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Simplified Partial Digest Problem: Enumerative and
Dynamic Programming Algorithms

Jacek Blazewicz,Senior Member, IEEE,Edmund Burke, Marta Kasprzak, Alexandr Kovalev,
and Mikhail Y. Kovalyov

Abstract— We study the Simplified Partial Digest Problem
(SPDP), which is a mathematical model for a new simplified
partial digest method of genome mapping. This method is easy
for laboratory implementation and robust with respect to the
experimental errors. SPDP is NP-hard in the strong sense. We
present an O(n2n) time enumerative algorithm and an O(n2q)
time dynamic programming algorithm for the error-free SPDP,
where n is the number of restriction sites andq is the number
of distinct intersite distances. We also give examples of the
problem, in which there are 2

n+2
3 −1 non-congruent solutions.

These examples partially answer a question recently posed in
the literature about the number of solutions of SPDP. We adapt
our enumerative algorithm for handling SPDP with imprecise
input data. Finally, we describe and discuss the results of the
computer experiments with our algorithms.

Index Terms— G.4.a Algorithm design and analysis, I.2.8.d Dy-
namic programming, genome mapping, restriction site analysis,
imprecise information.

I. I NTRODUCTION

A genome of a living organism can be viewed as a DNA
molecule in the form of adouble helixconsisting of two

strands. This molecule is a chain of amino acids (nucleotides)
called adenine (A), cytosine (C), guanine (G) and thymine
(T). Mathematically, its linear structure can be represented
as a word in the alphabet{A,C, G, T}. According to the
fundamental law of a DNA construction discovered by Watson
and Crick [28], one strand of a DNA molecule unambiguously
determines its second strand.

Linear structure is an important characteristic of a DNA
molecule. At present, it cannot be determined directly by
using physical or chemical measurement methods. The ex-
isting indirect methods usually include three main hierarchi-
cal procedures: mapping, assembling and sequencing. In a
mapping procedure, a DNA molecule is exposed to specific
chemicals called restriction enzymes (ferments). Enzymes cut
DNA molecules at particular patterns of nucleotides called
restriction sites. For example, enzymeEcoRI cuts at the
patternGAATTC (see Skiena and Sundaram [26]). During
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the cutting process, the information about the location of
the restriction sites is lost. The available information is the
multiset of lengths of the cut fragments (counted in the number
of nucleotides between the corresponding restriction sites).
These lengths are obtained by a gel electrophoresis experiment
which is based on the fact that shorter fragments generate a
longer distance in the gel under the electric current.

Reconstructing the location of restriction sites is the subject
of a mathematical theory calledrestriction site analysis, see
Setubal and Meidanis [24], Waterman [27] or Pevzner [22]
for details. The input data for restriction site analysis are the
lengths of the cut fragments and appropriate information about
the cutting (digesting) method. The most common cutting
methods aredouble digest, where two restriction enzymes are
used (see e.g. [27] or [22]), andpartial digest, where the DNA
is cut by one enzyme but with different reaction times. The
inventor of the partial digest approach was Daniel Nathans
together with his co-workers (see Danna and Nathans [8] and
Danna, Sack and Nathans [9]), who in 1978 received the
Nobel Prize for his work on restriction enzymes and restriction
mapping. In the following we will be concerned with this last
approach as the double digest constructs too many equivalent
solutions (maps), see Waterman [27].

In the classic partial digest approach, a series of digesting
experiments is performed. In the first experiment, identical
copies of a DNA chain, called DNA clones, are exposed to an
enzyme for a sufficiently small time period to cut them in at
most one restriction site. The second reaction has a little more
time allowed in order to obtain two cuts per clone. Every other
experiment takes more time and, finally, the last one takes a
sufficiently long time to cut clones in every appropriate site.
The Partial Digest Problem (PDP)is a mathematical model
that aims to reconstruct the map of the target DNA based
on the DNA fragment lengths between every two restriction
sites. It was studied in the idealerror-freecase and in the case
of experimental errors, see Skiena, Smith, and Lemke [25],
Skiena and Sundaram [26], Cieliebak, Eidenbenz and Penna
[7], Cieliebak and Eidenbenz [6]. From the combinatorial point
of view, the computational complexity of PDP is yet to be
established. This problem was proved NP-hard in the cases of
measurement errors [6] and noisy data [7]. However, a proof
of NP-hardness of the original error-free PDP as well as a
polynomial-time solution algorithm for it is not known, see
Daurat, Gerard and Nivat [10] and Gerard [15].

The main disadvantage of the partial digest approach is that
the experimental data is very hard to obtain. The output of the
partial digestion is to be a multiset of allinterpoint distances,
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where the points are the restriction sites and the ends of the
molecule. Forn restriction sites, this multiset must consist of(

n+2
2

)
= (n+1)(n+2)

2 fragment lengths. Pevzner [22] writes
that the partial digestion has never been the favorite mapping
method in biological laboratories because of a difficulty in
obtaining fragments between every pair of sites. It is confirmed
by the statistical data – experiments using this approach are
performed in a rather small scale, for molecules containing
less than 20 restriction sites, see Dudez et al. [13], Keis et al.
[18] and Kuwahara et al. [19].

A simplified partial digest methodwas recently proposed
by Blazewicz et al. [2] to overcome the disadvantage of the
partial digest approach. In this simplified method, one enzyme
is used on two sets of clones of the same DNA molecule.
The corresponding experiment consists of two parts. In the
first part, the time of the chemical reaction is chosen so
that target cloned molecules of the first set are cut at one
restriction site at most. In the second part, the reaction time
span is sufficiently long to cut the cloned molecules of the
second set at all restriction sites. The beneficial effect of this
simplified approach is not only the reduction of the number
of reactions performed, but also a much easier choice of the
reaction times – they are either very short or very long and
there is nothing in between. Experimental data provided by
any digesting method can contain a level of error which is
proportional to the total amount of data produced. From this
point of view, the simplified partial digest method is again
beneficial because it produces less experimental data.

This paper presents new combinatorial algorithms that can
be used in the restriction site analysis based on the simplified
partial digest experiment. The extensive set of experiments
verifies the high efficiency of the proposed algorithms and
their clear advantage over the existing procedures for realistic,
practically justified data.

The organization of the paper can be outlined as follows.
A mathematical model for genome mapping based on the
simplified partial digest experiment is described in the next
section. The model is called theSimplified Partial Digest Prob-
lem (SPDP). Section III presents an enumerative algorithm
(ENUM) for SPDP and the examples of of this problem in
which there are2

n+2
3 −1 non-congruentsolutions (a definition

is given in Section II). Section IV presents a dynamic pro-
gramming algorithm for SPDP. Algorithm ENUM is adapted
to handle SPDP with measurement errors in Section V. The
results of computer experiments with the developed algorithms
are discussed in Section VI. Section VII contains a brief
summary of the results and suggestions for future research.

II. SIMPLIFIED PARTIAL DIGEST PROBLEM (SPDP)

L ET us discuss a mathematical model for genome mapping
based on the simplified partial digest experiment. From

the first and the second parts of this experiment, we obtain
multisetsA andB, respectively, of molecule fragment lengths.
Let L be the length of the target DNA molecule and let
1, . . . , n be the restriction sites to be recognized by the used
enzyme in this molecule. We first assume that the experiment
is error-free such that the multisetA comprisesn pairs

{aj , L − aj} of positive numbers, whereaj is the length of
the fragment including one specified end of the molecule and
restriction sitej, andL−aj is the length of the complementary
fragment,j = 1, . . . , n. Furthermore, multisetB comprises
n + 1 lengths bj of fragments between every two adjacent
points, i.e., restriction sites and the ends of the molecule (see
the graphical interpretation in Fig. 1).

0 a1 a2 a3 an L

L

2

?

b1 b2 b3 · · ·

· · ·

bn+1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Fig. 1. Graphical interpretation of parametersaj andbj .

The error-freeSimplified Partial Digest Problem (SPDP)
can be formulated in terms of number theory as follows. There
is an interval [0, L], a positive integer numbern and two
multisetsA andB of positive integer numbers such that

A =
{
{aj , L− aj} | j = 1, . . . , n

}
,

B =
{

bj | j = 1, . . . , n + 1,
∑n+1

j=1 bj = L
}

.

Multiset A contains at most two identical pairs{aj , L− aj}.
Identical pairs, if they exist, correspond to the restriction sites
that are symmetric with respect to the middle of the molecule
(see pointsa2 and a3 in Fig. 1 such thata2 = L − a3).
Each pair{aj , L − aj} can be ordered as(aj , L − aj) or
(L − aj , aj). Assume that each such ordered pair(pj , sj) is
associated with a pointpj ∈ [0, L] so thatpj andsj = L− pj

are the distances between points 0 andpj and between points
pj andL, respectively.

The multisetsA and B satisfy the property that each pair
{aj , L − aj}, j = 1, . . . , n, can be ordered so that the
associated pointspj , j = 1, . . . , n, partition the interval[0, L]
into n + 1 subintervals withinterpoint distancesconstituting
the multisetB, i.e., {pj+1−pj | j = 0, 1, . . . , n} = B, where
p0 = 0 andpn+1 = L.

The problem (SPDP) is concerned with finding a sequence
of pointsp∗ = (0, p∗1, . . . , p

∗
n, L) such that

{
{p∗j , L− p∗j} | j = 1, . . . , n

}
= A

and
{

p∗j+1 − p∗j | j = 0, 1, . . . , n
}

= B,

wherep∗0 = 0 andp∗n+1 = L.
Notice that SPDP always has a solution, at least the one

that corresponds to the original DNA. Furthermore, it may
have several solutions. One can be interested in finding one,
several or all mutually non-congruent solutions of SPDP. Two
solutions (0, p1, p2, . . . , pn, L) and (0, p′1, p

′
2, . . . , p

′
n, L) of

SPDP arecongruentif and only if (p1, . . . , pn) = (L−p′1, L−
p′2, . . . , L− p′n), i.e., they are mirror images of each other.

In the real partial digest experiment, different types of ex-
perimental errors may appear. This question will be discussed
in detail in Section V, where the most serious error type —
measurement errors — will be modeled and then handled by
the use ofinterval computations(for more information about
the theory of interval computations, see, e.g., Kearfott [17]).
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The existing algorithmic results for SPDP include the
following. Blazewicz and Kasprzak [4] proved that error-
free SPDP is NP-hard in the strong sense and presented an
O(n log n) time algorithm for the case wherebj ∈ {1, 2},
j = 1, . . . , n + 1. Enumerative algorithms for the general
error-free SPDP were proposed by Blazewicz et al. [2] and
Blazewicz and Jaroszewski [3]. The complexity of SPDP with
errors was studied in [6] and [7].

A new O(n2n) time algorithm that enumerates all mutually
non-congruent solutions of SPDP is described in the next
section. AnO(n2q) time dynamic programming algorithm to
find one solution of SPDP, whereq is the number of distinct
values in the multisetB, is given in the following section.
Later on, the first algorithm (ENUM) is adapted to handle
SPDP with measurement errors.

III. A N ENUMERATION OF ALL NON-CONGRUENT

SOLUTIONS

I N this section we present an algorithm, denoted as ENUM,
which constructs all mutually non-congruent solutions of

the error-free SPDP. The idea of the algorithm is to enumerate
all possible locations of the restriction sites based on the
distance multisetsA andB.

Consider the smallest distance in the multisetA. Let it be
a1. A restriction site corresponding toa1 is the closest to one
of the two ends of the molecule. If there is only one pair
{a1, L−a1} ∈ A (case (i)), then algorithm ENUM constructs
a partial solutionp = (0, a1, ◦, . . . , ◦, L) that contains point
a1 ∈ [0, L]. Here ◦ is the symbol that representsempty.
Another possibility for the position of the corresponding
restriction site is the symmetric pointL− a1. However, there
is no need to consider solutions containing this point because
for every such solution there exists a congruent solution
containing the pointa1. If there are two identical pairs{a1, L−
a1} ∈ A (case (ii)), then algorithm ENUM constructs a partial
solutionp = (0, a1, ◦, . . . , ◦, L− a1, L) containing two points
a1 and L − a1. The constructed partial solution generates
one interpoint distancea1 (between points 0 anda1) in case
(i) and two interpoint distancesa1 (between points 0 anda1

and between pointsL − a1 and L) in case (ii). The multiset
of unused interpoint distances, i.e.,B\{a1} in case (i) and
B\{a1, a1} in case (ii) is stored with the constructed partial
solution p. It is denoted asB(p). Then the second smallest
distance in the multisetA is considered. Let it bea2. A
restriction site corresponding toa2 is the second closest to one
of the two ends of the molecule. Assume that the previously
constructed partial solution isp = (0, a1, ◦, . . . , ◦, L). If there
is one pair{a2, L−a2} ∈ A, then algorithm ENUM extends
p by the pointa2 and verifies whether the interpoint distance
a2 − a1 (between pointsa1 and a2) belongs to the multiset
B(p). If a2 − a1 ∈ B(p), then the extended solutionp′ =
(0, a1, a2, ◦, . . . , ◦, L) is kept andB(p′) := B(p)\{a2 − a1}.
If a2 − a1 6∈ B(p), then p′ is discarded. Algorithm ENUM
also extendsp by the symmetric pointL − a2 and verifies
whether the interpoint distancea2 (between pointsL − a2

andL) belongs to the multisetB(p). If a2 ∈ B(p), then the
extended solutionp′′ = (0, a1, ◦, . . . , ◦, L−a2, L) is kept and

B(p′′) := B(p)\{a2}. If a2 6∈ B(p), thenp′′ is discarded. The
process is repeated forn smallest distances in the multisetA.

In algorithm ENUM, Xk denotes the set of partial so-
lutions of SPDP which have survived the consideration
of the k smallest distances in the multisetA, k =
1, . . . , n. Each partial solution fromXk is a sequence of
points(0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) such thatk points
p1, . . . , ps and pt, . . . , pn, where0 < p1 < . . . < ps < pt <
. . . < pn < L, s + n − t + 1 = k, are determined and the
remainingn − k points between pointsps and pt are to be
determined. The setXn contains all mutually non-congruent
solutions of SPDP. As mentioned above, with each partial
solution p = (0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xk we
associate multisetB(p) of interpoint distances to be used for
its extension to a complete solution of SPDP:

B(p) = B\{pj − pj−1 | j = 1, . . . , s,

j = t + 1, . . . , n + 1}, p0 := 0, pn+1 := L.

The algorithm can be outlined as follows.

Algorithm ENUM

Step 1. In the multiset A, detect all pairs{aj , L − aj},
j = 1, . . . , n. Order each pair{aj , L − aj} so that the
corresponding ordered pair(oj , L− oj) satisfiesoj ≤ L− oj ,
j = 1, . . . , n. Re-number the ordered pairs such thato1 ≤
· · · ≤ on. SetX0 = {(0, ◦, . . . , ◦, L)}, B(0, ◦, . . . , ◦, L) = B
and j = 0.

Step 2.There are four mutually exclusive cases to consider.
Case 1):j ≤ n− 3 andoj+1 = oj+2. In this case, compute

Xj+2 =
{(0, p1, . . . , ps, oj+1, ◦, . . . , ◦, L− oj+2, pt, . . . , pn, L) |

p′ = (0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj ,

oj+1 − ps ∈ B(p′), pt − L + oj+2 ∈ B(p′)}.
For eachp ∈ Xj+2 obtained fromp′ ∈ Xj , calculateB(p) =
B(p′)\{oj+1−ps, pt−L+oj+2}. Re-setj := j+2 and repeat
Step 2.

Case 2):j = n− 2 andoj+1 = oj+2. Compute

Xn = {(0, p1, . . . , ps, on−1, L− on, pt, . . . , pn, L) |
p′ = (0, p1, . . . , ps, ◦, ◦, pt, . . . , pn, L) ∈ Xn−2,

on−1 − ps ∈ B(p′), pt − L + on ∈ B(p′),
L− (on−1 + on) ∈ B(p′)}

and stop.
Case 3):j ≤ n − 2 and oj+1 6= oj+2. If this case occurs

for the first time, then setXj contains a single partial solution
p′ = (0, p1, . . . , ps, ◦, . . . , ◦, pn−s+1, . . . , pn, L) with points
symmetric with respect to the middle of the interval[0, L]. If
Case 3) occurs for the first time, in order to avoid congruent
solutions in the setXn, we calculate

Xj+1 = {(0, p1, . . . , ps, oj+1, ◦, . . . , ◦, pn−s+1, . . . , pn, L)}
containing one partial solution, andB(p) = B(p′)\{oj+1 −
ps}. We do not need to checkoj+1 − ps ∈ B(p′) because
error-free SPDP must have at least one solution.
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For other occurrences of Case 3), we calculate

Xj+1 =
{

p = (0, p1, . . . , ps, oj+1, ◦, . . . , ◦, pt, . . . , pn, L) |
p′ = (0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj ,

oj+1 − ps ∈ B(p′)
}
∪

{
p̄ = (0, p1, . . . , ps, ◦, . . . , ◦, L− oj+1, pt, . . . , pn, L) |
p′ = (0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj ,

pt − L + oj+1 ∈ B(p′)
}

.

For eachp ∈ Xj+1 obtained fromp′ ∈ Xj , calculateB(p) =
B(p′)\{(oj+1 − ps)} and, for each̄p ∈ Xj+1 obtained from
p′ ∈ Xj , calculateB(p̄) = B(p′)\{(pt − L + oj+1)}. Re-set
j := j + 1 and repeat Step 2.

Case 4):j = n−1. If Case 3) never occurred, then calculate

Xn = {(0, p1, . . . , ps, on, pt, . . . , pn, L) |
(0, p1, . . . , ps, ◦, pt, . . . , pn, L) ∈ Xn−1}

and stop.
If Case 3) occurred at least once, then calculate

Xn =
{

(0, p1, . . . , ps, on, pt, . . . , pn, L) |
p′ = (0, p1, . . . , ps, ◦, pt, . . . , pn, L) ∈ Xn−1,

on − ps ∈ B(p′), pt − on ∈ B(p′)
}
∪

{
(0, p1, . . . , ps, L− on, pt, . . . , pn, L) |

p′ = (0, p1, . . . , ps, ◦, pt, . . . , pn, L) ∈ Xn−1,

L− on − ps ∈ B(p′), pt − L + on ∈ B(p′)
}

and stop.

It is clear that the pointoj or the pointL − oj must be
present in every solution of SPDP for eachj = 1, . . . , n. If
oj = oj+1, then (oj , L − oj) = (oj+1, L − oj+1), and hence
both pointsoj andoj+1 must be present in every solution of
SPDP. Algorithm ENUM enumerates all such solutions and
removes those with interpoint distances not from the multiset
B. Therefore, the algorithm is correct. Step 2 determines the
time complexity of the algorithm. In iterationj + 1 of this
step, at most2|Xj | sequences(0, p1, . . . , pn, L) are analyzed.
Each sequence is analyzed in a constant time and it can be
written to the setXj+1 or the setXj+2 in O(n) time (if
writing each element of a sequence requires one operation).
We have|Xj+1| ≤ 2|Xj |, j = 0, 1, . . . , n−1. Since|X0| = 1,
we obtain|Xj | ≤ 2j , j = 1, . . . , n. The time complexity of
Step 2 can be evaluated asO(n

∑n
j=1 |Xj |) = O(n2n) which

is also the time complexity of ENUM. Its space requirement
is determined byn max1≤i≤j≤n{|Xi|+ |Xj |}. It can also be
evaluated asO(n2n).

We now give an example of SPDP for which there are
2

n+2
3 −1 non-congruent solutions, i.e., the cardinality of the set

Xn is exponential in this case. Our example partially answers
a question about the number of solutions of SPDP posed by
Blazewicz, Formanowicz and Kasprzak [1].

Let n andh be positive integer numbers satisfyingh+(h+
1)/2−1 = n. In our example, the length of the interval isL =
2(h+1), multisetA =

{
{2j−1, L−(2j−1)}| j = 1, . . . , (h+

1)/2
}
∪

{
{2j, L− 2j}| j = 1, . . . , h+1

2 − 1, h+1
2 +1, . . . , h

}
,

and multisetB consists ofh numbers 1,(h+1)/2−1 numbers
2 and one number 3. Non-congruent solutions for this example
are shown in Fig. 2.
In the figure the 0-1 vector(y1, . . . , yh+1

2
) is associated with

the points “¦”. A point “¦” associated withyj can be placed
either in the position2j− 1 or in the symmetric positionL−
2j + 1. In the former case,yj = 0 and in the latter case,
yj = 1.

Denote byYh+1
2

the set of all 0-1 vectors(y1, . . . , yh+1
2

).
All non-congruent solutions of SPDP are determined by the
set Ŷh+1

2
⊂ Yh+1

2
so that there are no two vectorsy and y′

in Ŷh+1
2

satisfyingy′j = 1 − yj , j = 1, . . . , (h + 1)/2. Since

|Yh+1
2
| = 2

h+1
2 and |Ŷh+1

2
| = |Yh+1

2
|/2, we obtain|Ŷh+1

2
| =

2
h+1
2 −1 = 2

n+2
3 −1.

Our example can easily be transformed into an example, in
which interpoint distances are all distinct. For these purposes,
let the picture for the points “|” be symmetric with respect
to the middle but let the distances between any two adjacent
such points be all distinct in the interval[0, L/2] = [0, h− 1].
Let every point “¦” partition an interval between two adjacent
points “|” so that all generated distances are distinct. Further-
more, let the two interpoint distances between the pointsh,
“¦” and h + 3 be distinct and differ from all other interpoint
distances. As with the original example, every point “¦” can
be placed in one of the two symmetric positions associated
with it. Therefore, there are2

n+2
3 −1 non-congruent solutions

for this example.
In the next section, a dynamic programming algorithm will

be presented for a special case of the error-free SPDP. It
will be tested against ENUM in an extensive computational
experiment in Section VI. On the other hand, algorithm ENUM
will be modified to cover the case of measurement errors (cf.
Section V and tests in Section VI).

IV. A DYNAMIC PROGRAMMING ALGORITHM

DYNAMIC programming is a well established search tech-
nique which has grown out of the operational research

tradition. Other complementary search procedures can be seen
in Burke and Kendall [5]. A basic introduction to the technique
can be found in Dowsland [12] and its importance as a method
to underpin the development of computationally intelligent
systems is presented in Poole, Mackworth and Goebel [23].
They say, in the context of Computational Intelligence, that dy-
namic programming, ”deserves attention because it’s important
in many optimization problems, particularly those involving
decision making”.

We first consider a special case of the error-free SPDP in
which bj ∈ {u, v}, j = 1, . . . , n + 1. We denote this special
case as SPDP(u, v) and present a dynamic programming
algorithm, denoted as DP, which constructs a solution of
SPDP(u, v) in O(n4) time. We stress that algorithm DP con-
structs one solution, not all mutually non-congruent solutions
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0 1 2 h h+3 L=2(h+1)

(0, 0, . . . , 0, 0) ⋄ ⋄ ⋄ ⋄

· · · · · ·

(0, 0, . . . , 0, 1) ⋄ ⋄ ⋄ ⋄

· · · · · ·

(0, 0, . . . , 1, 0) ⋄ ⋄ ⋄ ⋄

· · · · · ·

· · ·

(0, 1, . . . , 1, 1) ⋄ ⋄ ⋄⋄

· · · · · ·

Fig. 2. 2
h+1
2 −1 = 2

n+2
3 −1 non-congruent solutions of SPDP.

of SPDP. We use the same terminology and notations as in
the algorithm ENUM.

The idea of the algorithm DP is as follows. Consider two
partial solutionsp ∈ Xj and p′ ∈ Xj , see an example in
Fig. 3.

p :

0 L

v u u v u

3u+2v

v u v u u v u

L−(4u+3v)

p′ :
v u u u v v u u v u v u

Fig. 3. Two partial solution in the same state.

Assume that the number of interpoint distances of each type
u and v is the same in the left part and in the right part
of both partial solutions. Then a) the points closest to the
middle of the molecule are the same inp and p′; and b) the
interpoint distances to be used for the extensions ofp andp′

are the same:B(p) = B(p′). Partial solutions from the same
set Xj , which satisfy properties a) and b), are said to be in
the samestate. Properties a) and b) imply that if one of the
two partial solutionsp andp′ can be extended to a complete
solution of SPDP(u, v), then the other partial solution can do
the same. Therefore, if there are several partial solutions in the
same state, then only one of them (arbitrary) can be considered
for further expansion and all others can be discarded. This
selection procedure reduces the cardinality of the setXj . A
more detailed description of algorithm DP is given below.

Assume that the ordered pairs(oj , L − oj) of elements
from the multisetA satisfy oj ≤ L − oj , j = 1, . . . , n,
and o1 ≤ · · · ≤ on. In the algorithm DP, we assign
points associated with the distanceso1, . . . , on to partial
solutions of SPDP(u, v) in this order. Given a partial solution
(0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj , there are two
possible assignments of points corresponding to the distance
oj+1 : point oj+1 is assigned to the positions + 1 or point
L−oj+1 is assigned to the positiont−1. If oj+1 = oj+2 = o,
then pointo is assigned to the positions + 1 and pointL− o
is assigned to the positiont− 1.

Any feasible assignment described above can be viewed as
an assignment of at most two interpoint distancesu and v
to the left part and to the right part of a partial solution. To

facilitate description of our algorithm, we introduce an opera-
tion LR(x1, x2) that denotes an assignment of the interpoint
distancesx1 andx2 to the left part and to the right part of a
partial solution, respectively. Ifx1 = ◦ or x2 = ◦, then nothing
is assigned to the left part or to the right part, respectively, of
the solution under consideration.

A state(j, lu, lv, ru) is associated with each partial solution
(0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj . State variables
are defined as follows.

j is the number of distancesoi, i = 1, . . . , j,
considered so far. These distances generate the same
numberj of interpoint distances between the corre-
sponding points.
lu = |{pj − pj−1 = u | j = 1, . . . , s}| is the number
of interpoint distances equal tou in the left part of
the partial solution, wherep0 = 0.
lv = |{pj − pj−1 = v | j = 1, . . . , s}| is the number
of interpoint distances equal tov in the left part of
the partial solution.
ru = |{pj − pj−1 = u | j = t + 1, . . . , n + 1}| is
the number of interpoint distances equal tou in the
right part of the partial solution, wherepn+1 = L.

Having j, lu, lv andru, we can calculate

rv = |{pj−pj−1 = v | j = t+1, . . . , n+1}|, which
is the number of interpoint distances equal tov in
the right part of the partial solution. We can compute
rv = j − (lu + lv + ru).

In the algorithm DP, we iteratively generate setsSj of states
(j, lu, lv, ru), j = 1, . . . , n. SetSn is guaranteed to contain a
state corresponding to a complete solution of SPDP(u, v). A
complete solution is recovered by backtracking. Denoteku =
|{j | bj = u, j = 1, . . . , n+1}| andkv = n+1−ku. Assume,
without loss of generality, thatku ≤ kv. The algorithm can
be outlined as follows.

Algorithm DP

Step 1. In the multiset A, detect all pairs{aj , L − aj},
j = 1, . . . , n. Order each pair{aj , L − aj} so that the
corresponding ordered pair(oj , L− oj) satisfiesoj ≤ L− oj ,
j = 1, . . . , n. Re-number the ordered pairs such thato1 ≤
· · · ≤ on. Initiate setS0 = {(0, 0, 0, 0)} and j = 0.

Step 2.For each state(j, lu, lv, ru) ∈ Sj perform the following
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computations. Calculaterv = j−(lu+lv +ru), Tl = luu+lvv
andTr = ruu + rvv.

With each state(j, lu, lv, ru) ∈ Sj for j ≥ 1, associate an
indicator variableJ ∈ {1, . . . , 12} to be used for the purposes
of recovering a complete solution corresponding to a final state
(n, lu, lv, ru). Its meaning will be clear from our description.

There are four mutually exclusive cases to consider.
Case 1):j ≤ n − 3 andoj+1 = oj+2. In this case, initiate

setSj+2 = ◦.
If oj+1 − Tl = u, oj+2 − Tr = u and lu + ru + 2 ≤ ku,

then add state(j + 2, lu + 1, lv, ru + 1) to the setSj+2.
With this state, associate the valueJ = 1 indicating that
it was obtained by performing operationLR(u, u) over the
corresponding partial solution from the setSj .

If oj+1 − Tl = u, oj+2 − Tr = v, lu + ru + 1 ≤ ku and
lv + rv +1 ≤ kv, then add state(j +2, lu +1, lv, ru) to Sj+2.
With this state, associate the valueJ = 2 identifying operation
LR(u, v).

If oj+1 − Tl = v, oj+2 − Tr = u, lu + ru + 1 ≤ ku and
lv + rv + 1 ≤ kv, then add state(j + 2, lu, lv + 1, ru + 1) to
Sj+2. With this state, associate the valueJ = 3 identifying
operationLR(v, u).

If oj+1 − Tl = v, oj+2 − Tr = v and lv + rv + 2 ≤ kv,
then add state(j + 2, lu, lv + 1, ru) to Sj+2. With this state,
associate the valueJ = 4 identifying operationLR(v, v).

Case 2):j ≤ n − 2 andoj+1 6= oj+2. In this case, initiate
setSj+1 = ◦.

If oj+1 − Tl = u and lu + ru + 1 ≤ ku, then add state
(j + 1, lu + 1, lv, ru) to Sj+1. With this state, associate the
valueJ = 5 identifying operationLR(u, ◦).

If oj+1 − Tl = v and lv + rv + 1 ≤ kv, then add state
(j + 1, lu, lv + 1, ru) to Sj+1. With this state, associate the
valueJ = 6 identifying operationLR(v, ◦).

If oj+1 − Tr = u and lu + ru + 1 ≤ ku, then add state
(j + 1, lu, lv, ru + 1) to Sj+1. With this state, associate the
valueJ = 7 identifying operationLR(◦, u).

If oj+1 − Tr = v and lv + rv + 1 ≤ kv, then add state
(j + 1, lu, lv, ru) to Sj+1. With this state, associate the value
J = 8 identifying operationLR(◦, v).

Case 3):j = n − 2 andoj+1 = oj+2. In this case, initiate
setSn = φ.

If on−1 − Tl = u, L− (on−1 + on) = u, L− Tr − on = u
and lu + ru + 3 = ku, then add state(n, lu + 3, lv, ru) to Sn.
With this state, associate the valueJ = 1. We can use the
same values of the indicator variable as in Cases 1) and 2)
becausej = n and j < n are obviously distinguished by the
backtracking procedure described in Step 3.

If on−1 − Tl = u, L− (on−1 + on) = u, L− Tr − on = v
and lu + ru + 2 = ku, then add state(n, lu + 2, lv + 1, ru) to
Sn. With this state, associate the valueJ = 2.

If on−1 − Tl = u, L− (on−1 + on) = v, L− Tr − on = u
and lu + ru + 2 = ku, then add state(n, lu + 2, lv + 1, ru) to
Sn. With this state, associate the valueJ = 3.

If on−1 − Tl = u, L− (on−1 + on) = v, L− Tr − on = v
and lu + ru + 1 = ku, then add state(n, lu + 1, lv + 2, ru) to
Sn. With this state, associate the valueJ = 4.

If on−1 − Tl = v, L− (on−1 + on) = u, L− Tr − on = u
and lu + ru + 2 = ku, then add state(n, lu + 2, lv + 1, ru) to

Sn. With this state, associate the valueJ = 5.
If on−1 − Tl = v, L− (on−1 + on) = u, L− Tr − on = v

and lu + ru + 1 = ku, then add state(n, lu + 1, lv + 2, ru) to
Sn. With this state, associate the valueJ = 6.

If on−1 − Tl = v, L− (on−1 + on) = v, L− Tr − on = u
and lu + ru + 1 = ku, then add state(n, lu + 1, lv + 2, ru) to
Sn. With this state, associate the valueJ = 7.

If on−1 − Tl = v, L− (on−1 + on) = v, L− Tr − on = v
andlu +ru = ku, then add state(n, lu, lv +3, ru) to Sn. With
this state, associate the valueJ = 8.

Case 4):j = n− 1. In this case, initiate setSn = φ.
If on−Tl = u, L−Tr−on = u andlu +ru +2 = ku, then

add state(n, lu +1, lv, ru +1) to Sn. With this state, associate
the valueJ = 9. Here we need new value of the indicator
variable to distinguish between Case 3) and Case 4) when
considering a final state from the setSn in the backtracking
procedure.

If on−Tl = u, L−Tr−on = v andlu +ru +1 = ku, then
add state(n, lu +1, lv, ru) to Sn. With this state, associate the
valueJ = 10.

If on−Tl = v, L−Tr−on = u andlu +ru +1 = ku, then
add state(n, lu, lv +1, ru +1) to Sn. With this state, associate
the valueJ = 11.

If on − Tl = v, L − Tr − on = v and lu + ru = ku, then
add(j, lu, lv +1, ru) to Sn. With this state, associate the value
J = 12.

If L−on−Tl = u, on−Tr = u andlu +ru +2 = ku, then
add state(n, lu +1, lv, ru +1) to Sn. With this state, associate
the valueJ = 9.

If L−on−Tl = u, on−Tr = v andlu +ru +1 = ku, then
add state(n, lu +1, lv, ru) to Sn. With this state, associate the
valueJ = 10.

If L−on−Tl = v, on−Tr = u andlu +ru +1 = ku, then
add state(n, lu, lv +1, ru +1) to Sn. With this state, associate
the valueJ = 11.

If L − on − Tl = v, on − Tr = v and lu + ru = ku, then
add(j, lu, lv +1, ru) to Sn. With this state, associate the value
J = 12.

If all states fromSj are considered, re-setj := j + 1. If
j = n, then perform Step 3. Otherwise, repeat Step 2.

Step 3.Select any state(n, lu, lv, ru) ∈ Sn and backtrack to
determine the corresponding solution of SPDP(u, v).

In the first iteration of the backtracking procedure, ifJ = 1
is associated with a state(n, lu, lv, ru) ∈ Sn, then we know
that this state was obtained from the state(n − 2, lu −
3, lv, ru) ∈ Sn−2 by assigning three interpoint distanceu to
the left part of the corresponding partial solution. Other values
of J are similarly analyzed.

In iterationi ≥ 2 of the backtracking procedure, ifJ = 1 is
associated with a state(i, lu, lv, ru) ∈ Si, then we know that
this state was obtained from the state(i−2, lu−1, lv, ru−1) ∈
Si−2 by assigning interpoint distancesu to the left part and the
right part of the corresponding partial solution. Other values
of J are similarly analyzed. The procedure terminates when a
complete solution of SPDP(u, v) is recovered.

Similar to the algorithm ENUM, Step 2 determines the time
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complexity of algorithm DP. The time complexity of this step
can be evaluated asO(

∑n
j=1 |Sj |). Since lu ≤ ku, lv ≤ kv

and ru ≤ ku, we have |Sj | ≤ O(k2
ukv), j = 1, . . . , n.

Therefore, Step 2 requiresO(nk2
ukv) = O(n4) operations

giving us the overall time complexity of algorithm DP. Its
space requirement is determined by

∑n
j=1 |Sj | because we

store the indicator variableJ with each state. Thus, the space
requirement of algorithm DP is alsoO(n4). Notice thatn4 ≤
2n for n ≥ 16. Therefore, algorithm DP should be much more
efficient than enumerative algorithms with running timeO(2n)
for SPDP(u, v) with a large number of restriction sites.

Algorithm DP is justified by the following theorem.
Theorem 1:If state(j, lu, lv, ru) is associated with a partial

solution that can be extended to a complete solution of
SPDP(u, v), then any partial solution in this state can be
extended to a complete solution of SPDP(u, v).

Proof: Assume that a partial solutionp =
(0, p1, . . . , ps, ◦, . . . , ◦, pt, . . . , pn, L) ∈ Xj associated with
state(j, lu, lv, ru) ∈ Sj can be extended to a complete solution
p̄ = (0, p1, . . . , pn, L) ∈ Xn of problem SPDP(u, v) by
assigning distancesps+1, . . . , pt−1. Consider another partial
solutionp′ = (0, p′1, . . . , p

′
s′ , ◦, . . . , ◦, p′t′ , . . . , p′n, L) ∈ Xj in

the same state(j, lu, lv, ru). Notice thats′ = s = lu + lv and
t′ = t = ru + rv.

For both partial solutionsp andp′, the corresponding values
Tl and Tr are the same. Furthermore, the same number
of interpoint distancesu and the same number of inter-
point distancesv are present in both solutions. Therefore,
partial solutionp′ can be extended to a complete solution
p̄′ = (0, p′1, . . . , p

′
s, ps+1, . . . , pt−1, p

′
t, . . . , p

′
n, L) ∈ Xn in

the same way asp. In this extension, new assignments will
generate the same multiset of interpoint distances as in the
extension of the partial solutionp. Hence, ifp̄ is a solution of
SPDP(u, v), then p̄′ is a solution of this problem as well.

It is clear that partial solution(0, ◦, . . . , ◦, L) ∈ X0 as-
sociated with the state(0, 0, 0, 0) ∈ S0 can be extended to
a complete solution of SPDP(u, v). Then we can iteratively
apply Theorem 1 to demonstrate that algorithm DP finds a
solution of SPDP(u, v).

Algorithm DP can be modified to solve error-free SPDP
with any numberq of distinct interpoint distancesbj , j =
1, . . . , n + 1, which we denote as SPDP(u1, . . . , uq). Here
u1, . . . , uq are all distinct values in the multisetB.

In the modified algorithm, a state
(j, l1, . . . , lq, r1, . . . , rq−1) with 2q state variables will
be associated with a partial solution. Herej is the number of
smallest distances in the multisetA considered so far,li and
ri are the numbers of interpoint distances equal toui in the
left part and the right part of the partial solution, respectively.
We can calculaterq = j − (l1 + . . . + lq + r1 + . . . + rq−1).

The time and space requirements of the modified algorithm
can be evaluated asO(n2q) for a givenq. They are polynomial
if q is a constant. In the modified algorithm, we will need
q3 + q2 different values of the indicator variable because in
Case 3) each of the three last interpoint distances (left, middle
and right) can take any of theq valuesbj , and in Case 4)
each of the two last interpoint distances can take any of these
values.

V. M EASUREMENT ERRORS

I N the literature, three main types of errors are discussed,
which can affect the input data for a digesting method, see

for example Dix and Kieronska [11], Inglehart and Nelson
[16] and Wright et. al. [29]. Errors of the first type are
caused by theimprecise measurementof the lengths of the
cut fragments. According to Marra et al. [21], the relative
deviation of 5% from true fragment length can be guaranteed
in a biochemical experiment (it was within 1.5% for 95% of
fragments with lengths between 600 and 12,000 base pairs in
a specific experiment). Errors of the second type, which are
called negative errors, are due to the lost of the information
about some fragments. Recall that the length determination
experiment is conducted on a sufficiently large number of
DNA clones and a particular fragment length is accepted if
the quantity of the corresponding fragments exceeds a given
threshold. A negative error can occur when there are two
fragments of almost the same length such that they cannot
be distinguished in the experiment. It can also occur when
some small fragments are lost because they are too speedy and
cannot be traced. Finally, certain sites can be less likely to be
cut than others and the quantity of the corresponding fragments
can be insufficient for accepting their lengths. Errors of the
third type, calledpositive errors, appear when an enzyme
erroneously cuts a DNA molecule at a place which is similar,
but not the same as the restriction site associated with this
enzyme. They can also appear when some unrelated material is
occasionally added to the gel. In this case, we may obtain some
fragments that do not belong to the target DNA. Moreover, a
clone can be cut in more than one restriction site in the short
digestion reaction.

When an error of the second or third type occurs in the
simplified partial digest experiment, it can be identified and
sometimes corrected as follows. If there is a large lengthaj

and no small complementary lengthL − aj in the multiset
A, then we can deduce that the fragment of the length
L − aj was lost in the experiment. If there are more than
two identical pairs{aj , L − aj} in the multisetA, then we
know that only two of them can correspond to the symmetric
restriction sites and the other pairs are obtained erroneously.
Several positive errors can be recognized during the phase of
gel electrophoresis, where the fragment lengths are measured
– simply the erroneous fragments will occur in negligible
amounts.

Measurement errors of the first type are difficult to avoid in
any digesting experiment. In this section, we describe an adap-
tation of algorithm ENUM for the case when distances in the
multisetsA andB are measured with the guaranteed relative
error r. Then, this algorithm will construct an approximate
solution with interpoint distances being within aδ distance
from corresponding interpoint distances of an error-free SPDP
solution. If an instance of error-free SPDP has more than
one feasible solution, the algorithm will find one approximate
solution for every feasible solution of this instance.

Specifically, we assume that there are given multisetsA′ =
{a′j | j = 1, . . . , 2n} and B′ =

{
b′j | j = 1, . . . , n +

1,
∑n+1

j=1 b′j = L′} such that there exists a DNA molecule
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with a multisetA = {aj | j = 1, . . . , 2n} of true distances
between the restriction sites and the two ends of the molecule
and a multisetB = {bj | j = 1, . . . , n + 1,

∑n+1
j=1 bj = L}

of true interpoint distances, which satisfy

|a′j − aj |
aj

≤ r, j = 1, . . . , 2n,

and
|b′j − bj |

bj
≤ r, j = 1, . . . , n + 1, (1)

for a given relative errorr, 0 < r < 1. Notice that there may
exist several distinct molecules satisfying this property for the
same multisetsA′ andB′.

Let P ∗ be the set of all mutually non-congruent solutions of
the error-free SPDP with the multisetsA andB, where each
p∗ ∈ P ∗ is a sequence of increasing points in the interval
[0, L], p∗ = (p∗0, p

∗
1, . . . , p

∗
n, p∗n+1), p∗0 = 0, p∗n+1 = L.

Given multisetsA′ and B′ and a point sequencep∗ ∈
P ∗, a (δ, p∗)-approximatesolution to the problem (SPDP)
with measurement errorsis a point sequencep′ =
(p′0, p

′
1, . . . , p

′
n, p′n+1) such that

max
{ |p′j−p∗j |

p∗j
,
|(p′n+1−p′j)−(p∗n+1−p∗j )|

p∗n+1−p∗j
,

|(p′j+1−p′j)−(p∗j+1−p∗j )|
p∗j+1−p∗j

}
≤ δ, j = 0, 1, . . . , n.

For SPDP with measurement errors, we adapt algorithm
ENUM to work with intervals rather than with single numbers.
Given relative errorr, an interval[ 1

1+ra′j ,
1

1−r a′j ] is associated
with eacha′j ∈ A′ and an interval[ 1

1+r b′j ,
1

1−r b′j ] is associated
with eachb′j ∈ B′. This choice of the intervals guarantees that
if aj ∈ A and bj ∈ B are true interpoint distances satisfying
(1), thenaj ∈ [ 1

1+r a′j ,
1

1−r a′j ] and bj ∈ [ 1
1+r b′j ,

1
1−r b′j ], i.e.,

the true interpoint distances are inside the chosen intervals.
We denote the adapted algorithm as Interval-ENUM. In this

algorithm, we use the operation of summation of two intervals
i = [a, b], a ≤ b, and g = [c, d], c ≤ d, which is defined as
i + g = [a + c, b + d]. This definition is in accordance with
the theory of interval computations, see for example Kearfott
[17].

Algorithm Interval-ENUM constructs a ( 2r
1−r , p∗)-

approximate solution for eachp∗ ∈ P ∗. Like
in the algorithm ENUM, we construct setsX ′

k,
k = 1, . . . , n, of partial interval solutions, where
a partial interval solution from X ′

k is a sequence
of intervals i = (i0, i1, . . . , is, ◦, . . . , ◦, it, . . . , in+1),
s + n − t + 1 = k, i0 = in+1 = [0, 0]. Let us introduce
multiset I := {[ 1

1+r b, 1
1−r b] | b ∈ B′}. With each partial

solution i, a multiset of unused intervalsI(i) ⊂ I is stored,
whose precise definition will be clear from the description of
the algorithm.

Let a′1 ≤ · · · ≤ a′2n. In the first iteration of the algorithm
Interval-ENUM, we assign the intervaly1 := [ 1

1+r a′1,
1

1−r a′1]
to the left part of the molecule and find a multisetB1 of
b ∈ I such thati1(b) := (i0 +b)∩y1 = b∩y1 6= φ. We set
X ′

1 = {(i0, i1(b), ◦, . . . , ◦, in+1) | b ∈ B1}. Thus, if there
exists a partial solutionp = (0, a1, ◦, . . . , ◦, L) to the error-
free SPDP with distance multisetsA andB, thena1 ∈ i1(b)

for b ∈ B1. We do not consider assignment of the intervaly1

to the right part of the molecule to avoid congruent solutions.
Furthermore, since we work with imprecise data, we do not
consider separately the case of several identical intervalsy1.

In the second iteration, we consider assignments of the
intervaly2 := [ 1

1+r a′2,
1

1−r a′2] to the left part and to the right
part of the molecule for eachi = (i0, i1, ◦, . . . , ◦, in+1) ∈ X ′

1.
An assignment to the left part is accepted if(i1+b′)∩y2 6= φ
for someb′ ∈ I(i), see Fig. 4 for graphical interpretation.
Similarly, an assignment to the right part is accepted if(in+1+
b′′)∩y2 = b′′ ∩y2 6= φ for someb′′ ∈ I(i). Here is a small
difference with algorithm ENUM, namely, the distance to the
interval assigned to right part of the molecule is counted from
the right end of the molecule. In the algorithm ENUM, the
corresponding distance wasL− a2, i.e., it was counted from
the left end of the molecule.

Set X ′
n is such that for each solutionp∗ ∈ P ∗ of the

error-free SPDP, there exists a sequence of intervalsi∗ =
(i∗0, i∗1, . . . , i∗n+1) ∈ X ′

n satisfying the following two prop-
erties:
• p∗j ∈ i∗j for j = 0, 1, . . . , s, and L − p∗j ∈ i∗j for j =

s + 1, . . . , n + 1, wherei∗s is the last interval assigned to
the left part of the molecule, and

• p∗j − p∗j−1 ∈ b′j, j = 1, . . . , n + 1, where
{b′1, . . . ,b′n+1} = I.

By the construction of intervalsi∗j , any point sequencep′ =
(p′0, p

′
1, . . . , p

′
n, p′n+1) that satisfies the above properties (when

substitutingp′ instead ofp∗) is a ( 2r
1−r , p∗)-approximate solu-

tion for SPDP with measurement errors. Such a point sequence
p′ is constructed for eachi ∈ X ′

n in Step 4 of algorithm
Interval-ENUM. The algorithm can be formally described as
follows.

Algorithm Interval-ENUM

Step 1.Order numbers in the multisetA′ so thata′1 ≤ · · · ≤
a′2n. Introduce intervalsyj = [ 1

1+r a′j ,
1

1−ra′j ], j = 1, . . . , n,

and the multiset of intervalsI = {[ 1
1+r b, 1

1−r b] | b ∈ B′}.
CalculateL′ =

∑n+1
j=1 b′j . Set X ′

0 = {(i0, ◦, . . . , ◦, in+1)},
wherei0 = in+1 = [0, 0], B(i0, ◦, . . . , ◦, in+1) = I and j =
0.

Step 2(the casej ≤ n − 2). If j = n − 1, go to Step 3.
Otherwise, perform the following computations. For each par-
tial solution i′ = (i0, i1, . . . , is, ◦, . . . , ◦, it, . . . , in+1) ∈ X ′

j ,
find a multisetB1 of intervalsb ∈ I(i′) such thatis+1(b) :=
(is + b) ∩ yj+1 6= φ and, if j ≥ 1, a multisetB2 of intervals
b ∈ I(i′) such thatit−1(b) := (it + b) ∩ yj+1 6= φ. With
each intervalis+1(b) and it−1(b), store the corresponding
interval b by settingL(is+1(b)) := b andR(it−1(b)) := b,
respectively.

If j = 0, setB2 = φ. The casej = 0 is treated separately
to avoid congruent solutions. Calculate

X ′
j+1 = {(i0, i1, . . . , is, is+1(b), ◦, . . . , ◦, it, . . . , in+1) |

i′ ∈ X ′
j ,b ∈ B1} ∪

{(i0, i1, . . . , is, ◦, . . . , ◦, it−1(b), it, . . . , in+1) |
i′ ∈ X ′

j ,b ∈ B2}.
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Acceptable:
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[0,0]

[ ]
︸ ︷︷ ︸

i1

[ ]
︸ ︷︷ ︸

y2

1

1+r
a
′

2
1

1−r
a
′

2

� -[ ]

︷ ︸︸ ︷

i1+b′

[ ]
︸ ︷︷ ︸

y2

1

1−r
a
′

2
1

1+r
a
′

2

� -[ ]

︷ ︸︸ ︷

b′′

a1
◦

a2
◦

a2
◦

Left part Right part

Unacceptable:

- . . . �[ ]
︸ ︷︷ ︸

i1

[ ]
︸ ︷︷ ︸

y2

[ ]

︷ ︸︸ ︷

i1+b̄′

[ ]
︸ ︷︷ ︸

y2

[ ]

︷ ︸︸ ︷

b̄′′

a1
◦

a2
◦

a2
◦

Fig. 4. Assignments of the intervaly2 = [ 1
1+r

a′2, 1
1−r

a′2].

For eachi ∈ X ′
j+1 obtained fromi′ ∈ X ′

j and b ∈ I(i′),
calculateI(i) = I(i′)\{b}.

Re-setj := j + 1 and repeat Step 2.

Step 3 (the casej = n − 1). Set X ′
n = φ. For each

partial solutioni′ = (i0, i1, . . . , is, ◦, it, . . . , in+1) ∈ X ′
n−1,

let I(i′) = {b1,b2}.
If is+1(b1) := (is + b1) ∩ yn 6= φ and (is+1(b1) +

b2 + it) ∩ [ 1
1+rL′, 1

1−r L′] 6= φ, then setX ′
n := X ′

n ∪
{i = (i0, i1, . . . , is, is+1(b1), it, . . . , in+1)}. Store the num-
ber nL(i) := s + 1 of intervals assigned to the left part of the
molecule corresponding toi.

The last interval assigned to the left part is specific in that
we store the interval fromI(i′), which was used for checking
the acceptability on the right of it, by settingR(is+1(b1)) :=
b2 in the considered case.

If is+1(b2) := (is + b2) ∩ yn 6= φ and (is+1(b2) +
b1 + it) ∩ [ 1

1+r L′, 1
1−rL′] 6= φ, then setX ′

n := X ′
n ∪ {i =

(i0, i1, . . . , is, is+1(b2), it, . . . , in+1)}, nL(i) := s + 1 and
R(is+1(b2)) := b1.

If it−1(b1) := (it + b1) ∩ yn 6= φ and (it−1(b1) +
b2 + is) ∩ [ 1

1+r L′, 1
1−r L′] 6= φ, then setX ′

n := X ′
n ∪

{i = (i0, i1, . . . , is, it−1(b1), it, . . . , in+1)}, nL(i) := s and
R(is) := b2.

If it−1(b2) := (it + b2) ∩ yn 6= φ and (it−1(b2) +
b1 + is) ∩ [ 1

1+r L′, 1
1−r L′] 6= φ, then setX ′

n := X ′
n ∪

{i = (i0, i1, . . . , is, it−1(b2), it, . . . , in+1)}, nL(i) := s and
R(is) := b1.

Step 4.For eachi = (i0, i1, . . . , in, in+1) ∈ X ′
n, i0 = in+1 =

[0, 0], perform the following computations. Let[cj , dj ] := ij,
j = 1, . . . , n, s := nL(i), [vj , wj ] := L(ij), j = 1, . . . , s,
[vj , wj ] := R(ij), j = s + 1, . . . , n, and [vn+1, wn+1] :=
R(is).

Construct an increasing point sequencep(i) =
(p0, p1, . . . , pn+1), where p0 = 0, which is an approximate
solution to SPDP with measurement errors. Introduce positive
integer variablesx1, . . . , xn+1. Pointspj , j = 1, . . . , n + 1,
are determined frompj − pj−1 = xj , j = 1, . . . , s,

pj+1 − pj = xj , j = s + 1, . . . , n, and xn+1 = ps+1 − ps.
Variablesxj , j = 1, . . . , n + 1, represent a solution to the
following system of inequalities:

vj ≤ xj ≤ wj , j = 1, . . . , n + 1,

cj ≤
j∑

h=1

xh ≤ dj , j = 1, . . . , s,

cj ≤
n∑

h=j

xh ≤ dj , j = s + 1, . . . , n,

1
1 + r

L′ ≤
n+1∑

h=1

xh ≤ 1
1− r

L′.

There exist standard integer programming algorithms to solve
the above system of inequalities.

Output set{p(i) | i ∈ X ′
n}, which contains a( 2r

1−r , p∗)-
approximate solution for eachp∗ ∈ P ∗.

Similar to the above adaptation of the algorithm ENUM,
our dynamic programming algorithm DP can be used for
finding an approximate solution of the general case of the
error-free SPDP and the problem with measurement errors.
The idea is to round input data of the problem so that the
number of distinct rounded interpoint distances is sufficiently
small to apply a modification of the algorithm DP efficiently.
More specifically,n+1 interpoint distances from the multiset
B can be partitioned into several groups, sayq groups, so
that a relative or absolute deviation between distances in the
same group does not exceed a given value. Then we can re-
set distances in the same group to be equal to the average
distance in this group and, as a result, obtain the number of
distinct interpoint distances equal to the number of the groups
q. Algorithm DP can be modified for interval computations
as follows. While consideringoj ∈ A, an assignment of a
rounded interpoint distanceb ∈ B to the left part of the
molecule is accepted if the sum of the rounded interpoint
distances assigned to the left part so far deviates fromoj
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within a specified range. A similar rule can be applied for the
assignment of a rounded interpoint distance to the right part
of the molecule. A detailed implementation of this approach
is not straightforward and represents a direction for future
research.

VI. EXPERIMENTS

I N this section, we present the results of computer exper-
iments with algorithms ENUM, DP, Interval-ENUM and

their comparison with the results of Skiena and Sundaram [26]
for Partial Digest Problem and with the results of Blazewicz et
al. [2] for SPDP. We denote the algorithm of Skiena and Sun-
daram [26] as Pyramid-PDP and the algorithm of Blazewicz
et al. [2] as First-SPDP. Algorithms ENUM, Interval-ENUM
and DP were implemented in Borland C++ Builder 6, and
the tests were run on a portable PC with Intel Pentium M
2 GHz processor and 480 Mb of RAM under Windows XP
operational system. Large scale instances with bigger memory
requirements were run on a single processor of Sun SunFire
6800 supercomputer. All random numbers in our experiments
were generated by using uniform distribution. Tests of the
algorithm Pyramid-PDP were run on Sun Sparcstation 2 and
those of the algorithm First-SPDP on a PC with Celeron 420
MHz processor and 64 Mb of RAM, see [26] and [2].

A. Error-free data

In the first set of experiments, algorithms ENUM and DP
were run for fixedn = 1000 and various values ofq.
Given q, we randomly generated distinct interpoint distances
ui ∈ (100, 2000), i = 1, . . . , q. Let ki denote the number of
interpoint distances equal toui, i = 1, . . . , q. We randomly
generated these numbers such that

∑q
i=1 ki = n + 1. With

numbersui andki, i = 1, . . . , q, the multisetB is fully deter-
mined. We assumed thatoj =

∑j
i=1 bi represents the distance

between point 0 and a point corresponding to restriction site
j in a DNA chain. The multisetA was generated accordingly.
Given n = 1000, algorithms ENUM and DP were run on
100 instances for every value ofq. Corresponding values of
average running times of the algorithms (column ”Average”),
standard deviation from the average running time (column ”Std
deviation”) and the maximum number of solutions found by
algorithm ENUM are given in Table I.

In the first set of experiments, we observed that algorithm
DP outperforms algorithm ENUM if the numberq of distinct
interpoint distances is within10% of the total numbern + 1
of interpoint distances.

Our second set of experiments was performed using real
data about DNA chains taken from the nucleotide database
GenBank, see [14]. Given a sequence of nucleotides (an entry
in GenBank) and a restriction enzyme, the multisetsA and
B were determined as if we performed an ideal biochemical
experiment. Table II presents the results of our second set of
experiments.

Table II does not contain information about earlier tech-
niques because for the Partial Digest Problem (PDP) no exper-
imental results over real data were reported in the literature and
for SPDP only a few such results were reported in [2] with

TABLE I

RUNNING TIME COMPARISON OFENUM AND DP. RANDOM DATA ,

n = 1000.

q Running time, msec Max.number

ENUM DP of solutions

Average Std deviation Average Std deviation

40 106 43.1 75 24.8 8

50 111 28.1 85.2 18.5 2

60 125 66 97.8 43.8 4

70 114 41.8 96.3 32.9 4

80 140 42.7 126 38.7 8

90 151 137 140 106 8

100 162 89.6 161 87.3 8

110 154 114 161 108 8

120 175 92.4 196 103 8

130 152 144 193 168 4

140 190 226 241 272 8

150 174 115 282 208 8

TABLE II

RUNNING TIME COMPARISON OFENUM AND DP. REAL DATA .

Entry in Restriction n q Running time, msecNumber of

GenBank enzyme ENUM DP solutions

D26561 AluI 36 35 < 10 < 10 1

J00277 HhaI 38 31 < 10 10 1

J00277 HaeIII 99 63 50 241 2

NC 006852 HlaIII 128 110 < 10 10 1

DQ084247 HlaIII 156 134 20 51 4

NC 005045 HlaIII 207 148 10 41 1

AM084415 AluI 215 158 78 402 2

regard to the algorithm First-SPDP. However, the run time
values of First-SPDP were presented in the form “<1 sec”.
This information cannot be used for the comparison with our
algorithms because both algorithms ENUM and DP solve the
same real data instances in less than one second too.

Our third set of experiments for largen was run on a single
400 MHz IP35 processor of a Sun SunFire 6800 supercom-
puter, with 20 Gb memory limit. In this set of experiments, we
consideredq = 2, interpoint distancesu1 = 3 andu2 = 5, and
various values ofn. The multisetsA andB were determined
in the same way as in the first set of experiments. Given
q = 2, u1 = 3 and u2 = 5, algorithms ENUM and DP
were run on 100 instances for everyn ∈ {100, 150, 200, 250}.
Moreover, algorithm DP was run on 100 instances for ev-
ery n ∈ {2000, 4000, 6000, 8000, 10000, 12000}. Algorithm
ENUM was not used for these values ofn due to the excess
of the 20 Gb memory limit. Corresponding values of average
running times of the algorithms, standard deviation from the
average running time and the maximum number of solutions
are given in Table III.

Denote byf(n) the average running time of algorithm DP as
a function ofn in the third set of experiments. From Table III,
we observe that forn = 1000, f(2n) ≤ 22.5f(n), f(3n) ≤
32.5f(n), f(4n) ≤ 42.5f(n), f(5n) ≤ 52.5f(n) andf(6n) ≤
62.5f(n). If we assumef(n) ≤ Cn2.5 for n = 2000 and some
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TABLE III

RUNNING TIME COMPARISON OFENUM AND DP. RANDOM DATA , q = 2,

u1 = 3 AND u2 = 5.

n Running time, sec Max.number

ENUM DP of solutions

Average Std deviation Average Std deviation

100 0.016 0.019 < 0.01 < 0.01 28

150 0.093 0.093 < 0.01 < 0.01 211

200 6.39 24.1 0.05 0.19 218

250 33.1 84.3 0.26 0.98 220

2000 – – 1.38 0.23 –

4000 – – 7 0.87 –

6000 – – 19.5 2.07 –

8000 – – 42.3 4.17 –

10000 – – 75.2 5.67 –

12000 – – 120 8.35 –

constantC, then the behavior of the functionf(n) for n ∈
{4000, 6000, 8000, 10000)} is in accordance with the above
inequality. Notice that the theoretical upper bound onf(n) is
O(n4) in this case.

Our fourth set of experiments was performed over the same
random data as proposed in [2] and [26]. Algorithms ENUM
and DP were run on 100 instances for different values of
n. We compared running times of the algorithms ENUM,
DP, Pyramid-PDP [26] and First-SPDP [2] for eachn, see
Table IV. The left value of the given time interval denotes the
shortest running time and the right value denotes the longest
running time. We performed additional tests forn = 30 and
n = 100 to demonstrate that ENUM and DP perform well for
larger instances.

TABLE IV

RUNNING TIME COMPARISON OFPYRAMID -PDP, FIRST-SPDP, ENUM

AND DP. RANDOM DATA FROM [2] AND [26].

n Running time, msec

Pyramid-PDP First-SPDP ENUM DP

10 20-30 0.14-0.15 0-0.10 0-1.1

12 20-60 0.17-0.2 0-0.10 0-1.3

14 30-50 0.24-0.6 0-0.15 0-1.9

16 30-60 0.31-0.39 0-0.18 0-2.9

18 50-80 0.47-0.52 0-0.21 0-2.4

20 50-80 0.48-0.72 0-0.24 0-5.1

30 – – 0-1.00 0-20

100 – – 0-2.50 0-40

Our experiments demonstrated that algorithms ENUM and
DP are able to solve instances of SPDP with hundreds of
restriction sites in less than one second on a standard PC.
Algorithm DP outperformed algorithm ENUM on random
data if q ≤ 0.1n. Based on the results of the experiments,
the average running time of algorithm DP is expected to be
O(n1.25q), while its theoretical worst-case running time is
O(n2q).

We analyzed real data from the nucleotide database Gen-
Bank [14] with regard to the number of distinct interpoint

distancesq. In this experiment, we cut 43 DNA molecules
containing 2,000-200,000 base pairs by 168 enzymes. To
reduce search time, we selected only those distinct pairs (DNA
molecule,restriction enzyme), which gave instances of SPDP
with n < 300. As a result, we obtained 3710 distinct com-
binations (DNA molecule,restriction enzyme). Among them,
the average value ofq was equal to0, 935n and the standard
deviation from the average value was equal to0, 034n. We
also conducted computer experiments with the same 3710 real
instances of SPDP to establish the number of non-congruent
solutions. It was equal to 1, 2 and 4 for 3641, 64 and
5 instances, respectively, and it was never equal to 3 or
exceeded 4.

Notice that any solution from the set of non-congruent
solutions can correspond to the original DNA and, within
the considered model, there is no instrument to determine
closeness of a given solution to the original DNA. If the
problem is to verify whether the map of the target DNA is
present in a database, every non-congruent solution can be
presented for the verification and the results can be analyzed
by an expert.

The number of non-congruent solutions of SPDP is an
important characteristic of the simplified partial digest method,
which shows whether the map of the original DNA can be
uniquely determined by solving the corresponding instance of
SPDP. If there is more than one solution, it is an indication
that the used enzyme provides fragment lengths that can be
combined to form several distinct DNA maps. In this case,
another enzyme can be used to identify the target DNA through
solving SPDP.

B. Data with measurement errors

In the first set of experiments for the case of measurement
errors we used real data obtained after cutting bacteriophage
λ with enzyme HindIII, see [20]. The ideal biochemi-
cal experiment providedn = 7 restriction sites, multiset
B = {23130, 2027, 2322, 9416, 564, 125, 6557, 4361} with
interpoint distances listed from left end to right end of the
molecule and corresponding multisetA. To simulate mea-
surement errors we used the same simulation method that
was used to obtain imprecise input data for the algorithm
Pyramid-PDP [26]. That is, we replaced every distanced in the
multisetsA andB by a random integer number in the interval
[d(1− r), d(1 + r)], wherer is a given relative measurement
error. The obtained multisetsA′ andB′ were used as an input
for the algorithm Interval-ENUM. The corresponding running
times of the algorithms and the maximum number of solutions
found are given in Table V.

Recall that algorithm Interval-ENUM finds one( 2r
1−r , p∗)-

approximate solution for eachp∗ ∈ P ∗. The total number
of such approximate solutions can be huge (a product of the
lengths of some intervals of integer points), although many of
them will be close to one another. It appears that Algorithm
Pyramid-PDP can find several approximate solutions for the
same p∗ ∈ P ∗. This observation explains the fact that
algorithm Pyramid-PDP sometimes finds more solutions than
our algorithm Interval-ENUM.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

TABLE V

EXPERIMENTS WITH IMPRECISE DATA FOR BACTERIOPHAGEλ AND

ENZYME HindIII, n = 7.

Relative Running time, msec Max.number of solutions

errorr Pyramid-PDP Interval-ENUM Pyramid-PDP Interval-ENUM

0 40 0.16 1 1

0.005 70 0.88 3 3

0.01 100 0.3 4 4

0.015 970 0.3 4 4

0.02 3320 0.51 8 6

0.025 9120 0.53 8 6

0.03 97370 0.54 16 6

0.04 – 5.5 – 7

0.05 – 4.18 – 11

0.06 – 116.3 – 21

Our final set of experiments was performed over random
data. Firstly, an instance of the error-free SPDP was con-
structed. MultisetsA andB for this instance were generated
according to the probabilistic model in [26]. Perturbed data
(with measurement errors) was obtained as in the first set
of experiments presented in this subsection. Table VI shows
the running times of algorithms Pyramid-PDP on five random
instances and Interval-SPDP on 100 random instances for
various combinations ofn and r, 10 ≤ n ≤ 20 and 0 ≤
r ≤ 0.02. The left value of the given time interval denotes the
shortest running time and the right value denotes the longest
running time. As was the case in [26], the number of solutions
was not counted in these experiments.

TABLE VI

RUNNING TIME COMPARISON OFPYRAMID -PDPAND INTERVAL-ENUM.

PERTURBED RANDOM DATA FROM [26].

n Running time, sec (r = 0) Running time, sec (r = 0.005)

Pyramid-PDP Interval-SPDP Pyramid-PDP Interval-SPDP

10 0.02-0.03 0-0.01 0-1.1 0-0.01

12 0.02-0.06 0-0.01 0-4.2 0-0.01

14 0.03-0.05 0-0.01 0-127 0-0.011

16 0.03-0.06 0-0.01 75.9-94.9 0-0.01

18 0.05-0.08 0-0.01 > 5 min 0-0.02

20 0.05-0.08 0-0.01 > 5 min 0.01-0.62

n Running time, sec (r = 0.01) Running time, sec (r = 0.02)

Pyramid-PDP Interval-SPDP Pyramid-PDP Interval-SPDP

10 0-7.7 0-0.01 0-152 0-0.9

12 10.6-131 0-0.02 > 5 min 0.1-5.4

14 > 5 min 0-0.71 > 5 min 0.54-96.6

16 > 5 min 0-11.6 > 5 min > 5 min

18 > 5 min 0.1-63.7 > 5 min > 5 min

20 > 5 min > 5 min > 5 min > 5 min

Experiments with imprecise data demonstrate that our algo-
rithm Interval-ENUM is able to reconstruct the linear structure
of a DNA molecule with a reasonable quality in a short time.

VII. C ONCLUSIONS

W E presented anO(n2n) time enumerative algorithm
and anO(n2q) time dynamic programming algorithm

for the error-free case of the Simplified Partial Digest Problem
(SPDP), wheren is the number of sites andq is the number
of distinct interpoint distances. The algorithms are based on
the established combinatorial properties of the problem. We
gave examples of the problem with interpoint distances 1
and 2 and all interpoint distances distinct, in which there are
2

n+2
3 −1 non-congruent solutions. The enumerative algorithm

was adapted to handle the problem with imprecise input data
by providing a set of solutions, which contains a solution
with a linear structure that is close to the original DNA.
Computer experiments with our algorithms demonstrated that
they outperform earlier algorithms (for recovering DNA linear
structure) in the running time while providing the same quality
of the solution.

Further research on SPDP can be undertaken to adapt our
dynamic programming algorithm for finding an approximate
solution of the error-free problem and the problem with mea-
surement errors. It is also interesting to establish a theoretical
relationship between the input parameters of the error-free
SPDP and the number of its non-congruent solutions. In the
general area of the restriction site analysis, an important open
question is the computation complexity of the error-free Partial
Digest Problem (PDP).
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