 2(m_{nc1} - m_{nt1})$$

$$#2 = 2a_1 + 2b_1 - 4 - 2#3 - 3m_{nc1} - m_{nt1}$$

$$#1 = #3 + 2m_{nc1} + 2m_{nt1} + 4$$

Contacts between Layers

Layer $L_1 : n_1, a_1, b_1, m_{nc1}, m_{nt1}, m_{x1}$, Layer $L_2 : n_2$ Theorem (Number of contacts between layers) (Eliminate parameter m_{x1})

 $#3' = \text{maximal number 3-points for } n_1, a_1, b_1, m_{nc1}, m_{nt1}$ $\hookrightarrow #2' = 2a_1 + 2b_1 - 4 - 2#3' - 4m_{nc1}$ $#1' = #3' + 4m_{nc1} + 4 \quad #4' = #4$

(Distribute n' points optimally to *i*-points in L_1)

$$b_4 = \min(n_2, \#4') \qquad b_3 = \min(n_2 - b_4, \#3') \\ b_2 = \min(n_2 - b_4 - b_3, \#2') \qquad b_1 = \min(n_2 - b_4 - b_3 - b_2, \#1')$$

Contacts between L_1 and $L_2 \leq 4 \cdot b_4 + 3 \cdot b_3 + 2 \cdot b_2 + b_1$

Recursion Equation for Bounds

- B_C(n, n₁, a₁, b₁) : Contacts of core with n elements and first layer L₁ : n₁, a₁, b₁
- B_{LC}(*n*₁, *a*₁, *b*₁) : Contacts in *L*₁
- $B_{ILC}(n_1, a_1, b_1, n_2, a_2, b_2)$: Contacts between E_1 and E_2 : n_2, a_2, b_2
- $B_C(n n_1, n_2, a_2, b_2)$: Contacts in core with $n n_1$ elements and first layer E_2

Layer sequences

From Recursion:

- by Dynamic Programming: Upper bound on number of contacts
- by Traceback: Set of layer sequences

layer sequence = $(n_1, a_1, b_1), \ldots, (n_4, a_4, b_4)$ Set of layer sequences gives distribution of points to layers in all point sets that possibly have maximal number of contacts

Core Construction

Poblem

IN: number n, contacts cOUT: all point sets of size n with c contacts

- Optimization problem
- Core construction is a hard combinatorial problem

Core construction: Modified Problem

Poblem

IN: number *n*, contacts *c*, set of layer sequences S_{ls} OUT: all point sets of size *n* with *c* contacts and layer sequences in S_{ls}

- Use constraints from layer sequences
- Model as constraint satisfaction problem (CSP)

 $(n_1, a_1, b_1), \ldots, (n_4, a_4, b_4)$ Core = Set of lattice points

Core Construction — Details

- Number of layers = length of layer sequence
- Number of layers in x, y, and z: Surrounding Cube
- enumerate layers \Rightarrow fix cube \Rightarrow enumerate points

Mapping Sequences to Cores

find structure such that

- H-Monomers on core positions
- all positions differ
- chain connected

- $\rightarrow \ \ \, \text{hydrophobic core}$
- \rightarrow self-avoiding
- \rightarrow walk

compact core

optimal structure

Mapping Sequence to Cores — CSP

Given: sequence s of size n and n_H Hs core *Core* of size n_H

CSP Model

Variables X₁,..., X_n
 X_i is position of monomer i

Encode positions as integers

$$\left(\begin{array}{c} x\\ y\\ z \end{array}\right) \equiv M^2 * x + M * y + z$$

(unique encoding for 'large enough' M)

• Constraints

- 1. $X_i \in Core$ for all $s_i = H$
- 2. X_i and X_{i+1} are neighbors
- 3. X_1, \ldots, X_n are all different

Constraints for Self-avoiding Walks

- Single Constraints "self-avoiding" and "walk" weaker than their combination
- no efficient algorithm for consistency of combined constraint "self-avoiding walk"
- relaxed combination: stronger and more efficient propagation k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

Putting it together

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.

Time efficiency

Prediction of one optimal structure ("Harvard Sequences", length 48 [Yue *et al.*, 1995])

CPSP	PERM
0,1 s	6,9 min
0,1 s	40,5 min
4,5 s	100,2 min
7,3 s	284,0 min
1,8 s	74,7 min
1,7 s	59,2 min
12,1 s	144,7 min
1,5 s	26,6 min
0,3 s	1420,0 min
0,1 s	18,3 min

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

Many Optimal Structures

Sequence HPPHPPHP

- There can be many ...
- HP-model is degenerated
- Number of optimal structures = degeneracy

Completeness

Predicted number of all optimal structures ("Harvard Sequences")

CPSP	СНСС
10.677.113	$1500 imes10^3$
28.180	$14 imes10^3$
5.090	$5 imes 10^3$
1.954.172	$54 imes10^3$
1.868.150	$52 imes 10^3$
106.582	$59 imes10^3$
15.926.554	$306 imes10^3$
2.614	$1 imes 10^3$
580.751	$188 imes 10^3$

- CPSP: "our approach"
- CHCC [Yue *et al.*, 1995]: complete search with hydrophobic cores

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

MC-search through sequence space

18.417, Fall 2011

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Yes: many, e.g. about 10,000 for n=27

Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de:8080/index.jsp

CPSP Tools