

www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms

Graph Algorithms
in Bioinformatics

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Outline
• Introduction to Graph Theory
• Eulerian & Hamiltonian Cycle Problems
• Benzer Experiment and Interal Graphs
• DNA Sequencing
• The Shortest Superstring & Traveling

Salesman Problems
• Sequencing by Hybridization
• Fragment Assembly and Repeats in DNA
• Fragment Assembly Algorithms

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Bridge Obsession Problem

Bridges of Königsberg

Find a tour crossing every bridge just once
Leonhard Euler, 1735

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Eulerian Cycle Problem
• Find a cycle that

visits every edge
exactly once

• Linear time

More complicated Königsberg

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Hamiltonian Cycle Problem
• Find a cycle that

visits every vertex
exactly once

• NP – complete

Game invented by Sir
William Hamilton in 1857

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Mapping Problems to Graphs
• Arthur Cayley studied

chemical structures
of hydrocarbons in
the mid-1800s

• He used trees
(acyclic connected
graphs) to enumerate
structural isomers

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Beginning of Graph Theory in Biology

Benzer’s work
• Developed deletion

mapping
• “Proved” linearity of

the gene
• Demonstrated

internal structure of
the gene

Seymour Benzer, 1950s

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Viruses Attack Bacteria

• Normally bacteriophage T4 kills bacteria
• However if T4 is mutated (e.g., an important gene is

deleted) it gets disable and looses an ability to kill
bacteria

• Suppose the bacteria is infected with two different
mutants each of which is disabled – would the
bacteria still survive?

• Amazingly, a pair of disable viruses can kill a
bacteria even if each of them is disabled.

• How can it be explained?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Benzer’s Experiment

• Idea: infect bacteria with pairs of mutant T4
bacteriophage (virus)

• Each T4 mutant has an unknown interval
deleted from its genome

• If the two intervals overlap: T4 pair is
missing part of its genome and is disabled –
bacteria survive

• If the two intervals do not overlap: T4 pair
has its entire genome and is enabled –
bacteria die

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Complementation between pairs of
mutant T4 bacteriophages

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Benzer’s Experiment and Graphs

• Construct an interval graph: each T4
mutant is a vertex, place an edge between
mutant pairs where bacteria survived (i.e.,
the deleted intervals in the pair of mutants
overlap)

• Interval graph structure reveals whether DNA
is linear or branched DNA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Comparison

Linear genome Branched genome

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA Sequencing: History
Sanger method (1977):

labeled ddNTPs
terminate DNA
copying at random
points.

Both methods generate
labeled fragments of
varying lengths that are
further electrophoresed.

 Gilbert method (1977):
 chemical method to

cleave DNA at specific
points (G, G+A, T+C, C).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sanger Method: Generating Read

1. Start at primer
(restriction site)

2. Grow DNA chain
3. Include ddNTPs
4. Stops reaction at all

possible points
5. Separate products

by length, using gel
electrophoresis

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA Sequencing
• Shear DNA into

millions of small

fragments

• Read 500 – 700

nucleotides at a

time from the small

fragments (Sanger

method)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fragment Assembly
• Computational Challenge: assemble

individual short fragments (reads) into a
single genomic sequence (“superstring”)

• Until late 1990s the shotgun fragment
assembly of human genome was viewed as
intractable problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shortest Superstring Problem
• Problem: Given a set of strings, find a

shortest string that contains all of them
• Input: Strings s1, s2,…., sn
• Output: A string s that contains all strings
 s1, s2,…., sn as substrings, such that the

length of s is minimized

• Complexity: NP – complete
• Note: this formulation does not take into

account sequencing errors

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shortest Superstring Problem: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP
• Define overlap (si, sj) as the length of the longest prefix of

sj that matches a suffix of si.

 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa

What is overlap (si, sj) for these strings?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP
• Define overlap (si, sj) as the length of the longest prefix of

sj that matches a suffix of si.

 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa

 overlap=12

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP
• Define overlap (si, sj) as the length of the longest prefix of

sj that matches a suffix of si.

 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa

• Construct a graph with n vertices representing the n strings
s1, s2,…., sn.

• Insert edges of length overlap (si, sj) between vertices si
and sj.

• Find the shortest path which visits every vertex exactly
once. This is the Traveling Salesman Problem (TSP),
which is also NP – complete.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP (cont’d)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP to TSP: An Example
S = { ATC, CCA, CAG, TCC, AGT }

 SSP
 AGT

 CCA

 ATC

 ATCCAGT
 TCC
 CAG

 ATCCAGT

TSP ATC

CCA

TC
C

AGT

CAG

2

2 22

1

1

1
0

1
1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sequencing by Hybridization (SBH): History

• 1988: SBH suggested as an
an alternative sequencing
method. Nobody believed it will
ever work

• 1991: Light directed polymer
synthesis developed by Steve
Fodor and colleagues.

• 1994: Affymetrix develops
first 64-kb DNA microarray

First microarray
prototype (1989)

First commercial
DNA microarray
prototype w/16,000
features (1994)

500,000 features
per chip (2002)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How SBH Works
• Attach all possible DNA probes of length l to a

flat surface, each probe at a distinct and known
location. This set of probes is called the DNA
array.

• Apply a solution containing fluorescently labeled
DNA fragment to the array.

• The DNA fragment hybridizes with those probes
that are complementary to substrings of length l
of the fragment.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How SBH Works (cont’d)

• Using a spectroscopic detector, determine
which probes hybridize to the DNA fragment
to obtain the l–mer composition of the target
DNA fragment.

• Apply the combinatorial algorithm (below) to
reconstruct the sequence of the target DNA
fragment from the l – mer composition.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Hybridization on DNA Array

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer composition
• Spectrum (s, l) - unordered multiset of all

possible (n – l + 1) l-mers in a string s of length n
• The order of individual elements in Spectrum (s, l

) does not matter
• For s = TATGGTGC all of the following are

equivalent representations of Spectrum (s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}

 {ATG, GGT, GTG, TAT, TGC, TGG}

 {TGG, TGC, TAT, GTG, GGT, ATG}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer composition
• Spectrum (s, l) - unordered multiset of all

possible (n – l + 1) l-mers in a string s of length n
• The order of individual elements in Spectrum (s, l

) does not matter
• For s = TATGGTGC all of the following are

equivalent representations of Spectrum (s, 3):
 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}
• We usually choose the lexicographically maximal

representation as the canonical one.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Different sequences – the same spectrum

• Different sequences may have the same
spectrum:

 Spectrum(GTATCT,2)=

 Spectrum(GTCTAT,2)=

 {AT, CT, GT, TA, TC}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The SBH Problem
• Goal: Reconstruct a string from its l-mer

composition

• Input: A set S, representing all l-mers from an
(unknown) string s

• Output: String s such that Spectrum (s,l) = S

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

S = { ATG AGG TGC TCC GTC GGT GCA CAG }

 Path visited every VERTEX once

ATG AGG TGC TCCH GTC GGT GCA CAG

ATG CAGGTCC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

A more complicated graph:

 S = { ATG TGG TGC GTG GGC GCA GCG CGT }

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach
 S = { ATG TGG TGC GTG GGC GCA GCG CGT }

Path 1:

 ATGCGTGGCA

ATGGCGTGCA

Path 2:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach
 S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT }

 Vertices correspond to (l – 1) – mers : { AT, TG, GC, GG, GT, CA, CG }

 Edges correspond to l – mers from S

AT

GT C
G

CAGCTG

GG
 Path visited every EDGE once

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach
S = { AT, TG, GC, GG, GT, CA, CG } corresponds to two different

paths:

 ATGGCGTGCA ATGCGTGGCA

AT TG GC
CA

GG

GT C
G

AT

GT C
G

CA
GCTG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Euler Theorem
• A graph is balanced if for every vertex the

number of incoming edges equals to the

number of outgoing edges:

 in(v)=out(v)

• Theorem: A connected graph is Eulerian if

and only if each of its vertices is balanced.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Euler Theorem: Proof
• Eulerian → balanced

 for every edge entering v (incoming edge)

there exists an edge leaving v (outgoing

edge). Therefore

 in(v)=out(v)

• Balanced → Eulerian

 ???

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary
vertex v and form an
arbitrary cycle with unused
edges until a dead end is
reached. Since the graph
is Eulerian this dead end is
necessarily the starting
point, i.e., vertex v.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont’d)

b. If cycle from (a) above is
not an Eulerian cycle, it
must contain a vertex w,
which has untraversed
edges. Perform step (a)
again, using vertex w as
the starting point. Once
again, we will end up in
the starting vertex w.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont’d)

c. Combine the cycles

from (a) and (b) into

a single cycle and

iterate step (b).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Euler Theorem: Extension
• Theorem: A connected graph has an

Eulerian path if and only if it contains at most

two semi-balanced vertices and all other

vertices are balanced.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Some Difficulties with SBH
• Fidelity of Hybridization: difficult to detect

differences between probes hybridized with perfect
matches and 1 or 2 mismatches

• Array Size: Effect of low fidelity can be decreased
with longer l-mers, but array size increases
exponentially in l. Array size is limited with current
technology.

• Practicality: SBH is still impractical. As DNA
microarray technology improves, SBH may become
practical in the future

• Practicality again: Although SBH is still impractical,
it spearheaded expression analysis and SNP
analysis techniques

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Traditional DNA Sequencing

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Known
location
(restriction
site)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Different Types of Vectors
VECTOR Size of insert (bp)

Plasmid 2,000 - 10,000

Cosmid 40,000

BAC (Bacterial Artificial
Chromosome)

70,000 - 300,000

YAC (Yeast Artificial
Chromosome)

> 300,000
Not used much

recently

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Electrophoresis Diagrams

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Challenging to Read Answer

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reading an Electropherogram
• Filtering

• Smoothening

• Correction for length compressions

• A method for calling the nucleotides – PHRED

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

cut many times at
random (Shotgun)

genomic segment

Get one or two
reads from each

segment
~500 bp ~500 bp

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fragment Assembly

Cover region with ~7-fold redundancy
Overlap reads and extend to reconstruct the

original genomic region

reads

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Read Coverage

Length of genomic segment: L

Number of reads: n Coverage C = n l / L
Length of each read: l

How much coverage is enough?

Lander-Waterman model:
Assuming uniform distribution of reads, C=10 results in 1 gapped
region per 1,000,000 nucleotides

C

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Challenges in Fragment Assembly
• Repeats: A major problem for fragment assembly
• > 50% of human genome are repeats:

- over 1 million Alu repeats (about 300 bp)

- about 200,000 LINE repeats (1000 bp and longer)

Repeat Repeat Repeat

Green and blue fragments are interchangeable when
assembling repetitive DNA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Triazzle: A Fun Example

The puzzle looks simple

BUT there are repeats!!!

The repeats make it
very difficult.

Try it – only $7.99 at
www.triazzle.com

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Types
• Low-Complexity DNA (e.g. ATATATATACATA…)

• Microsatellite repeats (a1…ak)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAG)

• Transposons/retrotransposons
• SINE Short Interspersed Nuclear Elements

(e.g., Alu: ~300 bp long, 106 copies)

• LINE Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

• LTR retroposons Long Terminal Repeats (~700 bp) at
each end

• Gene Families genes duplicate & then diverge

• Segmental duplications ~very long, very similar copies

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlap-Layout-Consensus
Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and
 contigs into supercontigs

Consensus: derive the DNA
sequence and correct read errors ..ACGATTACAATAGGTT..

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlap
• Find the best match between the suffix of one

read and the prefix of another

• Due to sequencing errors, need to use
dynamic programming to find the optimal
overlap alignment

• Apply a filtration method to filter out pairs of
fragments that do not share a significantly
long common substring

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlapping Reads

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

• Sort all k-mers in reads (k ~ 24)

• Find pairs of reads sharing a k-mer

• Extend to full alignment – throw away if not
>95% similar

T GA

TAGA
| ||

TACA

TAGT
||

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlapping Reads and Repeats
• A k-mer that appears N times, initiates N2

comparisons

• For an Alu that appears 106 times à 1012
comparisons – too much

• Solution:
Discard all k-mers that appear more than

 t ´ Coverage, (t ~ 10)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Overlapping Reads

Create local multiple alignments from the
overlapping reads

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Layout
• Repeats are a major challenge
• Do two aligned fragments really overlap, or

are they from two copies of a repeat?
• Solution: repeat masking – hide the

repeats!!!
• Masking results in high rate of misassembly

(up to 20%)
• Misassembly means alot more work at the

finishing step

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Merge Reads into Contigs

Merge reads up to potential repeat boundaries

repeat region

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeats, Errors, and Contig Lengths

• Repeats shorter than read length are OK

• Repeats with more base pair differencess
than sequencing error rate are OK

• To make a smaller portion of the genome
appear repetitive, try to:
• Increase read length
• Decrease sequencing error rate

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Link Contigs into Supercontigs

Too dense:
Overcollapsed?

Inconsistent links:
Overcollapsed?

Normal density

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Consensus
• A consensus sequence is derived from a

profile of the assembled fragments

• A sufficient number of reads is required to
ensure a statistically significant consensus

• Reading errors are corrected

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Derive Consensus Sequence

Derive multiple alignment from pairwise read
alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted
voting

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

EULER - A New Approach to
Fragment Assembly

• Traditional “overlap-layout-consensus” technique
has a high rate of mis-assembly

• EULER uses the Eulerian Path approach borrowed
from the SBH problem

• Fragment assembly without repeat masking can be
done in linear time with greater accuracy

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlap Graph: Hamiltonian
Approach

Repeat Repeat Repeat

Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Each vertex represents a read from the original sequence.
Vertices from repeats are connected to many others.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Overlap Graph: Eulerian Approach
Repeat Repeat Repeat

Find a path visiting every EDGE
exactly once:
Eulerian path problem

Placing each repeat edge
together gives a clear
progression of the path
through the entire sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Multiple Repeats
Repeat1 Repeat1Repeat2 Repeat2

Can be easily
constructed with any
number of repeats

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Construction of Repeat Graph
• Construction of repeat graph from k – mers:

emulates an SBH experiment with a huge

(virtual) DNA chip.

• Breaking reads into k – mers: Transform

sequencing data into virtual DNA chip data.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Construction of Repeat Graph (cont’d)

• Error correction in reads: “consensus first”

approach to fragment assembly. Makes

reads (almost) error-free BEFORE the

assembly even starts.

• Using reads and mate-pairs to simplify the

repeat graph (Eulerian Superpath Problem).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approaches to Fragment Assembly
Find a path visiting every VERTEX exactly
once in the OVERLAP graph:

Hamiltonian path problem

NP-complete: algorithms unknown

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approaches to Fragment Assembly
(cont’d)

Find a path visiting every EDGE exactly once
in the REPEAT graph:

Eulerian path problem

Linear time algorithms are known

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Making Repeat Graph Without DNA
• Problem: Construct the repeat graph from a

collection of reads.

• Solution: Break the reads into smaller pieces.

?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Sequences: Emulating a
DNA Chip
• Virtual DNA chip allows the biological

problem to be solved within the technological
constraints.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Sequences: Emulating a
DNA Chip (cont’d)

• Reads are constructed from an original
sequence in lengths that allow biologists a
high level of certainty.

• They are then broken again to allow the
technology to sequence each within a
reasonable array.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Minimizing Errors
• If an error exists in one of the 20-mer reads,

the error will be perpetuated among all of the
smaller pieces broken from that read.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Minimizing Errors (cont’d)

• However, that error will not be present in the
other instances of the 20-mer read.

• So it is possible to eliminate most point
mutation errors before reconstructing the
original sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Conclusions
• Graph theory is a vital tool for solving

biological problems

• Wide range of applications, including
sequencing, motif finding, protein networks,
and many more

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

References

• Simons, Robert W. Advanced Molecular Genetics Course,
UCLA (2002). http://www.mimg.ucla.edu/bobs/C159/
Presentations/Benzer.pdf

• Batzoglou, S. Computational Genomics Course, Stanford
University (2004). http://www.stanford.edu/class/cs262/
handouts.html

