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Simplified Partial Digest Problem: Enumerative and
Dynamic Programming Algorithms

Jacek BlazewiczSenior Member, IEEEdmund Burke, Marta Kasprzak, Alexandr Kovalev,
and Mikhail Y. Kovalyov

Abstract—We study the Simplified Partial Digest Problem the cutting process, the information about the location of
(SPDP), which is a mathematical model for a new simplified the restriction sites is lost. The available information is the
partial digest method of genome mapping. This method is easy , tiset of lengths of the cut fragments (counted in the number
for laboratory implementation and robust with respect to the . : — .
experimental errors. SPDP is NP-hard in the strong sense. We of nucleotides between the corresponding restrllctlon sﬁes).
present an O(n2") time enumerative algorithm and an O(n2?)  These lengths are obtained by a gel electrophoresis experiment
time dynamic programming algorithm for the error-free SPDP, which is based on the fact that shorter fragments generate a
where n is the number of restriction sites andg is the number |onger distance in the gel under the electric current.
of distinct intersite distances. We also give examples of the  Reconstructing the location of restriction sites is the subject
problem, in which there are 2 5 =" non-congruent solutions. ¢ 5 mathematical theory calle@striction site analysissee
These examples partially answer a question recently posed in . .
the literature about the number of solutions of SPDP. We adapt Setubaliand Me.ldanls [24], Waterma}n [2_7] or Pev?ner [22]
our enumerative algorithm for handling SPDP with imprecise for details. The input data for restriction site analysis are the
input data. Finally, we describe and discuss the results of the lengths of the cut fragments and appropriate information about
computer experiments with our algorithms. the cutting (digesting) method. The most common cutting

Index Terms— G.4.a Algorithm design and analysis, 1.2.8.d Dy- methods arelouble digestwhere two restriction enzymes are
namic programming, genome mapping, restriction site analysis, used (see e.g. [27] or [22]), amehrtial digest where the DNA
imprecise information. is cut by one enzyme but with different reaction times. The

inventor of the partial digest approach was Daniel Nathans
. INTRODUCTION together with his co-workers (see Danna and Nathans [8] and
genome of a living organism can be viewed as a DNRanna, Sack and Nathans [9]), who in 1978 received the
molecule in the form of @ouble helixconsisting of two Nobel Prize for his work on restriction enzymes and restriction
strands. This molecule is a chain of amino acids (nucleotidé8PRing. In the following we will be concerned with this last
called adenine (A), cytosine (C), guanine (G) and thymir@PProach as the double digest constructs too many equivalent
(T). Mathematically, its linear structure can be represent&@lutions (maps), see Waterman [27]. _ o
as a word in the alphabeftAd, C,G,T}. According to the  In the classic partial digest approach, a series of digesting
fundamental law of a DNA construction discovered by Watsd#periments is performed. In the first experiment, identical
and Crick [28], one strand of a DNA molecule unambiguouskoepies of a DNA chain, called DNA clones, are exposed to an
determines its second strand. enzyme for a sufficiently small time period to cut them in at

Linear structure is an important characteristic of a DNANOSt one restriction site. The second reaction has a little more
molecule. At present, it cannot be determined directly bjyme allowed in order to obtain two cuts per clone. Every other
using physical or chemical measurement methods. The &xPeriment takes more time and, finally, the last one takes a
isting indirect methods usually include three main hierarchitfficiently long time to cut clones in every appropriate site.
cal procedures: mapping, assembling and sequencing. Ifh¢ Partial Digest Problem (PDP)s a mathematical model
mapping procedure, a DNA molecule is exposed to specifféat aims to reconstruct the map of the target DNA based
chemicals called restriction enzymes (ferments). Enzymes @it the DNA fragment lengths between every two restriction
DNA molecules at particular patterns of nucleotides calledites. It was studied in the ideetror-free case and in the case
restriction sites. For example, enzynigcoR| cuts at the Of experimental errors, see Skiena, Smith, and Lemke [25],

pattern GAATTC (see Skiena and Sundaram [26]). Duringpkiena and Sundaram [26], Cieliebak, Eidenbenz and Penna
[7], Cieliebak and Eidenbenz [6]. From the combinatorial point
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where the points are the restriction sites and the ends of thg, L — a,} of positive numbers, where; is the length of
molecule. Fom restriction sites, this multiset must consist othe fragment including one specified end of the molecule and
("3%) = M fragment lengths. Pevzner [22] writesrestriction sitej, andL—a; is the length of the complementary
that the partial d|gest|on has never been the favorite mappifnggment,j = 1,...,n. Furthermore, multiseB comprises
method in biological laboratories because of a difficulty in + 1 lengthsb; of fragments between every two adjacent
obtaining fragments between every pair of sites. It is confirmgubints, i.e., restriction sites and the ends of the molecule (see
by the statistical data — experiments using this approach #ne graphical interpretation in Fig. 1).

performed in a rather small scale, for molecules containing

less than 20 restriction sites, see Dudez et al. [13], Keis et al. 5
[18] and Kuwahara et al. [19]. 0 a1 o2 t ag 0 On L
A simplified partial digest methodas recently proposed —— } [ ﬁ/—”
1 02 03 T On+1

by Blazewicz et al. [2] to overcome the disadvantage of the
partial digest approach. In this simplified method, one enzymg. 1. Graphical interpretation of parametersandb; .

is used on two sets of clones of the same DNA molecule.

The corresponding experiment consists of two parts. In theThe error-freeSimplified Partial Digest Problem (SPDP)
first part, the time of the chemical reaction is chosen s@n be formulated in terms of number theory as follows. There
that target cloned molecules of the first set are cut at ORe an interval [0,L], a positive integer numben and two

restriction site at most. In the second part, the reaction tirggultisets A and B of positive integer numbers such that
span is sufficiently long to cut the cloned molecules of the

second set at all restriction sites. The beneficial effect of this4 = {{aj,L —a;} |ji=1,... 7n}7
simplified approach is not only the reduction of the number +1
of reactions performed, but also a much easier choice of the B = {bj [j=1....n+1, > 0 b= L}

reaction times — they are either very short or very long a
there is nothing in between. Experimental data provided
any digesting method can contain a level of error which
proportional to the total amount of data produced. From t
point of view, the simplified partial digest method is agai
beneficial because it produces less experimental data.  =ach palr{aj, — a;} can be ordered ata;, L — a;) or

This paper presents new combinatorial algorithms that o~ aJ’ta(Jj ,iﬁsume that e(:)acLh Su?;‘ (t)rdereéi rigiy ’LSJ ) is
be used in the restriction site analysis based on the simplifisge0c/ated with a point; < [0, L] so thatp; ands; = L —p;
re the distances between points 0 andind between points

artial digest experiment. The extensive set of experiments
P 9 P b and L, respectively.

verifies the high efficiency of the proposed algorithms anfty
their clear advantage over the existing procedures for reahstcThe multisets4 and B satisfy the property that each pair
a;,L —a;}, j = 1,...,n, can be ordered so that the

practically justified data. assomated pointg;, j = 1 ,n, partition the interval0, L]

The organization of the paper can be outlined as follow;
nto n + 1 subintervals W|th|nterp0|nt distancesonstituting
A mathematical model for genome mapping based on tfe
t e multisetB, i.e., {pj+1—p; | j =0,1,...,n} = B, where

simplified partial digest experiment is described in the next
=0andp,+1 = L.
section. The model is called ti&mplified Partial Digest Prob- . P
The problem (SPDP) is concerned with finding a sequence
lem (SPDP) Section Il presents an enumerative algorlthmf oints p* — (0, p? * L) such that
(ENUM) for SPDP and the examples of of this problem in P P PPy o P

ultiset A contains at most two identical pai{s;, L — a;}.
entical pairs, if they exist, correspond to the restriction sites
piRat are symmetric with respect to the middle of the molecule
see pointsa; and as in Fig. 1 such thatas = L — a3).

which there ar@"3*~1 non-congruensolutions (a definition {{ S L_py =1 } _ 4
is given in Section Il). Section IV presents a dynamic pro- 77 Piy 1= N
gramming algorithm for SPDP. Algorithm ENUM is adapted and {p;f_H —p1i=0,1,... ’n} _ B,

to handle SPDP with measurement errors in Section V. The
results of computer experiments with the developed algorithm@efe_pi‘) =0andp;, = L. _
are discussed in Section VI. Section VIl contains a brief Notice that SPDP always has a solution, at least the one

summary of the results and suggestions for future researctihat corresponds to the original DNA. Furthermore, it may
have several solutions. One can be interested in finding one,

several or all mutually non-congruent solutions of SPDP. Two
solutions (0, p1,p2, .. .,pn, L) and (0,p},05,...,p,, L) of
ET us discuss a mathematical model for genome mappi8§DP areongruentf and only if (py,...,p,) = (L—p}, L—
based on the simplified partial digest experiment. Frop,, ..., L — p/,), i.e., they are mirror images of each other.
the first and the second parts of this experiment, we obtainin the real partial digest experiment, different types of ex-
multisetsA and B, respectively, of molecule fragment lengthsperimental errors may appear. This question will be discussed
Let L be the length of the target DNA molecule and lein detail in Section V, where the most serious error type —
1,...,n be the restriction sites to be recognized by the useaeasurement errors — will be modeled and then handled by
enzyme in this molecule. We first assume that the experimehé use ofinterval computationgfor more information about
is error-free such that the multised comprisesn pairs the theory of interval computations, see, e.g., Kearfott [17]).

1. SIMPLIFIED PARTIAL DIGESTPROBLEM (SPDP)
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The existing algorithmic results for SPDP include th&(p”) := B(p)\{az}. If ax &€ B(p), thenp” is discarded. The
following. Blazewicz and Kasprzak [4] proved that errorprocess is repeated far smallest distances in the multisét
free SPDP is NP-hard in the strong sense and presented am algorithm ENUM, X, denotes the set of partial so-
O(nlogn) time algorithm for the case wherg < {1,2}, Ilutions of SPDP which have survived the consideration
j = 1,...,n + 1. Enumerative algorithms for the generabf the k smallest distances in the multised, £ =
error-free SPDP were proposed by Blazewicz et al. [2] and...,n. Each partial solution fromX, is a sequence of
Blazewicz and Jaroszewski [3]. The complexity of SPDP withoints(0, p1, ..., Ps,9,...,0, P4, - - -, Dn, L) such that; points
errors was studied in [6] and [7]. P1,---,Ps @Ndpy, ..., pp, Whered < pp < ... <ps < pp <

A new O(n2™) time algorithm that enumerates all mutually... < p, < L, s +n —t+ 1 = k, are determined and the
non-congruent solutions of SPDP is described in the nexmainingn — k points between pointg, and p; are to be
section. AnO(n2?) time dynamic programming algorithm todetermined. The seX,, contains all mutually non-congruent
find one solution of SPDP, whekgis the number of distinct solutions of SPDP. As mentioned above, with each partial
values in the multisef3, is given in the following section. solutionp = (0,p1,...,Ds,0,...,0,Pt,...,Dn, L) € X}, we
Later on, the first algorithm (ENUM) is adapted to handlessociate multiseB(p) of interpoint distances to be used for
SPDP with measurement errors. its extension to a complete solution of SPDP:

j=t+1,....n+1}, po:=0, ppy1:=1L.
The algorithm can be outlined as follows.

IIl. AN ENUMERATION OF ALL NON-CONGRUENT
SOLUTIONS

N this section we present an algorithm, denoted as ENUM,
which constructs all mutually non-congruent solutions %gorithm ENUM

the error-free SPDP. The idea of the algorithm is to enumerate ] .

all possible locations of the restriction sites based on ti¥€P 1.In the multiset A, detect all pairs{a;, L — a;},

distance multisetst and B. j = 1,...,n. Order each pai{a;, L — a;} so that the
Consider the smallest distance in the multigetLet it be ~COrresponding ordered pdio;, L — o;) satisfieso; < L — o,
a;. A restriction site corresponding o is the closest to one J = 1;---,n. Re-number the ordered pairs such that<

of the two ends of the molecule. If there is only one pair * = on- S€tXo = {(0,0,...,0, L)}, B(0,0,...,0,L) = B

{a1,L —a1} € A (case (i)), then algorithm ENUM constructs2"dJj = 0.

a partial solutionp = (0,a1,0,...,0,L) that contains point Step 2.There are four mutually exclusive cases to consider.
ay € [0,L]. Here o is the symbol that represenampty Case 1);j <n—3andoj11 = 0;42. In this case, compute
Another possibility for the position of the corresponding

restriction site is the symmetric poiit— a;. However, there ~ Xj+2 =

is no need to consider solutions containing this point because{(0, pi,...,ps,0j4+1,0,...,0,L — 0j12,pt, ..., Pn, L) |

for every such solution there exists a congruent solution —;_ (0,P1,- -1 Ps: 0,10, Dts -+ Py L) € X5,
containing the point; . If there are two identical pairfa;, L— , ,
a,} € A (case (i), then algorithm ENUM constructs a partial 0j+1 = Ps € B(p), pr— L+ o042 € B(p)}-
solutionp = (0,ay,0,...,0,L —ay, L) containing two points For eachp € X, obtained fromp’ € X, calculate B(p) =
a; and L — a;. The constructed partial solution generateg(p’)\{o;+1—ps,pt —L+0,42}. Re-setj := j+2 and repeat
one interpoint distance; (between points 0 and,) in case Step 2.

(i) and two interpoint distances, (between points 0 and; Case 2);j =n — 2 ando;j;1 = 0j42. Compute

and between pointd — a; and L) in case (ii). The multiset

of unused interpoint distances, i.é3\{a,} in case (i) and  Xn ={(0,p1,...,Ps;0n-1, L = 0n,pt, ..., pn, L) |
B\{a1,a1} in case (ii) is stored with the constructed partial P =(0,p1,...,Ds,0,0,Pts+Pn, L) € Xpn_2,
splution p- It is denot_ed as_B(p). Then the secqnd smallest On_1—ps € BW'), pi—L+on€ B,

distance in the multised is considered. Let it beiy,. A ,
restriction site corresponding to is the second closest to one L —(on-1+on) € B(p)}
of the two ends of the molecule. Assume that the previousiynd stop.
constructed partial solution jg= (0,a1,o0,...,0,L). If there Case 3);j < n—2ando;yi # oj42. If this case occurs

is one pair{az, L —as} € A, then algorithm ENUM extends for the first time, then sekX; contains a single partial solution

p by the pointas and verifies whether the interpoint distance’ = (0,p1,...,Ps,9--,0,Pn_s+1,---,Pn, L) With points

ay — a; (between points:; and ag) belongs to the multiset symmetric with respect to the middle of the intery@l L]. If
B(p). If a; — a1 € B(p), then the extended solutionfl = Case 3) occurs for the first time, in order to avoid congruent
(0,a1,az2,0,...,0,L) is kept andB(p') := B(p)\{az — a1}. solutions in the sek,,, we calculate

If a —a; € B(p), thenp' is discarded. Algorithm ENUM
also extends éy)the symmetric point. — as and verifies Xir1 ={(0,p1,...,Ps,0j41,0,...,0, Pp—st1s--.,Pn, L)}
whether the interpoint distance, (between pointsL — a,  containing one partial solution, anB(p) = B(p')\{oj+1 —
and L) belongs to the multiseB(p). If a; € B(p), then the p,}. We do not need to checl; 1, — ps € B(p') because
extended solutiop” = (0,a4,0,...,0,L—as, L) is kept and error-free SPDP must have at least one solution.
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For other occurrences of Case 3), we calculate Let n andh be positive integer numbers satisfyihg- (h+
1)/2—1 = n. In our example, the length of the intervallis=

Xjp1 = {p: (0,1, D5, 04150, -, 0, Py, Pns L) | 2(h+1), multisetA = {{2j—1,L—(2j—1)}| j=1,...,(h+

= (Ovplv"'7p8707"'707pt7"'7pn7L) € X]’ 1)/2}U{{2],L*2]}| ] = 1,...7%*1,%+1,...7h s

0j41—Ds € B(p’)} U and multisetB consists ofi numbers 1(h+1)/2—1 nu_mbers
2 and one number 3. Non-congruent solutions for this example
{ﬁ:(Ovpla"'ap&o»---707L_0j+17pta---7pn7L) | are shown in Flg 2.
In the figure the 0-1 vectofy,, ..., yr+1) iS associated with
/:07 yere3Psy Oy, O 7"°7n7L 6X'7 b ’

P=0p b be Pn; L) / the points $". A point “o” assomatedzwnfy7 can be placed

—L+oj41 € B(p')}~ either in the positior2j — 1 or in the symmetric positiod, —

) 25 + 1. In the former casey; = 0 and in the latter case,
For eachp € X, obtained fromp’ € X;, calculateB(p) = y; = 1.
-B/(p/)\{(0j+l —ps)} and, for t/eacha € Xjj+1 obtained from " pepote byYay: the set of all 0-1 vectorgys, ..., yns1).
€ X;, caleulateB(p) = B(p')\{(ps — L + 0j11)}. Re-set p| non-congruent solutions of SPDP are determined by the

j:=J+1 and repeat Step 2. setYia C Y1 SO that there are no two vectogsand y'
Case 4); = n—1. If Case 3) never occurred, then calculate o2
Yh+1 satlsfymgy] =1-vy;,j=1,...,(h+1)/2. Since

X = (0,1, Pss 00 Pts - - Pus L) | Vi | = 2% andD@\ = IY%I/Z we obtain|Yi | =

(0;p1;-~-7p3707pt;---7pn7L)Eanl} Qi _2

Our example can easily be transformed into an example, in
which interpoint distances are all distinct. For these purposes,
let the picture for the points|™ be symmetric with respect

and stop.
If Case 3) occurred at least once, then calculate

to the middle but let the distances between any two adjacent
Xn = {(O’pl’ <P Ons Pty - Py L) | such points be all distinct in the interviil, /2] = [0,k — 1].
P =(0,p1,-..,Ps,0,Dt,--,Pn, L) € X1, Let every point %" partition an interval between two adjacent
, , points ‘" so that all generated distances are distinct. Further-
n = Ps € BI'), pt—on € B(p )} Y more, let the two interpoint distances between the points
{ (0,1, -+, Pss L — 0nsPts -+ s Py L) | “o” and h + 3 be distinct and differ from all other interpoint
U e d|stances. As with the original example, every point tan
=(0,p1,--+,Ps:9,Pt,---»Pns L) € X1, be placed in one of the two symmetric positions associated

/ / with it. Therefore, there ar@™s" 1 non-congruent solutions
L=on=ps € BU), pi—L+on € Blp )} for this example.
and stop. n In the next section, a dynamic programming algorithm will
be presented for a special case of the error-free SPDP. It
It is clear that the poinb, or the pointL — o; must be will be tested against ENUM in an extensive computational
present in every solution of SPDP for eagh= 1,...,n. If €Xperimentin Section VI. On the other hand, algorithm ENUM
0; = 0j11, then(0;, L — 0;) = (011, L — 0j11), and hence Will be modified to cover the case of measurement errors (cf.

both pointso; ando;,; must be present in every solution ofSection V and tests in Section VI).
SPDP. Algorithm ENUM enumerates all such solutions and

removes those with interpoint distances not from the multiset V. A DYNAMIC PROGRAMMING ALGORITHM

B. Therefore, the algorithm is correct. Step 2 determines t YNAMIC programming is a well established search tech-
time complexity of the algorithm. In iteratiop + 1 of this nique which has grown out of the operational research
step, at mos2|X;| sequence$0, p1, ..., pn, L) are analyzed. tradition. Other complementary search procedures can be seen

Each sequence is analyzed in a constant time and it canilb@urke and Kendall [5]. A basic introduction to the technique
written to the setX;;, or the setX, , in O(n) time (if can be found in Dowsland [12] and its importance as a method
writing each element of a sequence requires one operatian).underpin the development of computationally intelligent
We have| X 1| < 2|X;|,7=0,1,...,n—1. Since|X,o| =1, systems is presented in Poole, Mackworth and Goebel [23].
we obtain|X;| < 27, j = 1,...,n. The time complexity of They say, in the context of Computational Intelligence, that dy-
Step 2 can be evaluated @n E};l |X;|) = O(n2™) which  namic programming, "deserves attention because it's important
is also the time complexity of ENUM. Its space requiremerih many optimization problems, particularly those involving
is determined by maxi<i<;j<n{|X;| + |X;|}. It can also be decision making”.

evaluated a®)(n2"). We first consider a special case of the error-free SPDP in

We now give an example of SPDP for which there amhich b; € {u,v}, j =1,...,n+ 1. We denote this special

2" ~1 non- congruent solutions, i.e., the cardinality of the sease as SPDR(v) and present a dynamic programming
X, is exponential in this case. Our example partially answeaggorithm, denoted as DP, which constructs a solution of
a question about the number of solutions of SPDP posed 89DP{;, v) in O(n*) time. We stress that algorithm DP con-
Blazewicz, Formanowicz and Kasprzak [1]. structs one solution, not all mutually non-congruent solutions
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(0,1,...,1,1) F } — . : — e it !
|
|
.« | .«
(0,0,...,1,0) [ ; : ; : i : ; : |
|
.. | e
(0,0,...,0,1) [ o | } & } | } |
|
“ e | oo
(0,0,...,0,0) : i : : ; : | : |
01 2 h h+3 L=2(h+1)

. ht1l 4 n+2 4 .
Fig. 2. 272 =273 non-congruent solutions of SPDP.

of SPDP. We use the same terminology and notations asfatilitate description of our algorithm, we introduce an opera-

the algorithm ENUM. tion LR(x1,z2) that denotes an assignment of the interpoint
The idea of the algorithm DP is as follows. Consider twdistancesr; andz, to the left part and to the right part of a

partial solutionsp € X; andp’ € X, see an example in partial solution, respectively. lf; = o or z; = o, then nothing

Fig. 3. is assigned to the left part or to the right part, respectively, of
the solution under consideration.
, v U u u v vou o U v U vou A state(y,l,,l,,r,) is associated with each partial solution
p : —t t t +—t +—+ t +—t +—t !

(0,p1,--,Ps:0,...,0,Dt,...,0n, L) € X;. State variables
: : are defined as follows.

vu U vou VU v U U U U j is the number of distances;, i = 1,...,7,
S ' S considered so far. These distances generate the same
number; of interpoint distances between the corre-
sponding points.
ly=H{pj—pj—1=ulj=1,...,s} is the number
of interpoint distances equal t in the left part of
the partial solution, whergy = 0.
ly =Hpj—pj—1=v]|j=1,...,s} is the number
of interpoint distances equal toin the left part of
the partial solution.
re = {p; —pjs1=uw|j=t+1,...,n+ 1} is
the number of interpoint distances equahtan the
right part of the partial solution, wheng,; = L.

0 3u+2v  L—(4u+3v) L

Fig. 3. Two partial solution in the same state.

Assume that the number of interpoint distances of each type
u and v is the same in the left part and in the right part
of both partial solutions. Then a) the points closest to the
middle of the molecule are the samejirandp’; and b) the
interpoint distances to be used for the extensiong ahd p’

are the sameB(p) = B(p’). Partial solutions from the same
set X;, which satisfy properties a) and b), are said to be in
the samestate Properties a) and b) imply that if one of the )
two partial solutiongy andp’ can be extended to a complete Havingj, l.,l, andr,, we can calculate

solution of SPDPy, v), then the other partial solution can do ry = [{pj—pj—1=v|ji=t+1,...,n+1}|, which
the same. Therefore, if there are several partial solutions in the is the number of interpoint distances equalutan
same state, then only one of them (arbitrary) can be considered the right part of the partial solution. We can compute
for further expansion and all others can be discarded. This Ty =J = (lu + 1y +74).
selection procedure reduces the cardinality of theJsgtA In the algorithm DP, we iteratively generate s&isof states
more detailed description of algorithm DP is given below. (j,1,,1,,7,), j = 1,...,n. SetsS,, is guaranteed to contain a
Assume that the ordered paifs,;, L — o;) of elements state corresponding to a complete solution of SRDPY A
from the multisetA satisfyo; < L —o0;, 5 = 1,...,n, complete solution is recovered by backtracking. Derigte=
and o, < --- < o,. In the algorithm DP, we assign|{j | b; =u,j =1,...,n+1}| andk, = n+1—k,. Assume,

points associated with the distances,...,o0, to partial without loss of generality, that, < k,. The algorithm can
solutions of SPDR(, v) in this order. Given a partial solution be outlined as follows.

(0,p1,--,Ps:0,---,0,D1,...,0n, L) € X;, there are two

possible assignments of points corresponding to the distardgorithm DP

0j+1 : point 0,11 is assigned to the position+ 1 or point
L —o0,44 is assigned to the positidn-1. If 0,41 = 0j42 = o,

then pointo is assigned to the position+ 1 and pointL — . o
poio g P * P ? corresponding ordered péiv;, L — o;) satisfieso; < L —o;,

is assigned to the positian— 1. : .
. : . : =1,...,n. Re- <
Any feasible assignment described above can be viewed’as L., n. Re-number the ordered pairs such that<

K . . . LIT< . Initi — i — 0.
an assignment of at most two interpoint distaneeand v < on. Initiate setSy = {(0,0,0,0)} and;j =0
to the left part and to the right part of a partial solution. T&tep 2For each statéj, l,,, l,,r.,) € S; perform the following

Step 1.In the multiset A, detect all pairs{a;,L — a;},
j = 1,...,n. Order each pair{a;,L — a;} so that the
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computations. Calculate, = j— (I, +1,+7y), T1 = lyu+1,v
andT, = ryu + ryv.

S,. With this state, associate the value= 5.
If op1—Ti=v,L—(op—14+0n)=u, L—-—T,—0,=v

With each statdj,l,,l,,r,) € S; for j > 1, associate an andl,, +r, + 1 = k,, then add stat¢n,, + 1,1, +2,r,) to
indicator variableJ € {1,...,12} to be used for the purposessS,,. With this state, associate the value= 6.
of recovering a complete solution corresponding to a final statelf 0,1 — T, =v, L — (0p—1 +0n) =v, L—T, — 0, = u
(n,ly,ly, 7). Its meaning will be clear from our description.andi, + r,, + 1 = k,, then add statén,l, + 1,1, +2,7,) to
There are four mutually exclusive cases to consider. Sy. With this state, associate the valde= 7.
Case 1);j <n —3 andoj+1 = 0;42. In this case, initiate  If 0,1 =T} =v, L — (0p—1 +0n) =v, L=T, —0, =v
setS; o = o. andl, +r, = ky, then add statén, l,,,{, +3,7,) t0 S,,. With
If 041 —1T; = u, 0j42 — T, = wandl, +r, +2 < k,, this state, associate the value= 8.
then add statgj + 2,1, + 1,1,,7, + 1) to the setS; . Case 4);; = n — 1. In this case, initiate sef,, = ¢.
With this state, associate the value = 1 indicating that If o, —T; =u, LT, —o0, =wandl, +r,+2 = k,, then
it was obtained by performing operatidnRz(u,«) over the add statgn,l, +1,1,,r,+1) to S,. With this state, associate
corresponding partial solution from the sgt. the valueJ = 9. Here we need new value of the indicator
If 0jo1 =1, =, 0j42o — T =v, l, +7r,+1 <k, and variable to distinguish between Case 3) and Case 4) when
ly+7,+1 < k,, then add stat¢j + 2,1, +1,1,,r,) to Sj4,. considering a final state from the s€&f in the backtracking
With this state, associate the valiie= 2 identifying operation procedure.
LR(u,v). If o, -1, =u, L—T,—0, =vandl, +r,+1=k,, then
If 0j41 =T =v, 0j42 — T =u, I, +7, +1 < k, and add statgn,l,, +1,1,,7,) to S,. With this state, associate the
ly + 7y +1<k,, then add staté; + 2,1,,l, + 1,7, + 1) to valueJ = 10.
S;4+2. With this state, associate the valde= 3 identifying If o, -1y =v, L-T, -0, =uandl, +r,+1 = k,, then
operationLR(v, u). add statgn, l,,, 1, +1,r,+1) to S,,. With this state, associate
If 0j4+1 — T = V, Oj4+2 — T. =v and Z:U + 7y, +2 < ]4}1,, the valueJ = 11.
then add stat€j + 2,1,,l, + 1,7,) to S;2. With this state, If 0o, =T} =v, L =T, — 0, = v andly +ry, = ky, then
associate the valug = 4 identifying operationL R(v, v). add(j,ly,l,+1,r,) to S,. With this state, associate the value
Case 2);j <n—2ando;i1 # 0j4+2. In this case, initiate J = 12.
setS; 1 =o. If L—o,—T, =u,o0,—T.=uandl,+r,+2=k,, then
If 0.1 —T) = wandl, + 7, +1 < k,, then add state add statdn, l, +1,1,,r,+1) to S,,. With this state, associate
(5 + 1,1, + 1,1,,7,) to Sj41. With this state, associate thethe valueJ = 9.
value J = 5 identifying operationL R(u, o). If L—o0,—T =u,o0,—T, =vandl,+r,+1=k,, then
If 0,41 —T; = v andl, + 7, +1 < k,, then add state add staten,l, +1,1,,7,) to S,. With this state, associate the
(j + 1,ly,l, + 1,7,) to S;1. With this state, associate thevalue J = 10.
value J = 6 identifying operationL R(v, o). If L—o0,~T) =v,0,—T, =uandl,+r,+1=k,, then
If 0j41 — T = w andl, +r, +1 < k,, then add state add statdn, l,,, 1, +1,r,+1) to S,,. With this state, associate
(j + 1,1y, Ly, my + 1) to S;11. With this state, associate thethe valueJ = 11.
value J = 7 identifying operationL R(o, u). If L -0, T =v, 0, =T, =vandl, + 7, = ky, then
If 0.1 — T, = v andl, +r, +1 < k,, then add state add(j,l,,l,+1,r,) to S,. With this state, associate the value
(5 + 1,1u, 1y, m,) to Sj11. With this state, associate the value/ = 12.
J = 8 identifying operationLR (o, v). If all states fromS; are considered, re-sgt:= j + 1. If
Case 3);j = n — 2 ando;;1 = 0j4. In this case, initiate J = n, then perform Step 3. Otherwise, repeat Step 2.

setS, = ¢. Step 3.Select any statén, l,,l,,7,) € S, and backtrack to
If on1 —=Ti =u, L= (0n—1+0n) =u, L=T, —0n =u determine the corresponding solution of SPRRY.

andl, +r, + 3 = ky, then add stat€n, L, + 3,1,,7u) t0 Sy In the first iteration of the backtracking procedure/if= 1

With this state, associate the value= 1. We can use the g associated with a state, L, L, ) € S, then we know

same values of the indicator variable as in Cases 1) andig)t this state was obtained from the staie — 2,1, —
becausej =n andj < n are o.bviogsly distinguished by the3’ ly,74) € S,_» by assigning three interpoint distanaeto
backtracking procedure described in Step 3. the left part of the corresponding partial solution. Other values
If on1 =Ty =u, L—(on-1+0n) =u, L=T, —0n=v of J are similarly analyzed.
andl, +ry +2 = ky, then add statén, I, + 2,0, +1,7,) 10 |n jterationi > 2 of the backtracking procedure, .jf= 1 is
Sy. With this state, associate the value= 2. associated with a stai@, l,,, L, 7,) € S;, then we know that
If on1 =T =u, L—(on-1+0n) =v, L=T. —0n =u this state was obtained from the state 2,1, —1,1,,r,—1) €
andl, +r, +2 = ky, then add statén, L, + 2,1, + 1,7,) 10 5, , by assigning interpoint distancesto the left part and the
Sy. With this state, associate the value= 3. right part of the corresponding partial solution. Other values
If o1 =Ty =u, L = (0n—1+0n) =v, L=T, —0n =v of J are similarly analyzed. The procedure terminates when a

andl, + 7, +1 = ky, then add statén, L, + 1,1, +2,7.) 10 complete solution of SPDR(v) is recovered. [
S,,. With this state, associate the valle= 4.

If opor —Ty=v, L—(0p—1+0n)=u, L—-T. —0,=u

andl, +r, + 2 = k,, then add statén, l, + 2,1, + 1,7,) to Similar to the algorithm ENUM, Step 2 determines the time
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complexity of algorithm DP. The time complexity of this step V. MEASUREMENT ERRORS
can be evaluated a@(Z?:l |S;]). Sincel, < ky, l, < k,

: A - N the literature, three main types of errors are discussed,
andr, < k,, we have|S;| < O(kik,), j = 1,...,n.

= i 9 4 k which can affect the input data for a digesting method, see
Therefore, Step 2 requireS(nk;k,) = O(n") operations ¢, oyample Dix and Kieronska [11], Inglehart and Nelson
giving us the overa!l time co.mplexn):1 of algorithm DP. Its[16] and Wright et. al. [29]. Errors of the first type are
space requw'ement |s.detern.1|ned @jzl |S;| because we caused by theémprecise measuremef the lengths of the
store the indicator variablé with each state. Thus, the space, . fragments. According to Marra et al. [21], the relative
requirement of algorithm DP is als0(n"). Notice thatn® < yeviation of 5% from true fragment length can be guaranteed
2“-fc-)r n 2 16. Thereforg, algorlt_hm DP ,ShOU|d '?e much MOrg, a biochemical experiment (it was within 1.5% for 95% of
efficient than enumerative algorithms with running iM€&") - f54ments with lengths between 600 and 12,000 base pairs in
for SPD.P(L’U) W'.th a Ie_lr_ge number of restriction sites. a specific experiment). Errors of the second type, which are
Algorithm DP is JUSt,'f'ed by thg folIowmg theo.rem. . called negative errorsare due to the lost of the information
Theorem LiIf state(j, L, l,, ) is associated with a partial 5p0 + some fragments. Recall that the length determination
solution that can be extgnded tq a_complete solution 8£periment is conducted on a sufficiently large number of
SPDP¢, v), then any partial _SOIUt'On in this state can b\ clones and a particular fragment length is accepted if
extended to a complete solution of SP.DRO' . the quantity of the corresponding fragments exceeds a given
Proof. Assume that a partial solutlpnp ~ threshold. A negative error can occur when there are two
(0.p1,... s, 0,00, pr, -y pny L) € X associated With q0ments of almost the same length such that they cannot
S_tate(j’l”’l’“’r“) € §; can be extended to a complete SOIUt'OBe distinguished in the experiment. It can also occur when
p = (Opr,....pn, L) € X, of problem SPDR(,v) by some small fragments are lost because they are too speedy and
assgnmgl dlstanc/epsﬂ,}. P C9n3|der /another payual cannot be traced. Finally, certain sites can be less likely to be
solutionp” = (0’,p1’ o Psr e O P ;o Pny L) € X; in cut than others and the quantity of the corresponding fragments
the same statgj, lu, Ly, 7). Notice thats’ = s =, + 1, and .o, e insufficient for accepting their lengths. Errors of the

t'=t=r,+r,. i iti
. . . third type, calledpositive errors appear when an enzyme
For both partial solutions andp’, the corresponding Valueserroneously cuts a DNA molecule at a place which is similar,

T; and T, are the same. Furthermore, the same numb&gt not the same as the restriction site associated with this

of '|nt%r.pomt distancesu and .theb s:;r\]me Inu_mberTcr)lf 'nfter'enzyme. They can also appear when some unrelated material is
point |stanf:e311/ are present in both solutions. There Or€ccasionally added to the gel. In this case, we may obtain some
partial solutionp’ can be extended to a complete solutio

lﬂagments that do not belong to the target DNA. Moreover, a

=~ __ / / / / H
p=0p,.. 'PssPst1s - De—1,Pts - - ’p”’L). € Xy In _clone can be cut in more than one restriction site in the short
the same way ag. In this extension, new assignments W'"%i estion reaction

generate the same multiset of interpoint distances as in t hen an error of the second or third type occurs in the

g)SeDrILs,lon oirtlhe Barnal sollu;['lqm I—:c(ir;]c':e, 'fﬁb'ls a Solut|o|r|1 of simplified partial digest experiment, it can be identified and
., v), thenp' is a solution of this problem as well. sometimes corrected as follows. If there is a large length

lt. 'f gleqzhtr;ﬁt p?r?al (s)o(l)ugor(o,;,...,o,bL) etX(()j %S't and no small complementary lengfh— a; in the multiset
sociated wi € stat€0,0,0,0) € S can be extende OA, then we can deduce that the fragment of the length

a complete solution of SPDR(v). Then we can iterati\{ely L — a; was lost in the experiment. If there are more than
apply Theorem 1 to demonstrate that algorithm DP fmdst\%0 identical pairs{a;, L — a;} in the multisetA, then we

solutlon_ of SPDRY, v). - lgnow that only two of them can correspond to the symmetric
.Algorlthm DP can bg modnjed to .SOIV(.E error-free' SI:)Drestriction sites and the other pairs are obtained erroneously.

with any numberq of distinct interpoint distances;, j = Several positive errors can be recognized during the phase of

1,...,n + 1, which we denote as SPD#...,u,). Here gel electrophoresis, where the fragment lengths are measured

U, - g Are all distinet vajues in the multiset. — simply the erroneous fragments will occur in negligible
In the modified algorithm, a state amounts
(Jyla, .. ulg, 1, ... mq—1) With 2¢ state variables will '

Measurement errors of the first type are difficult to avoid in
. . . . ny di ing experiment. In thi ion, wi ri n -
smallest distances in the multisét considered so fai; and a yd gesting experime . In this section, we dgsc be an adap
. are the numbers of interpoint distances eauakian the tation of algorithm ENUM for the case when distances in the
Ti P quat multisets A and B are measured with the guaranteed relative

left part and the right part of the partial solution, respecuvel}érror r. Then, this algorithm will construct an approximate
We can calculate, = j — (i + ...+ g+ + ... +7rg-1).

. . o ... solution with interpoint distances being within dadistance
The time and space requirements of the modified algorit o T
5 ) . from corresponding interpoint distances of an error-free SPDP
can be evaluated &3(n°9) for a giveng. They are polynomial

it o is a constant. In the modified alaorithm. we will r]ee((?)olution. If an instance of error-free SPDP has more than
q ' 9 ' .one feasible solution, the algorithm will find one approximate

3 5 o .
q° + ¢° different values of the indicator variable because in_, .. . . o

. ) . . solution for every feasible solution of this instance.
Case 3) each of the three last interpoint distances (left, mldéle y

and right) can take any of the valuesb;, and in Case 4) Specifically, we assume that there are given multigéts-

! s ! / -
each of the two last interpoint distances can take any of the{ge' | = 1...,2n} and B’ = {bj [J=1..n+

values. 1, Y70, = L'} such that there exists a DNA molecule

be associated with a partial solution. Hgrés the number of
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with a multisetA = {a; | j = 1,...,2n} of true distances for b € B;. We do not consider assignment of the interyal
between the restriction sites and the two ends of the molectdethe right part of the molecule to avoid congruent solutions.
and a multisetB = {b; | j = 1,...,n + 1, 27:11 b; = L} Furthermore, since we work with imprecise data, we do not
of true interpoint distances, which satisfy consider separately the case of several identical integpvals
, In the second iteration, we consider assignments of the
laj — a5 <r j=1,...,2n, interval ys := [115ab, T2 ab] to the left part and to the right
aj B part of the molecule for each= (ig, i1,0,...,0,in+1) € X].
and |b; — bl <=1t () An assignment to the left part is acceptediif+b’)Ny2 # ¢

for someb’ € I(i), see Fig. 4 for graphical interpretation.
Similarly, an assignment to the right part is acceptdd,if 1 +
"YNy2 =b"Nya # ¢ for someb” € I(i). Here is a small
ifference with algorithm ENUM, namely, the distance to the
terval assigned to right part of the molecule is counted from
e right end of the molecule. In the algorithm ENUM, the
prresponding distance wds— a», i.e., it was counted from
the left end of the molecule.
Set X! is such that for each solutiop®* € P* of the

)error-free SPDP, there exists a sequence of interials-
(ip,i3,...,i5,4) € X,, satisfying the following two prop-

b, ~

for a given relative error, 0 < r < 1. Notice that there may
exist several distinct molecules satisfying this property for t
same multisetsA’ and B’. )

Let P* be the set of all mutually non-congruent solutions d
the error-free SPDP with the multisetsand B, where each t
p* € P* is a sequence of increasing points in the interv.
[0, L], p* = (P5: P+ - - Phs Prg1)s Po = 0, Pryq = L.

Given multisetsA’ and B’ and a point sequencg* €
P*, a (¢4, p*)-approximatesolution to the problem (SPDP
with measurement errorsis a point sequencep’ =

erties:
(Po> P> -+ Py, Phyq) SUCH that L ] . en .
e pj €1if forj =0,1,....,s,and L — p; € if for j =
{|p} ;| [Phs1—P5) = g1 =) s+1,...,n41, wherei’ is the last interval assigned to
Py Phi1—P} ' the left part of the molecule, and
Y N e P; — Pj_1 € be, j = 1,...,n + 1, where
|(pj+1 pi) (pj*—H p])‘} <5 j=01,....n {b/17--~7b;1+1} _ I
Pj+17P;

By the construction of intervalg’, any point sequencg =

For SPDP with measurement errors, we adapt algorith(lp{)’p’17 . ?p/n7p/n+1) that satisfies the above properties (When
ENUM to work with intervals rather than with single numberssubstitutingp’ instead ofp*) is a(lzjr,p*)—approximate solu-
Given relative error, an interval i/, t%a/] is associated tion for SPDP with measurement errors. Such a point sequence
with eacha’; € A’ and an interval b, 2] is associated p/ is constructed for each € X’ in Step 4 of algorithm
with eachb’; € B’. This choice of the intervals guarantees thahterval-ENUM. The algorithm can be formally described as
if a; € A andb; € B are true interpoint distances satisfyingfollows.

(1), thena; € [135a}, 15a)] andb; € [0, 750, e,

1+7r 73 1—r 1+r7j2 1—r"J

the true interpoint distances are inside the chosen intervalsAlgorithm Interval-ENUM
We_ denote the adapted algonthm as Inte_rvaI-ENUM. In th tep 1.0rder numbers in the multiset’ so thata), < --- <

algorithm, we use the operation of summation of two intervals - 1 1 1

. o . dy,,. Introduce intervalyy; = [—a, 7=a’], 7 = 1,...,n,

i=la,b], a <b, andg = [¢,d], ¢ < d, which is defined as ) . +r = ,

. . Lo .-and the multiset of interval§ = {[——b, —b] | b € B'}.

i+ g = [a+c b+ d]. This definition is in accordance with , g, , A 1T )

the theory of interval computations, see for example Kearfdt@lculate L’ = 5757, bj. SetXg = {(io, o, ..., 0 in+1)},

[17] whereig = Int1 = [0,0], B(IO,O, .. .,O,1n+1) =1 and] =
Algorithm  Interval-ENUM  constructs a (%,p*)- 0.

gpproximate golution for eachp* € P*. Like Step 2(the casej < n—2). If j = n—1, go to Step 3.

in the algorithm ENUM, we construct setsX;, Otherwise, perform the following computations. For each par-

k = 1,...,n, of partial interval solutions where tjal solutioni’ = (ig,i1, .-+ ,15,0,...,0,it,...,int1) € X;,
a partlal interval solution from X; is a sequence find a multisetB; of intervalsb & I(i") such thatig, 1 (b) :=
of intervals i = (io,i1,...,is,0,...,0,i¢,. .. int1),  (ig + b) Nyjr1 # ¢ and, if j > 1, a multisetB, of intervals

s+n—t+1=Fk o = int1 = [0,0]. Let us introduce b ¢ I(i) such thati; 1(b) := (it + b) Nyji1 # ¢. With
multiset I := {[{b, 12:b] | b € B’}. With each partial each intervalis,;(b) and i;_y(b), store the corresponding
solutioni, a multiset of unused intervals(i) C I is stored, interval b by settingL(is,1 (b)) := b and R(i;_1 (b)) := b,
whose precise definition will be clear from the description gespectively.

the algorithm. o _ _ If j =0, setBy = ¢. The casej = 0 is treated separately
Letaj < --- < ay,. In the first iteration of the algorithm to avoid congruent solutions. Calculate

Interval-ENUM, we assign the intervah := [15a}, 12 a/]
to the left part of the molecule and find a multisBy of Xiy = {(io,i1,...,is,is41(b),0, ..., 0,i¢, ..., iny1) |
b € I such thati; (b) := (io+b)Ny1 =bNy; # ¢. We set i e X;,b € B} U
X] = {(ip,i1(b),0,...,0,iny1) | b € By}. Thus, if there . . . . . .

. 11(b),0,. -, 9,1n i1y is, 0,000,006 1(b), g, .. in
exists a partial solutiop = (0,a,0,...,0,L) to the error- {0, 11 1s0© o de-1(b), i int1) |

free SPDP with distance multisets and B, thena; € i; (b) i € Xj,b € By}
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ii+b’
—N—
Acceptable: [ ]
LT a [ a2 ]
I : S ° S
[00] ~~—~— Rty ———— 15
11 y2
Left part
ii+b’
———
Unacceptable: [ ]
| [ ] [ ]
I [ ] [ ]
—— —_———
iy y2

Fig. 4. Assignments of the intervalz = [ ab, 12 ab).

For eachi € X7, obtained fromi’ € X7 andb € I(i),
calculatel (i) = I(i")\{b}.
Re-setj := j + 1 and repeat Step 2.

Step 3(the casej = n — 1). Set X/

partial solutioni’ = (ig,i1,...,is, 0,1, ..
let I(ll) = {bl,bz}.

* !
Sing1) € X5,

If is+1(b1) = (is + bl) N Yn 7£ (ﬁ and (is+1(b1) +
by + i) N [{5L, L] # ¢, then setX] = X/ U
{i = (io,i1,..-,1s,1s41(b1),it,...,int1)}. Store the num-

berny (i) := s+ 1 of intervals assigned to the left part of the

molecule corresponding to

The last interval assigned to the left part is specific in that
we store the interval frond(i’), which was used for checking

the acceptability on the right of it, by setting(is+1(b1)) :=
b, in the considered case.

If is+1(b2) = (is + b2) N ¥Yn # (b and (is+1(b2) +
by +i¢) N[5 L, 75 L] # ¢, then setX] := X U {i =
(i(), il, RN ig, is+1(b2), it,..., in+1)}, nL(i) = s+ 1 and
R(is+1(b2)) = b]_.

If itfl(bl) = (it + bl) N Yn 7& QZS and (itfl(bl) +
by + i) N [5L, L] # ¢, then setX] := X/ U
{i = (io,il7 .. .,is7it_1(b1),it7 e ;in+1)}7 TLL(i) := s and
R(is) := bs.

If ig_1(b2) := (ix + b2) Nyn # ¢ and (ig_1(bz) +
b1 +is) N [ L, L] # ¢, then setX], := X/ U
{i = (io, i17 ey is, it—l(bZ), it7 ey in+1)}, nL(i) = s and
R(is) = b]_.

Step 4For eachi = (ig,i1,..,1n,int1) € X}, io0 = int1 =
[0,0], perform the following computations. Lét;, d;] := ij,
j=1,...,n, s == n(i), v;,w;] == L), j = 1,...,s,

[’Uj?wj] = R(ij)7 .7 = s+ 1; s, N, and [Un+lawn+1] =
R(is).
Construct an increasing point sequencg(i) =

(pOaplv s

Pj+1

= ¢. For each

b//

[ a2 ] |

T O 1 1

1 / 1 /
—_—

142 192

y2

Right part
B//

y2

—-pj=xj,j=s+1,...,n,andz, 11 = psy1 — Ps-
Variablesz;, j = 1,...,n + 1, represent a solution to the
following system of inequalities:

v; <z;<w;, j=1,...,n+1,

J
Cj§Z$h§dj, j=1,...,s,
h=1

n
Cj Sthgdj7 j:S+1a"'7n7
h=j
1 n+1

L < <

There exist standard integer programming algorithms to solve
the above system of inequalities.

Output set{p(i) | i € X}, which contains a =, p*)-
approximate solution for eacht € P*. ]

1
1—r

L.

Similar to the above adaptation of the algorithm ENUM,
our dynamic programming algorithm DP can be used for
finding an approximate solution of the general case of the
error-free SPDP and the problem with measurement errors.
The idea is to round input data of the problem so that the
number of distinct rounded interpoint distances is sufficiently
small to apply a modification of the algorithm DP efficiently.
More specifically,n + 1 interpoint distances from the multiset
B can be partitioned into several groups, sagroups, so
that a relative or absolute deviation between distances in the
same group does not exceed a given value. Then we can re-
set distances in the same group to be equal to the average
distance in this group and, as a result, obtain the number of
distinct interpoint distances equal to the number of the groups
q. Algorithm DP can be modified for interval computations

,Pn+1), Wherepy = 0, which is an approximate as follows. While considering; € A, an assignment of a

solution to SPDP with measurement errors. Introduce positik@unded interpoint distancé € B to the left part of the

integer variablescy, ..., xy41. Pointsp;, j =1,...,n + 1,
are determined fromp;, — p;—1 = z;, j = 1,...,s,

molecule is accepted if the sum of the rounded interpoint
distances assigned to the left part so far deviates fegm
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within a specified range. A similar rule can be applied for the RUNNING TIME COMPARISOIZIDEIB:II_ET\I:JM AND DP. RANDOM DATA
assignment of a rounded interpoint distance to the right part 1 — 1000 ' ’
of the molecule. A detailed implementation of this approach '
is not straightforward and represents a direction for future Running time, msec Max.number
research. ENUM DP of solutions
/Average [Std deviation |Average [Std deviation
VI. EXPERIMENTS 40 | 106 43.1 75 24.8 8

N this section, we present the results of computer exper- 50 | 111 281 85.2 185 2

iments with algorithms ENUM, DP, Interval-ENUM and | 80 | 125 66 97.8 43.8 4
their comparison with the results of Skiena and Sundaram [26] 70 | 114 41.8 96.3 32.9 4
for Partial Digest Problem and with the results of Blazewicz et 80 | 140 42.7 126 38.7 8
al. [2] for SPDP. We denote the algorithm of Skiena and Suni- 90 | 151 137 140 106 8
daram [26] as Pyramid-PDP and the algorithm of Blazewicz 100 | 162 89.6 161 87.3 8
et al. [2] as First-SPDP. Algorithms ENUM, Interval-ENUM | 110 | 154 114 161 108 8
and DP were implemented in Borland C++ Builder 6, and 120 | 175 924 196 103 8
the tests were run on a portable PC with Intel Pentium M 130 | 152 144 193 168 4
2 GHz processor and 480 Mb of RAM under Windows XP| 140 | 190 226 241 272 8
operational system. Large scale instances with bigger memory50 | 174 115 282 208 8
requirements were run on a single processor of Sun SunFire TABLE I

6800 supercomputer. All random numbers in our experiments

were generated by using uniform distribution. Tests of the RUNNING TIME COMPARISON OFENUM AND DP. REAL DATA.

algorithm Pyramid-PDP were run on Sun Sparcstation 2 anet — — ——

i . . ntry in  |Restriction | n q Running time, msecNumber of
those of the algorithm First-SPDP on a PC with Celeron 420 GenBank | enzyme ENUM P solutions
MHz processor and 64 Mb of RAM, see [26] and [2]. DZ6561 2 136 135 | <10 <10 1

J00277 | Hhal |38 [31 | <10 10 1
A. Error-free data J00277 | Haell |99 |63 50 241 2
In the first set of experiments, algorithms ENUM and DP NC.006852 | Hlalll 128 110 | <10 10 1
were run for fixedn = 1000 and various values ofj. DQ084247 | Hlalll 156 [134 20 51 4
Given g, we randomly generated distinct interpoint distancesNC-005045 | Hlalll 207 148 10 41 1
u; € (100,2000), ¢ = 1,...,q. Let k; denote the number of | AM084415 | Alul 215 158 78 402 2
interpoint distances equal te;, i = 1,...,q. We randomly
generated these numbers such that , k; = n + 1. With
numbersu; andk;, i = 1,...,q, the multisetB is fully deter- regard to the algorithm First-SPDP. However, the run time

mined. We assumed thaf = >"/_, b; represents the distancevalues of First-SPDP were presented in the foral“sec”.
between point 0 and a point corresponding to restriction sitdiis information cannot be used for the comparison with our
4 in a DNA chain. The multise#l was generated accordingly.algorithms because both algorithms ENUM and DP solve the
Given n = 1000, algorithms ENUM and DP were run onsame real data instances in less than one second too.
100 instances for every value gf Corresponding values of Our third set of experiments for largewas run on a single
average running times of the algorithms (column "Average”00 MHz IP35 processor of a Sun SunFire 6800 supercom-
standard deviation from the average running time (column "Spditer, with 20 Gb memory limit. In this set of experiments, we
deviation”) and the maximum number of solutions found bgonsidered; = 2, interpoint distances, = 3 andus, = 5, and
algorithm ENUM are given in Table I. various values of.. The multisetsA and B were determined
In the first set of experiments, we observed that algorithm the same way as in the first set of experiments. Given
DP outperforms algorithm ENUM if the numberof distinct ¢ = 2, 1 = 3 and us = 5, algorithms ENUM and DP
interpoint distances is within0% of the total number +1 were run on 100 instances for everye {100, 150, 200, 250}.
of interpoint distances. Moreover, algorithm DP was run on 100 instances for ev-
Our second set of experiments was performed using reay n € {2000, 4000, 6000, 8000, 10000, 12000}. Algorithm
data about DNA chains taken from the nucleotide databalSBlUM was not used for these valuesofdue to the excess
GenBank, see [14]. Given a sequence of nucleotides (an erafythe 20 Gb memory limit. Corresponding values of average
in GenBank) and a restriction enzyme, the multisdtand running times of the algorithms, standard deviation from the
B were determined as if we performed an ideal biochemicaVerage running time and the maximum number of solutions
experiment. Table Il presents the results of our second setaoé given in Table 111
experiments. Denote byf(n) the average running time of algorithm DP as
Table Il does not contain information about earlier techa function ofn in the third set of experiments. From Table |,
niques because for the Partial Digest Problem (PDP) no expee observe that fon = 1000, f(2n) < 225f(n), f(3n) <
imental results over real data were reported in the literature a3l f(n), f(4n) < 425 f(n), f(5n) < 525f(n) and f(6n) <
for SPDP only a few such results were reported in [2] with?*® f(n). If we assumef(n) < Cn?5 for n = 2000 and some
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TABLE Il
RUNNING TIME COMPARISON OFENUM AND DP. RANDOM DATA, ¢ = 2,
u1 = 3 AND u2 = 5.

distancesq. In this experiment, we cut 43 DNA molecules

containing 2,000-200,000 base pairs by 168 enzymes. To
reduce search time, we selected only those distinct pairs (DNA
molecule,restriction enzyme), which gave instances of SPDP

n Running time, sec Max.number
ENUM DP of solutions | With n < 300. As a result, we obtained 3710 distinct com-

lAverage [Std deviation |Average |Std deviation binations (DNA molecule,restriction enzyme). Among them,
100 | 0016 0.019 ~00L| <oo01 28 the average value of was equal td), 935n and the standard
150 | 0.093 0.093 <00l | <o001 oIl deviation from the average value was equal0t®34n. We
200 | 6.39 241 0.05 0.19 518 also conducted computer experiments with the same 3710 real
250 | 331 84.3 0.26 0.98 520 instances of SPDP to establish the number of non-congruent
2000 | — _ 138 0.23 _ solutions. It was equal to 1, 2 and 4 for 3641, 64 and
4000 | — _ 7 0.87 _ 5 instances, respectively, and it was never equal to 3 or
6000 | - - 195 2.07 - exceeded 4.
8000 | — _ 423 117 _ Notice that any solution from the set of non-congruent
10000 | — _ 752 5.67 _ solutions can correspond to the original DNA and, within
12000 | - _ 120 8.35 _ the considered model, there is no instrument to determine

closeness of a given solution to the original DNA. If the
problem is to verify whether the map of the target DNA is
constantC, then the behavior of the functiofi(n) for n € present in a database, every non-congruent solution can be
{4000, 6000, 8000, 10000)} is in accordance with the abovePresented for the verification and the results can be analyzed

inequality. Notice that the theoretical upper boundfan) is Y @n expert. _ _
O(n?) in this case. The number of non-congruent solutions of SPDP is an

Our fourth set of experiments was performed over the sariiaportant characteristic of the simplified partial digest method,
random data as proposed in [2] and [26]. Algorithms ENUNhich shows whether the map of the original DNA can be
and DP were run on 100 instances for different values Hpiduely determined by solving the corresponding instance of
n. We compared running times of the algorithms ENUMSPDP. If there is more than one solution, it is an indication
DP, Pyramid-PDP [26] and First-SPDP [2] for eagh see that the used enzyme provides fragment lengths that can be
Table IV. The left value of the given time interval denotes the®mbined to form several distinct DNA maps. In this case,
shortest running time and the right value denotes the long@80ther enzyme can be used to identify the target DNA through
running time. We performed additional tests for= 30 and S°lving SPDP.

n = 100 to demonstrate that ENUM and DP perform well for

larger instances. B. Data with measurement errors
TABLE IV In the first set of experiments for the case of measurement
RUNNING TIME COMPARISON OFPYRAMID -PDP, ARsST-SPDP, ENUM  errors we used real data obtained after cutting bacteriophage
AND DP. RANDOM DATA FROM [2] AND [26]. A with enzyme Hindlll, see [20]. The ideal biochemi-
cal experiment providech = 7 restriction sites, multiset
n Running time, msec B = {23130,2027,2322,9416, 564, 125, 6557, 4361} with
Pyramid-PDP| First-SPDP| ENUM | DP interpoint distances listed from left end to right end of the
10 20-30 0.14-0.15 | 0-0.10 | 0-1.1 molecule and corresponding multisgt To simulate mea-
12 20-60 0.17-0.2 | 0-0.10 | 0-1.3 surement errors we used the same simulation method that
14 30-50 0.24-0.6 | 0-0.15 | 0-1.9 was used to obtain imprecise input data for the algorithm
16 30-60 0.31-0.39 | 0-0.18 | 0-2.9 Pyramid-PDP [26]. That is, we replaced every distahaethe
18 50-80 0.47-0.52 | 0-0.21 | 0-2.4 multisetsA and B by a random integer number in the interval
20 50-80 0.48-0.72 | 0-0.24 | 0-5.1 [d(1 —r),d(1+7)], wherer is a given relative measurement
30 - - 0-1.00 | 0-20 error. The obtained multiset$’ and B’ were used as an input
100 - - 0-2.50 | 0-40 for the algorithm Interval-ENUM. The corresponding running

times of the algorithms and the maximum number of solutions

Our experiments demonstrated that algorithms ENUM aridund are given in Table V.
DP are able to solve instances of SPDP with hundreds ofRecall that algorithm Interval-ENUM finds orgZ, p*)-
restriction sites in less than one second on a standard R@proximate solution for each* € P*. The total number
Algorithm DP outperformed algorithm ENUM on randomof such approximate solutions can be huge (a product of the
data if ¢ < 0.1n. Based on the results of the experimentdengths of some intervals of integer points), although many of
the average running time of algorithm DP is expected to ltkem will be close to one another. It appears that Algorithm
O(n'2°9), while its theoretical worst-case running time iPyramid-PDP can find several approximate solutions for the
O(n?9). same p* € P*. This observation explains the fact that

We analyzed real data from the nucleotide database Gaitgorithm Pyramid-PDP sometimes finds more solutions than
Bank [14] with regard to the number of distinct interpoinbur algorithm Interval-ENUM.
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TABLE V
EXPERIMENTS WITH IMPRECISE DATA FOR BACTERIOPHAGE\ AND
ENZYME Hindlll, n = 7.

E presented arO(n2™) time enumerative algorithm
and anO(n2?) time dynamic programming algorithm
for the error-free case of the Simplified Partial Digest Problem

Relativd Running time, msec Max.number of solutions |  (SPDP), wheren is the number of sites anglis the number
errorr |Pyramid-PDP |Interval-ENUM |Pyramid-PDP Interval-ENum | Of distinct interpoint distances. The algorithms are based on
0 40 0.16 1 1 the established combinatorial properties of the problem. We
0.005 70 0.88 3 3 gave examples of the problem with interpoint distances 1
001 100 03 2 2 a[]gzZ and all interpoint distances distinct, in which there are
0.015 970 0.3 4 2 275 —! non-congruent solutions. The enumerative algorithm
0.02 3320 051 8 6 was adapted to handle the problem with imprecise input data
0.025 9120 0.53 8 6 by providing a set of solutions, which contains a solution
0.03 97370 054 16 6 with a linear structure that is close to the original DNA.
0.04 Z 55 _ 7 Computer experiments with our algorithms demonstrated that
0.05 _ 218 _ 1 they outperform earlier algorithms (for recovering DNA linear
0.06 Z 1163 _ o1 structure) in the running time while providing the same quality

of the solution.
Further research on SPDP can be undertaken to adapt our

Our final set of experiments was performed over randofiyna@mic programming algorithm for finding an approximate
data. Firstly, an instance of the error-free SPDP was corlution of the error-free problem and the problem with mea-
structed. MultisetsA and B for this instance were generateosure_me”t errors. It is also |_nterest|ng to establish a theoretical
according to the probabilistic model in [26]. Perturbed datglationship between the input parameters of the error-free
(with measurement errors) was obtained as in the first ssgPP and the number of its non-congruent solutions. In the
of experiments presented in this subsection. Table VI sho@§neral area of the restriction site analysis, an important open
the running times of algorithms Pyramid-PDP on five randofjiestion is the computation complexity of the error-free Partial
instances and Interval-SPDP on 100 random instances Rjgest Problem (PDP).
various combinations ofi andr, 10 < n < 20 and0 <
r < 0.02. The left value of the given time interval denotes the ACKNOWLEDGMENT
shor'Fest _running time and the _right value denotes the Ior_1gestl_hiS work was supported by BIOPTRAIN EU grant, EPSRC
w;sn':gt“Crgﬁhgz"i"r??htgsecgige':rfﬂisthe number of solutions " 5Rr/S64530/01, KBN grant 3T11F00227 and INTAS

' grant 03-51-5501.
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