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Abstract

Neighbor-joining (NJ) is a distance-based method for tree construction. It is the most widely used method with poly-
nomial time complexity at present. However, a fundamental problem with the previous implementations of this method is
its limitation to handle large taxa sets within a reasonable time and memory resources. In this paper, we present a parallel
implementation, pNJTree, for fast construction of very large phylogenetic trees. In comparison, pNJTree gets near-linear
speedup for large taxa sets. It can be used to improve the speedup of the parallelized ClustalW methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

NJ method is a distance-based method for reconstructing phylogenetic trees, and computing the lengths of
the branches of this tree. The algorithm was originally written by Saitou and Nei [3]. Studier and Keppler
made improvement for the algorithm [4]. It firstly gives the proof of the algorithm, and second of all made
a slight change to the algorithm which brought the efficiency down to O(n3). The NJ method is a greedy heu-
ristic algorithm that joins at each step, the two closest neighbors that are not already joined. It is based on
the minimum evolution principle. The NJ method is currently very popular, largely due to its application in
the ClustalW [5]. The ClustalW algorithm has become the most popular method for multiple alignments.
In the ClustalW program, the first phase is to do pairwsie alignment (Pairalign). Secondly, it generates a neigh-
bor-joining ‘guide tree’ from pairwise distances (NJtree). This guide tree gives the order in which the progres-
sive alignment will be carried out as the third phase (Malign). A serious problem, however, is that, for large
taxa sets, the runtime of the NJ method becomes prohibitive. The need to analyse large taxa sets is necessary
and increasing, for example, the National Center for Biotechnology Information’s GenBank has more than 37
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million sequence records as of August 2004, which has nearly doubled in size each year for the past
decade.

Recently, Li [2], Ebedes and Datta [1] reported parallelization of the ClustalW algorithms for distributed
memory architectures by using MPI [7]. They concluded that the sequential ClustalW implementation spends
almost 96% running time in the first stage for pairwise alignment of the n input sequences. As each pairwise
alignment is completely independent of all other pairwise alignments, the two programs has parallelized the
phase of pairwise alignment and achieved near-linear speedup. As the phase of building NJ tree, Li has par-
allelized the phase of construction of NJ tree but did not get much better speedup. Ebedes and Datta did not
parallel this phase at all. However, when handling larger taxa set, such as n > 5000, the second phase of con-
struction NJ tree spends more than 30% running time instead of 4%. This is one of the reasons that the
speedup of the two programs decreases when employing more processors for large taxa sets.

In this application note, we present a parallel algorithm, pNJTree, for implementation of the NJ method on
a MIMD architecture[6] such as a cluster of compute nodes, using the Message Passing Interface. These clus-
ters play an important role due to the advent of commodity high-performance processors, low-latency/high-
bandwidth networks and powerful development tools in bioinformatics research labs and we would like to see
our program be widely used. In the experimental results, we show that pNJTree can get near-linear speedup
and its application in the parallelization of the ClustalW algorithm that gets better performance than other
published methods. Our experimental results show that, for large data sets, we can achieve considerable reduc-
tion in computational time and inter-node communication overhead.
2. Methods

The NJ method begins with a distance matrix between the sequences. In each stage, the two nearest nodes
are chosen and defined as neighbors in a tree. This is done recursively until all of the nodes are paired together.
The nearest nodes can be defined by minimizing the expression Mij = (n � 2)dij � (Ri + Rj), where dij is the
distance between node i and j shown in distance matrix, Rx is the row sum over row x of the distance matrix.
Rx ¼

P
16k6ndxk, and n is the remaining number of nodes adjacent to the root. When nodes i and j are joined,

they are replaced with a new node, y, with distance to the remaining nodes given by dyk = (dik + djk � dij)/2.
The method performs a search for minimum value of Mij.

The pNJTree algorithm on a cluster of compute nodes is outlined by the flowchart in Fig. 1. pNJTree’s
task-scheduling strategy of parallel implementation is based on a master/slave model. One of the processor
acts as master, scheduling and dispatching blocks of tasks to slave processors. Slave processors perform cal-
culations specified by the algorithm.

The implementation of the pNJtree algorithm is described by the pseudo code below:

• Input: Distance matrix d of dimension n · n
• Output: A NJ tree T leaf-labeled by {1,2, . . .,n}
• Algorithm: Parallel Construction of Neighbor-Joining Tree

1 Master processor divides matrix d of dimension n · n into p � 1 parts and distributes them to p � 1
slave processors (p is the number of processors). Each slave processor has n · n/(p � 1) elements of
matrix d. n is the number of nodes, N = n.

2 For N > 2 do

{

2.1 Each slave processor computes a block of Rx’s for each x on its own matrix (block’s

length = n/(p � 1)) Rx ¼
Pn

k¼1dxk (x represents the node for which we are computing now)
(dii = 0). After finish the task, slave processors send back the block of Rx to master processor.

2.2 Master processor collects all the nodes’ Rx. And broadcast the whole Rx(1 6 x 6 n) to all slave
processors.

2.3 Each slave processor computes Mij on its own matrix (for each i < j, since the matrix is sym-
metric) Mij = dij � (Ri + Ri)/(N � 2). Find the minimum Mij: Mmini,minj. And send back min-
imal mini,minj and Mmini,minj to the master processor.



Fig. 1. Flowchart of pNJtree.
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2.4 Master processor collects minimal mini, minj and Mmini,minj from p � 1 slave processors, finds
the global minimal Mij:Mgmini,gminj, and broadcast Mgmini,gminj, gmini,gminj, to slave
processors.

2.5 Master processor defines a new node, y, whose three branches join i, j and the rest of the tree.
Define the lengths of the tree branch from y to i and j: Lgmini,y = dgmini,j/2 + (Rgmini � Rgminj)/2
(N � 2) Lgminj,y = dgmini,gminj � Lgminj,y. These distances are the lengths of the new branches.

2.6 Slave processors define the distance of its own matrix from y to each other node (k 5 i or j) as:
dyk = (dgminj,k + dgmini,k � dgmini,gminj)/2.

2.7 Remove distances to nodes i and j from the data matrix, and decrease N by 1.

}

At the Bioinformatics Research Centre (BIRC), Nanyang Technology University, we have set up a multi-
node compute cluster for our implementation. The cluster uses 8 customized AlphaServer ES45 compute
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nodes, or server, each with 4 Alpha-EV68 1 GHz processors, 8 GB/s memory bandwidth and an interconnect
PCI adapter capable of over 280 MB/s sustained bandwidth. Installed on each nodes is the Tru64TM UNIX
v5.1a operating system. At the heart of the cluster is the Quadrics 128-port interconnect switch chassis, deliv-
ering up to 500 MB/s per node, with 32 GB/s of cross-section bandwidth and MPI application latencies less
than 5 ls. A management server, based on an AlphaServer DS20E system, is used for redundancy and
availability.
3. Experimental results

At first, we evaluate the performance of pNJTree with three large protein taxa sets of 6500, 7500 and 10,000
HIV sequences downloaded from NCBI. For uniprocessor performance, we used the sequential version of NJ
method as a baseline. We ran five trials of our parallel program on 4, 8, 16 and 32 processors and reported
average time. Note that, a processor working as a master did not involve the computation. The improvement
of time scaling on different numbers of processors is presented in Figs. 2 and 3.

From this experiment, we can conclude that our parallel algorithm gets good performance with large
number of taxa. In the figures, they can be observed that the parallel version scales up well. The fairly flat
curve of the elapsed time at the high end of processor number suggest that computational gain from further
division of the matrix will be discounted by the overhead communication between the processes. The fairly
flat curve of the speedup at the high end of processor numbers suggests that computational gain from fur-
ther division of the matrix will be discounted by the overhead communication between the processes. In
addition, at the process of building a guiding tree, for the number of n � 1 iterations, an array of Rx,
1 6 x 6 n, needs to be collected by the master process and broadcast to each process before utilizing it
for computing the value, Dist Meanwhile, a global synchronization is needed in order to update the matrix
for next iteration. So there are n � 1 (n is the number of input sequences) rounds of communications among
all the processes.

In the following experiment, we show how pNJTree improves the parallel ClustalW program on a large
taxa set of 6500 sequences. The program is named ClustalW–pNJTree as we use pNJTree to parallelize the
second phase of ClustalW. As the speedup achieved by Ebedes and Datta is quite similar to those reported
by Li, we only compared with the ClustalW-MPI code from Li presented in Table 1.
Fig. 2. Elapsed time and speedup on different numbers of processors with a 6500 and 7500 taxa sets.



Fig. 3. Elapsed time and speedup on different numbers of processors with a 10 k taxa sets.

Table 1
Comparison of runtimes (in seconds) of ClustalW-MPI to our ClustalW–pNJTree on 4, 8, 16 and 32 processors

Methods Num of processors 4 8 16 32

ClustalW-MPI Overall 82845 63391 57119 50392
Pairalign 35043 17224 10671 3788
NJtree 26339 24591 25278 25418

Malign 21463 21576 21170 21186
ClustalW–pNJTree Overall 61904 42293 34846 28401

Pairalign 34844 16525 10253 3685
NJtree 5474 4313 3141 2888

Malign 21586 21455 21452 21468
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We compared the running time of three key steps between ClustalW-MPI and ClustalW–PNJTree. From
the table, we can see that the ClustalW-MPI program does not make any speedup at the phase of building
NJtree on multiple processors. While ClustalW–pNJTree make a near-linear speedup at this step. The results
show that ClustalW–pNJTree is superior to ClustalW-MPI in terms of parallel performance. For example, on
32 processors, the ClustalW-MPI takes more than 7 h to build NJ tree at the second phase, while the Clu-
stalW–pNJTree only need less than 1 h. It shows that our parallel algorithm improves the parallel ClustalW
program better than previous programs. The proposed algorithm is targeted for workstation clusters with dis-
tributed memory architecture with large network bandwidth and low message latency. It also provides a fast
and practicable approach for parallel reconstructing NJ tree for thousands of taxa.
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