
Optimal Implementations of UPGMA and Other

Common Clustering Algorithms

Ilan Gronau Shlomo Moran

September 21, 2006

Abstract

We present an optimal O(n2)-time algorithm, which uses only ele-
mentary data structures, for few common clustering algorithms including
UPGMA. The correctness of our algorithm is proved by showing that the
global-minimum selection rule in these algorithms can be replaced by a
local-minimum selection rule.
Key Words: Hierachical clustering, UPGMA, design of algorithms, anal-
ysis of algorithms, computational complexity

1 Introduction

UPGMA (Unweighted Pair Grouping Method with Arithmetic-mean) is one of
the simplest and most commonly used hierarchical clustering algorithms. It
receives as input a set of elements and a dissimilarity matrix which contains
pairwise distances1 between all elements, and returns a hierarchy of clusters
on this set (see [1], Chapter 3). It starts by initializing a singleton-cluster for
each element in the set, and then follows the closest-pair hierarchical clustering
scheme described in Table 1: two clusters of minimal distance from each other
are selected and replaced by their union (a joining event); clustering then con-
tinues recursively on the reduced cluster-set. In each such iteration the distances
from the new cluster to all other clusters are computed via the reduction formula
in step 3. The reduction formula used by UPGMA defines the new distances as
the arithmetic means of original distances (see Table 1). Notice that the scheme
used by UPGMA is non-deterministic, since there could be more than one pair
satisfying the selection criterion of step 2. Consequently, for certain inputs we
may have more than one execution. Note also that the output of an execution
is completely determined by the (unordered) set of joining events it performs
(where two joining events are identical if they involve identical clusters).

Several other known algorithms, such as WPGMA [4] and the single linkage

1In the context of this paper, “distances” need not satisfy the triangle inequality.

1



————————————————————

Unweighted Pair Grouping Method with Arithmetic-mean:

Input: A dissimilarity matrix D = [D(Ci, Cj)] over a set of clusters C.
Output: A hierarchy over C.

1. Stopping condition: If |C| = 1 return the single cluster in C.
2. Cluster-pair selection: Select a pair of distinct clusters {Ci, Cj} ⊆ C

s.t. D(Ci, Cj) is a minimal off-diagonal entry of D.

3. Reduction: Remove Ci, Cj from the cluster set C and replace them with
Ci ∪ Cj . For all Ck 6= (Ci ∪ Cj), set:

D(Ck, (Ci ∪ Cj)) ← |Ci|
|Ci|+|Cj |D(Ck, Ci) + |Cj |

|Ci|+|Cj |D(Ck, Cj) .

– Recursively call UPGMA on the reduced cluster-set and dissimilarity
matrix.

4. Returning: Add Ci and Cj to the returned hierarchy.

————————————————————

Table 1: The UPGMA algorithm

algorithm [1, 3], use this clustering scheme with different reduction formulae:

WPGMA: D(Ck, (Ci ∪ Cj)) ← 1
2

(D(Ck, Ci) + D(Ck, Cj)) (1.1)

Single-Linkage: D(Ck, (Ci ∪ Cj)) ← min {D(Ck, Ci), D(Ck, Cj)} (1.2)

Other reduction formulae are possible as well. Those considered in this paper are
assumed to be convex, meaning that for each cluster Ck, the value of D(Ck, (Ci∪
Cj)) lies between D(Ck, Ci) and D(Ck, Cj).

The naive implementation of UPGMA takes O(n3) time, and the most ef-
ficient implementation known today takes O(n2log(n)) time, using heaps or
sorted arrays (see Section 2). This note presents a novel simple O(n2) imple-
mentation which uses only elementary data structure. This implementation is
clearly asymptotically optimal, and is based on the technique we introduced in
[2]. To the best of our knowledge, this is the first O(n2) implementation of UP-
GMA which is faithful, in the sense that it is guaranteed to produce clustering
which corresponds to a correct execution of the UPGMA algorithm as described
in Table 1.

Our implementation is based on a relaxation of the clustering scheme men-
tioned above: instead of selecting a globally closest cluster-pair Ci, Cj , s.t.
D(Ci, Cj) is a minimal off-diagonal entry in the entire matrix, we selcet a lo-
cally closest cluster pair, for which D(Ci, Cj) is only required to be a minimal
off-diagonal entry in the rows corresponding to Ci and Cj . We call this relaxed
scheme the locally closest pair (LCP) scheme, as opposed to the original globally

2



closest pair (GCP) scheme. We show that in the case of the reduction formula
used by UPGMA, the LCP scheme is equivalent to the GCP scheme, mean-
ing that any implementation of LCP-UPGMA is a faithful implementation of
GCP-UPGMA (as described in Table 1).

The rest of this note is organized as follows. In Section 2 we review various
known implementations of UPGMA and present our O(n2) implementation of
LCP-UPGMA. In Section 3 we prove the equivalence of the LCP and GCP
schemes. Most of our analysis specifically considers UPGMA, but we state
possible generalizations to other clustering algorithms as well.

2 An O(n2) Implementation of LCP-UPGMA

In this section we present an implementation of LCP-UPGMA whose time com-
plexity is O(n2). The analysis in this section applies to all hierarchical clustering
algorithms which follow the ‘closest-pair’ joining scheme, and which use a con-
vex reduction formula, as will be detailed.

Given an input dissimilarity matrix D over a set C of n clusters, the UPGMA
algorithm of Table 1 performs n − 1 iterations (recursive calls). Each such
iteration involves joining a cluster-pair and reducing the input matrix. It is
easy to see that the reduction step can be implemented in linear time. Thus, the
running time of the algorithm is dominated by the time required for selecting the
cluster-pairs. A naive approach, which requires θ(n2) time in each iteration
(and a total time complexity of θ(n3)) scans the entire matrix D for a minimal
off diagonal entry, corresponding to a globally closest cluster-pair.

Time complexity can be reduced to O(n2log(n)) as follows. Let MIND(Ci) =
minCk 6=Ci D(Ci, Ck) denote the minimal off-diagonal value in the row corre-
sponding to Ci in D. An ordered cluster-pair (Ci, Cj) is a minimal pair (for
Ci and D) if D(Ci, Cj) = MIND(Ci). Finding a minimal pair for each row in D
can be done in O(n2) time. Once a minimal pair is kept for each row, a globally
closest cluster-pair is found in linear time by scanning the set of minimal pairs
and selecting a pair (Ci, Cj) for which D(Ci, Cj) is minimized. Updating the
set of minimal pairs after the reduction of D (in step 3 of the algorithm) can be
done in O(nlog(n)) time by maintaining the entries in each row of D in a heap.
This results in total time complexity of Θ(n2 log n).

As mentioned earlier, our O(n2) implementation is based on the LCP scheme,
which joins at each stage a locally (rather than globally) closest cluster-pair.

Observation 2.1. If (Ci, Cj) is a minimal pair and MIND(Ci) = MIND(Cj),
then {Ci, Cj} is a locally closest cluster pair in D.

Observation 2.1 implies that under the LCP scheme, cluster joining can
be implemented by joining clusters Ci, Cj s.t. (Ci, Cj) is a minimal pair and
MIND(Ci) = MIND(Cj). To find such cluster pairs efficiently, we maintain a
complete descending path. A sequence of distinct clusters P = (Ci1 , Ci2 , . . . , Cil

)
is a descending path with respect to D if for r = 1, .., l− 1, (Cir , Cir+1) are min-
imal pairs, implying also that MIND(Cir ) ≥ MIND(Cir+1). A descending

3



path is complete if D (and hence P ) are of dimension 1, or if MIND(Cil−1) =
MIND(Cil

), that is: (Cir−1 , Cir
), the last clsuter pair in P , is a locally closest

pair. Thus, constructing and maintaining a complete descending path through-
out the execution of the algorithm in overall O(n2) time will imply the desired
bound on the total time complexity.

Our method is based on the following basic extension operation, defined for
a given descending path P w.r.t. a dissimiarity matrix D: if P is the empty
path then insert to P an arbitrary cluster Ci1 ∈ C. Else let P = (Ci1 , . . . , Cil

);
compute m = MIND(Cil

); if l > 1 and m = D(Cil−1 , Cil
) then terminate

extension; otherwise (i.e. l = 1 or m < D(Cil−1 , Cil
)), extend the path P by

adding to it any cluster Cil+1 , s.t. D(Cil
, Cil+1) = m. Observe that a repeated

application of this basic extension operation must end when the termination
condition holds, and a complete descending path is achieved.

Given an input matrix D, the algorithm starts by constructing a complete
descending path w.r.t. D as described above. Given a complete descending
path P = (Ci1 , . . . , Cil

) of D, if l = 1 the algorithm stop (since D is of dimen-
sion 1). Else the algorithm performs a reduction step in which the cluster-pair
(Cil−1 , Cil

) is joined. Let D′ be the matrix obtained by this reduction. We
observe that if the reduction is convex, then the path P̄ = (Ci1 , . . . , Cil−2) is a
(possibly empty) descending path of the reduced matrix D′. This holds since
the convexity of the reduction guarantees that all consecutive pairs in P̄ remain
minimal pairs with respect to D′. Thus a complete descending path P ′ can be
computed for D′ by iteratively extending P̄ using basic extension operations
until the termination condition is met.

We now analyze the total time complexity of the process described above.
This process consists of a series of basic extension operations, some of which lead
to termination, whereas the rest lead to an extension of P by an additional vertex
(cluster). Each operation requires the computation of MIND(Ci) (for some
cluster Ci), which can be done in linear time. Thus, the total time complexity
of maintaining P is determined by the total number of basic extension operations
invoked throughout the execution of the algorithm. n−1 such operations lead to
termination of the path P (one in each iteration), whereas the rest result in an
extension of P by a single vertex. Now, since in each iteration only two vertices
are removed from P , and at the end of the execution this path is emptied (up
to a single vertex), the total number of vertices added to P throughout the
execution is no more than 2n − 2. Thus the total number of basic extension
operations is no more than 3n− 3, leading to a total running time of O(n2).

3 Equivalence of the LCP and GCP schemes

The complete descending paths technique presented in the previous section yields
an O(n2) implementation of LCP-UPGMA. In this section we prove that for
each LCP-UPGMA execution there is a GCP-UPGMA execution on the same
input which yields identical clustering (Theorem 3.3). This implies that the
O(n2) algorithm presented in the previous section is a faithful (i.e., correct)

4



implementation of UPGMA. Although our discussion focuses on UPGMA, it can
be easily generalized for several other hierarchical clustering algorithms which
follow the ‘closest-pair’ joining scheme (such as WPGMA and the single-linkage
algorithm). The analysis is based on the following two lemmas:

Lemma 3.1. Let D be a dissimilarity matrix over a cluster set C, s.t. |C| > 1.
Then during each execution of LCP-UPGMA on (C, D), a cluster-pair {Ci, Cj} ⊆
C, which is a globally closest pair in D, is joined.

Proof. The lemma is proved by induction on |C|. It holds trivially when |C| =
2. Assume that |C| > 2, and let m denote the minimal off-diagonal value in
D. Consider the first cluster-pair {Ck, Cl} joined during the execution, and
distinguish between the two complementary cases:
Case 1: min{MIND(Ck),MIND(Cl)} = m. Then we must have that D(Ck, Cl) =
m, and the lemma follows.
Case 2: min{MIND(Ck),MIND(Cl)} > m, i.e. all the off-diagonal values
in the rows corresponding to Ck, Cl are strictly greater than m. Let C′ =
C \ {Ck, Cl} ∪ {(Ck ∪ Cl)} be the reduced cluster-set, and let D′ denote the
corresponding dissimilarity matrix obtained after the first iteration of the al-
gorithm. Since the reduction is convex, we have that MIND′(Ci ∪ Cj) > m,
hence the minimum off-diagonal value in D′ is also m. Moreover, A cluster pair
{Ci′ , Cj′} ⊆ C′ is a globally closest pair in D′ iff it is a globally closest pair in
D. The induction hypothesis on C′ implies that at some point in the execution,
a globally closest cluster-pair {Ci′ , Cj′} ⊆ C′ must be joined. By the written
above, {Ci′ , Cj′} is also a globally closest pair in D.

Note that Lemma 3.1 applies for all hierarchical clustering algorithms which
follow the ‘locally-closest-pair’ joining scheme and which use a convex reduction.

Lemma 3.2 (Swapping Lemma). Let D be a dissimilarity matrix over a clus-
ter set C s.t. |C| ≥ 4, and assume {Ci1 , Cj1 , Ci2 , Cj2} ⊆ C. Let C′ = C \
{Ci1 , Cj1 , Ci2 , Cj2} ∪ {(Ci1 ∪ Cj1), (Ci2 ∪ Cj2)} be the smaller cluster set ob-
tained by joining cluster-pairs {Ci1 , Cj1} and {Ci2 , Cj2}. Let further D′

1 be the
dissimilarity matrix over C′ resulting from first joining cluster-pair {Ci1 , Cj1}
and then joining {Ci2 , Cj2}, and let D′

2 be the matrix which results from first
joining {Ci2 , Cj2} and then {Ci1 , Cj1}, where all reductions use the UPGMA-
formula. Then D′

1 = D′
2.

Proof. Denote α1 = |Ci1 |
|Ci1 |+|Cj1 | and α2 = |Ci2 |

|Ci2 |+|Cj2 | . By substitution in the
reduction formula of UPGMA (see Step 3 in Table 1) we get for an arbitrary
cluster-pair A,B ∈ C′ \ {(Ci1 ∪ Cj1), (Ci2 ∪ Cj2)}:

D′
1(A,B) = D(A,B) =D′

2(A,B)
D′

1(A, (Ci1 ∪ Cj1)) = α1D(A,Ci1) + (1− α1)D(A,Cj1) =D′
2(A, (Ci1 ∪ Cj1))

D′
1(A, (Ci2 ∪ Cj2)) = α2D(A,Ci2) + (1− α2)D(A,Cj2) =D′

2(A, (Ci2 ∪ Cj2))

5



By substitution in the same formula we get for (Ci1 ∪ Cj1), (Ci2 ∪ Cj2):

D′
1((Ci1 ∪ Cj1), (Ci2 ∪ Cj2)) =

α1α2D(Ci1 , Ci2) + (1− α1)α2D(Cj1 , Ci2)+
α1(1− α2)D(Ci1 , Cj2) + (1− α1)(1− α2)D(Cj1 , Cj2) =
D′

2((Ci1 ∪ Cj1), (Ci2 ∪ Cj2))

Lemmas 3.1 and 3.2 imply our main result:

Theorem 3.3. Let D be an arbitrary dissimilarity matrix over a cluster-set C.
Then every LCP-UPGMA execution on (C, D) has an equivalent GCP-UPGMA
execution (yielding the same clustering as output).

Proof. By induction on |C|. The claim holds for |C| ≤ 3, since in such a case,
a locally-closest cluster-pair is globally-closest as well. Assume, therefore, that
|C| > 3, and let LE be an LCP-UPGMA execution on (C, D). Let {Ci, Cj} ⊆ C
be a globally closest cluster-pair in D which is joined during LE, as guaranteed
by Lemma 3.1. By a repeated application of the swapping lemma, we can move
up the joining of this cluster-pair to the beginning of LE, without changing
the output of the execution. Thus we can assume that the first cluster-pair
joined by the execution LE is {Ci, Cj}. Observe LE′, the suffix execution of
LE defined on the reduced cluster set C′ = C \ {Ci, Cj} ∪ {(Ci ∪ Cj)} and the
corresponding reduced matrix D′. The induction hypothesis implies that there
is a GCP-UPGMA execution GE′ on (C′, D′) equivalent to LE′. By appending
GE′ to the joining of {Ci, Cj} we get a GCP-UPGMA execution GE equivalent
to LE.

We note that Theorem 3.3 applies to any ‘closest-pair’ hierarchical clustering
algorithm, providing that the reduction formula it uses is convex and satisfies
the swapping lemma (this in particular includes WPGMA and the single
linkage algorithm). Hence, each such clustering algorithm has an optimal O(n2)
faithful implementation using complete descending paths.

References

[1] J. Barthelemy and A. Guenoche. Trees and proximities representations.
Wiley, 1991.

[2] I. Gronau and S. Moran. Neighbor joining algorithms for inferring phyloge-
nies via LCA-distances. September 2006.

[3] M. Krivanek. The complexity of ultrametric partitions on graphs. Inform.
Process. Lett., 27:265–270, 1988.

[4] P. Sneath and R. Sokal. Numerical Taxonomy : the principles and practice
of numerical classification. W. H. Freeman, San Francisco, 1973.

6


