03 Sequence alignment

03.04 Special-purpose alignment algorithms

- Overlap matches
- Local alignment
- Repeated matches

Overlap matches

(allow ends to slide with no penalty)

- Align strings that either contain each other or overlap
- Similar to global alignment, but gaps at the two ends of each string are not penalized
- Alignment can start from any cell in the top or left border of the matrix $\quad F(0, j)=0$

$$
F(j, 0)=0
$$

- Alignment can end in any cell in the right or bottom border

$$
S(X, Y)=\max \left\{\begin{array}{l}
\max _{i} F(i, N) \\
\max _{j} F(M, j)
\end{array}\right.
$$

- Recursive equation is unchanged

Overlap matches

(allow ends to slide with no penalty)

Example: BLOSUM50, linear gap penalty $d=8$

GAWGHEE
PAW-HEA

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	0	0	0	$\mathbf{0}$	0	0	0	0	0	0	0
\mathbf{P}	0	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
\mathbf{A}	0	-2	-2	4	-1	$\mathbf{3}$	-4	-4	-4	-3	-2
\mathbf{W}	0	-3	-5	-4	1	-4	$\mathbf{1 8}$	$\mathbf{1 0}$	2	6	-6
\mathbf{H}	0	10	2	6	-6	-1	10	16	$\mathbf{2 0}$	12	4
\mathbf{E}	0	2	16	8	0	7	2	8	16	$\mathbf{2 6}$	18
\mathbf{A}	0	-2	8	21	13	5	3	2	8	18	$\mathbf{2 5}$
\mathbf{E}	0	0	4	13	18	12	4	4	2	14	$\mathbf{2 4}$

Local alignment [Smith-Waterman, 1981]

Looks for best alignment between subsequences of X and Y

- There are two main differences with respect to Needleman-Wunsch:

1. Negative scores are not allowed

$$
F(i, j)=\max \left\{\begin{array}{l}
F(l-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d \\
0
\end{array}\right.
$$

1. The score of the best local alignment is the highest score in the matrix (that can be enywhere)

Local alignment [Smith-Waterman, 1981]

Example: BLOSUM50, linear gap penalty $d=8$

AWGHE
AW-HE

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{P}	0	0	0	0	$\mathbf{0}$	0	0	0	0	0	0
\mathbf{A}	0	0	0	5	0	$\mathbf{5}$	0	0	0	0	0
\mathbf{W}	0	0	0	0	2	0	$\mathbf{2 0}$	$\mathbf{1 2}$	0	0	0
\mathbf{H}	0	10	2	0	0	0	12	18	$\mathbf{2 2}$	14	6
\mathbf{E}	0	2	16	8	0	0	4	10	18	$\mathbf{2 8}$	20
\mathbf{A}	0	0	8	21	13	5	0	4	10	20	$\mathbf{2 7}$
\mathbf{E}	0	0	0	13	18	12	4	0	$\mathbf{4}$	16	$\mathbf{2 6}$

Repeated matches (asymmetric)

- \quad Sequence X contains a domain, or motif

We look for multiple local matches of X in sequence Y, with score higher than a positive threshold T

$$
\begin{aligned}
& F(0, j)=\max \left\{\begin{array}{l}
F(0, j-1) \\
\max _{i}\{F(i, j-1)\}-T
\end{array}\right. \\
& F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d \\
F(0, j)
\end{array}\right.
\end{aligned}
$$

Repeated matches

HEAGAWGHEE
HEA. AW-HE .
Example: BLOSUM50, linear gap penalty $d=8, T=20$

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}	
	0	0	0	0	$\mathbf{1}$	1	1	1	1	3	$\mathbf{9}$	$\mathbf{9}$
\mathbf{P}	0	0	0	0	$\mathbf{1}$	1	1	1	1	3	9	
\mathbf{A}	0	0	0	5	1	$\mathbf{6}$	1	1	1	3	9	
\mathbf{W}	$\mathbf{0}$	0	0	0	0	2	1	$\mathbf{2 1}$	$\mathbf{1 3}$	5	3	9
\mathbf{H}	0	$\mathbf{1 0}$	2	0	1	1	13	19	$\mathbf{2 3}$	15	9	
\mathbf{E}	0	$\mathbf{2}$	$\mathbf{1 6}$	8	1	1	5	11	19	$\mathbf{2 9}$	$\mathbf{2 1}$	
\mathbf{A}	0	0	8	$\mathbf{2 1}$	13	6	1	5	11	21	$\mathbf{2}$	
\mathbf{E}	0	0	0	13	18	12	4	1	5	17	27	

Comparing alignments

Global alignment

Overlap

Local alignment

Repeated matches

03 Sequence alignment

03.05 Heuristic algorithms

- Problem statement
- BLAST
- FASTA

Heuristics

- The issue of performance
- Dynamic programming requires $\mathrm{O}(M N)$ steps
- Data base size (e.g. TrMBL)
- 314,641,655 amino acids in november 2003
- Grows very fast
- Query length: 300 a.a.
- Complexity: 10^{11} cells
- Computation time (at 10^{7} cells per second): 3 hours per query
- Solution
- Heuristic techniques trading off accuracy for performance
- Return not-only the best match to compensate for inaccuracy

BLAST

[Altschul et al., 1990]
Use short high-score matching words as seeds from which to extend the alignment

- Create a table of short words (i.e., $3 \mathrm{r}, 11 \mathrm{bp}$) that match the query with high score
- Scan the database searching for words in the table
- Extend the matching region (without gaps) stopping at the maximum scoring extension

FASTA

[Pearson and Lipman, 1988]
Search for short high-score matching words arranged on the same diagonal

1. Use a lookup table to locate short matching words (i.e., $2 \mathrm{r}, 6 \mathrm{bp}$)
2. Search for diagonals with many matching words (this can be done by sorting matches on the difference of their indices $i-j$)
3. Extend the matching seeds in the best diagonals (without gaps)
4. Use gaps to join ungapped regions

FASTA

[Pearson and Lipman, 1988]
Example: BLOSUM50, linear gap penalty $d=8$, seed_size $=1$, min_score $=6$

1. Locate seeds with over threshold score

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{P}	0	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
\mathbf{A}	0	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{W}	0	-3	-3	-3	-3	-3	$\mathbf{1 5}$	-3	-3	-3	-3
\mathbf{H}	0	$\mathbf{1 0}$	0	-2	-2	-2	-3	-2	$\mathbf{1 0}$	0	0
\mathbf{E}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	-1	-3	-1	-3	-3	0	$\mathbf{6}$	$\mathbf{6}$
\mathbf{A}	$\mathbf{0}$	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{E}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	-1	-3	-1	-3	-3	0	$\mathbf{6}$	$\mathbf{6}$

FASTA

[Pearson and Lipman, 1988]
Example: BLOSUM50, linear gap penalty $d=8$, seed_size $=1$, min_score $=6$
2. Find best diagonal with multiple supporting seeds

| | | \mathbf{H} | \mathbf{E} | \mathbf{A} | \mathbf{G} | \mathbf{A} | \mathbf{W} | \mathbf{G} | \mathbf{H} | \mathbf{E} | \mathbf{E} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | \mathbf{Q} | \mathbf{Q} | \mathbf{Q} | \mathbf{Q} | 0 | 0 | 0 | 0 | 0 | |
| \mathbf{P} | 0 | -2 | -1 | -1 | -2 | -1 | -4 | -2 | -2 | -1 | -1 | |
| \mathbf{A} | 0 | -2 | -1 | 5 | \mathbf{Q} | 5 | -3 | Q | -2 | -1 | -1 | |
| \mathbf{W} | \mathbf{Q} | -3 | -3 | -3 | -3 | -3 | 15 | -3 | -3 | -3 | -3 | |
| \mathbf{H} | 0 | 10 | 0 | -2 | -2 | -2 | -3 | -2 | 10 | \mathbf{Q} | 0 | |
| \mathbf{E} | \mathbf{Q} | 0 | $\mathbf{6}$ | -1 | -3 | -1 | -3 | -3 | \mathbf{Q} | $\mathbf{6}$ | $\mathbf{6}$ | |
| \mathbf{A} | 0 | -2 | -1 | 5 | 0 | $\mathbf{5}$ | -3 | 0 | -2 | -1 | -1 | 6 |
| \mathbf{E} | 0 | 0 | $\mathbf{6}$ | -1 | -3 | -1 | -3 | -3 | 0 | $\mathbf{6}$ | $\mathbf{6}$ | 16 |

FASTA

[Pearson and Lipman, 1988]
Example: BLOSUM50, linear gap penalty $d=8$, seed_size $=1$, min_score $=6$
3. Maximum ungapped extension

	\mathbf{H}	\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	0	0	0	\mathbf{Q}	0	0	0	0	0	0	0
\mathbf{P}	0	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
\mathbf{A}	0	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{W}	0	-3	-3	-3	-3	-3	$\mathbf{1 5}$	-3	-3	-3	-3
\mathbf{H}	0	$\mathbf{1 0}$	0	-2	-2	-2	-3	-2	$\mathbf{1 0}$	0	0
\mathbf{E}	0	0	$\mathbf{6}$	-1	-3	-1	-3	-3	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{6}$
\mathbf{A}	$\mathbf{0}$	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{E}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	-1	-3	-1	-3	-3	0	$\mathbf{6}$	$\mathbf{6}$

FASTA

[Pearson and Lipman, 1988]
Example: BLOSUM50, linear gap penalty $d=8$, seed_size $=1$, min_score $=6$
4. Possibly add gaps

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
\mathbf{A}	0	0	0	\mathbf{Q}	0	0	0	0	0	0	0
\mathbf{P}	0	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
\mathbf{A}	0	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{W}	0	-3	-3	-3	-3	-3	$\mathbf{1 5}$	-8	-3	-3	-3
\mathbf{H}	0	$\mathbf{1 0}$	0	-2	-2	-2	-3	-2	10	0	0
\mathbf{E}	0	0	$\mathbf{6}$	-1	-3	-1	-3	-3	0	$\mathbf{6}$	$\mathbf{6}$
\mathbf{A}	$\mathbf{0}$	-2	-1	$\mathbf{5}$	0	$\mathbf{5}$	-3	0	-2	-1	-1
\mathbf{E}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	-1	-3	-1	-3	-3	0	$\mathbf{6}$	$\mathbf{6}$

