
Algorithmic Topics in Bioinformatics:

The Partial Digest Problem

(Paper for CSE 202: Prof. Russell Impagliazzo)

Dustin Boswell (dboswell [at] cs ucsd edu)

January 6, 2004

1 Introduction

One of the interesting tasks in Computational Biology is Restriction Site
Mapping. A DNA strand can be thought of as a string on the letters
{A,T,G,C}. When a particular restriction enzyme is added to a DNA solu-
tion, the DNA is cut at particular restriction sites. For example, the enzyme
EcoRI cuts at every location of the pattern GAATTC. The goal of Restric-
tion Site Mapping is to determine the locations of every site for a given
enzyme.

Unfortunately, the DNA string cannot be explicitly observed. Instead,
there are various biochemical techniques that allow us to obtain indirect in-
formation about where the restriction sites could be. For example, gel elec-
trophoresis is a technique by which the DNA fragments are moved through
an electric field. Since the smaller a fragment is, the faster it will move, its
length can be inferred from how far it traveled in the field. And the fragment
length tells us the distance between some pair of restriction sites. Given the
fragment lengths, it is then an algorithmic task to compute the locations
of all restriction sites. While this typically doesn’t need to be done in real-
time, we would like an algorithm that scales well with the DNA length, and
with the number of fragments.

For the Partial Digest Approach, a batch of DNA is exposed to an
enzyme in limited quantity, so not every site is actually cut. The resul-
tant batch contains fragments of all possible lengths between sites. Let
X = {x1..xn} be the set of restriction site locations on a DNA strand. Then
∆X = {xi−xj : 1 ≤ j < i ≤ n} is the (multi)set of all

(n
2

)
distances between

sites produced by this approach.

Partial Digest Problem (PDP) Given the (multi)set ∆X, compute a
set X which could have produced ∆X.

For example, given ∆X = {1, 5, 6, 7, 11, 12}, X = {0, 1, 7, 12} is a correct
answer. So is Y = {0, 5, 11, 12}. (Without loss of generality, we require that
the first element be 0.) In this example, there are only 2 possible answers,
and they happen to be mirror images of each other. In general, however,
there can be many possible X for a given ∆X. If X and Y are such that
∆X = ∆Y , X and Y are homeometric sets. Let H(n) denote the maximum
number of mutually homeometric sets (of size n) for a given ∆X. [skie90]
show that

i) for infinitely many n, H(n) > 1
2n0.810, for some ∆X

1

ii) for all n, H(n) < 1
2n1.233

iii) H(n) = 2k for some k, or else H(n) = 0.

As it turns out, typical problem instances have only 1 solution.

2 Solving PDP via polynomial factoring

[lemk88] showed how to convert an instance of PDP to one of factoring a
polynomial constructed from ∆X. They use the method of given by [rose82]
and show that the whole process can be done in pseudo-polynomial time.
(It is polynomial in max(∆X). We would prefer that the algorithm be
polynomial only in n, and independent of the value of the elements in the
set.)

The method constructs a polynomial whose exponents are the elements
of ∆X. One drawback, is that this method only works on inputs with integer
values. Interestingly, [lemk88] showed that an arbitrary instance of PDP can
be converted to an equivalent integer instance of PDP in polynomial time.
Unfortunately, the resulting instance has values that are exponentially large.

3 A Backtracking Algorithm

Skiena et al. created a backtracking algorithm to solve this problem that
does not depend on the values of ∆X, but only on n. We present it here.

The partial digest problem can be viewed as the task of selecting n− 1
of the

(n
2

)
inputs to constitute the “base lengths” (distances between con-

secutive xi). Let us consider the more general sub-problem: given a set L of
“unaccounted lengths” and a partial set of locations X ′, complete the rest
of X ′ such that all elements in L are “accounted for”. (An element li ∈ L
is accounted for if there is an assigned pair (xi, xj) such that |xi − xj | = li.)
Our original problem is just the special case where L = ∆X −{max(∆X)},
and X ′ = {0,max(∆X)} (where we start the algorithm off by assigning the
maximum distance width = max(∆X) to the locations (0, width).

We can break down this problem into a series of decisions “Where do
we place the largest element lmax of L?”. When we “place” a piece li, we
are assigning two locations (xi, xj) such that |xi − xj | = li. (xj is chosen
from X ′, xi is not yet in X ′.) As the algorithm recurses on subproblems,
every element in L will have been assigned a unique pair (xi, xj). The set
X ′ contains all the locations {xi} as they are assigned. Notice that when
a new location xi is added to X ′, the distances from each location xj ∈ X ′

2

to xi must account for some element in L. That is, if X ′ currently has m
elements, adding a m + 1 element must account for m elements in L (and
those elements are then removed from L). If adding some element xi to X ′

would create a (multi)set of lengths that is not a subset of the (multi)set L,
then xi is a an invalid choice. To reiterate, we require that adding an element
xi must be “consistent” in that it only creates new “not yet accounted for”
lengths that are in L.

We would like that the number of choices for our decision of where to
place lmax be small. In fact there are only two choices:

Lemma 1 The only possible assignments for lmax are (xj = 0 , xi = lmax)
or (xi = width− lmax , xj = width).

Proof. If (0 < xa , xb < width) were an assignment such that xb − xa =
lmax, this would imply that either (0 , xb) or (xa , width) was a new length
l′ > lmax, which contradicts lmax being maximal. Thus, for each subproblem
we have to make the choice of whether to add lmax or width− lmax to X ′.

Using this, we give the following algorithm (pseudo-code adapted from
[pevz00]):

3

set X = ∅;

set PartialDigest(list L)
width = DeleteMax(L);
X = {0, width};
if Place(L) return X;
else return ‘‘invalid input’’;

bool Place(list L)
if L = ∅ return TRUE;

lmax=DeleteMax(L);

if ∆(lmax, X) ⊆ L //if placing on the left is consistent

X = {lmax} ∪ X; //then try this choice

if Place(L - ∆(lmax, X)) //if subprob is feasible, so is this

return TRUE;
else X = X - {lmax}; //otherwise backtrack

if ∆(width - lmax, X) ⊆ L //if placing on the right is consistent

X = {width - lmax} ∪ X; //then try that choice

if Place(L - ∆(width - lmax, X)) //check if feasible

return TRUE;
else X = X - {width - lmax}; //otherwise backtrack

return FALSE; //if neither choice worked, we’re infeasible

In this code, Place() returns a boolean indicating whether the subprob-
lem was feasible, and if so adds the necessary elements to X. ∆(lmax, X)
returns the (multi)set {|lmax − xi| : xi ∈ X}.

Lemma 2 (Correctness) If L is valid, PartialDigest() returns a X such that
∆X = L.

∆X ⊆ L: Suppose ∆X ⊃ L so that d ∈ ∆X and d /∈ L, where d = |xi − xj |.
That would mean at some point in the procedure, xi was added to
X. But the algorithm specifically checks that when an element xi is
added, that all new distances (specifically |xi − xj |) are in L, which
contradicts d not being in L.

4

L ⊆ ∆X: Suppose L ⊃ ∆X so that l ∈ L and l /∈ ∆X. The algorithm only
removes elements from L when they are accounted for. And Place()
only terminates if L = ∅, hence l would have been accounted for, or
else Place() would not have terminated.

Since Place() only recurses on smaller sub-problems, we know Place()
eventually halts. And since Place() (potentially) tries both choices for where
to place lmax, we know it (potentially) considers all possible subproblems.

Lemma 3 (Recursion depth) Place() recurses at most n levels.

At the first call |X| = 2. Since each recursion adds one element to X,
when making the ith call, |X| = i + 1. By definition the final X contains n
elements. Thus when making call n− 1 we already have the correct size of
X. Moreover, the depth is bounded by n at all times. Consider the size of
L, which is initially

(n
2

)
-1. At the ith call (starting at i = 1), X is of size

i + 1. And adding the i + 2th element (recall from before) in turn removes
i + 1 elements from L (those that become accounted for). The following
relation describes this bound on the depth based on the cumutalive number
of elements removed from L:(

n

2

)
− 1 −

depth−1∑
i=1

(i + 1) =

(
n

2

)
−

depth∑
i=0

(i) ≥ 0

n · (n− 1)
2

− (depth− 1) · depth

2
≥ 0

depth ≤ n

Lemma 4 (Worst-case runtime) The algorithm is O(2nnlg(n)).

The recursion is a tree of depth ≤ n, and of degree ≤ 2, so there are at
most O(2n) calls to Place(). Each call requires computing the new distances
implied by lmax (performing ∆(lmax, X)) which takes O(n), and then for
each new distance, performing a binary search on the sorted list L to see if
that element is there (L is of size ≤

(n
2

)
, and lg

(n
2

)
= O(lg(n))). From this

we get O(2nnlg(n)). The fact that the algorithm ever achieves this bound
was shown by [zhan94], who constructed exotic and complicated inputs for
which this algorithm takes exponential time.

[skie90], however also claims the following:

Lemma 5 (Expected runtime) The algorithm runs in O(n2lg(n)) on “aver-
age”.

5

If the n points of X were chosen as random points on the real interval
[0, width] (in so-called “general position”), the elements in ∆X will be
unique. Furthermore, on a given decision about where to place lmax, the
probability that the “wrong” choice for lmax is consistent with L will be 0
(since random real intervals will typically not line up). This means that the
recursion only proceeds when it is correct, and hence the recursion tree is
only a line of length n, which gives O(n · nlg(n)).

I personally think this analysis isn’t very useful. [skie90] in fact shows
that when X is constructed randomly as a set of integers that are “near
each other”, the number of calls to Place() greatly exceeds n.

Also, I claim that their implementation of performing binary searches
to check for consistency is not optimal. They assume L is sorted, and that
checking if O(n) elements are in L takes O(n · lg(n)). I claim that it can
be done in O(n). Notice that if we maintained X in sorted order, then the
(multi)set ∆(lmax, X) can be generated in sorted order as well. (To do this
we maintain two pointers xl and xr initially set to xl = 1, xr = n, and work
inwards, always outputting the larger of (lmax −X[xl]) and (X[xr]− lmax),
until xl and xr meet.) Then, checking if ∆(lmax, X) ⊆ L can be done in
linear time using a “merge check” method. And maintaining X in sorted
order can be done in linear time since we only add one element on a given
call to Place(). Thus, any appearance of “nlg(n)” in their runtime analysis
can be replaced with just “n”.

4 Poly-time solvable instances

[dani00] shows that PDP can be viewed as a quadratic program. In this
context they show that certain classes of inputs are poly-time solvable. For
example, the cases given by [zhan94] which take exponential time for the
backtracking algorithm, are poly-solvable with their method. Also the class
of inputs for which the following hold:

- the solution X is unique

- the multiset ∆X has no repeats

- the backtracking algorithm on this input would never backtrack more
than a constant number of times in a row.

is shown to be poly-solvable by their method as well.

6

5 Noisy versions of the Problem are NP-Hard

In the biology lab, the partial digest approach introduces three sources of
noise to the problem:

i) measurement error - in practice, the elements in ∆X can be observed
with 0.1% error at best.

ii) additions - as restriction enzymes are not perfect, and stray DNA
can contaminate the specimen, extraneous elements in ∆X may be
present.

iii) deletions - it is difficult to expose the DNA for the precise amount of
time that all distance pairs arise in the partial digest ∆X, so elements
of ∆X may be missing.

To handle the first and third problem, [skie94] extend their backtrack-
ing algorithm to handle distance “intervals” which they show can handle
measurement errors up to O(1/n2). While their algorithm works well in
practice, [ciel02] has shown that variations of the PDP problem reflecting
the second and third scenarios are NP-hard. For example, consider:

Min Partial Digest Superset (MPDS) Given a (multi)set L (|L| = m),
find the minimum n∗ such that |X| = n∗ and L ⊆ ∆X.

This reflects the third scenario where L was missing elements to begin with,
and we are looking for the smallest answer X that accounts for all of the
input L. In the case of no omissions, |L| = m =

(n
2

)
and n∗ = n. Other-

wise, m =
(n∗

2

)
−#ommisions. Notice that a trivial solution that satisfies

L ⊆ ∆Xtriv is
Xtriv = {x0 = 0 , xi = xi−1 + li},

which just constructs the consecutive distances between elements in Xtriv

to be equal to the elements in L. Thus, a trivial bound is n∗ ≤ m + 1.

Theorem 1 MPDS is NP-hard.

We follow the proof of [ciel02] which reduces Equal Sum Subsets (which
is NP-Complete; see [woeg92]) to MPDS.

Equal Sum Subsets (ESS) Given a set1 of m numbers L, are there two
1multi-sets are disallowed since if an element appears twice, the problem is trivially

solved.

7

disjoint, non-empty sets A,B such that sum(A) = sum(B)?

ESS is just a variant of Partition where elements can be removed.

Lemma 6 There is a solution (A,B) to ESS instance L if and only if the
minimum n∗ to MPDS instance L is n∗ ≤ m.

(A,B) ⇒ n∗ ≤ m: W.l.o.g., we can reorder L so that A = (l1, . . . , lr) and B = (lr+1, . . . , ls),
with 1 ≤ r < s ≤ m. We construct an X to solve MPDS as follows.
In the same way we created Xtriv we “lay down” the elements of A
starting at 0:

XA = {xA
0 = 0 , xA

i = xA
i−1 + li} for 1 ≤ i ≤ r

then we also lay down the elements of B on top of A, also starting at
0:

XB = {xB
0 = 0 , xB

i = xB
i−1 + li+r} for 1 ≤ i ≤ s− r

Lastly, we lay down the “leftovers” of L− (A ∪B).

XC = {xC
0 = 0 , xC

i = xC
i−1 + li+s} for 1 ≤ i ≤ m− s

We then let X = XA ∪XB ∪XC . It is clear that ∆X ⊇ L since each
distance is explicitly constructed in X. And by construction, we also
know that |X| ≤ |XA| + |XB| + |XC | − 2 = (r + 1) + (s − r + 1) +
(m − s + 1) − 2 = m + 3 − 2 = m + 1 (the “-2” is so we don’t count
the 2 duplicate 0’s in X. But now we observe that |X| is in fact ≤ m:
recall that since sum(A) = sum(B), XA and XB will “line up” at the
end. That is, max(XA) = max(XB), which means there is at least
one other redundant element in constructing X, and hence the actual
number of elements in the set X is at least 1 smaller than m + 1.

(A,B) ⇐ n∗ ≤ m: Let X = (x1, . . . , xn∗) be an optimal solution for MPDS such that
n∗ ≤ m. Since L ⊆ ∆X we know for each li ∈ L there is an associated
pair (xi, xj) such that li = |xi − xj |. We now define the graph G =
(V,E) with V = X and E = {(xi, xj) : (xi, xj) is associated with some
li }. The cardinalities are simply |V | = n∗ and |E| = |L| = m. Since
we are given that m ≥ n∗ it must be the case that G has a cycle. Call
the cycle C = c1 . . . cs. where ci is the value of a corresponding vertex
xj . We can partition C into I+ ∪ I− such that

I+ = {i ∈ [1, s] | ci+1 > ci }
I− = {i ∈ [1, s] | ci+1 < ci }

8

Using the convention cs+1 = c1, we can describe the closed cycle by:

0 =
∑

i

(ci+1 − ci)

=
∑
i∈I+

(ci+1 − ci) +
∑
i∈I−

(ci+1 − ci)

=
∑
i∈I+

|ci+1 − ci| −
∑
i∈I−

|ci+1 − ci|

=
∑
i∈I+

ai −
∑
i∈I−

bi

where the sets A = {ai = |ci+1 − ci| : i ∈ I+}, and B = {bi =
|ci+1 − ci| : i ∈ I−} are a solution to ESS since they have equal sums.

And we claim without proof that these reductions can be done in
polynomial time, which completes the reduction.

6 Conclusion

The complexity of the original Partial Digest Problem is still unknown.
While there is a pseudo-polynomial time algorithm, and a backtracking al-
gorithm that runs in expected poly-time on “random” instances, no-one has
found a true poly-time algorithm. At the same time, [skie90] considers it
highly unlikely that the problem is NP-hard.

At this point, finding a poly-time algorithm is more of theoretical interest
than a practical one. There are 3 main reasons why. First, a biological
application will always present a noisy version of the input. Second, the
extended version of the backtracking algorithm presented here (one that
can handle noise) seems to work well on real-life instances of the problem
despite lacking a tight worst-case bound. And the third reason is that the
partial digest approach is becoming less popular as other cheaper biological
techniques arise for sequencing DNA.

9

7 References (main papers in bold)

[ciel02] M. Cieliebak, S. Eidenbenz, P. Penna: Noisy Data Make
the Partial Digest Problem NP-hard, Technical Report no. 381,
ETH Zurich, Department of Computer Science, 2002.

[daki00] T. Dakic: On the Turnpike problem, PhD thesis, Simon Fraser
University, 2000.

[lemk88] P. Lemke, M. Werman: On the complexity of inverting the auto-
correlation function of a finite integer sequence, and the problem of locating
n points on a line, given the

(n
2

)
unlabelled distances between them, Preprint

453, Institute for Mathematics and its Application IMA, 1988.

[pevz00] P. Pevzner: Computational Molecular Biology: An Algorithmic Ap-
proach, MIT Press, 2000.

[rose82] J. Rosenblatt, P. Seymour: The Structure of Homometric Sets,
SIAM Journal on Algebra and Discrete Methods 3 (pages 343-350), 1982.

[skie90] S. Skiena, W. Smith, P. Lemke: Reconstructing sets from
interpoint distances, Sixth AM Symposium on Computational Ge-
ometry, pages 332-339, 1990.

[skie94] S. Skiena, G. Sundaram: A Partial Digest Approach to Restric-
tion Site Mapping, Bulletin of Mathematical Biology, 56:275-294, 1994.

[woeg92] G. Woeginger, Z. Yu: On the equal-subset-sum problem, Infor-
mation Processing Letters, 42:299-302, 1992.

[zhan94] Z. Zhang: An Exponential Example for a Partial Digest Mapping
Algorithm, Journal of Computational Biology, 1(3):235-239, 1994.

10

