

Local Alignment	
Next problem: optimal local alignment	
 look for similar substrings of s and t 	
 formally: given s[1m], t[1n], find i, j, k, I such that the score of aligning s[ij] and t[kl] is maximal 	
The solution: Smith-Waterman algorithm	
the idea: the same procedure as before but allow fresh starts	
in other words: allow a new alignment instead of extending an old one	
More specifically, the scoring matrix is now:	
$F(i,j) = \max \begin{cases} 0\\F(i-1,j-1) + c(s_i,t_j)\\F(i-1,j) + c(s_i,-)\\F(i,j-1) + c(-,t_j) \end{cases}$	
$F(0,0) = 0, \ F(i,0) = \max(0, F(i-1,0) + c(s[i],-)), \ F(0,i) = \max(0, F(0,i-1) + c(-,t[i]))$	

• The scoring matrix: $F(i,j) = \max \begin{cases} 0 \\ F(i-1,j-1) + c(s_i,t_j) \\ F(i-1,j) + c(s_i,-) \\ F(i,j-1) + c(-,t_j) \end{cases}$ • Taking the option 0 above corresponds to starting a new alignment • the reasoning: if the best alignment at some point has a negative value, it is better to start anew then to try to extend • fine print: expected score for a random match must be negative • this affects the choice of match/mismatch/indel scoring scheme • Unlike the global alignment, we do not necessarily take the value in the bottom right corner as the best score • instead, start with the highest value in F and backtrack until hitting 0

Illustration of Overlap Alignment												
			н	E	A	G	A	W	G	н	Е	Е
s = PAWHEAE t = HEAGAWGHEE		0	0	0	0	0	0	0	0	0	0	0
Scoring scheme : Match: +4 Mismatch: -1 Indel: -5	Ρ	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	A	0	-1									
	W	0	-1									
	H	0	4									
	Е	0	-1									
	A	0	-1									
	Е	0	-1									
												14

Illustration of Overlap Alignment												
			H	E	A	G	A	W	G	н	Е	E
s = PAWHEAE t = HEAGAWGHEE		0	0	0	0	0	0	0	0	0	0	0
	P	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
Match: +4 2	A	0	-1	-2	3	-2	3	-2	-2	-2	-2	-2
Mismatch: -1 Indel: -5	T	0	-1	-2	-2	2	-2	7	2	-3	-3	-1
	I	0	4	-1	-3	-3	1	2	6	6	1	-2
I	Z	0	-1	8	3	-2	-3	0	1	5	10	5
2	A	0	-1	3	12	7	2	-2	-1	0	5	9
I	2	0	-1	3	7	(11) 6	1	-3	-2	4	9
						\bigcirc						15

Test for Alignment

· The ratio of these two likelihoods is the odds ratio:

$$Q = \frac{P(s,t|M)}{P(s,t|R)} = \frac{\prod_i p(s_i,t_i)}{\prod_i q(s_i)q(t_i)} = \prod_i \frac{p(s_i,t_i)}{q(s_i)q(t_i)}$$

- Q > 1 implies that s and t are more likely to be related than unrelated
- Q < 1 implies that s and t are more likely to be unrelated than related
- · The log-odds ratio:

$$S = \log Q = \sum_{i} \log \frac{p(s_i, t_i)}{q(s_i)q(t_i)}$$

- S > 0 implies that s and t are more likely to be related than unrelated
- S < 0 implies that s and t are more likely to be unrelated than related

27

Probabilistic Interpretation of Scores

· The log-odds ratio:

$$S = \log Q = \sum_{i} \log \frac{p(s_i, t_i)}{q(s_i)q(t_i)}$$

- S > 0 implies that s and t are more likely to be related than unrelated
- S < 0 implies that s and t are more likely to be unrelated than related
- Define the scoring function as

$$c(s_i, t_i) = \log \frac{p(s_i, t_i)}{q(s_i)q(t_i)}$$

- With this definition, $S = \sum_{i} c(s_i, t_i)$
- So, the score of an alignment is the log-likelihood ratio between the two models
 - scores often presented in a matrix, e.g., BLOSUM50 for amino acids

Estimating Probabilities

- . How do we come up with probabilities that describe the models R & M?
 - · basic counting/estimation
- Assume we have a long sequence s, and want to estimate $q(s_i)$
 - · simply count the frequency of the letters from the alphabet
 - for instance, if a letter "a" occurs N_a times in the sequence of length n, then

$$q(a) = \frac{N_a}{n}$$

Similarly, if we want to estimate p(s_i,t_i), use an aligned pair of sequences s and t ("training" sequence alignment), and estimate the probability of pairs (a,b) as

$$p(a,b) = \frac{N_{a,b}}{n}$$

where $N_{a,b}$ is the number times a is aligned with b in (s,t).

· the choice of "training" sequence alignment depends upon application

