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Abstract. The neighbour-joining method reconstructs phylogenies by
iteratively joining pairs of nodes until a single node remains. The cri-
terion for which pair of nodes to merge is based on both the distance
between the pair and the average distance to the rest of the nodes. In
this paper, we present a new search strategy for the optimisation criteria
used for selecting the next pair to merge and we show empirically that
the new search strategy is superior to other state-of-the-art neighbour-
joining implementations.

1 Introduction

The neighbour-joining method by Saitou and Nei [8] is a widely used method for
phylogenetic reconstruction, made popular by a combination of computational
efficiency combined with reasonable accuracy. With its cubic running time by
Studier and Kepler [11], the method scales to hundreds of species, and while it is
usually possible to infer phylogenies with thousands of species, tens or hundreds
of thousands of species is infeasible. Various approaches have been taken to im-
prove the running time for neighbour-joining. QuickTree [5] was an attempt to
improve performance by making an efficient implementation. It outperformed the
existing implementations but still performs as a O

(
n3

)
time algorithm. Quick-

Join [6,7], instead, uses an advanced search heuristic when searching for the pair
of nodes to join. Where the straight-forward search takes time O

(
n2

)
per join,

QuickJoin on average reduces this to O (n) and can reconstruct large trees in
a small fraction of the time needed by QuickTree. The worst-case time com-
plexity, however, remains O

(
n3

)
, and due to a rather large overhead QuickJoin

cannot compete with QuickTree on small data sets. Other approaches, such as
“relaxed neighbour-joining” [3,10] and “fast neighbour-joining” [1] modify the
optimisation criteria used when selecting pairs to join. The method “relaxed
neighbour-joining” has a worst-case O

(
n3

)
running time while “fast neighbour-

joining” has O
(
n2

)
running time.

In this paper we introduce a new algorithm, RapidNJ, to lower the computing
time of canonical neighbour-joining. We improve the performance by speeding
up the search for the pair of nodes to join, while still using the same optimisa-
tion criteria as the original neighbour-joining method. Worst-case running time
remains O

(
n3

)
, but we present experiments showing that our algorithm outper-

forms both QuickTree, QuickJoin and an implementation of relaxed neighbour-
joining on all input sizes.
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2 Canonical Neighbour-Joining

Neighbour-joining [8,11] is a hierarchical clustering algorithm. It takes a distance
matrix D as input, where D(i, j) is the distance between cluster i and j. It then
iteratively joins clusters by using a greedy algorithm, which minimises the total
sum of branch lengths in the reconstructed tree. Basically the algorithm uses n
iterations, where two clusters (i, j) are selected and joined into a new cluster.
The two clusters are selected by minimising

Q(i, j) = D(i, j) − u(i) − u(j) , (1)

where

u(l) =
r−1∑

k=0

D(l, k)/(r − 2) , (2)

and r is the number of remaining clusters. When the minimum Q-value qmin =
min0≤i,j<r Q(i, j) is found, D is updated, by removing the i’th and j’th row
and column. A new row and column are inserted with the distances of the new
cluster. Distance between the new cluster a = i ∪ j and an old cluster k, are
calculated as

D(a, k) =
D(i, k) + D(j, k) − D(i, j)

2
. (3)

The result of the algorithm is a unrooted bifurcating tree where each initial
cluster corresponds to a leaf and each join creates an internal node. Finding the
pair of clusters to join in each round takes time O

(
n2

)
. The running time of

canonical neighbour-joining thus becomes O
(
n3

)
.

3 Rapid Neighbour-Joining

We seek to improve the performance of canonical neighbour-joining by speeding
up the search for the pair of clusters to join, while still using the same opti-
misation criteria as the canonical neighbour-joining method. The overall aim is
thus similar to that of QuickJoin, but the approach is different. The RapidNJ
algorithm presented in this paper is based on the following observation.

– When searching for qmin in (1), u(i) is constant in the context of row i.

This observation can be used to create a simple upper bound on the values of
each row in Q, thereby reducing the search space significantly. The upper bound
is dynamically updated based on the Q-values searched. While the algorithm
still has a worst-case running time of O

(
n3

)
, our experiments, reported later,

show that in practise the algorithm performs much better. To utilize the upper
bound, two new data structures, S and I, are used. S is a sorted representation
of D, and I maps S to D. Memory consumption is increased due to S and I.
The actual increase depends on implementation choices, and can be minimised
at the cost of speed. Worst case memory consumption remains O

(
n2

)
.
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3.1 Data Structures

The two new data structures, S and I, needed to utilize our upper bound,
are constructed as follows. Matrix S contains the distances from D but with
each row sorted in increasing order. Matrix I maps the ordering in S back
to positions in D. Let o1, o2, . . . , on be a permutation of 1, 2, . . . , n such that
D(i, o1) ≤ D(i, o2) ≤ · · · ≤ D(i, on), then

S(i, j) = D(i, oj) , (4)

and
I(i, oj) = j . (5)

3.2 Search Heuristic

Matrix S is used for a bounded search of qmin. First the maximum u-value umax
needs to be found. Recalculating all u-values, and finding the umax can be done
in time O (n). The following algorithm can then be used to search for the pair
(i, j) minimising Q(i, j):

1. Set qmin = ∞, i = −1, j = −1
2. for each row r in S and column c in r:

(a) if S(r, c) − u(r) − umax > qmin then move to the next row.
(b) if Q(r, I(r, c)) < qmin then set qmin = Q(r, I(r, c)), i = r and j = I(r, c).

The algorithm searches each row in S and stops searching a row when the
condition

S(r, c) − u(r) − umax > qmin (6)

becomes true or the end of a row is reached. If we reached an entry in a row
where (6) is true, we are looking at a pair (i, j), where D(i, j) is too large for
(i, j) to be a candidate for qmin, and the following entries in the row S(i), can
be disregarded in the search. This is easily seen by remembering that u(i) is
constant in context of a row, u(j) = umax in (6) and S(r, k) ≥ S(r, l) when
k > l. Whenever we see a new Q(r, I(r, c)) smaller than the previously smallest,
we remember the entry, using I to obtain the right column index in D. Q is
never fully calculated as this would require O

(
n2

)
time in each iteration. We

only calculate entries as they are needed.
The number of entries searched in each row depends on the current value

of the qmin variable. If qmin is close to the actual minimum value, more entries
in a row can most likely be excluded from the search. To improve the overall
performance, it is therefore important quickly to find a value for qmin as close as
possible to the actual minimum. We propose two strategies for this:

– The first entry in each row can be searched for a good minimum. Intuitively
S(r, 0) is likely to have a small Q-value compared to entries in the rest of
row i.
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– Cache one or more rows containing good minimums in each iteration, and
use these rows as a primer in the next iteration. The u-values do not change
very much in each iteration, so a row with a small q value is likely to have a
small q value in the succeeding iteration. Quite often, the minimum q value
can be found in the row containing the second best minimum found in the
previous iteration.

Since we can risk searching all entries in every row, the worst-case running time
of the algorithm is O

(
n3

)
.

3.3 Updating the Data Structures

The D matrix is updated as in the original neighbour-joining algorithm. Two
rows and two columns, corresponding to the two clusters we merged, are re-
moved. One row and column are inserted corresponding to the new cluster.

The S and I matrices need to be updated to reflect the changes made in the
D matrix. Removing the two rows can easily be done, but because the rows of S
are sorted, removing the columns is more complicated. Identifying and removing
entries in S corresponding to the two columns removed in D, would require
at least O (n) time depending on implementation of S. By keeping a record
of deleted columns, we can simply leave the obsolete entries in S. Identifying
obsolete entries while searching S gives a small performance penalty. The penalty
can be minimised by garbage collecting obsolete entries in S, when they take up
too much space. Our experiments have shown that most rows in S are removed,
before obsolete entries become a problem.

Let d be the number of remaining clusters after merging the cluster-pair (i, j),
into a new cluster. A new row with length d−1, and sorted by increasing distance
is inserted in S. The new row contains all new distances introduced by merging
(i, j). A row which maps the new row in S to the corresponding row in D is
created and inserted in I. Due to the time required for sorting, creating and
inserting the two rows in S and I takes O (d log d) time.

4 Results and Discussion

To evaluate the performance of our search heuristic, we have implemented the
RapidNJ algorithm using the second of the two strategies mentioned above to
initialise qmin with a good value. This strategy can be implemented with a small
overhead and it often initialises qmin with the actual minimum q value. RapidNJ
only caches the row containing the q value closest to qmin when the row is not
one of the two rows which are associated with qmin. This row is searched before
any other row thereby initialising qmin. The current implementation of RapidNJ
is available at http://www.birc.au.dk/Software/RapidNJ/.

QuickJoin [7], QuickTree [5] and Clearcut [10] have been used as reference
in our experiments. We have not been able to locate an implementation of
FastNJ [1] to include in our experiments. Clearcut is an implementation of re-
laxed neighbour-joining, while QuickJoin and QuickTree implements the canon-
ical NJ method. QuickJoin and QuickTree are both fast implementations and
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use different heuristics to optimize the running time of the canonical neighbour-
joining method. Clearcut uses a different algorithm, but it can reconstruct trees
with almost the same accuracy as canonical neighbour-joining. Phylip formatted
distance matrices were used as input, and Newick formatted phylogenetic trees
as output.

4.1 Environment

All experiments were preformed on a machine with the following specifications:

– Intel Core 2 6600 2.4 GHz with 4 MB cache
– 2 GB RAM
– Fedora 6, kernel 2.6.22.9-61 OS

QuickTree and Clearcut were written in C while QuickJoin and RapidNJ were
written in C++. All reference tools were compiled with the make script included
in the source code. We used the standard time tool available in the Fedora 6
distribution for measurements of running time. The “real time” output of the
time tool was used in all measurements. Three runs of each program on every
input was made, and the best time of the three runs was used in order to avoid
disturbance from other processes on the system.

4.2 Data

All four implementations were given distance matrices in phylip format as input.
We used the following two sources of data to evaluate the performance of the
four implementations.

The first data source was protein sequence alignments from Pfam [4]. The
alignments were translated into phylip formatted distance matrices using Quick-
Tree. Data sets from Pfam are real data, and we found that most data sets
contained lots of redundant data, i.e. the distance matrix contains rows i and
k where ∀j : D(i, j) = D(k, j). We also found several data sets where the same
taxa was represented twice. Apart from representing real data, Pfam data sets
also test how resilient the different optimisations and algorithms used in the four
implementations, are to irregular inputs. Figures 1, 2 and 3 show the results of
the experiments on these data.

The second data source was based on simulated phylogenetic trees. The trees
were generated using r8s [9], which is a tool for simulating molecular evolution
on phylogenetic trees. As a feature r8s can also simulate random phylogenetic
trees. We used the yule-c model to generate the data used in the experiments.
Simulated data sets provide a good basis for testing the algorithmic complexity
of the four implementations. They contain no redundant data, and the distance
matrices are always additive. Since the trees generated by r8s using the yule-c
model are clocklike, the distance matrices are actually ultrametric. This, how-
ever, should not yield an advantage for any of the methods, so in this study,
we do not make any effort to e.g. perturbe the branch lengths for obtaining
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Fig. 1. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
small Pfam data (< 500 taxa)

non-ultrametric but additive distance matrices. Figure 5 shows the result of the
experiments on simulated data sets.

Experiments on data sets larger than 11000 taxa were not performed due to
the memory requirements of RapidNJ and QuickJoin. Both have O

(
n2

)
memory

consumption, but with larger constants than Clearcut and QuickTree.

4.3 Results on Pfam Data

On small inputs, see Fig. 1, all four implementations have good performance,
only minor differences separates the implementations. QuickJoin does suffer from
a large overhead, and has the longest running time, while RapidNJ has the short-
est. When we look at medium sized data sets (Fig. 2), QuickJoin starts to benefit
from the heuristics used. Again we observe that RapidNJ has a consistently short
running time compared to both QuickTree and QuickJoin. Clearcut comes quite
close to RapidNJs running time, and only a small constant factor separates the
two. QuickTree begin to suffer from the O

(
n3

)
time complexity on these input

sizes, while the other three implementations have a much lower running time.
Looking at large input sizes, see Fig. 3, QuickTree clearly suffers from its O

(
n3

)

time complexity, while Clearcut, QuickJoin and RapidNJ continue to perform
much better. On most data sets RapidNJ has half the running time of QuickJoin,
while the running times of Clearcut is nearly identical to those of RapidNJ on
most data sets.
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Fig. 2. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
medium Pfam data (500–2000 taxa)

Some outliers belonging to all four implementations can be observed in Fig. 1,
2 and 3. The most noticeable are observed on medium and large data sets, where
the running time of RapidNJ on some data sets of approximately the same size
differs quite a lot. We have investigated the problem, and found that it to some
extent can be explained by redundant data. Redundant data are taxa with equal
distances to all other taxa and a mutual distance of 0. They are quite common
in Pfam data sets and affect the performance of RapidNJ negatively. In data
sets where the mutual distance between taxa varies, the number of new entries
in the Q matrix which fall below the upper bound is roughly the same as the
entries which are joined. In data sets containing m redundant taxa the number
of q values falling below the upper bound can suddenly explode. Every time an
entry in the Q matrix which is related to a redundant taxa falls below the upper
bound, at least m − 1 additional entries also fall below the upper bound. If m
is large enough, the running time of RapidNJ increases significantly. Among the
data sets which gave rise to outliers in the running time of RapidNJ, we found
some where more than one quarter of all taxa where redundant. QuickJoin is
also affected by redundant data but to a less extent than RapidNJ. Clearcut
seems to be unaffected while QuickTree actually benefits from redundant data
due to a heuristic which treats redundant taxa as a single taxon.

Not all deviating running times can be explained by redundant data. We
found that a very few data sets from Pfam, contained large sets of taxa where
the mutual distances are concentrated in small range. In rare cases these data
sets increased the running time of RapidNJ by up to a factor two.
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Fig. 3. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
large Pfam data (> 2000 taxa)
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is eliminated compared to QuickJoin and Clearcut on Pfam data sets
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Fig. 5. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
simulated data sets

To test the impact of redundant data, we implement a preprocessing phase
where identical rows are joined before neighbour-joining is applied. When using
this preprocessing phase, the output is a tree with a slightly different topology
than those produces by the canonical neighbour-joining algorithm. The difference
lies mainly in the subtrees containing redundant data, and can be explained by
the order which the redundant taxa were joined. It is a close approximation
of a canonical neighbour-joining tree, but this implementation mainly serves
to illustrate the problem with redundant data. The result of experiments with
preprocessing is presented in Fig. 4, which shows that the number of deviating
running times are reduced significantly.

4.4 Results on Simulated Data

Results on simulated data show the same tendencies as the results on Pfam data.
These data sets contain no redundant rows, and we see no deviating running
times. A clear trend line of all tree implementations can be observed on Fig. 5. It
seems Clearcut, QuickJoin and RapidNJ have almost the same asymptotic time
complexity, but with different constants. We can observe a number of jumps
on QuickJoins curve. These can be explained by the way data structures are
implemented in QuickJoin. Every time the input size reaches the next power of
two, memory consumption increases by a factor four. This affects the running
time thus creating the jumps seen in Fig. 5. The memory consumptions and
running times of RapidNJ, Clearcut and QuickTree have no sudden jumps.
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5 Conclusion

We have presented RapidNJ, a search heuristic used to speed up the search for
pairs to be joined in the neighbour-joining method. The search heuristic searches
for the same optimisation criteria as the original neighbour-joining method, but
improves on the running time by eliminating parts of the search space which
cannot contain the optimal node pair. While the worst-case running time of
RapidNJ remains O

(
n3

)
, it outperforms state of the art neighbour-joining and

relaxed neighbour-joining implementations such as QuickTree, QuickJoin and
Clearcut. Since the distance matrix used as input to neighbour-joining is typ-
ically derived from a multiple alignment, it would be interesting to investigate
the overall performance of RapidNJ when combined with efficent methods such
as [2] to obtain the distance matrix from a multiple alignment.
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