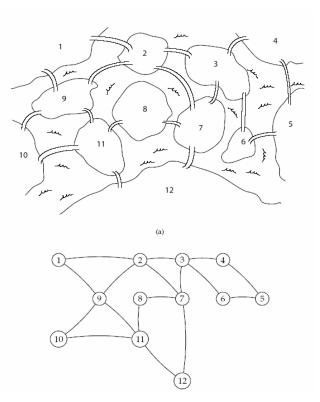

Graph Algorithms in Bioinformatics

Outline

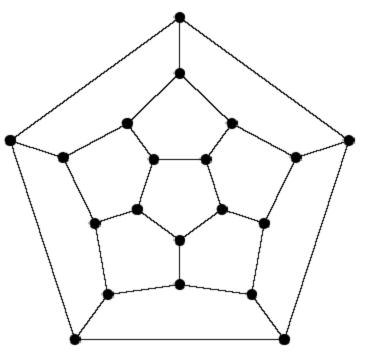
- Introduction to Graph Theory
- Eulerian & Hamiltonian Cycle Problems
- Benzer Experiment and Interal Graphs
- DNA Sequencing
- The Shortest Superstring & Traveling Salesman Problems
- Sequencing by Hybridization
- Fragment Assembly and Repeats in DNA
- Fragment Assembly Algorithms

The Bridge Obsession Problem


Find a tour crossing every bridge just once *Leonhard Euler, 1735*

Bridges of Königsberg

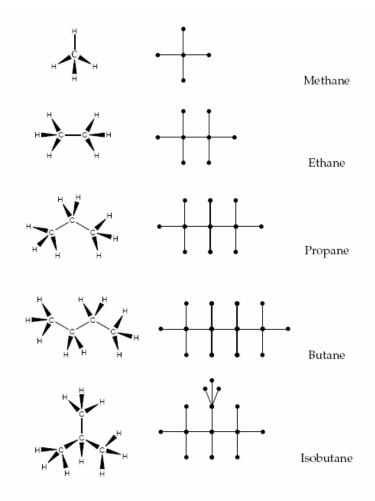
Eulerian Cycle Problem


- Find a cycle that visits every edge exactly once
- Linear time

More complicated Königsberg

Hamiltonian Cycle Problem

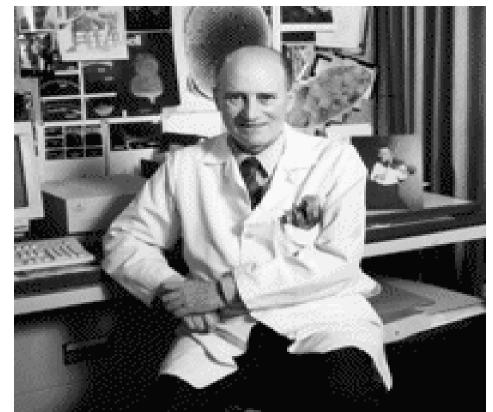
- Find a cycle that visits every vertex exactly once
- NP complete



Game invented by Sir William Hamilton in 1857

Mapping Problems to Graphs

- Arthur Cayley studied chemical structures of hydrocarbons in the mid-1800s
- He used trees

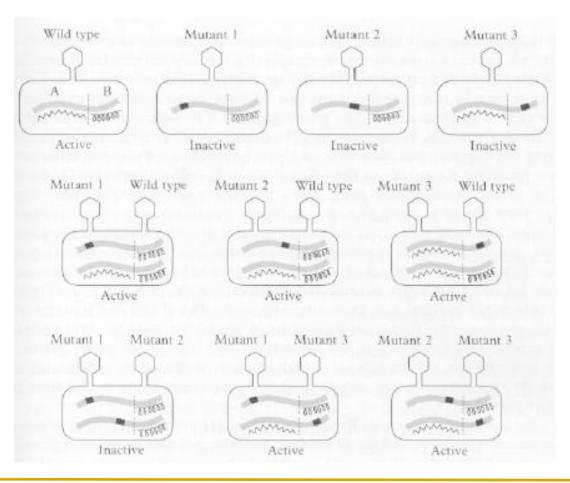

 (acyclic connected graphs) to enumerate structural isomers

Beginning of Graph Theory in Biology

<u>Benzer's work</u>

- Developed deletion mapping
- "Proved" linearity of the gene
- Demonstrated internal structure of the gene

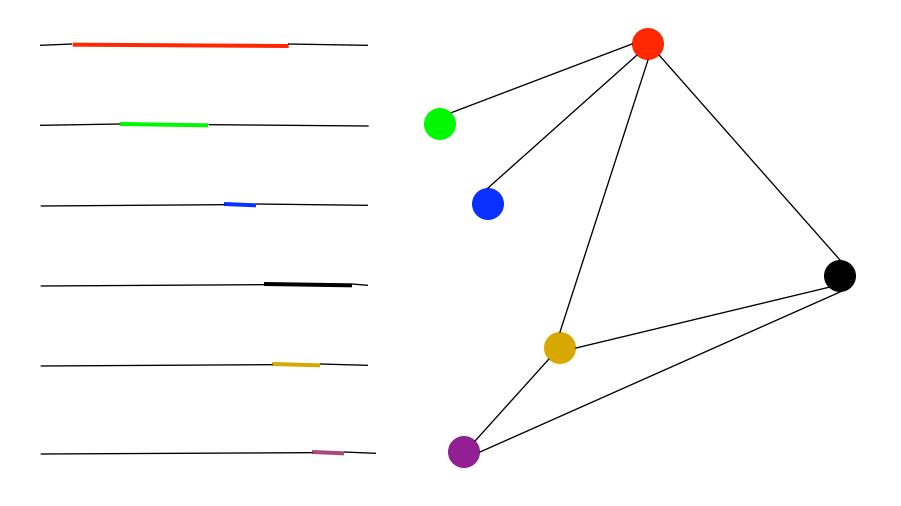
Seymour Benzer, 1950s

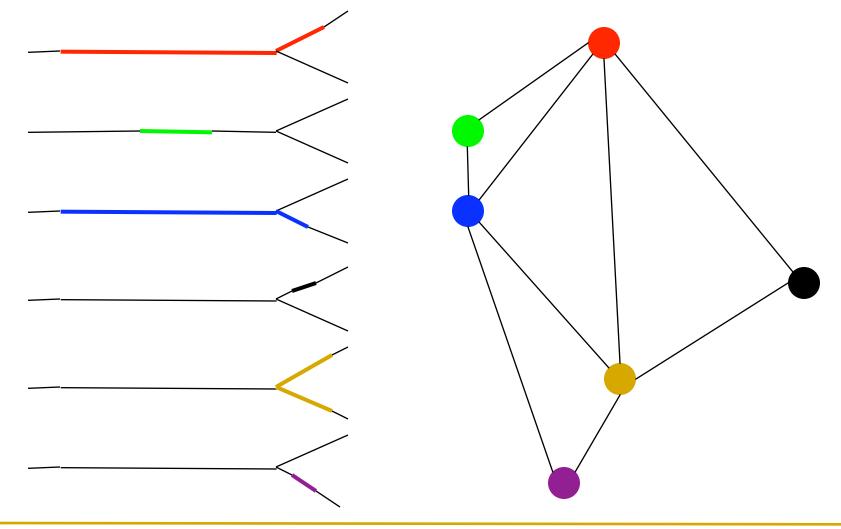

Viruses Attack Bacteria

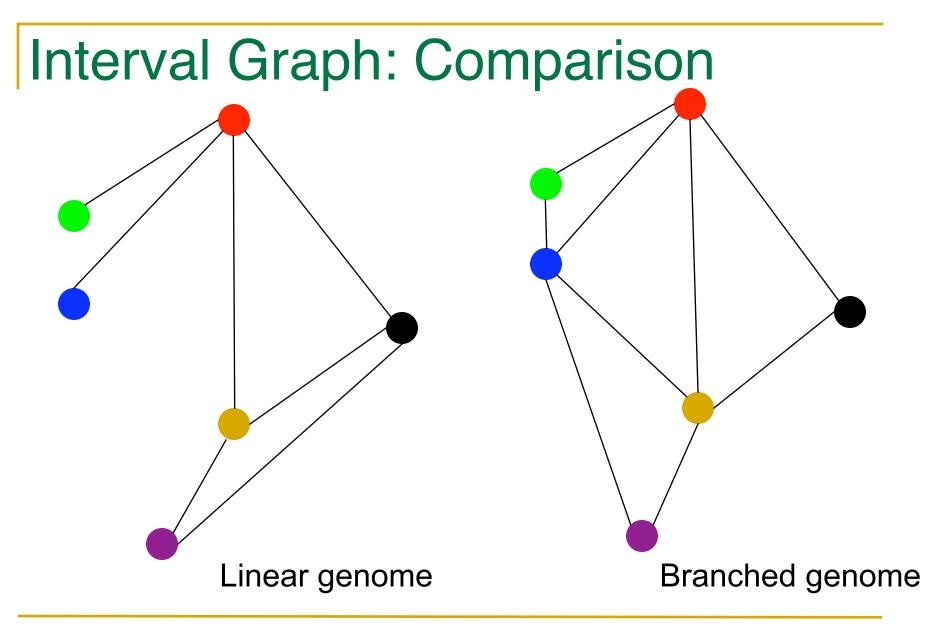
- Normally bacteriophage T4 kills bacteria
- However if T4 is mutated (e.g., an important gene is deleted) it gets disable and looses an ability to kill bacteria
- Suppose the bacteria is infected with two different mutants each of which is disabled – would the bacteria still survive?
- Amazingly, a pair of disable viruses can kill a bacteria even if each of them is disabled.
- How can it be explained?

Benzer's Experiment

- Idea: infect bacteria with pairs of mutant T4 bacteriophage (virus)
- Each T4 mutant has an unknown interval deleted from its genome
- If the two intervals overlap: T4 pair is missing part of its genome and is disabled – bacteria survive
- If the two intervals do not overlap: T4 pair has its entire genome and is enabled – bacteria die


Complementation between pairs of mutant T4 bacteriophages


Benzer's Experiment and Graphs


- Construct an interval graph: each T4 mutant is a vertex, place an edge between mutant pairs where bacteria survived (i.e., the deleted intervals in the pair of mutants overlap)
- Interval graph structure reveals whether DNA is linear or branched DNA

Interval Graph: Linear Genes

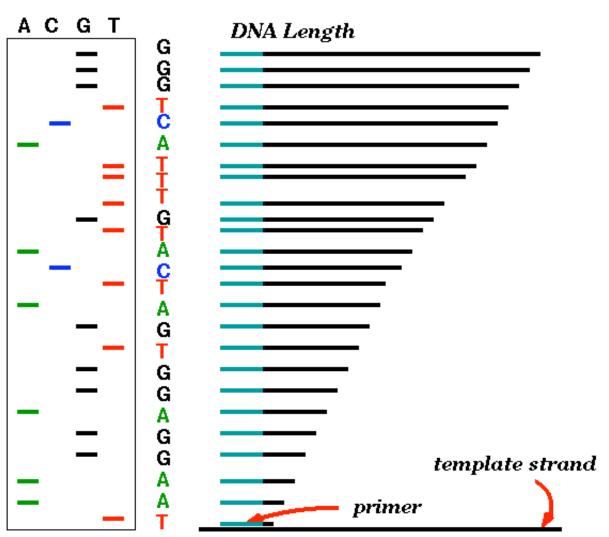
Interval Graph: Branched Genes

DNA Sequencing: History

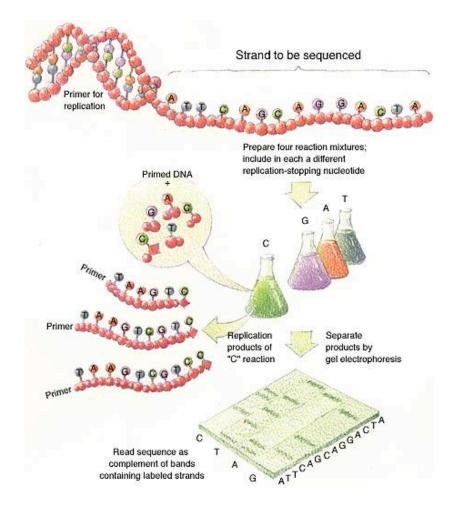
Sanger method (1977): labeled ddNTPs terminate DNA copying at random points.

Gilbert method (1977):

chemical method to cleave DNA at specific points (G, G+A, T+C, C).


Both methods generate labeled fragments of varying lengths that are further electrophoresed.

Sanger Method: Generating Read



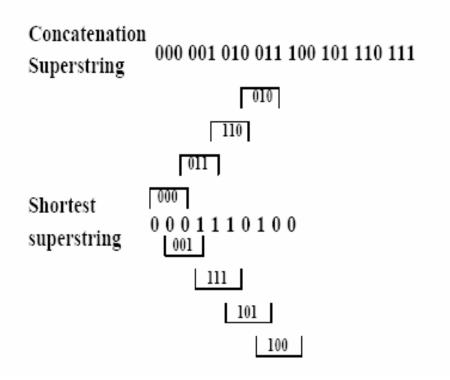
- Start at primer (restriction site)
- ^{2.} Grow DNA chain
- ^{3.} Include ddNTPs
- ^{4.} Stops reaction at all possible points
- ^{5.} Separate products by length, using gel electrophoresis

DNA Sequencing

- Shear DNA into millions of small fragments
- Read 500 700 nucleotides at a time from the small fragments (Sanger method)

Fragment Assembly

- <u>Computational Challenge</u>: assemble individual short fragments (reads) into a single genomic sequence ("superstring")
- Until late 1990s the shotgun fragment assembly of human genome was viewed as intractable problem


Shortest Superstring Problem

- <u>Problem</u>: Given a set of strings, find a shortest string that contains all of them
- <u>Input</u>: Strings s₁, s₂,..., s_n
- <u>Output</u>: A string s that contains all strings
 s₁, s₂,..., s_n as substrings, such that the length of s is minimized
- **Complexity:** NP complete
- Note: this formulation does not take into account sequencing errors

Shortest Superstring Problem: Example

The Shortest Superstring problem

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Reducing SSP to TSP

Define overlap (s_i, s_j) as the length of the longest prefix of s_i that matches a suffix of s_i.

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

What is overlap (s_i, s_j) for these strings?

Reducing SSP to TSP

Define overlap (s_i, s_j) as the length of the longest prefix of s_i that matches a suffix of s_i.

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

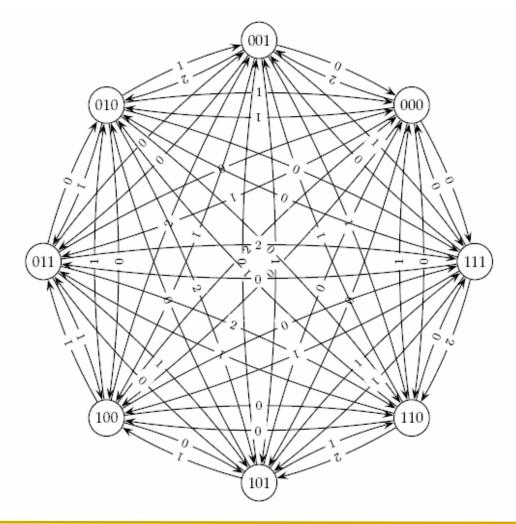
aaaggcatcaaatctaaaggcatcaaa

overlap=12

Reducing SSP to TSP

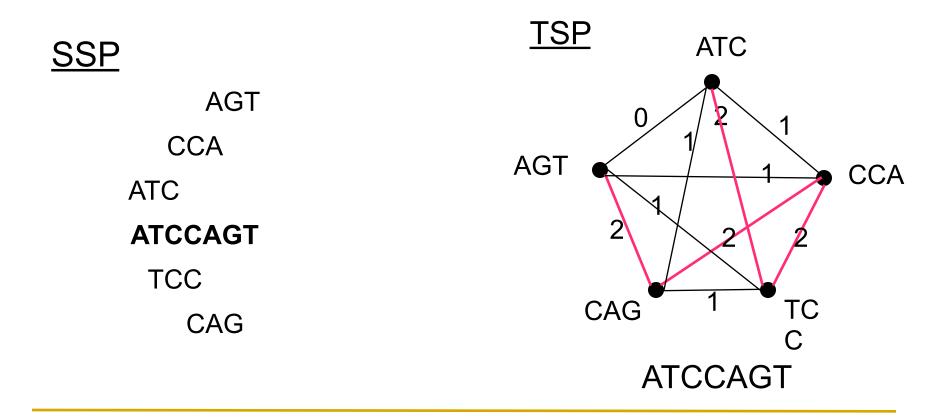
Define overlap (s_i, s_j) as the length of the longest prefix of s_i that matches a suffix of s_i.

aaaggcatcaaatctaaaggcatcaaa


aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

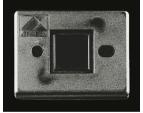
- Construct a graph with *n* vertices representing the *n* strings s₁, s₂,..., s_n.
- Insert edges of length overlap (s_i, s_j) between vertices s_i and s_j.
- Find the shortest path which visits every vertex exactly once. This is the Traveling Salesman Problem (TSP), which is also NP – complete.


www.bioalgorithms.info

Reducing SSP to TSP (cont'd)

SSP to TSP: An Example

S = { ATC, CCA, CAG, TCC, AGT }


Sequencing by Hybridization (SBH): History

• 1988: SBH suggested as an an alternative sequencing method. Nobody believed it will ever work

• **1991:** Light directed polymer synthesis developed by Steve Fodor and colleagues.

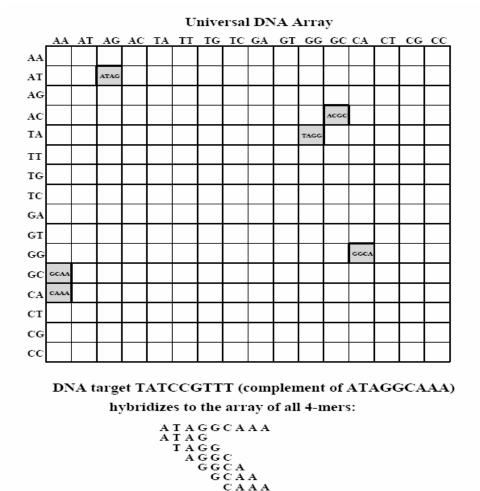
> 500.000 features per chip (2002)

First commercial DNA microarray prototype w/16,000 features (1994)

First microarray prototype (1989)

• **1994:** Affymetrix develops first 64-kb DNA microarray

How SBH Works


- Attach all possible DNA probes of length / to a flat surface, each probe at a distinct and known location. This set of probes is called the DNA array.
- Apply a solution containing fluorescently labeled DNA fragment to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length / of the fragment.

How SBH Works (cont'd)

 Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the *I*-mer composition of the target DNA fragment.

 Apply the combinatorial algorithm (below) to reconstruct the sequence of the target DNA fragment from the *I* – mer composition.

Hybridization on DNA Array

I-mer composition

- Spectrum (s, I) unordered multiset of all possible (n l + 1) l-mers in a string s of length n
- The order of individual elements in Spectrum (s, l) does not matter
- For s = TATGGTGC all of the following are equivalent representations of Spectrum (s, 3):

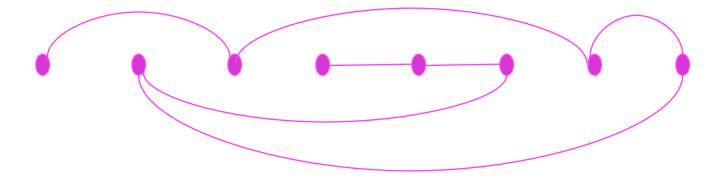
{TAT, ATG, TGG, GGT, GTG, TGC} {ATG, GGT, GTG, TAT, TGC, TGG} {TGG, TGC, TAT, GTG, GGT, ATG}

I-mer composition

- Spectrum (s, I) unordered multiset of all possible (n l + 1) l-mers in a string s of length n
- The order of individual elements in Spectrum (s, l)) does not matter
- For s = TATGGTGC all of the following are equivalent representations of Spectrum (s, 3): {TAT, ATG, TGG, GGT, GTG, TGC} {ATG, GGT, GTG, TAT, TGC, TGG} {TGG, TGC, TAT, GTG, GGT, ATG}
- We usually choose the lexicographically maximal representation as the canonical one.

Different sequences – the same spectrum

Different sequences may have the same spectrum:


Spectrum(GTATCT,2)= Spectrum(GTCTAT,2)= {AT, CT, GT, TA, TC}

The SBH Problem

- <u>Goal</u>: Reconstruct a string from its *I*-mer composition
- <u>Input</u>: A set S, representing all *I*-mers from an (unknown) string s
- <u>Output</u>: String s such that Spectrum (s, I) = S

SBH: Hamiltonian Path Approach

S = { ATG AGG TGC TCC GTC GGT GCA CAG } ATG AGG TGC TCC GTC GGT GCA CAG

ATGCAGGTCC

Path visited every VERTEX once

SBH: Hamiltonian Path Approach

A more complicated graph:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

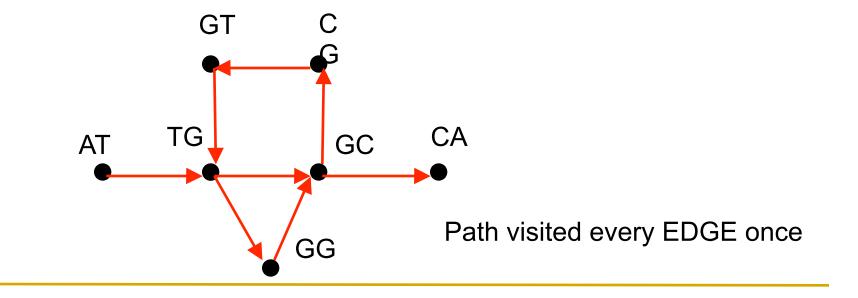
SBH: Hamiltonian Path Approach

 $S = \{ATG TGG TGC GTG GGC GCA GCG\}$ CGT }

Path 1:

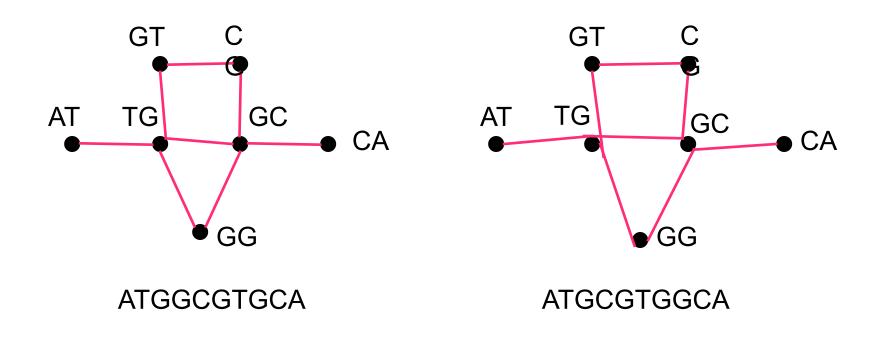
ATGCGTGGCA

Path 2:


ATGGCGTGCA

SBH: Eulerian Path Approach

S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT }


Vertices correspond to $(I - 1) - mers : \{AT, TG, GC, GG, GT, CA, CG\}$

Edges correspond to *I* – mers from S

SBH: Eulerian Path Approach

S = { AT, TG, GC, GG, GT, CA, CG } corresponds to two different paths:

Euler Theorem

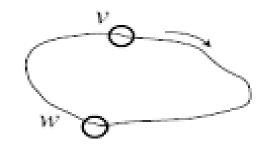
 A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

in(v)=out(v)

 Theorem: A connected graph is Eulerian if and only if each of its vertices is balanced.

Euler Theorem: Proof

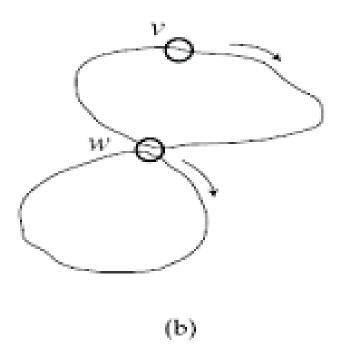
• Eulerian \rightarrow balanced


for every edge entering *v* (incoming edge) there exists an edge leaving *v* (outgoing edge). Therefore

in(v)=out(v)

Balanced → Eulerian
 ???

Algorithm for Constructing an Eulerian Cycle


а. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.

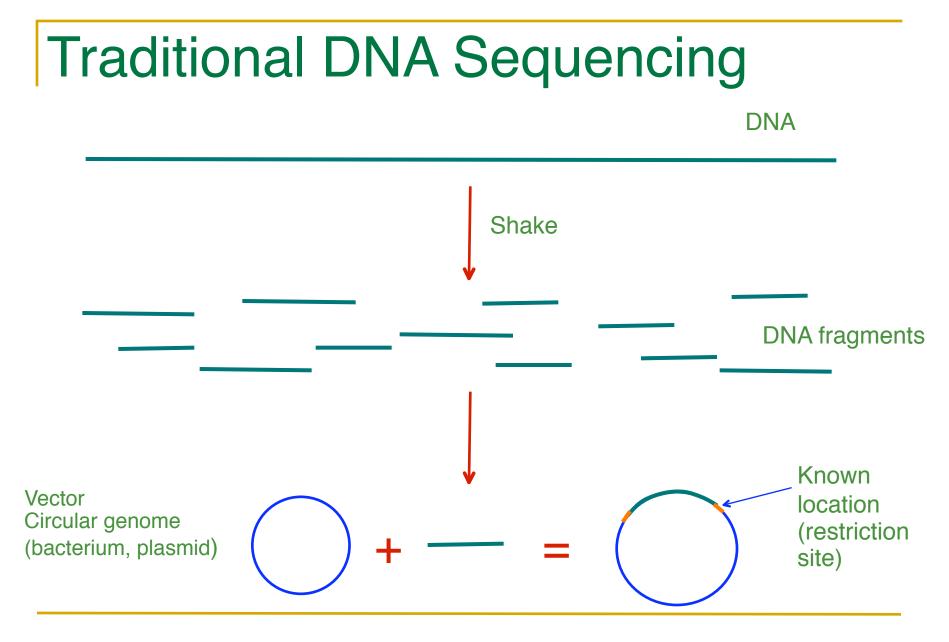
(a)

Algorithm for Constructing an Eulerian Cycle (cont'd)

If cycle from (a) above is b. not an Eulerian cycle, it must contain a vertex w, which has untraversed edges. Perform step (a) again, using vertex w as the starting point. Once again, we will end up in the starting vertex w.

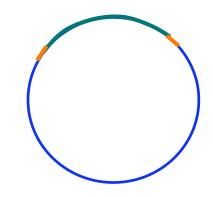
Algorithm for Constructing an Eulerian Cycle (cont'd)

Combine the cycles
 from (a) and (b) into
 a single cycle and
 iterate step (b).



Euler Theorem: Extension

 Theorem: A connected graph has an Eulerian path if and only if it contains at most two semi-balanced vertices and all other vertices are balanced.


Some Difficulties with SBH

- Fidelity of Hybridization: difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches
- Array Size: Effect of low fidelity can be decreased with longer *I*-mers, but array size increases exponentially in *I*. Array size is limited with current technology.
- Practicality: SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future
- Practicality again: Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques

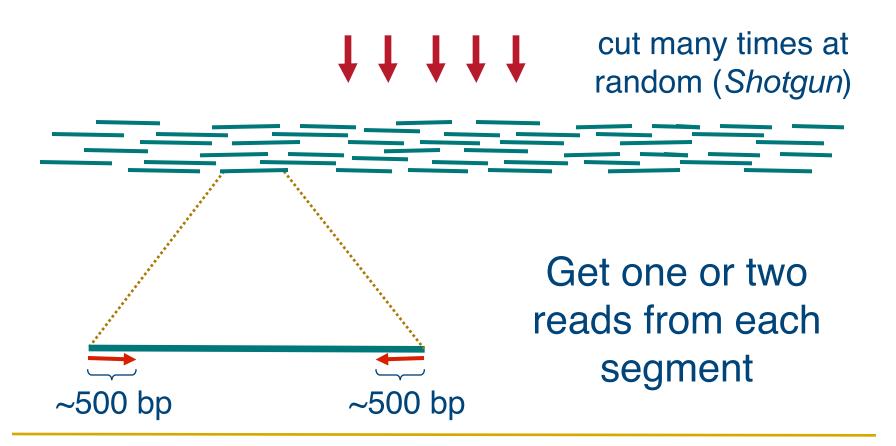
Different Types of Vectors

VECTOR	<u>Size of insert (bp)</u>
Plasmid	2,000 - 10,000
Cosmid	40,000
BAC (Bacterial Artificial Chromosome)	70,000 - 300,000
YAC (Yeast Artificial Chromosome)	> 300,000 Not used much recently

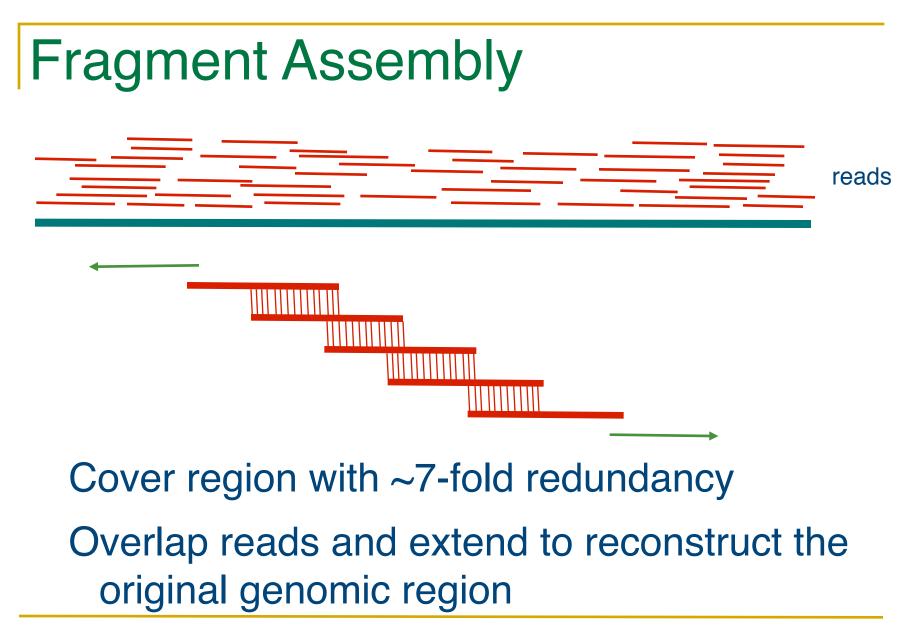
Electrophoresis Diagrams

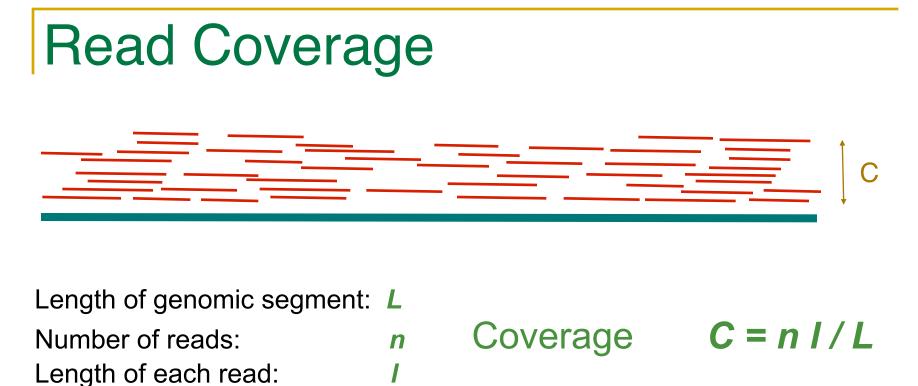
		100077727	10110700		744			- 405		aha,		active state							- 240	
			1	TANK	ATC 04						1		1.							e e e
					All street					100			120							-
							1													
							1													
								1												
							k =													
							1						1							
		F.	1																	
											1									
	1						1				6			1						
14	1.						8				11			18						
	1510		20				100	11				10.1		1					127	
	1210		11 14				1.11	11	1.14	10.1				1100		1.			1	
	10.11		1 11								11111	6 9		141		- 31				- 1
114	1 (1)	100	11 11	11 31	1	1		11.22		11	111H		1.1			1.1	21 N			
80 H		1.50	11.174	1.11	111			111	11	11	MIN		U U			0.11				
	1	1.1.1	11.44	1.1.1	111	1. 1.		10	111	114	WU.	141		ACT III.	7	- M II	1. 1			Ц., Ц
404		10.11	1140		1.1.1.3	14.1			1.14	11111	1111	11.			1.1		11 1	1 1	1.1111	
	HHH	Sec. A.	1 10 8	11411		1111		111.7	~ 10	MAG			11.1	1111	1.1.	111			11. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.	MI
1 de la com	1111	10 31	11111	99 f 11	6 H L M	6 M I M		D.M.	14,44	1111	14.9.1	114	11.1		14/11	ALLY	1	(ball)	11111	MH
1191	1111	1111	1 M U			111111	110	1.1.1	(fri i	1112		1111	I M I		1449	1111	11.61	1 ALL	11.11	W
111	1111	111	1112	113 11	11/1	11111	MIT.	111	UYIY	1111		(M	111			11	A LA LE	1111	1211	111
111	1111		111	11.11	1111	1.1.1	111		R1 M	111			111	11.1	211	111	1 WAY	1144	1910	

Challenging to Read Answer


				1				
and the second second	· · · · · · · · · · · · · · · · · · ·	1961	· · · · · · · · · · · · · · · · · · ·		, 112,			
100-00-00-	TAAAAT	COCCC SCITT	TICT TXG TC	ATGGTGATGG	EGATGTACT	CTATAATAAA	ACC CAG CAG A AT	TTAATS
	0 0			POAR A				
	11 11 1	ban I	1					
	11 11							
	11 11							
	11 / 1							
		N						
	1171			- 36 - 2 X				
10 11 1	113 11		14					
	11/8: (1)	10						
	111111111		11 12	1 1				
	11/ 1		1 1	- 2744 E C2 E	14	1		
	111 (1	5 10		111 8 11	inter va dive			
	111 11		Max 11		1 1 11	1200	1.0	
1 1 1 1 1 1 1 1	1.12 1.1					121		
						Y 4	2.00	1. 1
	I A M	1						
		104					1 1 1	
	12 8					AN DI		l hall
1	1 3	171.1	LANA L			. B	All & Marine Ha	1 HAH
				INNER DE LA MUNICI		A 11 12 A 14 A 1	1111 . K 1.	a the set
		2 AUR 13					ATTALLS RA LUL	10.000011
1 1 1	111 . 18	N 16111	LUTION M.		W LUMINA LU	ANA INTRA C	/III/9_U/U_U/U	INNULL
					10 12 13 11 51	1.12.12.01.1	20 I I I I I I I I I I I I I I I I I I I	RIVER
THE VE	1 1 1 1 1	H X N				1 1 1 1 1 1 1	11111010130	111111
			1111111				111111111111	141 111
		No. 1 Marcal de			1111111111		《日本书书书》日书书书》 上	化二氯乙基苯

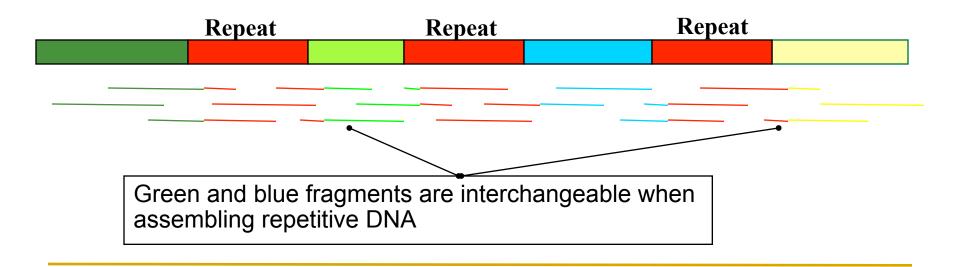
Reading an Electropherogram


- Filtering
- Smoothening
- Correction for length compressions
- A method for calling the nucleotides PHRED


Shotgun Sequencing

genomic segment

www.bioalgorithms.info


How much coverage is enough?

Lander-Waterman model:

Assuming uniform distribution of reads, *C*=10 results in 1 gapped region per 1,000,000 nucleotides

Challenges in Fragment Assembly

- Repeats: A major problem for fragment assembly
- > 50% of human genome are repeats:
 - over 1 million Alu repeats (about 300 bp)
 - about 200,000 LINE repeats (1000 bp and longer)

Triazzle: A Fun Example

The puzzle looks simple

BUT there are repeats!!!

The repeats make it very difficult.

Try it – only \$7.99 at www.triazzle.com

Repeat Types

- Low-Complexity DNA (e.g. ATATATATACATA...) ٠
- Microsatellite repeats ٠

 $(a_1...a_k)^{N}$ where k ~ 3-6 (e.g. CAGCAGTAGCAGCACCAG)

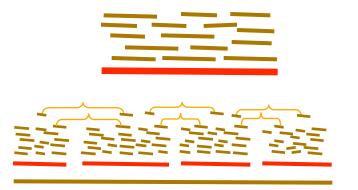
Transposons/retrotransposons SINE Short Interspersed Nuclear Elements (e.g., Alu: \sim 300 bp long, 10⁶ copies)

- Long Interspersed Nuclear Elements **I INF** • ~500 - 5,000 bp long, 200,000 copies
- LTR retroposons Long Terminal Repeats (~700 bp) at • each end **Gene Families** genes duplicate & then diverge
- Segmental duplications

~very long, very similar copies

www.bioalgorithms.info

Overlap-Layout-Consensus


Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and contigs into supercontigs

Consensus: derive the DNA sequence and correct read errors

..ACGATTACAATAGGTT..

Overlap

- Find the best match between the suffix of one read and the prefix of another
- Due to sequencing errors, need to use dynamic programming to find the optimal overlap alignment
- Apply a filtration method to filter out pairs of fragments that do not share a significantly long common substring

Overlapping Reads

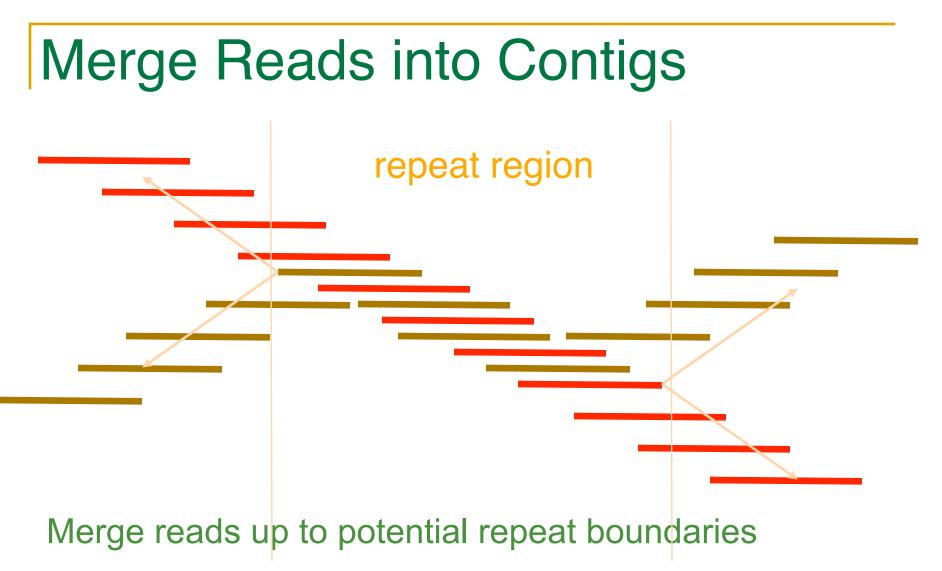
- Sort all *k*-mers in reads $(k \sim 24)$
- Find pairs of reads sharing a k-mer
- Extend to full alignment throw away if not >95% similar

TACA TAGATTACACAGATTAC T GA

Overlapping Reads and Repeats

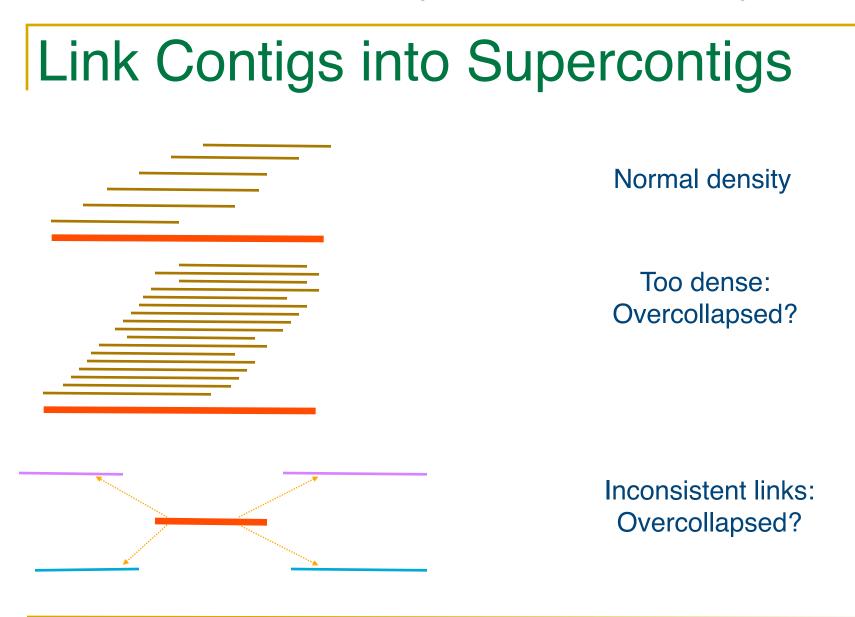
- A k-mer that appears N times, initiates N² comparisons
- For an Alu that appears 10⁶ times à 10¹² comparisons too much
- Solution:

Discard all *k*-mers that appear more than t´Coverage, (t ~ 10)


Finding Overlapping Reads

Create local multiple alignments from the overlapping reads

Layout


- Repeats are a major challenge
- Do two aligned fragments really overlap, or are they from two copies of a repeat?
- Solution: repeat masking hide the repeats!!!
- Masking results in high rate of misassembly (up to 20%)
- Misassembly means alot more work at the finishing step

Repeats, Errors, and Contig Lengths

- Repeats shorter than read length are OK
- Repeats with more base pair differencess than sequencing error rate are OK
- To make a smaller portion of the genome appear repetitive, try to:
 - Increase read length
 - Decrease sequencing error rate

www.bioalgorithms.info

Consensus

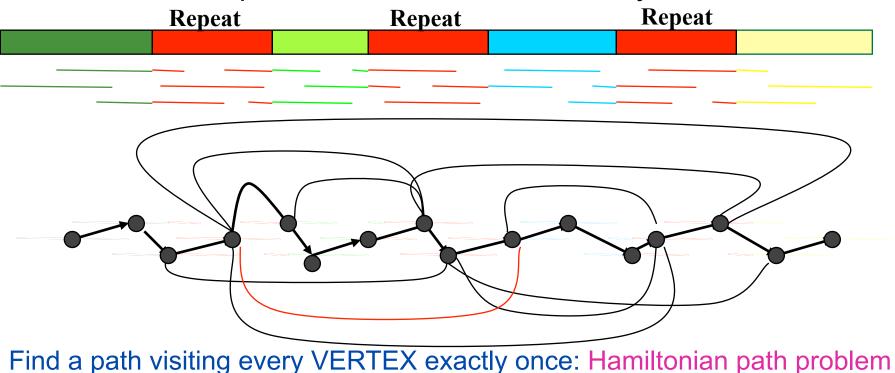
- A consensus sequence is derived from a profile of the assembled fragments
- A sufficient number of reads is required to ensure a statistically significant consensus
- Reading errors are corrected

Derive Consensus Sequence

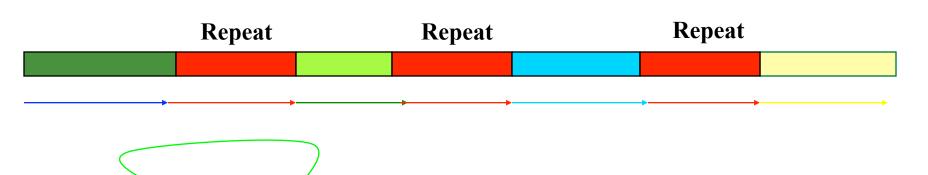
TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGGTAA CTA

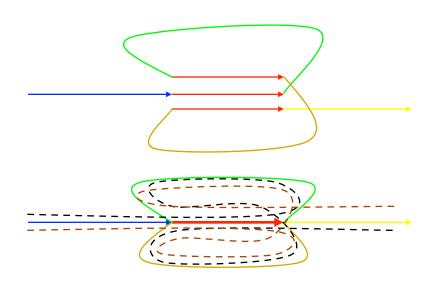
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments


Derive each consensus base by weighted voting

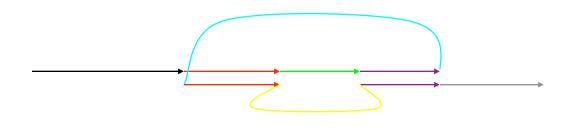
EULER - A New Approach to Fragment Assembly


- Traditional "overlap-layout-consensus" technique has a high rate of mis-assembly
- EULER uses the Eulerian Path approach borrowed from the SBH problem
- Fragment assembly without repeat masking can be done in linear time with greater accuracy

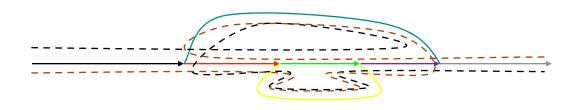

Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others.

Overlap Graph: Eulerian Approach



Placing each repeat edge together gives a clear progression of the path through the entire sequence.


Find a path visiting every EDGE exactly once: Eulerian path problem

Multiple Repeats

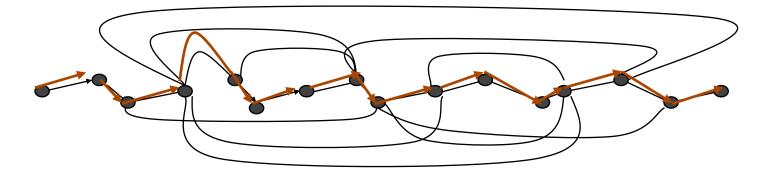
Can be easily constructed with any number of repeats

Construction of Repeat Graph

 <u>Construction of repeat graph from k – mers</u>: emulates an SBH experiment with a huge (virtual) DNA chip.

<u>Breaking reads into k – mers</u>: Transform sequencing data into virtual DNA chip data.

Construction of Repeat Graph (cont'd)

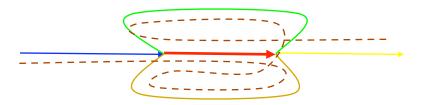

 Error correction in reads: "consensus first" approach to fragment assembly. Makes reads (almost) error-free BEFORE the assembly even starts.

Using reads and mate-pairs to simplify the repeat graph (Eulerian Superpath Problem).

Approaches to Fragment Assembly

Find a path visiting every VERTEX exactly once in the OVERLAP graph:

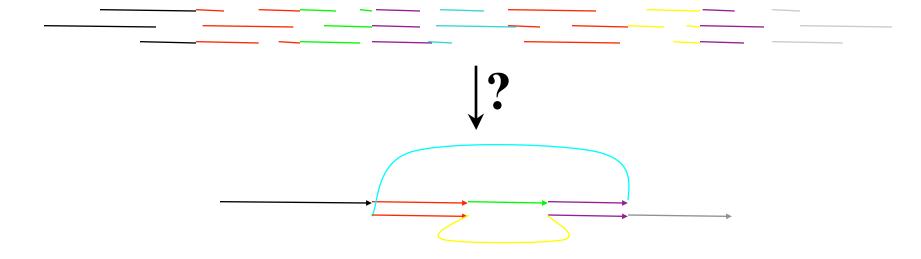
Hamiltonian path problem



NP-complete: algorithms unknown

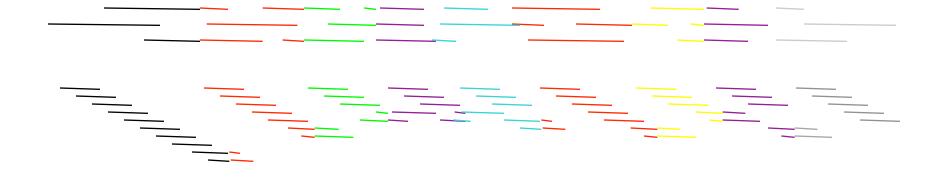
Approaches to Fragment Assembly (cont'd)

Find a path visiting every EDGE exactly once in the REPEAT graph:


Eulerian path problem

Linear time algorithms are known

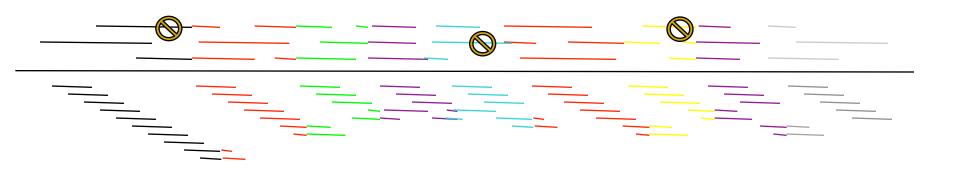
Making Repeat Graph Without DNA


Problem: Construct the repeat graph from a collection of reads.

Solution: Break the reads into smaller pieces.

Repeat Sequences: Emulating a DNA Chip

 Virtual DNA chip allows the biological problem to be solved within the technological constraints.



Repeat Sequences: Emulating a DNA Chip (cont'd)

- Reads are constructed from an original sequence in lengths that allow biologists a high level of certainty.
- They are then broken again to allow the technology to sequence each within a reasonable array.

Minimizing Errors

 If an error exists in one of the 20-mer reads, the error will be perpetuated among all of the smaller pieces broken from that read.

Minimizing Errors (cont'd)

- However, that error will not be present in the other instances of the 20-mer read.
- So it is possible to eliminate most point mutation errors before reconstructing the original sequence.

Conclusions

- Graph theory is a vital tool for solving biological problems
- Wide range of applications, including sequencing, motif finding, protein networks, and many more

References

- Simons, Robert W. Advanced Molecular Genetics Course, UCLA (2002). http://www.mimg.ucla.edu/bobs/C159/ Presentations/Benzer.pdf
- Batzoglou, S. Computational Genomics Course, Stanford University (2004). http://www.stanford.edu/class/cs262/ handouts.html