Analysis of Biological Networks:
Network Motifs*

Lecturer: Roded Sharan Scribe: Anat Halpern and Efrat Mashiach

Lecture 4, November 16, 2006

1 Introduction

This lecture describes methods for analyzing networks in terms of their motif content. Network motifs are
defined as “recurring patterns of interactions that are significantly over-represented”. The motivation for
analyzing the motif content of the network lies in the basic assumption that the over-representation of a
certain motif in a network indicates it has some functional importance. Thus, exploring the abundant motifs
in a network may provide with novel insights regarding the functionality of these motifs in the network.
Most of the notions and analyzes described here have been developed in the laboratory of Uri Alon in the
Weizmann Institute. The lecture will describe the network motifs works on three levels:

1. Empirical studies on real-world networks
2. Theoretical analysis of network models

3. Motifs in the context of network evolution

2 Empirical studies on real-world networks

2.1 Transcriptional Networks

Shen-Orr et al [9] analyzed the motifs in a transcription network of E. coli, a prokaryote widely studied in
biology. The transcription network contains directed transcriptional interactions from special genes called
transcription factors to the operons they regulate. An operon is a group of contiguous genes that are tran-
scribed into a single mRNA molecule which is later translated into several proteins. Operons are found
almost exclusively in prokaryote organisms, while in eukaryotes every gene is usually transcribed into a
separate mRNA molecule. The authors have compiled a database consisting of 424 operons, containing 116
transcription factors and 577 interactions.

At first, motifs were detected by exhaustive enumeration of all the possible motifs of size n forn = 3
and n = 4. The significance of each motif was assessed by comparing the number of times it appears in the
network to the number of times it appears in a randomized ensemble of networks preserving the in-degree,
out-degree and mutual-degree of the original network. The mutual-degree refers to the number of mutual
edges the node possesses. A mutual edge is a bi-directional edge between two nodes (a loop of length 2).

For n = 3, the only significantly enriched motif was the Feed-forward Loop (FFL), depicted in Figure
1. For n = 4 the only significant motif was the bi-fan, representing a pair of transcription factors regulating
the same pair of operons.

*Based on a scribe by Igor Ulitsky and Daniela Raijman
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Figure 1: Source [9]. The network motifs enriched in the E. coli transcriptional network. (a) The Feedfor-
ward Loop motif containing two transcription factors (X - a general transcription factor and Y - a specific
transcription factor, where Y is regulated by X), both regulating an effector operon Z. (b) A sample feedfor-
ward loop in the L-arabinose utilization pathway. (¢) Single Input Molecule motif (SIM), built from a single
transcription factor X, regulating a series of operons not regulated by any other transcription factor. The
loop in X represents the auto-regulation which is usually found in those motifs. (d) SIM motif in the argi-
nine biosynthesis pathway. (e) Dense Overlapping Regulons motif (DOR): a dense region of connections
between transcription factors and operons. (f) a DOR motif in the stationary phase response pathway.

2.1.1 The Feed Forward Loop

The Feed Forward Loop (FFL) motif contains 2 transcription factors, X and Y, where X is referred to as
the general transcription factor and Y as the specific transcription factor. The operon regulated by both X
and Z is called effector operon. In the E. coli’s transcription network, 40 partially overlapping FFL have
been found, encompassing 10 different general transcription factors.

In order to further establish the biological relevance of the enrichment, the authors checked the coherence
of the FFLs in the network. A feedforward loop is coherent if the direct effect of X on Z has the same sign
(positive or negative) as the net indirect effect of X on Z through Y. For example, if X and Y both activate
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Figure 2: Source [9]. Summary of the significant statistical results described in Shen-Orr et. al. [9]. The
p-values were obtained by checking the number of networks from the number ensemble which exhibited
a quantity more extreme than the one found in the real network. a p-value of P < 0.001 designates that
no random network was found with a such an extreme value. We can see in the table that the p-value of
Feedforward loop and Bi-Fan are very significant.

Z and X activates Y, the loop is coherent. If, on the other hand, X represses Y, the loop is incoherent.
The intuition is that if the feed forward loop carries biological importance, the number of coherent loops
will be higher than expected, and the number of incoherent loops lower than expected. The results of this
comparison, as shown in Figure 2, show a clear over-representation of coherent loops in the transcription
network (85% of the loops found in the network are coherent). The biological reasoning for the enrichment
of this motif is thought to be the ability of such machinery to render out “noise” inherent in the cellular
systems. The authors have further performed a mathematical simulation, in which the effect of each gene
on the others was calculated using kinetic equations. The simulations showed the theoretical advantages
of this motif in filtering out accidental temporary increases in the amount of X and in fast shutdown of the
expression of Z as a result of a sudden shutdown of the expression of X . See Figure 3 for simulation results.

2.1.2 Single Input Molecule and Dense Overlapping Regulons

Two motifs of variable sizes have been sought in the network. The first is the Single Input Molecule (SIM)
motif. This motif is defined by a set of operons that are controlled by a single transcription factor (Figure
1). All the operons have to be regulated with the same sign (positive or negative) and have no additional
transcriptional regulation. This motif was sought through exhaustive enumeration over all the transcription
factors and 24 appearances were recorded in the entire network. The numbers of operons regulated by a SIM
in the transcription network and the random network ensemble are compared in Figure 2. It is clearly seen
that large SIMs are over-represented in the transcription network. The SIM motif is hypothesized to provide
a detailed temporal expression program resulting from differences in the activation thresholds of different
genes. Genes with a low activating thresholds will not only be activated before genes with a higher activating
threshold, but also will be shutdown after them. The simulation carried out, using kinetic equations, to test
this hypothesis is presented in Figure 3.

The second variable size motif sought is the Dense Overlapping Regulons (DOR) motif (Figure 1), which
is a generalization of a bi-fan. This motif represents a layer of overlapping interactions between operons
and a group of transcription factors, that is much more dense than corresponding structures in randomized
networks. Such motifs were sought using a clustering procedure which considered all the operons regulated
by two or more transcription factors. A distance measure based on the number of transcription factors
regulating both operons was defined. A standard hierarchical clustering algorithm [3] was then used for
combining operons into DORs. Then, additional operons regulated by the same transcription factors as the
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Figure 3: Source [9]. Description of the simulation providing theoretical justification for the functional use
of (a) the feedforward loop and (b) the SIM motif for temporal expression programs. In the first simulation,
the combinatorial regulation of the operon Z by transcription factors X and Y is modeled as a logical AND
gate. The effect of X on the expression of Y and Z was modeled as a threshold function, using kinetic
equations. This motif is shown to be able to ignore rapid variations in the activity of X, and therefore
they don’t affect the expression of Z. A short pulse in the activity of X is shown to have no effect on the
expression of Z. The same effect can be accomplished by a simple cascade of X — Y — Z (thin line in
the Z(t) graph), but this is shown to be theoretically inferior because of a slower shut-down. The SIM motif
is shown to be able to execute a temporal program of expression through different activation thresholds of
different genes. Genes with lower activation threshold are activated earliest and deactivated latest in this
setting.

genes in the DOR were added to it. The exact choice of the clustering algorithm plays a role here, as the
authors report different results for different algorithm choices. Shen-Orr et al [9] used operon clustering to
derive six DORs, whose operons share common function.

The authors found that the sets of genes regulated by different transcription factors are much more
overlapping than expected at random. This enrichment is quantified through the frequency of pairs of genes
regulated by the same two transcription factor (P < 0.001, Figure 2). The large DOR motifs allow a
compact modular representation of the E. coli transcriptional network which can be seen in Figure 4. It
can be clearly seen that a single layer of DORs connects between most of the transcription factors and the
effector operons. Feedforward loops and SIMs are frequent at the output of this layer.

2.2 Motifs in general networks

Following the successful application of motif extraction to the E. coli transcription network, a similar pro-
cedure has been applied to an ensemble of networks from highly diverse sources. Milo et al [8] analyzed 18
different networks from the following sources:

e Transcription networks from E. coli and S. cerevisiae.

e Synaptic connections between neurons in the nematode C. elegans.
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Figure 4: Source [9]. A modular representation of the E. coli transcription network using network motifs.
Nodes represent operons and lines represent transcriptional regulations. Each DOR motif is named after the
common function of its output operons. Global transcription factors regulating more than 10 operons can
appear in several subgraphs.
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Figure 5: Source [8]. (A) The different types of networks tested by Milo ef al [8]. (B) All the possible
directed motifs for n = 3.

e Food webs of throphic interactions between predator and prey in different ecological systems.

e Electronic circuits.

o World Wide Web network where every web site is a node and and interaction exists between X and
Y if website X is hyperlinked to website Y.

For each network, all the possible motifs for n = 3 (shown in Figure 5) and n = 4 were enumerated and
compared to the average count over 1000 random networks (100 for the huge WWW network). In this case,



the randomized networks were generated while preserving the following properties of the original network:
e In-degree, out-degree and mutual degree, as before.

e The number of appearances of all (n — 1)-node subgraphs. This is done to ensure that a high signifi-
cance was not assigned to a pattern only because it has a highly significant sub-pattern. For example,
a high number of 4-cliques in a network is less surprising if it has an enrichment of 3-cliques.

The randomization procedure used to ensure the above properties is based on the Simulated Annealing
algorithm ([4], sections 10.5.1 and 10.5.3):

Start with the system in a known configuration, at a known energy £
T = temperature = hot; frozen = false
while (! frozen) {
repeat{
Perturb system slightly (e.g. edge-swapping)
Compute AE - the change in energy due to the perturbation
if (AE < 0)
accept this perturbation, this is the new system configuration
else accept with probability = exp(—AE/KT)
} until the system is at thermal equilibrium at this T
if (E#0)
T = 0.9T //cool the temperature
else frozen=true

}

return final configuration as low energy solution

The algorithm utilizes the edge-swapping procedure for generating random graphs, as described in Lec-

ture 2. In addition, throughout the procedure, an energy function is used for accepting or rejecting every
‘Vreal,k_vrand,k|
Vreal,k+vrand,k
count of the kth (n — 1) subgraph in the original network and V;.4;,q 1 stands for the same quantity in the

random subgraph. Notice that Y = 0 if and only if the current counts of all the n — 1 motifs in the generated
random network equal exactly the respective counts in the original network. In the simulated annealing pro-
cedure, a swap move is always accepted if it lowers the energy of the graph. Otherwise, it is accepted with
probability exp(—AFE/KT) (Boltzmann Distribution), where AFE is the difference in energy before and
after the switch, T' is an effective temperature and K is Boltzmann’s constant. The temperature is gradually
lowered during the course of the algorithm based on some preset cooling schedule, which is usually set for
linear decay after every bulk of swaps. This procedure provides with a proper mixing of the original graph,
while approximately preserving the (n — 1)-motif counts.

The motifs found enriched in the different types of networks are displayed in Figure 6. The motifs were
consistent across different networks from the same family. The motifs enriched in the transcription networks
were shown, by Shen-Orr et al [9], to bear qualities useful for information processing. In the food webs, on
the other hand, there is an under-representation of the FFL, which is common in the transcription networks.
The authors suggest that this indicates that direct interaction between species at the separation of two layers
(as in omnivores) are selected against in the course of evolution.

In order to test the robustness of the obtained results, the concentration of the FFL in the transcription
networks has been checked in subnetworks of decreasing size of the E. coli transcription network (Figure
7). It can be seen that while in the random networks this concentration scales with the subnetwork size, in
the real network it remains relatively constant.

edge-swapping move. The energy function used is £ = ) . , where V.cq 1 stands for the
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Figure 6: Source [8]. Enriched network motifs found in biological and technological networks. For every
family of networks, the motifs which received statistically significant score are presented along with the
number of their appearances in real (/V,..,;) and random (N,.qy,4) networks.

2.3 Criticism of the null model

Following the publication of Milo et al [8], a critical comment has been published in Science magazine
[1]. The authors have criticized the use of the generalized random graph as a null model for network
motif detection, since it does not preserve the clustering property. For example, in the C. elegans synaptic
connections network, neurons are spatially aggregated and connections among neurons have a tendency to
form in local clusters. Two neighboring neurons have a greater chance of forming a connection than two
distant neurons at opposite ends of the network. Thus, a geometric model described in Lecture 3 is a more
appropriate random model in this case. The simulation in Figure 8, carried out using a simple geometrical
model network, shows that the motifs which were detected as enriched in the C. elegans neuronal network
using a generalized random model, are over-represented in the geometrical model.

The fact that the motifs are found to be over-represented even in a random network introduces doubt
into claims about their biological significance, as the observed over-representation can be explained by
other properties of the network (spatial localization in this case) and not by functional importance of the
motif. The authors conclude that the statistically significant motifs found in C. elegans are more likely to be
the result of the inherently localized partitioning of the nematode’s connectivity network than the result of
evolutionary selection for specific motif structures.
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Figure 7: Source [8]. Concentration of the feedforward loop motif in both real and randomized subnetworks
of the E. coli transcription network.
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Figure 8: Source [1]. (A) Construction of a toy network using a geometrical model. A 30 by 30 grid
of 900 nodes was used and the probability P of two nodes being connected reduces with the distance d
between them. (B) Color-coded probability P(d) of connecting to a node as a function of distance in the
grid. (C) Over-representation of network motifs in the geometric network: the counts of the motifs found
over-represented by Milo et al [8] compared with the mean number of motifs counted in 2000 randomized
networks generated through edge shuffling.

3 Sampling network motifs

While the computational problem of motif finding for n = 3 and n = 4 is tractable, exhaustive enumeration
becomes problematic for larger values of n, making such analysis impossible. To address this issue Kash-
tan et al [6] have developed an algorithm for estimating the motif’s concentration by subgraph sampling,
with runtime asymptotically independent of the network size. This work uses the same random model as
described before and focuses on the problem of counting the number of motifs in both real and random



networks. The quantity the algorithm aims to estimate is the subgraph concentration:
N
> j Nj

where N; is the number of occurrences of motif ¢. For example, if in the E. coli transcription network
the FFL motif is found 42 times and the total number of three-node connected subgraphs is 5206, the FFL
concentration is Cppy, = 42/5206 = 0.008. Instead of preforming an exhaustive enumeration of all the
subgraphs of the size n, the algorithm samples such subgraphs and estimates the frequencies of the motifs
in the whole graph based on the frequencies obtained in the samples. A subgraph is sampled using a simple
iterative procedure selecting connected edges until a set of n nodes is reached. This procedure is summarized
in Figure 9. The algorithm keeps the current subgraph and a set of edges which can be added to the subgraph
keeping it connected. At every iteration one of the edges is picked at random and added to the subgraph. At
the end of the procedure, the graph that is induced from the nodes that were sampled, is returned (including
edges not sampled).

Ci =

Definitions: £ is the set of picked edges.

V¢ is the set of all nodes that are touched by the edges in .

Init ¥ and E to be empty sets.
1. Pick a random edge ¢, = (L", s L) . Update E.E = {el }s VS. = {L v, }
2. Make a list L of all neighboring edges of I .
Omit from L all edges between members of V.:? . If L is empty return to 1.
3. Pick a random edge e = (v, ,V,) from L .
Update B¢ = E w {e} Ve =V, o {v,,v}
4. Repeat steps 2—3 until completing n-node subgraph §.
5. Calculate the probability P to sample §.

Figure 9: Source [6]. Pseudo-code for sampling a single subgraph.

The problem with this simple approach is that the sampling is not uniform, as some subgraphs are more
likely to be sampled than others (Figure 10). In order to correct this bias, a probability P is calculated,
designating the probability to sample a specific subgraph. P is calculated in the following way: for every
n-node subgraph, the sampling algorithm iteratively selected n — 1 edges. Thus, for P calculation, all the
possible ordered sets of n — 1 edges that could lead to the sampling of the subgraph are checked (similar to
the procedure shown in Figure 10):

P = Z HP?“[EJ = €j|(E1, ...,Ejfl) = (61, ...,6];1)]
UES»"L ]

Then, instead of a simple count, a score is calculated for every type of subgraph S;. At every iteration, a
weighted score W = 1/P is added to S;. The sampling procedure is repeated a large number of times.
Finally, the concentration of the subgraph type is estimated based on the score it obtained:

Z£:1 Sk

9

i



1 4
Toy O o O >

Network:
O @) O h O
2 3 6 7
Probability to sample {1,2,3}: Probability to sample {4,5,6}:
There are 2 possibilities to sample {1,2,3}: There are 2 possibilities to sample {4,5,6}:
1. Pick first (1,2): Pr=1/E=1/6. 1. Pick first (3,4): Pr=1/E=1/6.
then pick (1,3): Pr=1. then pick (5,6): Pr=1/2.
Pr[ {1,2) then (1,3) [=1/6*1=1/6. Pr{ (5,4) then (5,6) [=1/6%1/2=1/12
2. Pick first (1,3):Pr=1/E=1/8, 2. Pick first (5,6): Pr=1/E=1/6.
then pick (1.2): Pr=1. then pick {5.4): Pr=1/3.
Pr[ {1,3) then (1,2) [=1/6*1=1/6. Pr (5,6) then (5,4) [=1/6%1/3=1/18,
In Total: Pr| {1,2,3} | =1l/6+ 1/6 = 1/3=12/36 In Total: Pr| {4,5,6} | = 1/12 + 1/18 = 5/36

Figure 10: Source [6]. An example of a case where the algorithm samples different subgraphs with different
probabilities. In this toy network, two V-shaped subgraphs ((1,2,3) and (4,5,6)) are shown to be found with
different probabilities.
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Figure 11: Source [6]. Results of the sampling algorithm on three-node subgraphs compared with the
exhaustive enumeration results, on the WWW network.

The results of executing the sampling algorithm on the WWW network described above are presented
in Figure 11. All the 13 possible motifs are found in the network and it can be seen that 5, 000 samples out
of the 287 x 10° three-node subgraphs already give a good estimate of all the subgraph concentrations. Five
network motifs were detected as significant due to their high scores. The runtime in this case is reduced by
factor of 500 in comparison with the exhaustive enumeration algorithm.

10
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Figure 12: Source [6]. Results of the sampling method compared to the results of the exhaustive enumeration
for subgraphs with n = 3,4, 5 in the transcription network of E. coli. The statistical significance Z-score is
computed as before: Z = (Cyear — (Crand))/Orand-

In Figure 12 all the network motifs found in the E. coli transcription network for n = 3,4, 5 are pre-
sented. It is shown that the sampling method estimates the subgraph concentration very accurately even for
subgraphs with a relatively low concentration (C' = 10~°). The authors have also performed a theoretical
analysis of the time complexity of the algorithm, showing it to be approximately O (St x K"~ 1n"+1) where
St is the number of iterations and K is the average degree of the nodes in the network. In Figure 13 this
analysis is shown to qualitatively agree with the running time on the E. coli network. The runtime of the
exhaustive enumeration scales with the total size of the graph, while the runtime of the sampling method
is almost constant. On the other hand, the size of the subgraphs we sample does affect the runtime of the
sampling method.

4 Network comparison

Comparing network structures can be a difficult task, when dealing with networks of different sizes and
connectivity. An approach for comparing local topologies of different networks was presented in [7]. This
approach utilizes the significance profile measure - a quantitative representation of the spectrum of motifs.
In directed networks, the statistical significance of motif 7 is described by its z-score (z;) in the following
manner:

_ Nreal; — avg;

= 1
z Stdi ()

where Nreal; is the number of the motifs observed in the network, and avg; and std; are the mean and stan-
dard deviation of the counts of motif ¢ in an ensemble of random networks with the same degree sequence.

11
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Figure 13: Source [6]. On the left, the runtime of the sampling algorithm on detection of subgraphs with
n = 3...8. On the right, a comparison of runtimes of the exhaustive enumeration algorithm versus the
sampling algorithm.

The significance profile (SP) is defined as:

SP = — 2

where |z| is the vector norm. The purpose of the normalization is to discard bias resulting from network size
- motifs in large networks tend to have higher z-scores than motifs in small networks.

When studying undirected networks, the profile of four-node subgraphs (tetrads) was analyzed, since only
two types of three-node subgraphs exist in these networks. As the significance profiles for tetrads show a
high dependency on network size, a measure called ratio profile (RP) was used instead:

RP, — Nreal; — avg;
Nreal; + avg; + €

3)

The resulting profile can be used to infer Motif-based Superfamilies. Figures 14 and 15 show the results for
directed and undirected networks respectively.

S Theoretical Analysis

In [5], Itzkovitz et. al. present a theoretical formula for computing the expected number of subgraph
appearances in a network. Let us first look at a random network, where each edge exists with probability p.
For a directed network GG and subgraph H with n nodes and g edges, the expected number of occurrences
of H in G, denoted E'(H ), can be computed using the following formula:

N d
B = A() )1 = 5O AN~ N @

n N
where A is a term of order 1 which stems from the symmetry of each subgraph, and d is the average degree.
The intuition for this formulation is that there are (JZ ) ways to choose nodes for the subgraph, and then we

would like g edges to appear (probability of appearance is p), and n(n — 1) — g edges not to appear.

In our context, we would like to be able to calculate the expected number of appearances of a subgraph

12
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Figure 14: Source [7]. Triad Significance Profile for directed networks from various disciplines. Networks
with similar characteristics are grouped into superfamilies. Networks used are: (1) E. coli, yeast and B. sub-
tilis transcriptional networks. (2) Signal transduction networks, transcriptional networks, Neuron networks.
(3) WWW and Social networks (N is the number of nodes). (4) Language networks constructed using word
adjacency. Taken from [7]
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Figure 15: Source [7]. Subgraph Ratio Profile for undirected networks from various disciplines. Networks
with similar characteristics are grouped into superfamilies. Networks used are: (1) Electrical power grid,
geometric model (2) Secondary structure element adjacency for several large proteins (3) The Internet at
the autonomous system level (4) Networks grown according to the preferential attachment BA model. m =
number of edges per new node.

in a network with specific degrees, using an approximation which assumes the network is sparse (and there-
fore ignores non-edges). For each vertex we specify three properties: its in-degree (R;), its out-degree (K;),
and its mutual degree ()M;) in GG. Given these, we can calculate the probability of the existence of an edge

from a vertex 4 of out-degree K; to a vertex j of in-degree R;: P(edge) ~ féz% , where (K) is the average
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outdegree, (equals the average indegree). However, when calculating the probability for an edge whose
vertices have already been used, the degrees must be adjusted. For example, given that one edge adjacent
to vertex ¢ was used, the probability of another edge from the same vertex ¢ to a vertex u of in-degree R,
would be P(edge) ~ %. This reasoning can be extended to calculate all edge probabilities for a

subgraph in a sparse generalized random network (See for example Figure 16).

n=4
ga =4
=1
node 1 gg’z 2
k 1=2_r1={l.m1=1
KiRMy
KRy I N<K> 8, (Ky- )Ry / N<K>
&l %
= >
node 2 X node 3
Kk =1,5=1.m=0 S k 3=1.0,=1,m=0
oRM, 3 Ko Ry
KRy / N<K> KR -1V N<ik>
node 4
k ¢=D,r4=2,m‘=1
Ky Ry M,

Figure 16: Source [5]. An example of a subgraph with 1 mutual edge and four single edges. k;, r;, m; refer
to the degrees in the subgraph. Edge probabilities are shown.

In order to calculate the mean number of appearances of a subgraph, we must take the average with
respect to all possible choices of n distinct nodes o;...0,, and multiply it by the number of possible choices
of n nodes out of V. Starting with a given ordered set of nodes o0 = ¢;...0,,, the probability of observing H
on these nodes is calculated as follows:

N7gem9m Ko\ (Bo; ) (Mo, Ay Vo
vty = e LL (3 ) () Gy Yt ©

where g, is the number of single edges, g, is the number of mutual edges, (K) is the average out-degree,
and (M) is the average mutual degree.

Taking the average over all possible choices of o, the probability of observing H is:

Nr=ga—gm Lo /(KGN (Rp\ (M;
= S ane 1 () () <mj>kj!”!mj’>a ©

where A is the number of different permutations of the nodes that result in an isomorphic subgraph.
An application of the theoretical results on real data can be seen in Figure 17.

6 Evolution of motifs

6.1 Motif Conservation

In the previous section we have discussed how to find over-represented motifs in networks, and the possible
biological significance of these motifs. A possible confirmation for motif importance is motif conservation.
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Figure 17: Source [5]. Mean numbers for 13 different subgraphs in an ensemble of random networks with a
specified degree distribution. Shown are the theoretical values. Values in parentheses are percent deviations
of the direct enumeration results. The left value is the percent deviation in an ensemble which allows for
multiple edges, and the right value shows the deviation for an ensemble which does not allow multiple edges.

In evolution, conservation implies importance. The conservation of the proteins in a motif may be indicative
of the biological importance of that motif. Wuchty er al [10] tested for correlation between the protein
evolutionary rate and the structure of the motif it is embedded in. Motifs of size 2-5 were identified in a PPI
network. If there is an evolutionary pressure to maintain specific motifs, we would expect their components
to be evolutionarily conserved and have identifiable orthologs in other organisms. To test this hypothesis,
the authors used a set of 678 proteins with known orthologs in 5 higher eukaryotes. The natural conservation
rate indicates the fraction of the original yeast motifs that is evolutionarily fully conserved, meaning that
each of their protein components belongs to a set of 678 conserved proteins. The random conservation rate
is the fraction of motifs that is fully conserved for the random ortholog distribution. The conservation ratio
is the ratio between the natural and random conservation rate. The results can be seen in Figure 18. The
conservation rate of motif constituents was found to be tens to thousand of times higher than expected at
random, suggesting conservation of motif components.

6.2 Motif Evolution

Convergent evolution is considered an indicator of optimal design. Eyes and wings are examples for conver-
gent evolution, as they have evolved independently multiple times, despite independent origins. An inter-
esting question to address is whether motifs, being overrepresented patterns, are the result of some optimal
design, or whether they emerged through duplications of a few ancestral circuits. Given the high frequency
at which genes undergo duplication, it is likely that random duplication is the process by which motifs come
about. It is just as likely, however, that these patterns developed independently, and are abundant as a result
of the action of natural selection. Conant and Wagner [2] showed that multiple types of transcriptional reg-
ulation circuitry in E. Coli and S. Cerevisiae have evolved independently, and not by duplication of one or a
few ancestral circuits, thus indicating optimal design. In order to do so, they defined the following model:
Consider a circuit topology 7', which appears n times in the network. The graph G is a graph whose nodes
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Natural Random
Number of conservation  conservation  Conservation

#  Motifs yeast motifs rate rate ratio

1 ee 9,266 13.67% 4.63% 2.94
2 d% 167,304 4.99% 0.81% 6.15
3 & 3,846 20.51% 1.01% 20.28
4 8 3649591 0.73% 0.12% 5.87
5 eoe 1763891 2.64% 0.18% 14.67
& 23 9,646 6.71% 0.17% 40.44
7 R 164,075 7.67% 0.17% 45.56
s &2 12,423 18.68% 0.12% 157.89
s & 2,339 32.53% 0.08% 422.78
10 < 25,749 14.77% 0.05% 279.71
no % 1,433 47.24% 002%  2,256.67

Figure 18: Source [10]. Evolutionary conservation of motif constituents. Results suggest a significant
conservation of motif components.

are instances of 7" in the network, and whose edges connect instances that are potentially duplicates of one
another, (meaning that every pair of genes are sequence-similar). Two measures were defined as indicators
of common ancestry. The first measure, A, is defined as follows: A =1 — % where c is the number of com-
ponents in G. The second measure, F,,qz, is defined to be the size of the largest component. The greater
A is, the greater the fraction of circuits sharing a common ancestor. Figure 19 shows the two measures for
different examples.

Increasing common ancestry

Figure 19: Source [2]. Indicators of common ancestry for gene circuits.

The large majority of the circuit types tested exhibited no significant evidence of a common ancestry,
(A = 0 and F4; = 1). Only feed-forward loops showed marginally significant values of either A or
Fiae, (A > 0 or Fpug, > 1), but this finding is not statistically robust, as shown by permutation tests.
For no circuit was A significantly different from the chance expectation, and even for feed-forward loops,
most circuits showed independent ancestry. Results are summarized in Figure 20. In addition, the authors
examined whether members of one gene family preferentially occurred in one type of gene circuit, which
may happen if many circuits originated from one circuit. In Figure 21 we can see there is no significant
evidence of such a phenomenon.
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Circuit Number | Number of | Index of Largest

type of families (C) | common circuit family
circuits ancestry (A) (Fmax)
Yeast +8->8 44 (468+ | 0.082(0023 x| 5(1.9+ 1.4,

Feed-torward 48  1.9;P=0.08)(0.035; P=0.08)] P=005)

¥ I a5 0197 (0135 [0 (@T0£31.1.
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a2 168 0.045(0.065 | 5(74+6.2,
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Lag 2]

Reg. chain (3) 33 33 0 1
E.coli | g=a>0

Feed-forward 1" 1" 0 1

Iyz el 7 27 0 1

Figure 20: Source [2]. Common ancestry measures for six circuit types taken from biological networks

Organism Circuit type Pmoti®  Protifiduplicate” ~ P°

S. cerevisiae Bi-fan 0.82 0.80 NA
Feed-forward 0.38 0.42 0.21
Multi-input motif 0.77 0.76 NA
Regulator chains 0.64 0.67 0.30

E. coli Bi-fan 0.50 0.67 0.11
Feed-forward 0.82 0.67 NA

Figure 21: Source [2]. Gene families are not over-represented in circuits.
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