
1 

EE381V: Genomic Signal Processing 
 
 
 

Lecture #5 

2 

Last Lecture: Alignment Problems 
There are four basic alignment problems: 

1.  Global alignment 

•  Basic global similarity. Essential when designing certain biosensors. 

2.  Local alignment 

•  Biologically often far more meaningful than global similarity – especially  
when long stretches of non-coding DNA are compared, since only small 
regions within those strings may be related. Likewise for proteins. 

3.  Ends-free (overlap) alignment 

•  Useful in the shotgun sequence assembly procedure. Here, a large set 
of partially overlapping substrings that come from many copies of one 
original but unknown DNA sequences. Suffix/prefix detection essential. 

4.  Alignment with a gap penalty function 

•  Useful when, e.g., comparing mRNA against the genome to reveal 
exons (since this alignment allows special treatment of long gaps) 



2 

A G C 

0 1 2 3 

0 0 -2 -4 -6 

A 1 -2 1 -1 -3 

A 2 -4 -1 0 -2 

A 3 -6 -3 -2 -1 

C 4 -8 -5 -4 -1 

t 
s 

3 

Global Alignment: Needleman-Wunsch Algorithm 

•  Let F(i,j) denote the score of the best alignment of s[1…i] and t[1…j] 

•  Recursively compute F(i,j) and fill the matrix 

•  The best alignment score of AAAC and AGC is, therefore, -1 

F(i-1,j-1) F(i-1,j) 

F(i,j-1) F(i,j) 

match=+1 

mismatch=-1 

gap=-2. 

4 

Complexity and Storage Requirements 

•  The amount of computations required: 
•  3 summations and a max-operation per matrix entry 
•  total of m x n entries need to be computed 

•  Therefore, the complexity is O(mn) 

•  So is the storage requirement 
•  need to store matrix entries to be able to backtrack 

•  If only the score is needed, can do with less storage 

•  compute F, say, column-by-column -- need to store only the last two 
columns 

•  however, cannot backtrack and find the optimal alignment itself 

•  There are techniques which trade complexity vs. storage 
•  there are also efficient heuristic techniques – more on these later 



3 

•  Local pairwise alignment 

•  Ends-free (overlap) alignment 

•  Affine gap score function 

•  Choice of the scoring rules 

–  a probabilistic model 

•  Pairwise alignment in practice 

•  Multiple sequence alignment 

5 

Today 

6 

Local Alignment 
•  Next problem: optimal local alignment 

•  look for similar substrings of s and t 

•  formally: given s[1…m], t[1…n], find i, j, k, l such that the score of 
aligning s[i…j] and t[k…l] is maximal 

•  The solution: Smith-Waterman algorithm 

•  the idea: the same procedure as before but allow fresh starts 

•  in other words: allow a new alignment instead of extending an old one 

•  More specifically, the scoring matrix is now: 



4 

7 

Local Alignment 

•  The scoring matrix: 

•  Taking the option 0 above corresponds to starting a new alignment 

•  the reasoning: if the best alignment at some point has a negative value, it 
is better to start anew then to try to extend 

•  fine print: expected score for a random match must be negative 

•  this affects the choice of match/mismatch/indel scoring scheme 

•  Unlike the global alignment, we do not necessarily take the value in the 
bottom right corner as the best score 

•  instead, start with the highest value in F and backtrack until hitting 0 

8 

Smith-Waterman: Example 
•  Let us use the same scoring as before: match=+1, mismatch=-1, gap=-2. 

•  The sequences: TAATA and TACTAA 

T A C T A A 

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

T 1 0 1 0 0 1 0 0 

A 2 0 0 2 0 0 2 1 

A 3 0 0 1 1 0 1 3 

T 4 0 0 0 0 2 0 1 

A 5 0 0 1 0 0 3 1 

t 
s 



5 

9 

Smith-Waterman: Example 
•  To find the best local alignment, look for the largest entry in the matrix 

•  in this example, the solution is not unique 

T A C T A A 

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

T 1 0 1 0 0 1 0 0 

A 2 0 0 2 0 0 2 1 

A 3 0 0 1 1 0 1 3 

T 4 0 0 0 0 2 0 1 

A 5 0 0 1 0 0 3 1 

t 
s 

TACTAA 
   TAATA  

TACTAA 
TAATA  

•  Local pairwise alignment 

•  Ends-free (overlap) alignment 

•  Affine gap score function 

•  Choice of the scoring rules 

–  a probabilistic model 

•  Pairwise alignment in practice 

•  Multiple sequence alignment 

10 

Roadmap 



6 

Overlap Alignment 

Consider the following problem: 
•  Find the most significant overlap between two sequences. 

•  Possible overlap relations:  a.  
           
     b. 

 
       

 
 

Different from local alignment in that we require alignment between the 
endpoints of the two sequences.  

11 

Formally: given s[1..n]  , t[1..m] find i,j such that 
 d=max{D(s[1..i],t[j..m]) , D(s[i..n],t[1..j]) , D(s[1..n],t[i..j]) , D(s[i..j],t[1..m]) }  
is maximal. 

Solution: Same as Global alignment except no penalizing overhanging ends. 

12 

  

•  Initialization:  F(0,0) = 0, F(i,0) = 0, F(0,j) = 0, for all i,j. 
•  Recursion: as in the global alignment 

 
•   Score: the maximum value at the bottom or the rightmost frame 

–  the best alignment starts from the maximum score cell and ends when it hits the 
top or the leftmost frame 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−

−+−

+−−

=

])[,()1,(
)],[(),1(

])[],[()1,1(
max),(

jtcjiF
iscjiF

jtiscjiF
jiF

global local overlap 

Overlap Alignment 



7 

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 
P  0           
A  0           
W  0           
H  0           
E  0           

A 0           
E  0           

 

 

s = PAWHEAE 
t = HEAGAWGHEE 

Scoring scheme : 
Match: +4 
Mismatch:  -1 
Indel: -5 

 

Illustration of Overlap Alignment 

13 

Still not addressing  
the issue of score  
choice... assume  
these are given 

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 
P  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
A  0 -1          
W  0 -1          
H  0 4          
E  0 -1          

A 0 -1          
E  0 -1          

 

 

s = PAWHEAE 
t = HEAGAWGHEE 

Scoring scheme : 
Match: +4 
Mismatch:  -1 
Indel: -5 

 

Illustration of Overlap Alignment 

14 



8 

s = PAWHEAE 
t  = HEAGAWGHEE 

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 

P  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

A  0 -1 -2 3 -2 3 -2 -2 -2 -2 -2 

W  0 -1 -2 -2 2 -2 7 2 -3 -3 -1 

H  0 4 -1 -3 -3 1 2 6 6 1 -2 

E  0 -1 8 3 -2 -3 0 1 5 10 5 

A 0 -1 3 12 7 2 -2 -1 0 5 9 

E  0 -1 3 7 11 6 1 -3 -2 4 9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Scoring scheme : 
Match: +4 
Mismatch:  -1 
Indel: -5 

 

Illustration of Overlap Alignment 

15 

The best overlap is: 
   PAWHEAE------ 
   ---HEAGAWGHEE 

 
A different scoring scheme could yield a different result. For instance, 
 

 

 

 

 

 

  PAWHEAE------   ---PAW-HEAE 
  ---HEAGAWGHEE   HEAGAWGHEE- 

Illustration of Overlap Alignment 

16 

Scoring scheme : 
Match: +4 
Mismatch:  -1 
Indel: -5 

 

Scoring scheme : 
Match: +4 
Mismatch:  -1 
Indel: -2 

 



9 

•  Local pairwise alignment 

•  Ends-free (overlap) alignment 

•  Affine gap score function 

•  Choice of the scoring rules 

–  a probabilistic model 

•  Pairwise alignment in practice 

•  Multiple sequence alignment 

17 

Roadmap 

•  Observation: insertions and deletions often occur in blocks longer than a 
single nucleotide 
–  stated in probabilistic terms: 

•  The scoring we considered so far assumes constant penalty per gap unit 
–  need to modify constant-penalty scheme to account for the above 

phenomenon 

•  The most general solution: introduce a general (nonlinear) cost function γ(g) 

–  for instance, the global alignment recursion rule would be:   

•  Downside: the look into the past is costly and increases the complexity from 
O(n2) to O(n3) (assuming both sequences are of the length n) 

mlengthofgapPmlengthofgapP )1()( >

Alignment With Affine Gap Scores 

18 



10 

19 

•  Fortunately, affine gap function enables complexity reduction back to O(n2) 
–  we will, however, need more storage space – F(i,j) will not be enough 

•  Penalty score for a gap of length g : 

 
–  d - penalty for introduction of a gap 
–  e - penalty for elongating the gap by one unit 

•  A problem: when aligning the i-th letter in sequence to a gap, we do not 
know how much to penalize 

•  Need to distinguish between opening and extending a gap 

egdg )1()( !!!="

Typically d > e 

Alignment With Affine Gap Scores 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+−

−+−

+−−

=

])[,()1,(
)],[(),1(

])[],[()1,1(
max),(

jtcjiF
iscjiF

jtiscjiF
jiF

d or e ? 

20 

Alignment With Affine Gap Scores 

•  An example: consider three separate situations, 

   IGAxi   AIGAxi  GAxi-- 

   LGVyj   GVyj--  SLGVyj 

•  We will have to compute three matrices simultaneously 
•  M(i,j) - the score obtained by aligning xi to yj 
•  Ix(i,j) - the score obtained by aligning xi to a gap 
•  Iy(i,j) - the score obtained by aligning yj to a gap 



11 

21 

Alignment With Affine Gap Scores 

•  Initialization: depending on the problem (global, local, overlap) 

•  Recursion: uses already known values - M(i’,j’), Ix(i’,j’), Iy(i’,j’) 

We assume that a deletion will not be followed directly by an insertion.  

This can be obtained by using  emismatchscore 2)( −>

)'',','( jijijjii +<+≤≤

A diagram of the relations: 

c 

c 

c 

•  A diagram:  

Alignment With Affine Gap Scores 

22 

c 

c 

c 

•  Two of the equations can be collapsed:  



12 

•  Local pairwise alignment 

•  Ends-free (overlap) alignment 

•  Affine gap score function 

•  Choice of the scoring rules 

–  a probabilistic model 

•  Pairwise alignment in practice 

•  Multiple sequence alignment 

23 

Roadmap 

24 

How to choose scoring rules / interpret scores 

•  Recall our definition of the scoring operation: 

 

•  c(x,y): the score of replacing x by y 

•  c(x,-): the score of deleting x 

•  c(-,x): the score of inserting x 

•  How do we choose a meaningful score? How to interpret a score? 

•  Use a simple probabilistic model which describes similarity of sequences 

•  similarity is probabilistic in nature: mutations, selection, etc. are random 

•  Essential question: how likely is that two sequences are similar 

•  incorporate any side information: for instance, we may know something 
about the mutations on a specific area of a chromosome 

•  distinguish between “similarity for a reason” and “random similarity” 



13 

25 

A Probabilistic Model 

•  Given a pair of aligned sequences, we would like to assign a score to the 
alignment 

•  the score should be a measure of the relative likelihood that the 
sequences are related as opposed to being unrelated 

•  assign probability to each of the two cases (related/unrelated), and find 
the ratio of the two probabilities 

•  For simplicity, assume no indels for the time being 

•  only substitutions 

•  Also, assume that each position in a sequence is independent 

•  can be made more general 

•  Let us consider two models: 

•  R: the random model (sequences are unrelated) 

•  M: the match model (sequences are related) 

26 

A Probabilistic Model 

•  R: the random model (sequences are unrelated) 

•  assume that each position in the two sequences is sampled 

independently from a distribution q( ) over the alphabet 

•  moreover, assume that we know the distribution q( ) is known 

•  then: 

 

•  M: the match model (sequences are related) 

•  assume that aligned pairs occur with join probability p(si,ti ) 
•  we may think about the pair having evolved/derived from a common 

ancestor 

•  then the probability for the whole alignment is 



14 

27 

Test for Alignment 

•  The ratio of these two likelihoods is the odds ratio: 

•  Q > 1 implies that s and t are more likely to be related than unrelated 

•  Q < 1 implies that s and t are more likely to be unrelated than related 

•  The log-odds ratio: 

•  S > 0 implies that s and t are more likely to be related than unrelated 

•  S < 0 implies that s and t are more likely to be unrelated than related 

•  The log-odds ratio: 

•  S > 0 implies that s and t are more likely to be related than unrelated 

•  S < 0 implies that s and t are more likely to be unrelated than related 

•  Define the scoring function as 

•  With this definition, 

•  So, the score of an alignment is the log-likelihood ratio between the two 
models 

•  scores often presented in a matrix, e.g., BLOSUM50 for amino acids 
28 

Probabilistic Interpretation of Scores 



15 

29 

Estimating Probabilities 

•  How do we come up with probabilities that describe the models R & M? 

•  basic counting/estimation 

•  Assume we have a long sequence s, and want to estimate q(si)  

•  simply count the frequency of the letters from the alphabet 

•  for instance, if a letter “a” occurs Na times in the sequence of length n, 
then 

 

•  Similarly, if we want to estimate p(si,ti), use an aligned pair of sequences s 

and t  (“training” sequence alignment), and estimate the probability of pairs 
(a,b) as 

 

 where Na,b is the number times a is aligned with b in (s,t). 

•  the choice of “training” sequence alignment depends upon application 

30 

Estimating Probabilities 

•  The choice of “training” sequence alignment depends upon application 

•  need pairs of sequences which are surely “related” 

•  In DNA/RNA, mutation is possible due to enzyme mistakes 

•  can quantify it experimentally 

•  note: it is known that some errors are more likely than others – e.g., the 
substitutions A/G or C/T (so-called transitions) are more likely than the 

other substitutions (so called transversions) 

•  In proteins, there are families that are known to be related 

•  have a common ancestor 



16 

•  Local pairwise alignment 

•  Ends-free (overlap) alignment 

•  Affine gap score function 

•  Choice of the scoring rules 

–  a probabilistic model 

•  Pairwise alignment in practice 

•  Multiple sequence alignment 

31 

Roadmap 

32 

•  Often we are asked to compare a newly determined sequence (mRNA, 
protein) with another one in a database 

•  This can be rather time consuming 

•  Example: compare a 1000-letters-long protein sequence with the protein 

database that has 108 entries 
•  1011 matrix elements need to be formed 
•  at 10 Mflops, it would take 3 hours 
•  1000 sequences would require 4 months of running time 

•  What to do? 
•  heuristics: computationally very efficient but may miss the true solution 
•  broadly used in practice (FASTA, BLAST) 
•  main observation: optimal alignments often contain long strings with no 

gaps in them – so, let’s look for long matches with no gaps and attempt 
to extend them 

Alignment in Practice 



17 

33 

Alignment in Practice 
•  Suppose that we have two strings of approximately the same length (m and n)  

t 

s 

•  If the optimal alignment of s and t has 
few gaps, then the path of an alignment 
will be close to the diagonal 

•  So, search inside a diagonal band of 
the matrix 

•  If the width of the band is k, the dynamic programming takes O(kn) 

F(i,i+k/2) Out of range 

F(i+1,i+k/2) F(i+1,i+k/2+1) 

34 

Alignment in Practice 

A few details to address: 

•  Where is the banded diagonal?  

•  need not be the main diagonal 

•  Which subsequences to select? 

 

•  Heuristically find potential diagonals and evaluate them 

•  Heuristic sequence searching packages: FASTA, BLAST 

•  FASTA: allows gaps in the alignment; BLAST: primarily ungapped 

t 

s 



18 

35 

FASTA 

•  Uses multistep approach to find local high scoring 

•  start from exact short matches and then attempt to extend them 

Formalizing the algorithm: 
 

•  Input: strings s and t, and a parameter “ktup” 

•  The parameter “ktup” is the length of short exact matches that we will 
look for. It should be long enough to efficiently initiate the alignment, 

but not too long so that the matches are rare 

•  Output: A highly scored local alignment obtained via the following steps 

1.  Find pairs of matching substrings (seeds) 

   s[i…i+ktup] = t[j…j+ktup] 

2.  Extend to ungapped diagonals 

3.  Extend to gapped matched using banded diagonal 

36 

FASTA 

•  Uses multistep approach to find local high scoring 

•  start from exact short matches and then attempt to extend the 

 

•  The seeds are typically short (4-6 for DNA, 2 for proteins) 

•  otherwise, we find fewer potential diagonals 



19 

37 

BLAST 

•  BLAST: Basic Local Alignment Search Tool 

•  Similar idea to FASTA 

•  search for short seeds (typically, length 11 for DNA, 3 for proteins) 

•  attempt to extend them as far as possible in a greedy manner 

•  The search stops when the score passes below some lower bound, 
typically determined in a statistical manner 


