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• Eulerian & Hamiltonian Cycle Problems
• Benzer Experiment and Interal Graphs 
• DNA Sequencing
• The Shortest Superstring & Traveling 

Salesman Problems
• Sequencing by Hybridization 
• Fragment Assembly and Repeats in DNA 
• Fragment Assembly Algorithms
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The Bridge Obsession Problem

Bridges of Königsberg

Find a tour crossing every bridge just once
Leonhard Euler, 1735 
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Eulerian Cycle Problem
• Find a cycle that 

visits every edge 
exactly once

• Linear time

More complicated Königsberg 
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Hamiltonian Cycle Problem
• Find a cycle that 

visits every vertex 
exactly once

• NP – complete 

Game invented by Sir 
William Hamilton in 1857
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Mapping Problems to Graphs
• Arthur Cayley studied 

chemical structures 
of hydrocarbons in 
the mid-1800s

• He used trees 
(acyclic connected 
graphs) to enumerate 
structural isomers
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Beginning of Graph Theory in Biology

Benzer’s work
• Developed deletion 

mapping
• “Proved” linearity of 

the gene
• Demonstrated 

internal structure of 
the gene

Seymour Benzer, 1950s
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Viruses Attack Bacteria

• Normally bacteriophage T4 kills bacteria 
• However if T4 is mutated (e.g., an important gene is 

deleted) it gets disable and looses an ability to kill 
bacteria 

• Suppose the bacteria is infected with two different  
mutants each of which is disabled – would the 
bacteria still survive?

• Amazingly, a pair of disable viruses can kill a 
bacteria even if each of them is disabled. 

• How can it be explained? 
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Benzer’s Experiment

• Idea: infect bacteria with pairs of mutant T4 
bacteriophage (virus)

• Each T4 mutant has an unknown interval 
deleted from its genome

• If the two intervals overlap:  T4 pair is 
missing part of its genome and is disabled – 
bacteria survive

• If the two intervals do not overlap:  T4 pair 
has its entire genome and is enabled – 
bacteria die
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Complementation between pairs of 
mutant T4 bacteriophages
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Benzer’s Experiment and Graphs

• Construct an interval graph:  each T4 
mutant is a vertex, place an edge between 
mutant pairs where bacteria survived (i.e., 
the deleted intervals in the pair of mutants 
overlap)

• Interval graph structure reveals whether DNA 
is linear or branched DNA



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genes
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Interval Graph: Branched Genes
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Interval Graph: Comparison

Linear genome Branched genome
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DNA Sequencing: History
Sanger method (1977): 

labeled ddNTPs 
terminate DNA 
copying at random 
points.

Both methods generate  
labeled fragments of 
varying lengths that are 
further electrophoresed.

 Gilbert method (1977):
   chemical method to 

cleave DNA at specific 
points (G, G+A, T+C, C).
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Sanger Method: Generating Read

1. Start at primer 
(restriction site)

2. Grow DNA chain
3. Include ddNTPs 
4. Stops reaction at all 

possible points
5. Separate products 

by length, using gel 
electrophoresis
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DNA Sequencing
• Shear DNA into 

millions of small 

fragments

• Read 500 – 700 

nucleotides at a 

time from the small 

fragments (Sanger 

method)
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Fragment Assembly
• Computational Challenge: assemble 

individual short fragments (reads) into a 
single genomic sequence (“superstring”) 

• Until late 1990s the shotgun fragment 
assembly of human genome was viewed as 
intractable problem   
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Shortest Superstring Problem
• Problem: Given a set of strings, find a 

shortest string that contains all of them
• Input:  Strings s1, s2,…., sn
• Output:  A string s that contains all strings 
   s1, s2,…., sn as substrings, such that the 

length of s is minimized

• Complexity:  NP – complete 
• Note:  this formulation does not take into 

account sequencing errors
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Shortest Superstring Problem: Example
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Reducing SSP to TSP
• Define overlap ( si, sj ) as the length of the longest prefix of 

sj that matches a suffix of si.

     aaaggcatcaaatctaaaggcatcaaa
                                                aaaggcatcaaatctaaaggcatcaaa
                               

What is overlap ( si, sj ) for these strings?
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Reducing SSP to TSP
• Define overlap ( si, sj ) as the length of the longest prefix of 

sj that matches a suffix of si.

     aaaggcatcaaatctaaaggcatcaaa
                                                aaaggcatcaaatctaaaggcatcaaa
                               aaaggcatcaaatctaaaggcatcaaa

                                overlap=12
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Reducing SSP to TSP
• Define overlap ( si, sj ) as the length of the longest prefix of 

sj that matches a suffix of si.

     aaaggcatcaaatctaaaggcatcaaa
                                                aaaggcatcaaatctaaaggcatcaaa
                               aaaggcatcaaatctaaaggcatcaaa

• Construct a graph with n vertices representing the n strings 
s1, s2,…., sn.  

• Insert edges of length overlap ( si, sj ) between vertices si 
and sj.  

• Find the shortest path which visits every vertex exactly 
once. This is the Traveling Salesman Problem (TSP), 
which is also NP – complete.
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Reducing SSP to TSP (cont’d)
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SSP to TSP: An Example
S = { ATC, CCA, CAG, TCC, AGT }

 SSP
                 AGT

             CCA

         ATC

            ATCCAGT      
           TCC  
               CAG                                                                  

  ATCCAGT

TSP ATC

CCA

TC
C

AGT

CAG

2

2 22

1

1

1
0

1
1
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Sequencing by Hybridization (SBH): History

• 1988:  SBH suggested as an 
an alternative sequencing 
method. Nobody believed it will 
ever work

• 1991:  Light directed polymer 
synthesis developed by Steve 
Fodor and colleagues. 

• 1994:  Affymetrix develops 
first 64-kb DNA microarray

First microarray 
prototype (1989)

First commercial
DNA microarray
prototype w/16,000
features (1994)

500,000 features
per chip (2002)
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How SBH Works
• Attach all possible DNA probes of length l to a 

flat surface, each probe at a distinct and known 
location.  This set of probes is called the DNA 
array.

• Apply a solution containing fluorescently labeled 
DNA fragment to the array.

• The DNA fragment hybridizes with those probes 
that are complementary to substrings of length l 
of the fragment.



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How SBH Works (cont’d)

• Using a spectroscopic detector, determine 
which probes hybridize to the DNA fragment 
to obtain the l–mer composition of the target 
DNA fragment.

• Apply the combinatorial algorithm (below) to 
reconstruct the sequence of the target DNA 
fragment from the l – mer composition.
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Hybridization on DNA Array
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l-mer composition
• Spectrum ( s, l ) - unordered multiset of all 

possible  (n – l + 1)  l-mers in a string s of length n
• The order of individual elements in  Spectrum ( s, l 

) does not matter
• For s = TATGGTGC all of the following are 

equivalent representations of Spectrum ( s, 3 ):   

       {TAT, ATG, TGG, GGT, GTG, TGC}

       {ATG, GGT, GTG, TAT, TGC, TGG}    

       {TGG, TGC, TAT, GTG, GGT, ATG}
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l-mer composition
• Spectrum ( s, l ) - unordered multiset of all 

possible  (n – l + 1)  l-mers in a string s of length n
• The order of individual elements in  Spectrum ( s, l 

) does not matter
• For s = TATGGTGC all of the following are 

equivalent representations of Spectrum ( s, 3 ):   
       {TAT, ATG, TGG, GGT, GTG, TGC}
       {ATG, GGT, GTG, TAT, TGC, TGG}    
       {TGG, TGC, TAT, GTG, GGT, ATG}
•  We usually choose the  lexicographically maximal   

representation as the canonical one.            
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Different sequences – the same spectrum

• Different sequences may have the same 
spectrum: 

             Spectrum(GTATCT,2)=

             Spectrum(GTCTAT,2)=

             {AT, CT, GT, TA, TC}
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The SBH Problem
• Goal: Reconstruct a string from its l-mer 

composition

• Input:  A set S, representing all l-mers from an 
(unknown) string s

• Output:  String s such that Spectrum ( s,l ) = S
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SBH: Hamiltonian Path Approach

S = { ATG  AGG  TGC  TCC  GTC  GGT  GCA  CAG }

   Path visited every VERTEX once

ATG AGG TGC TCCH GTC GGT GCA CAG

ATG CAGGTCC
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SBH: Hamiltonian Path Approach 

A more complicated graph:

              
     S = { ATG    TGG      TGC      GTG      GGC     GCA      GCG     CGT }
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SBH: Hamiltonian Path Approach
            S = { ATG   TGG    TGC    GTG    GGC   GCA    GCG    CGT }

Path 1:

              ATGCGTGGCA

ATGGCGTGCA

Path 2:
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SBH: Eulerian Path Approach
   S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT  } 

   Vertices correspond to ( l – 1 ) – mers :  { AT, TG, GC, GG, GT, CA, CG }

   Edges correspond to l – mers from S

AT

GT C
G

CAGCTG

GG
       Path visited every EDGE once
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SBH: Eulerian Path Approach
S =  { AT, TG, GC, GG, GT, CA, CG } corresponds to two different 

paths:

    ATGGCGTGCA     ATGCGTGGCA

AT TG GC
CA

GG

GT C
G

AT

GT C
G

CA
GCTG

GG
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Euler Theorem
• A graph is balanced if for every vertex the 

number of incoming edges equals to the 

number of outgoing edges: 

                           in(v)=out(v)

• Theorem:  A connected graph is Eulerian if 

and only if each of its vertices is balanced.
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Euler Theorem: Proof
• Eulerian → balanced

   for every edge entering v (incoming edge)  

there  exists an edge leaving v (outgoing 

edge). Therefore 

                        in(v)=out(v)

• Balanced → Eulerian

    ???
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Algorithm for Constructing an Eulerian Cycle 

a. Start with an arbitrary 
vertex v and form an 
arbitrary cycle with unused 
edges until a dead end is 
reached.  Since the graph 
is Eulerian this dead end is 
necessarily the starting 
point, i.e., vertex v.
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Algorithm for Constructing an Eulerian Cycle (cont’d)

b.   If cycle from (a) above is 
not an Eulerian cycle, it 
must contain a vertex w, 
which has untraversed 
edges.  Perform step (a) 
again, using vertex w as 
the starting point. Once 
again, we will end up in 
the starting vertex w.
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Algorithm for Constructing an Eulerian Cycle  (cont’d)

c. Combine the cycles 

from (a) and (b) into 

a single cycle and 

iterate step (b).
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Euler Theorem: Extension
• Theorem:  A connected graph has an 

Eulerian path if and only if it contains at most 

two semi-balanced vertices and all other 

vertices are balanced.
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Some Difficulties with SBH
• Fidelity of Hybridization:  difficult to detect 

differences between probes hybridized with perfect 
matches and 1 or 2 mismatches

• Array Size:  Effect of low fidelity can be decreased 
with longer l-mers, but array size increases 
exponentially in l.  Array size is limited with current 
technology.

• Practicality:  SBH is still impractical. As DNA 
microarray technology improves, SBH may become 
practical in the future

• Practicality again: Although SBH is still impractical, 
it spearheaded expression analysis and SNP 
analysis techniques
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Traditional DNA Sequencing

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Known
location
(restriction
site)
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Different Types of Vectors
VECTOR Size of insert (bp)

Plasmid 2,000 - 10,000 

Cosmid 40,000

BAC (Bacterial Artificial 
Chromosome)

70,000 - 300,000

YAC (Yeast Artificial 
Chromosome)

> 300,000
Not used much 

recently
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Electrophoresis Diagrams
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Challenging to Read Answer
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Reading an Electropherogram
• Filtering

• Smoothening

• Correction for length compressions

• A method for calling the nucleotides – PHRED 
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Shotgun Sequencing

cut many times at 
random (Shotgun)

genomic segment

Get one or two 
reads from each 

segment
~500 bp ~500 bp
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Fragment Assembly

Cover region with ~7-fold redundancy
Overlap reads and extend to reconstruct the 

original genomic region

reads
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Read Coverage

Length of genomic segment:  L

Number of reads:                    n         Coverage C = n l / L
Length of each read:               l

How much coverage is enough?

Lander-Waterman model:
Assuming uniform distribution of reads, C=10 results in 1 gapped 
region per 1,000,000 nucleotides

C
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Challenges in Fragment Assembly
• Repeats:  A major problem for fragment assembly
• > 50% of human genome are repeats:

- over 1 million Alu repeats (about 300 bp)

- about 200,000 LINE repeats (1000 bp and longer)

Repeat Repeat Repeat

Green and blue fragments are interchangeable when 
assembling repetitive DNA
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Triazzle: A Fun Example

The puzzle looks simple

BUT there are repeats!!!

The repeats make it 
very difficult.

Try it – only $7.99 at
www.triazzle.com
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Repeat Types
• Low-Complexity DNA (e.g. ATATATATACATA…)

• Microsatellite repeats    (a1…ak)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAG)

• Transposons/retrotransposons   
• SINE Short Interspersed Nuclear Elements

(e.g., Alu: ~300 bp long, 106 copies)

• LINE Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

• LTR retroposons Long Terminal Repeats (~700 bp) at 
each end

• Gene Families genes duplicate & then diverge

• Segmental duplications ~very long, very similar copies
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Overlap-Layout-Consensus 
Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap:  find potentially overlapping reads

Layout:  merge reads into contigs and                   
               contigs into supercontigs

Consensus:  derive the DNA 
sequence and correct read errors ..ACGATTACAATAGGTT..
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Overlap
• Find the best match between the suffix of one 

read and the prefix of another

• Due to sequencing errors, need to use 
dynamic programming to find the optimal 
overlap alignment

• Apply a filtration method to filter out pairs of 
fragments that do not share a significantly 
long common substring
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Overlapping Reads

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

• Sort all k-mers in reads      (k ~ 24)

• Find pairs of reads sharing a k-mer

• Extend to full alignment – throw away if not 
>95% similar

T GA

TAGA
| ||

TACA

TAGT
||  
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Overlapping Reads and Repeats
• A k-mer that appears N times, initiates N2 

comparisons

• For an Alu that appears 106 times à 1012 
comparisons – too much

• Solution:
Discard all k-mers that appear more than 

               t ´ Coverage, (t ~ 10)
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Finding Overlapping Reads

Create local multiple alignments from the 
overlapping reads

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
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Layout
• Repeats are a major challenge
• Do two aligned fragments really overlap, or 

are they from two copies of a repeat? 
• Solution:  repeat masking – hide the 

repeats!!!
• Masking results in high rate of misassembly 

(up to 20%)
• Misassembly means alot more work at the 

finishing step
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Merge Reads into Contigs

Merge reads up to potential repeat boundaries

repeat region
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Repeats, Errors, and Contig Lengths

• Repeats shorter than read length are OK

• Repeats with more base pair differencess 
than sequencing error rate are OK

• To make a smaller portion of the genome 
appear repetitive, try to:
• Increase read length
• Decrease sequencing error rate
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Link Contigs into Supercontigs

Too dense: 
Overcollapsed?

Inconsistent links: 
Overcollapsed?

Normal density
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Consensus
• A consensus sequence is derived from a 

profile of the assembled fragments

• A sufficient number of reads is required to 
ensure a statistically significant consensus

• Reading errors are corrected
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Derive Consensus Sequence

Derive multiple alignment from pairwise read 
alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted 
voting
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EULER - A New Approach to 
Fragment Assembly

• Traditional “overlap-layout-consensus” technique 
has a high rate of mis-assembly

• EULER uses the Eulerian Path approach borrowed 
from the SBH problem

• Fragment assembly without repeat masking can be 
done in linear time with greater accuracy
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Overlap Graph: Hamiltonian 
Approach

Repeat Repeat Repeat

Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Each vertex represents a read from the original sequence.
Vertices from repeats are connected to many others.
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Overlap Graph: Eulerian Approach
Repeat Repeat Repeat

Find a path visiting every EDGE 
exactly once:
Eulerian path problem

Placing each repeat edge 
together gives a clear 
progression of the path 
through the entire sequence.



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Multiple Repeats
Repeat1 Repeat1Repeat2 Repeat2

Can be easily 
constructed with any 
number of repeats
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Construction of Repeat Graph
• Construction of repeat graph from k – mers: 

emulates an SBH experiment with a huge 

(virtual) DNA chip.

• Breaking reads into k – mers: Transform 

sequencing data into virtual DNA chip data.
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Construction of Repeat Graph (cont’d)

• Error correction in reads: “consensus first” 

approach to fragment assembly.  Makes 

reads (almost) error-free BEFORE the 

assembly even starts.

• Using reads and mate-pairs to simplify the 

repeat graph (Eulerian Superpath Problem).
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Approaches to Fragment Assembly
Find a path visiting every VERTEX exactly 
once in the OVERLAP graph: 

Hamiltonian path problem

NP-complete: algorithms unknown
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Approaches to Fragment Assembly 
(cont’d)

Find a path visiting every EDGE exactly once 
in the REPEAT graph:

Eulerian path problem

Linear time algorithms are known
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Making Repeat Graph Without DNA
• Problem: Construct the repeat graph from a 

collection of reads.

• Solution: Break the reads into smaller pieces.

?
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Repeat Sequences: Emulating a 
DNA Chip
• Virtual DNA chip allows the biological 

problem to be solved within the technological 
constraints.
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Repeat Sequences: Emulating a 
DNA Chip (cont’d)

• Reads are constructed from an original 
sequence in lengths that allow biologists a 
high level of certainty. 

• They are then broken again to allow the 
technology to sequence each within a 
reasonable array.
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Minimizing Errors
• If an error exists in one of the 20-mer reads, 

the error will be perpetuated among all of the 
smaller pieces broken from that read.
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Minimizing Errors (cont’d)

• However, that error will not be present in the 
other instances of the 20-mer read.

• So it is possible to eliminate most point 
mutation errors before reconstructing the 
original sequence.
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Conclusions
• Graph theory is a vital tool for solving 

biological problems

• Wide range of applications, including 
sequencing, motif finding, protein networks, 
and many more
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