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ABSTRACT

Motivation:  Protein homology detection and sequence
alignment are at the basis of protein structure prediction,
function prediction and evolutionary analysis. This work
investigates the use of pair HMMS in pairwise protein
sequence alignment. It uses a newly-written local software
called HMmMoc to perform the task. The resulting alignments
are evaluated against the HOMSTRAD database of structural
alignments.

Results: The basic sequence to sequence alignment HMM
gives 41.20% using only sequence information, with a slight
improvement when structural information is added. This is
low considering Clustalw performs at 76.88% and EMBOSS
Stretcher (Needleman-Wunch based) performs at 80.16%.
The low performance is indicative of the presence of a bug in
the system. The methodology behind the investigative steps
for bug detection is explained, along with the results obtained
at each step. Due to the complexity and time constraints of
the project, a final answer has not been reached.

Contact: naila.mimouni@bnc.ox.ac.uk,

1 INTRODUCTION

Evolution has resulted in families of homologous proteins,
where members of a family share similar amino acid
sequences and protein secondary structures. The degree
similarity in sequence can vary from family to family, and
for diverse families pairwise similarity can be very low.

For accurate structure prediction, it is imperative to have
as “accurate” an alignment as possible between the target
and a sequence of known structure. The work described
in this report tackles the alignment problem. It uses a pair
HMM to align two protein sequences, only using sequence
information first and then adding structural information.
Evaluating the resulting alignments is carried out against the
HOMSTRAD structural alignments.

Section 1.1 is an introduction to protein structure. Section
1.2 discusses fold recognition approaches. Hidden Markov
models, which we use, are described in section 1.3, with a
short introduction to paiHMMs, HMMS used for pairwise
alignment.

1.1 Protein Structure

Proteins are organic macro-molecules which are essential
to the cell's structure and function. They are a component
of cell membrane, and can perform a range of functions
as enzymes, antibodies, hormones and transport molecules.
An understanding of protein function is facilitated by the
study of protein structure. Protein structures are far more
complex than simple organic chemicals, because the size of
the molecules allow for many possible 3-D arrangements.
Protein structure is described in terms of a hierarchy, in this
work, we will mainly deal with the first two.

1Proteins are built from an alphabet of twenty smaller

oMmolecules, known aamino acids A list of amino acids
and their corresponding symbols is included in appendix
1. The primary structure is the sequence of amino acids in

Structure, on the other hand, is more conserved. There arethe polypeptide chain. Val-Leu-Ser-Glu-Gly-Glu-Trp-GIn-
far more known protein sequences than protein structures. Leu-Val- represents the first ten amino acids of myoglobin.
We can infer the structure of a protein of known sequence Amino acids contain an amino groupV{-), a carboxyl
and unknown structure using sequence-structure homology group COOH), and a hydrogen atom attached to a central
recognition. Sequence-structure homology recognition uses a« carbon. In addition, each amino acid also has a distinct
database of known folds to detect the fold that is most likely side chain (oR group) attached to its carbon.

to be similar to the fold of the unknown structure. . ) )
Amino acids form bonds with each other through a

reaction of their respective carboxyl and amino groups.
The resulting bond is called thgeptide bond A protein

*to whom correspondence should be addressed




(a) Primary structure (b) Secondary structure

of known sequence only. This technique is based on the
TG Ay /j/ observation that unrelated proteins adopt the same fold, and

4" has led to the development of programs that detect structure
B et similarities in the absence of sequence similarities (Bourne
and Weissig, 2003).

(c) Tertiary structure (d) Quaternary structure

p 3 There exists a number of protein structure classifications:
A% gl Afo A SCOP (Murzinet al., 1995), CATH (Orenget al., 1997),
‘:L\,\\l = \Q\l — and FSSP (Holm and Sander, 1994). Several methods for
sequence structure similarity detection have been developed
pomen ». ‘( in parallel. One class fits a query sequence onto each structure
ﬂ} \Qﬁ\f in a database optimising an energy function derived from
il statistical or structural considerations (Threading) (Xu and

Xu, 2000). Another class includes profile methods that use
Fig. 1. The hierarchy of protein structure. Primary structure is thePOth Sequence and structure such as 3D-PSSM (Ketle,
sequence, secondary structure includes helices and sheets. Terti@&§00), and FUGUE (Stet al., 2001).
structure is the overall folding, and quaternary structure is th

grouping of several proteins €Another class of methods for fold recognition is based on

advanced techniques for remote homology detection based on
sequence information alone (explained in the next section).

is synthesised by the formation of a linear succession

of peptide bonds between amino acids, and can thus berofile HMM s

referred to as @olypeptide Profile HMms! (Haussler et al, 1993; Eddy, 1995),

. o implemented by programs such sam (Karplus et al.,

2.The secondary structure is the organisation of theiggg), andHMMER (Eddy, 2001) use the sequence family

polypeptide into_regulgr repetitivg .pat_terns. over Shortto build a profile which includes the position-specific

segments of amino acids. The limitations imposed Orbrobabilities of variation in amino acids, as well as insertions

the primary structure by the peptide bond and hydrogen,,q geletions. This indicates conserved positions (important
bonds allow for only a certain number of conformations., he family), and non-conserved positions which are

The polypeptide chain has rotational freedom only abo”(/ariable among family members. The sequence, whose
the bonds formed by thev carbons ¢ angle between g cyyre is not known, is then aligned to the profile,
Co and N, ands angle betweerCa and the carbon indicating the degree of homology. The membership of a
of the carboxyl group).c helices ands s.heets are the sequence to a family is either given by the most probable
two types of secondary structure seen in protein. TheSgah through the model (the Viterbi algorithm is explained in
regular structures are interspersed with regions of irregulag, o next section), or by its posterior probability summed over
structure that are referred to as loop or coil. all possible paths. Figure 2, adapted from Soding (2004),
3Tertiary structure is the overall folding of the whole represents an alignment of a sequence to a prefile .

polypeptide. Profile HMMs perform well in homology detection and

4 Quaternary structure is the grouping of several proteirsequence alignment because they contain more information
molecules into a single larger entity; the subunits may acgbout the sequence family than a single sequence (Krogh
cooperatively with each other to give the grouping speciaft al, 1994; Eddy, 1998; Karplust al, 2001). A number of
properties not possessed by the sing|e subunit (Bourne arsdructure prediction servers rely on profile—profile comparison
Weissig, 2003). (Rychlewskiet al.,, 2000; Ginalskiet al., 2003; Tanget al.,

2003; Tomii and Akiyama, 2004), and perform well for

Figure 1, adapted from http://cwx.prenhall.com/horton/ 514 recognition in automated structure prediction contests
medialib/medigportfolio/, gives a graphical representation ~arasp | VEBENCH. and EVA (Fischer et al, 2003;

of the hierarchy of protein structure. Rychlewskiet al., 2003; Kohet al., 2003). Newer methods
. . for homology detection includeiMM-HMM comparisons
1.2 Protein Fold Recognition (Soding, 2004).

Using currently-available methods, it is still not possible
to make a sufficiently accuratab initio protein structure
prediction. Instead, databases of folds are created, a
the problem becomes identifying which of the folds in the

database is similar to the unknown fold of a new protein® Hmwms are explained in the next section

Motif Detection
nl}gotifs are conserved sequence patterns that describe




Hidden Markov models for protein sequence alignment

HMM |:

Emittad
sequence
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Fig. 2. The alignment of a sequence to a profile HMM. The square: siats asguence {hidden):

indicate a match state. The diamonds an insert state, and the circl . @ @ @ @ @ @ @ @ .

a delete state. The path through the HMM is shown in bold arrows .
trensitions; 7 099 099 099 090 001 0% 0§ 05 0] 099

aymbol eegquence {observable}:
specifically all members within a protein family. Often, ... AT C A A G G C G AT..
motifs centre around sites that are functionally importan emissims: ©4 ©4 ©1 04 04 05 05 04 ©5 C4 04
to all members of the family. Motifs can be derived by an
expert to capture biological knowledgerosITE (Bucher
and Bairoch, 1994), or using automated metheegs:\TT
(Jonassen, 1997y EME (Bailey and Elkan, 1994) andAsT Fig. 3. A two-state HMM modelling a DNA sequence, the first
(Bailey and Gribskov, 1998). FinalliMMSTR is a HMM generating AT-rich sequences, and th_e secon_d generating__C_G-rich
which captures sequence as well as structure features bas@ﬁquences. State transitions and their associated probabilities are

on the initiation-sites library of sequence-structure motifs, " icated by arrows, and Symbo'. emission emission pmbab'“t'?s
for A, c, G, T for each state are indicated below the states. This
(Bystroff et al., 2000).

model generates a state sequence as a Markov chain (middle) and
each sequence generates a symbol according to its own emission
probability distribution (bottom). The probability of the sequence is
the product of the state transitions and the symbol emissions. For
a given observed DNA sequence, the hidden state sequence that
Hidden Markov Models §mMms) are statistical models generated it, i.e. whether this position is in a CG-rich or an AT-rich
which are generally applicable to time series or linearsegment, is inferred.

sequences. They have been widely used in speech recognition

applications (Rabiner, 1989), and have been introduced t
bioinformatics in the late 80’s (Churchill, 1989). AN/ can

1.3 Description of Hidden Markov Models

?.3.1 Parameter EstimationHwmm design issues include

be visualised as finite stat hineFinite stat hi defining how many states to model, and how to estimate the
€ visualised as anite state machineminite staté machines =, qiiion and emission probabilities. The former is dealt with

move through a series of states and produce some kind } :

: . . section 2.2.
output, either when the machine has reached a particular state
or when it is moving from state to state. TR&im generates When the paths are known for the training sequences, a
a protein sequence ®mittingamino acids as it progresses Maximum Likelihood approach to estimating the emission
through a series of states. Each state has a table of amigd transition parameters is used as follows:

acid emission probabilitiesandtransition probabilitiesfor Ay
moving from state to state. Transition probabilities define a =S (1)
distribution over the possible next states. v kL
_ Ex(b)
Any sequence can be represented by a path through the ex(b) = m (2)

model. This path follows the Markov assumption, that is, theW

. . ' here £ (b) is the number of instances in the training data
choice of the next state is only dependent on the choice of the . . ) .
. ... Where symbob is emitted in staté and Ay, is the number of
current state. However, the state sequence is not known; it IS

hidden. Finally, the alignment probability, given the model, ransitions from staté to [ in the training data. Sometimes,

is the product of the emission and transition probabiIities'oseumO'go.umS are added to account for transitions not seen
In the training data.

along the path (Karchin, 1999). Figure 3, adapted from
(Eddy, 1996), represents a two-statem modelling aDNA On the other hand, when the paths are unknown, the Baum-
sequence, with heterogeneous base composition. Welch algorithm, an Expectation Maximisation algorithm,




initialises parameters and iteratively re-estimates them using.4 Aims of the work

the forward backward values (refer to Durlgiral. (1998) for
a thorough explanation).

1.3.2 The Viterbi Algorithm The most probable state

There exists more known protein sequences than protein
structures, structure prediction relies heavily on sequence
alignment of the protein of unknown structure to other

sequence (or path) can be determined recursively usingroteins of known structure. According to recenAsp

the Viterbi algorithm. If the probability/ (i) of the most
probable path ending in statewith observation is known

reports (Tramontanet al, 2001; Bradleyet al, 2003),
alignment inaccuracy is still a major problem. The quality of

for all the states:, then these probabilities can be calculatedalignment does not correlate well with the level of sequence

for observation:; ; as:

Viti +1) = e)(xir1)maxy (Vi (i) ag) 3)

All sequences start in the begin state, and by keepin
pointers backward, the actual state sequence can be found

identity, and alignment algorithms do not perform as well for
highly divergent sequences. Therefore, improving sequence
alignments ultimately leads to better structure and function
prediction methods.

veral techniques, including the motif detection and profile

backtracking. The full algorithm is presented in Algorithm HMMs described above have been developed to tackle the
1. A very good explanation of theory and implementation oft@Sk. This work investigates the use of paimwms for

HMMS along with examples can be found in (Durlghal.,
1998).

Initialisation (i=0):
Recursion (fori=1...L):

Vs(0) = 1,V%(0) =0 forallk O
W(l) = 61(Ii)ma$k(vk(i — 1)akl
ptr; = argmazi (Vi (i — 1)ag
P(z,m) = mazrVi(L)ako

mr = argmazxk(Vi(L)ako)
Traceback(for i=L...1): mi—1 = ptri(m;)

Termination:

where:

k,I= hidden states

S= start state

E= end state

« = the most probable path

L=the length of the emission sequence

ptr=the backward pointer.

x;= the ith symbol in the emission sequence
ax;=the transition probability from stateto [
ei(b)=the emission probability of symbélfrom statel
Vi (#)=the most probable path ending in stateith observation

Algorithm 1: The Viterbi algorithm for estimating the most
probable path

Pair HMM s

sequence alignment. It uses a locally-written hidden Markov
model compiler gmmoc). The parameters are estimated
from the HOMSTRAD alignments. An evolutionary model

is not incorporated. The resulting alignments are evaluated
against theHOMSTRAD alignments. The performance of
the system is low, 41.20% for basic sequence to sequence
alignment, with only a slight improvement when structure
information is added. The next sections explain them
design, the workings of the system, and the steps undertaken
for bug detection. Unfortunately, due to the time constraints
of the project, no final answer has been reached.

2 APPROACH

Sequence alignment is the first step towards protein structure,
which in turn is a step towards function prediction. Because
sequences can be very similar or highly divergent, it
would be useful to have an idea of evolutionary distances.
Ideally, the model should also take in consideration the
varying substitution rates and patterns across sites, the
effect of variation in selection across sites (purifying vs.
positive selection), the interaction between sites as well as
the structural context. A high level representation of the
different components of a paMm alignment algorithm
that uses an evolutionary model are shown in figure
4. Surely, incorporating phylogenetic information would
improve alignment accuracy. However, the time constraints
of this project made it unfeasible to incorporate such a model.

PairHmMMms areHMMs used for alignment of two sequences. Instead, the same approach presented in figure 4 was taken
They proceed in the same way explained above, except thatithout including the evolutionary model. More specifically,
they do not emit symbols, but a match state, an insert statéigure 5 shows the different steps undertaken for this work.

or a delete state. The design of the pairm used for this
project is explained in section 2.2.

This includes data preprocessing, parameter estimation, the
use of HMMoc, a hidden Markov model compiler written
locally, and finally the evaluation.
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Evolutionary P1;1a77
Mode! sequence
N LTREKLIELAILVGTDYNPGGIKGIGLKKALEIVRHSKDPLAKFQKQSDVDL

Pair HMM — Alignments YAIKEFFLNPPVTDNYNLVWRDPDEEGILKFLCDEHDFSEERVKNGLERLKK

1 AIKSGKQSTLESWFKR

P1;1b43a

sequence

. . . ISLDDLIDIAIFMGTDYNPGGVKGIGFKRAYELVRS-GVAKDVLKKEV-E

Fig. 4. The overall approach for this work does not include an | ypgKRIFKEPKVTDNYSLSLKLPDKEGIKFLVDENDFNYDRVKKHVDKL

evolutionary model (shown in blue). YNLIANKT ==enmmev

P1;1a77

B N secondary structure and phi angle

CCHHHHHHHHHHHPCCCCCPPCCPCCHHHHHHHHHCCCCHHHHCHHHCCCCH

L — L HHHHHHHHCCCCCCCCCCCCCCCCHHHHHHHHCCCCPCCHHHHHHHHHHHHH

HHHHHHHHHCCCCCCC
P1;1b43a

Data

secondary structure and phi angle
CCHHHHHHHHHHHPCCCCCPPCCPCCHHHHHHHHHC-PCHHHHHHHHC-CP
HHHHHHHHHCCCCCcCcccccccCCCCHHHHHHHHCCCCPCCHHHHHHHHHHH

HHHHHHHC-------
P1,1bd3a
Ooi number

2223334554553432232244223222233233222234433321222334
3333222211110000011222222223222221111222222222322222
2221111111110000

Aligned P1;1a77

Sequences )

Ooi number
222333454454333233223422222234333322-22432343233-22
332332222111100000111222232232222211112122222223222
22221111--------

Translate HMMoc output

Fig. 5. The different steps undertaken for this work include data
preprocessing, parameter estimation, alignment using HMMoc,

translating the HMMoc alignments and evaluating them. Fig. 6. The XPGC family alignment as it appears in HOMSTRAD,
including sequence and structure. The sequence information
includes the amino acids. The secondary structure and phi angle
includes C for coil, H for helix, E for sheet, and P for positive phi
angle. The Ooi number, a count of the surrounding C alpha atoms
(ian a 14 Angstrom radius, is presented in numbers.

2.1 Dataset

The dataset used consisted WbMSTRAD alignments of
1031 protein families downloaded in September 2004. Th
family size varies from 2 members for XPG to 41
for globin. For the untrimmed data (as it appears in the ] o N o
HOMSTRAD alignments), the total number of columns is @1 M which has an emission probability distributip,

251,471, and the number of aligned columns (no gap) ifor emitting the aligned pair:;:y;. Both states X and Y
210,665. have a probability distribution of emitting; in sequencer

andy; in sequencey respectively against a gap. Transition
As a first step, the whole set of protein families were usecprobabilities between the states are also estimated from the
for parameter estimation and evaluation. Different subsetgata. They are shown on top of transition arrows, and follow
should be used for parameter estimation and evaluationhe condition that the sum of all transition probabilities
However, due to time constraints, moving to the next stepeaving a state sum to 1.
was not done. Each protein family is represented by the
alignments of its sequences, with additional information suchthe HMm does not model context dependence, it assumes
as secondary structure, Ooi number and solvent accessibilitfadependence of columns. It does not have a transition from
The two sequences selected to be aligned were the firstate begin to end (no empty alignments), and disallows
and last sequences in the family alignment file, as they argansitions from state X to Y (no insertion followed by a
assumed to be the most divergent. Figure 6 is an examplgeletion, and no deletion followed by an insertion).
of the XPGC family (two members), including sequence,

structure and Ooi number information.
2.2.1 Parameter EstimationParameter estimation was

2.2 HMM Design performed on the HOMSTRAD alignments using the

maximum likelihood method explained in equations (1) and
The HMM design used for global alignment of two protein (2). The alignments were first trimmed to the subsequences
sequences is presented in figure 7. There are two silent stataglimited by the first and last aligned amino acid residues.
the begin and end states which do not emit any symbols. Th&éhe resulting emission and transition probabilities are
three non-silent states include the match state indicated byresented in Appendix 2.




TheHOMSTRAD alignments contain secondary structure and
inseringerd ¢ angle information as well as Ooi number information.

& The experiment following the basic sequence information
experiment included structure information as classes: of
Insert-end helices, 5 strands, positivep angles and coils. Parameter
estimation was conducted as before.

Start-insert

& Match-insert

1-e-T

Start . e End The Ooi numbers in theOMSTRAD alignments range from
0-8, with very few occurrences of 9. These were grouped into
4 classes, because of syntax limitations impose# by oc.
HMMoc only takes single characters in the alphabet, and
Delete-delete there is not a sufficient number of ASCII characters to assign
a unique character to each mapping of sequence and Ooi
number. This also holds for combining sequence structure

Fig. 7. The HMM design for the work presented in this report. The and Ooi number. Parameter estimation was carried out as
li‘{efore. The results are presented below.

are two silent states, the begin and end states which do not em
anything. The three non-silent states are the Match state indicated

by M, the insert state indicated by X, the delete state indicated by Y2.5 Evaluation
The transitions between states are indicated by arrows.

A few programs had to be built to handle generating input
data in the format required fatmmoc and also translating

its output. Figure 8 includes a typical example of themoc
output. This needs to be translated into an alignment, and

HMMOC is aHMm compiler written by Gerton Lunter. ItiS yhan an evaluation program produces the final resuit.
meant as a high-level abstraction of hidden Markov models.

The low-level details of theimm computation is hidden The result represents the percentage of correctly-aligned
from the user inCIuding the posterior probability Ca'CU'ationSC()]umnS’ exc]uding gapped ones, obtained by the program
and path decodingHMmoc requires the input of &mMM  divided by the aligned columns, excluding gapped ones,

topology along with the emission and transition probabilitiesgiven by HomsTRAD. This value is averaged over all
in an xml format (presented in appendix 3). It outputs thesequences giving the final result.

most probable path, and the forward backward probabilities

as needed. It allows for multiple output tapes (paitms)  Evaluation was conducted using th@MSTRAD database.

and higher order states. This tool is very useful, as itHOMSTRAD contains structural alignments, and we therefore
simplifies the programming of the technicalities lfims,  use it as an “independent” set of gold standard alignments.
while requiring the user to think about tlkeim design and Because theimm is for global alignment, the sequences are
topology. However, as it is a recently developed package, antimmed to the subsequences between the first and last amino
was not tested especially for paimMs, some time was spent acid.

debugging it.

2.3 HMMoc

2.4 Adding Structural Information 3 RESULTS AND ANALYSIS

. . The results obtained with the transition and emission
A study. by Deaneet al (2004.) investigated the' most probabilities estimated from the data for basic sequence
informative features to use for improvement of alignment

accuracy. Their results illustrate that indels occur mostl ininformation were 41.20%, and 42.05% for sequence
) Y- . . . y augmented with structure informatfanThese results were
coil regions about twice as high comparedtbelices. Also,

) ) : ) - . surprisingly low, and adding structure information did not
indels are twice as likely to occur i helices than in3 P gy g

o . improve the results dramatically. This pointed to the presence
sheets. The most significant result relates to the Ooi number; P y P P

t of Cer at ithi di £ 14 of th due’ df a bug in the code. A thorough re-check of all estimation
acount of ‘e atoms Within a radius o ONINE TESIAUES  and transition probabilities was carried out at this stage.
own C«. The logarithm of the indel propensity is very

nearly linearly related to the Ooi number. This suggests that
incorporating secondary structure information,cabelices

and g strands could improve alignment. Also, incorporating2 Training on the first and second sequences expectedly decreased the
Ooi number information would improve it further. performance.
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To eliminate the possibility that the code includes a

A R il
& (0381 0030 0026 programming bug (as opposed to a conceptual error), all
A Rt R 0050 0355 0.034 ; ; ; Pt ; i
QCACKSIP ke the code written for the project (in Perl initially), including
PR R the evaluation code was rewritten in Java. The results were
| ‘ | exactly the same.
HML generation
v .
3.3 Changing the Parameters
Qutput
W omparing the gold standard alignments wi e alignments
C th Id standard al ts with the al t
gﬂﬁggg;fg produced by the paiHnmMm suggested a difference in gap
gm%gggg%g opening. TheHOMSTRAD alignments contain several small
3-{10K0 0207622 gaps along the sequence. The pairm alignment would
2-{1,1}0.0168-->3 . . . .
31 110016243 align the correct residues at the beginning, but would not
8 ey open a gap when the gold standard does. Changing the
11300524 emission and transition parameters was the next step.
Translate output
Ay . i .
QACACTKSND 3.3.1 Emission Probabilities | worked out the probability
SIERRL SR matrix from the B osum62 matrix used by Clustalw. Using
vl the resulting probability matrix with the original transition
v parameters gave a slight improvement of 41.41%. However,

oo this does not account for the 35% difference with Clustalw.

Fig. 8. A typical example (except for the score) of alignment Similarly, setting all the insertion and deletion emission

performed by the painMm parameters to the same value gave 39.45%.
3.1 Comparison with Other Alignment 3.3.2 Transition Parametersin the first model | tried, | set
Algorithms the transitions match to match, match to insert, and match to

delete to be the same. Similarly, for delete to delete and delete

The first step undertaken was to compare the results wittp match, insert_tq insert and_ insertto ma_tch. This should give
other alignment algorithms: Clustalw assiBossStretcher ~ bad results, as itis equally likely to stay in a match or open a
(a faster version of the Needleman-Wunch (Myers and Miller 3@P- The result was 34%.

1998)) were selecteddmmer was considered, but it is a
more sophisticated method than the paim; it requires the
whole protein family to build a profile and then aligns two

Table 1 summarises the results in percentages for different
combinations of transition probabilities explained in tables 2

members of that same family. This would definitely give it an@1d 3. The results vary from 36.53% to 41.71%. The highest

advantage, producing much better results. Clustalw performrsESUIt i,s_ obtained with a high match to maich transition
at 76.88%, andEMBOSS Stretcher, performs at 80.16%. A probability (80%), and delete/insert to match of 60% and

closer look at the software was taken. delete to delete of 38%.

As the model does not allow for transitions from delete toh€ same combination of transition parameters as specified
insert and insert to delete states, a measure of how often théy the tables is used with the.osum matrix, only a small
occur in theHOMSTRAD data is useful. Insert to delete and increase is obtained.

delete to insert occur in 12% of the alignments. These will of ) o
course be missed by the paiKm. | also tried the Baum-Welch method for parameter estimation

usingHMMoc. The program gave some compilation errors,

and there was no time to look at it any further.
3.2 Rewriting the Code

At this stage, the 35% difference with Clustalw is still not
Clustalw and Stretcher were fed the same data as the paéxplained. Several options were investigated. The bug is
HMM, they both use the evaluation code used for the paieither due to a conceptual error, orH®moc itself. Due to
HMM. The difference lies in the parameters used, the codéhe time constraints, it was not possible to pursue the bug
aroundHmMmoc, and the use oimmoc itself. tracking any further.




Indel1 Indel2 Indel3 information, as well as a combination of both, was

Match1 40.15 37.55 36.53 . : ,
Match2 4161 4152 37.37 undertaken. None gave a considerable improvement. Using a

Match3 4132 4171 4093 system that functions correctly, 'Fhese_ are expected to improve
Table 1. Summary of the results for the different settings explained in tablesalignment accuracy. Other options include hydrophobicity,
2and 3 and cis-peptide information, whose absence is not interesting,

but presence potentially useful.

Match-end Match-insert Match-delete Match-match

Match1 0.05 0.25 0.25 0.45 4.2 Evolutionary Model

Match2 0.05 0.15 0.15 0.65

Match3 0.05 0.075 0.075 0.80 Current alignment tools, includingam (Karplus et al.,
Table 2. A table describing the labels match 1, match 2, match 3 1998) andHMMER (Eddy, 2001) use sequence weighting to

correct for phylogenetic bias during training. Incorporating
a statistical model of protein sequence evolution allows
Delete/Insert-end  Delete/Insert-match  Delete/Insert-delete for estimating selection pressures acting on the sequence
Indel 1 0.02 0.70 0.28 family. The standard evolutionary model is thier91 model
:Egi:g 8:8; 8:28 g:ig (Thorneet al, 1991), which deals with finite sequences and
Table 3. A table describing the labels Indel 1, indel 2, indel 3 aIIow;: Only single regdue indel events. An |mprovement
allowing indels of arbitrary length was developed by Miklos
et al. (2004)

4 CONCLUSION AND FUTURE WORK _Evolutio_nary mo_d_els give ajoi_nt distribution_ of all sequences
in a family, conditioned on their phylogenetic tree (Holm and

Protein structure prediction methods rely heavily onBruno , 2001). Correlation between sequences are therefore

sequence alignment. This project examined the use of papuilt into the model, which improves alignment accuracy.
HMMs for global alignment of two protein sequences. A

newly developedimm compiler was useddmmoc requires 4.3 Higher Order Markov Chain

the HMM topology and emission probabilities in an xml

format, and outputs the most probable path, abstractingo far, the Markov property states that the probability of
away all the calculations. The parameter estimation and the state depends only on the probability of the previous
evaluation were conducted using themsTRAD alignments.  state. A higher order Markov model would allow for
The performance of the paiHmMm for basic sequence building more HMM memory into the states, to capture
information was 41.20%, with a slight improvement whenresidue dependencies. Inhomogeneous Markov chain models
structure information is included. Relative to other alignmentwould allow for different probability distributions at different
methods, this was at least 35% inferior. positions or regions. This includes more information into the
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1 AMINO ACIDS

Name Abbr. Linear structure formula
Alanine ala A CH3-CH(NH2)-COOH
Arginine argR  HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH

Asparagine asn N H2N-CO-CH2-CH(NH2)-COOH
Asparticacid aspD HOOC-CH2-CH(NH2)-COOH
Cysteine cysC HS-CH2-CH(NH2)-COOH
Glutamine gnQ H2N-CO-(CH2)2-CH(NH2)-COOH
Glutamic acid gluE HOOC-(CH2)2-CH(NH2)-COOH

Glycine gly G NH2-CH2-COOH
Histidine his H NH-CH=N-CH=C-CH2-CH(NH2)-COOH
Isoleucine ilel CH3-CH2-CH(CH3)-CH(NH2)-COOH

Leucine leu L (CH3)2-CH-CH2-CH(NH2)-COOH

Lysine lys K H2N-(CH2)4-CH(NH2)-COOH

Methionine  metM CH3-S-(CH2)2-CH(NH2)-COOH
Phenylalanine  phe F Ph-CH2-CH(NH2)-COOH

Proline pro P NH-(CH2)3-CH-COOH

Serine serS HO-CH2-CH(NH2)-COOH
Threonine thr T CH3-CH(OH)-CH(NH2)-COOH

Tryptophan trp W Ph-NH-CH=C-CH2-CH(NH2)-COOH

Tyrosine tyrY HO-p-Ph-CH2-CH(NH2)-COOH

Valine val vV (CH3)2-CH-CH(NH2)-COOH
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2 EMISSION AND TRANSITION PROBABILITIES

2.1 Emission Parameters for the Insertion and Deletion states

Insertion  Deletion
0.074 0.057
0.045 0.058
0.056 0.084
0.080 0.091
0.008 0.035
0.041 0.072
0.076 0.077
0.099 0.086
0.022 0.063
0.036 0.039
0.063 0.045
0.073 0.082
0.017 0.053
0.031 0.048
0.065 0.092
0.068 0.079
0.057 0.066
0.012 0.054
0.030 0.054
0.047 0.042

<K <KSE4pWUVTMEXR-r—IOMOOUZI>

2.2 Emission Parameters for the Match State

2.3 Transition Parameters




A

0.361

0.050
0.050

0.046

0.083
0.066
0.063
0.070
0.041
0.045

0.048

0.055

0.058

0.038
0.063
0.096
0.074
0.039
0.036
0.074

<K <KEAVWITTMEARCr—IOMOOUTZI>

0.052
0.043
0.027
0.022
0.054
0.043
0.030
0.019
0.043
0.153
0.423
0.037
0.175
0.116
0.032
0.034
0.047
0.061
0.061
0.109

<K <KEAVWITTMEARCr—IOMOOUTUZI>

3 XML INPUT FOR HMMOC
<?xml version="1.0"?>
<hml debug="true">

<author>Naila Mimouni</author>

R

0.030

0.357
0.040
0.031

0.017
0.062
0.043
0.022
0.048
0.019

0.024

0.101

0.027

0.016
0.028
0.036
0.033
0.024
0.028
0.021

0.038
0.116
0.059
0.048
0.013
0.079
0.067
0.029
0.053
0.022
0.024
0.317
0.030
0.016
0.040
0.043
0.045
0.016
0.027
0.024

N D
0.026 0.031
0.034 0.035
0.321 0.087
0.066 0.396
0.021 0.014
0.043 0.052
0.037 0.089
0.036 0.035
0.050 0.044
0.013 0.012
0.013 0.014
0.044 0.047
0.021 0.020
0.014 0.014
0.024 0.037
0.049 0.055
0.037 0.040
0.016 0.015
0.025 0.021
0.014 0.016
M F
0.015 0.019
0.011 0.014
0.010 0.014
0.007 0.010
0.014 0.028
0.013 0.016
0.009 0.011
0.006 0.010
0.012 0.027
0.031  0.039
0.041 0.053
0.011 0.011
0.244 0.047
0.024 0.401
0.007 0.012
0.010 0.016
0.016 0.017
0.016 0.066
0.015 0.108
0.022 0.033

Start-match
Start-insert
Start-delete
Match-end

Match-insert

Match-delete
Match-match
Delete-end
Delete-match
Delete-delete
Insert-end
Insert-match
Insert-insert

C Q E
0.014 0.029 0.048
0.005 0.045 0.055
0.007 0.037 0.055
0.004 0.034 0.100
0.463 0.015 0.017
0.006 0.258 0.099
0.004 0.057 0.354
0.006 0.017 0.031
0.006 0.047 0.049
0.009 0.014 0.021
0.009 0017 0.021
0.003 0.050 0.075
0.010 0.023 0.026
0.010 0.014 0.017
0.005 0.022 0.043
0.011 0.030 0.050
0.010 0.030 0.048
0.004 0.014 0.022
0.007 0.018 0.026
0.014 0017 0.024
P s T
0.034 0.064 0.049
0.025 0.041 0.037
0.025 0.064 0.048
0.030 0.054 0.039
0.016 0.043 0.038
0.028 0.047 0.045
0.030 0.044 0.042
0.022 0.044 0.027
0.023 0.039 0.033
0.017 0.019 0.034
0.016 0.021 0.029
0.032 0.042 0.044
0.016 0.028 0.041
0.013 0.022 0.023
0.485 0.044 0.036
0.036 0.294 0.088
0.029 0.089 0.315
0.015 0.020 0.022
0.017 0.026 0.025
0.020 0.028 0.048
1033/1034
(1/2)/1034
(1/2)11034
1033/212016
(6817/2)/212016
(6817/2)/212016
204166/212016
1/27413
6817/27413
20595/27413
1/27413
6817/27413
20595/27413

0.062
0.032
0.063
0.046
0.028
0.035
0.036
0.574
0.031
0.014
0.016
0.037
0.022
0.018
0.037
0.059
0.037
0.022
0.020
0.018

0.006
0.007
0.005
0.004
0.004
0.005
0.005
0.004
0.009
0.008
0.009
0.004
0.011
0.022
0.005
0.005
0.005
0.477
0.027
0.007

<alphabet id="AminoAcids"> ARNDCQEGHILKMFPSTWYV </alphabet>

0.011
0.022
0.026
0.018
0.009
0.029
0.017
0.010
0.350
0.008
0.011
0.021
0.013
0.015
0.012
0.016
0.014
0.014
0.028
0.009

0.015
0.020
0.021
0.013
0.018
0.018
0.015
0.010
0.045
0.021
0.024
0.017
0.026
0.095
0.014
0.017
0.016
0.071
0.408
0.022

0.032
0.022
0.018
0.012
0.037
0.022
0.019
0.011
0.022
0.334
0.100
0.022
0.086
0.055
0.022
0.019
0.036
0.032
0.034
0.136

0.064
0.030
0.023
0.020
0.068
0.034
0.028
0.017
0.028
0.167
0.087
0.030
0.076
0.057
0.032
0.036
0.062
0.034
0.043
0.344
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<output id="sequencel"> <alphabet idref="AminoAcids"/> <identifier
type="length" value="iLenl1"/> <identifier type="sequence"
value="iSeql"/> <code type="parameter" value="int iLenl"/> <code
type="parameter" value="char* iSeql"/> </output>

<output id="sequence2"> <alphabet idref="AminoAcids"/> <identifier
type="length" value="iLen2"/> <identifier type="sequence"
value="iSeq2"/> <code type="parameter" value="int iLen2"/> <code
type="parameter" value="char* iSeq2"/> </output>

<hmm id="Aligner">
<description> trimmed_probs </description>

<outputs>
<output idref="sequencel"/>
<output idref="sequence2"/>
</outputs>

<block id="block1">
<state id="start"/>
</block>

<block id="block2">

<state id="Match" emission="emitMatch"></state>
<state id="Insertion" emission="emitlnsertion"></state>
<state id="Deletion" emission="emitDeletion"></state>
</block>

<block id="block3">
<state id="end" emission="empty"/>
</block>

<graph>
<block idref="block1"/>
<block idref="block2"/>
<block idref="block3"/>
</graph>

<emission id="empty">
<probability><code type="expression"> 1.0 </code></probability>
</emission>

<emission id="emitMatch">
<output idref="sequencel"/>
<output idref="sequence2"/>
<probability>
<code type="statement">
<identifier output="sequencel" value="iSymb1"/>
<identifier output="sequence2" value="iSymb2"/>
<identifier type="result" value="iResult"/>
<I[CDATA][
switch (iSymb1) {
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case 'A"

switch (iSymb2) {

case 'A’: iResult =0.361 ; break;
case 'R’ iResult =0.030 ; break;
case 'N’: iResult =0.026 ; break;
case 'D: iResult =0.031 ; break;
case 'C" iResult =0.014 ; break;
case 'Q’: iResult =0.029 ; break;
case 'E: iResult =0.048 ; break;
case 'G’: iResult =0.062 ; break;
case 'H: iResult =0.011 ; break;
case 'I': iResult =0.032 ; break;
case 'L iResult =0.052 ; break;
case 'K': iResult =0.038 ; break;
case 'M’: iResult =0.015 ; break;
case 'F’: iResult =0.019 ; break;
case 'P’: iResult =0.034 ; break;
case 'S’: iResult =0.064 ; break;
case 'T": iResult =0.049 ; break;
case 'W’: iResult =0.006 ; break;
case 'Y': iResult =0.015 ; break;
case 'V': iResult =0.064 ; break;
}

case 'R™

switch (iSymb2) {

case 'A’: iResult =0.050 ; break;
case 'R’ iResult =0.355 ; break;
case 'N: iResult =0.034 ; break;
case 'D’: iResult =0.035 ; break;
case 'C" iResult =0.005 ; break;
case 'Q’: iResult =0.045 ; break;
case 'E’: iResult =0.055 ; break;
case 'G": iResult =0.032 ; break;
case 'H: iResult =0.022 ; break;
case 'I': iResult =0.022 ; break;
case 'L: iResult =0.043 ; break;
case 'K': iResult =0.116 ; break;
case 'M’: iResult =0.011 ; break;
case 'F: iResult =0.014 ; break;
case 'P’: iResult =0.025 ; break;
case 'S’ iResult =0.041 ; break;
case 'T": iResult =0.037 ; break;
case 'W'’: iResult =0.007 ; break;
case 'Y': iResult =0.020 ; break;
case 'V': iResult =0.030 ; break;
}

case 'N"

switch (iISymb2) {

case 'A’: iResult =0.050 ; break;
case 'R’ iResult =0.040 ; break;
case 'N": iResult =0.320 ; break;
case 'D’: iResult =0.087 ; break;
case 'C" iResult =0.007 ; break;
case 'Q’: iResult =0.037 ; break;
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case
case
case
case
case
case
case
case
case
case

'E’: iResult =0.055 ; break;
‘G’ iResult =0.063 ; break;
'H’: iResult =0.026 ; break;
I iResult =0.018 ; break;
'L iResult =0.027 ; break;
'K’: iResult =0.059 ; break;
‘M’ iResult =0.010 ; break;
'F: iResult =0.014 ; break;
‘P iResult =0.025 ; break;
'S" iResult =0.064 ; break;

case 'T". iResult =0.048 ; break;
case 'W': iResult =0.005 ; break;
case 'Y’ iResult =0.021 ; break;
case 'V': iResult =0.023 ; break;
}

case 'D"

switch (iISymb2) {

case 'A’: iResult =0.046 ; break;
case 'R’ iResult =0.031 ; break;
case 'N’: iResult =0.066 ; break;
case 'D’: iResult =0.397 ; break;
case 'C’: iResult =0.004 ; break;
case 'Q’: iResult =0.034 ; break;
case 'E’: iResult =0.100 ; break;
case 'G’: iResult =0.046 ; break;
case 'H’: iResult =0.018 ; break;
case I iResult =0.012 ; break;
case 'L iResult =0.022 ; break;
case 'K’: iResult =0.048 ; break;
case 'M'’: iResult =0.007 ; break;
case 'F. iResult =0.010 ; break;
case 'P’: iResult =0.030 ; break;
case 'S iResult =0.054 ; break;
case 'T": iResult =0.039 ; break;
case 'W’: iResult =0.004 ; break;
case 'Y’ iResult =0.013 ; break;
case 'V': iResult =0.020 ; break;
}

case 'C:

switch (iSymb2) {

case 'A’: iResult =0.083 ; break;
case 'R’ iResult =0.017 ; break;
case 'N’: iResult =0.021 ; break;
case 'D’: iResult =0.014 ; break;
case 'C’: iResult =0.462 ; break;
case 'Q’: iResult =0.015 ; break;
case 'E: iResult =0.017 ; break;
case 'G’: iResult =0.028 ; break;
case 'H’: iResult =0.009 ; break;
case I iResult =0.037 ; break;
case 'L iResult =0.054 ; break;
case 'K’: iResult =0.013 ; break;
case 'M’. iResult =0.014 ; break;
case 'F. iResult =0.028 ; break;
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case 'P’: iResult =0.016 ; break;
case 'S’: iResult =0.043 ; break;
case 'T": iResult =0.038 ; break;
case 'W': iResult =0.004 ; break;
case 'Y': iResult =0.018 ; break;
case 'V': iResult =0.068 ; break;
}

case 'Q”:

switch (iSymb2) {

case 'A’: iResult =0.066 ; break;
case 'R’ iResult =0.062 ; break;
case 'N’: iResult =0.043 ; break;
case 'D’: iResult =0.052 ; break;
case 'C" iResult =0.006 ; break;
case 'Q’: iResult =0.258 ; break;
case 'E’: iResult =0.099 ; break;
case 'G" iResult =0.035 ; break;
case 'H: iResult =0.029 ; break;
case 'I': iResult =0.022 ; break;
case 'L: iResult =0.043 ; break;
case 'K: iResult =0.079 ; break;
case 'M’: iResult =0.013 ; break;
case 'F’: iResult =0.016 ; break;
case 'P’: iResult =0.028 ; break;
case 'S’ iResult =0.047 ; break;
case 'T": iResult =0.045 ; break;
case 'W': iResult =0.005 ; break;
case 'Y’: iResult =0.018 ; break;
case 'V': iResult =0.034 ; break;
}

case 'E”:

switch (iSymb2) {

case 'A’: iResult =0.063 ; break;
case 'R’ iResult =0.043 ; break;
case 'N’: iResult =0.037 ; break;
case 'D’: iResult =0.089 ; break;
case 'C" iResult =0.004 ; break;
case 'Q": iResult =0.057 ; break;
case 'E’: iResult =0.356 ; break;
case 'G’: iResult =0.036 ; break;
case 'H: iResult =0.017 ; break;
case 'I': iResult =0.019 ; break;
case 'L iResult =0.030 ; break;
case 'K': iResult =0.067 ; break;
case 'M’: iResult =0.009 ; break;
case 'F’: iResult =0.011 ; break;
case 'P’: iResult =0.030 ; break;
case 'S’ iResult =0.044 ; break;
case 'T": iResult =0.042 ; break;
case 'W’: iResult =0.005 ; break;
case 'Y': iResult =0.015 ; break;
case 'V': iResult =0.028 ; break;
}

case ‘G’
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switch (iISymb2) {

case 'A’: iResult =0.070 ; break;
case 'R’ iResult =0.022 ; break;
case 'N’: iResult =0.036 ; break;
case 'D’: iResult =0.035 ; break;
case 'C’: iResult =0.006 ; break;
case 'Q’: iResult =0.017 ; break;
case 'E’: iResult =0.031 ; break;
case 'G’: iResult =0.574 ; break;
case 'H’: iResult =0.010 ; break;
case I iResult =0.011 ; break;
case 'L iResult =0.019 ; break;
case 'K': iResult =0.029 ; break;
case 'M’: iResult =0.006 ; break;
case 'F. iResult =0.010 ; break;
case 'P’: iResult =0.022 ; break;
case 'S iResult =0.044 ; break;
case 'T": iResult =0.027 ; break;
case 'W’: iResult =0.004 ; break;
case 'Y’ iResult =0.010 ; break;
case 'V': iResult =0.017 ; break;
}

case 'H"

switch (iSymb2) {

case 'A’: iResult =0.041 ; break;
case 'R’ iResult =0.048 ; break;
case 'N’: iResult =0.050 ; break;
case 'D’: iResult =0.044 ; break;
case 'C’: iResult =0.006 ; break;
case 'Q’: iResult =0.047 ; break;
case 'E: iResult =0.049 ; break;
case 'G’: iResult =0.031 ; break;
case 'H: iResult =0.351 ; break;
case I iResult =0.022 ; break;
case 'L iResult =0.043 ; break;
case 'K’: iResult =0.053 ; break;
case 'M’ iResult =0.012 ; break;
case 'F. iResult =0.027 ; break;
case 'P’: iResult =0.023 ; break;
case 'S’ iResult =0.039 ; break;
case 'T". iResult =0.033 ; break;
case 'W': iResult =0.009 ; break;
case 'Y': iResult =0.045 ; break;
case 'V': iResult =0.028 ; break;
}

case 'I":

switch (iSymb2) {

case 'A’: iResult =0.045 ; break;
case 'R’ iResult =0.019 ; break;
case 'N’: iResult =0.013 ; break;
case 'D’: iResult =0.012 ; break;
case 'C’: iResult =0.009 ; break;
case 'Q’: iResult =0.014 ; break;
case 'E: iResult =0.021 ; break;




case 'G" iResult =0.014 ; break;
case 'H: iResult =0.008 ; break;
case 'I': iResult =0.336 ; break;

case 'L iResult =0.153 ; break;
case 'K': iResult =0.022 ; break;
case 'M’: iResult =0.031 ; break;
case 'F': iResult =0.039 ; break;
case 'P’: iResult =0.017 ; break;
case 'S’ iResult =0.019 ; break;
case 'T": iResult =0.034 ; break;
case 'W': iResult =0.008 ; break;
case 'Y': iResult =0.021 ; break;
case 'V': iResult =0.167 ; break;
}

case L™

switch (iSymb2) {

case 'A’: iResult =0.048 ; break;
case 'R’ iResult =0.024 ; break;
case 'N": iResult =0.013 ; break;
case D iResult =0.014 ; break;
case 'C" iResult =0.009 ; break;
case 'Q’: iResult =0.017 ; break;
case 'E: iResult =0.021 ; break;
case 'G’: iResult =0.016 ; break;
case 'H: iResult =0.011 ; break;
case 'I': iResult =0.100 ; break;

case 'L iResult =0.423 ; break;
case 'K': iResult =0.024 ; break;
case 'M’: iResult =0.041 ; break;
case 'F’: iResult =0.053 ; break;
case 'P’: iResult =0.016 ; break;
case 'S’: iResult =0.021 ; break;
case 'T": iResult =0.029 ; break;
case 'W’: iResult =0.009 ; break;
case 'Y': iResult =0.024 ; break;
case 'V': iResult =0.087 ; break;
}

case 'K"

switch (iSymb2) {

case 'A’: iResult =0.055 ; break;
case 'R’ iResult =0.101 ; break;
case 'N’: iResult =0.044 ; break;
case 'D" iResult =0.047 ; break;
case 'C" iResult =0.003 ; break;
case 'Q’: iResult =0.050 ; break;
case 'E: iResult =0.075 ; break;
case 'G’: iResult =0.037 ; break;
case 'H: iResult =0.021 ; break;
case 'I': iResult =0.022 ; break;

case 'L iResult =0.037 ; break;
case 'K': iResult =0.318 ; break;
case 'M’: iResult =0.011 ; break;
case 'F': iResult =0.011 ; break;
case 'P’: iResult =0.032 ; break;
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case 'S iResult =0.042 ; break;
case 'T": iResult =0.044 ; break;
case 'W’: iResult =0.004 ; break;
case 'Y': iResult =0.017 ; break;
case 'V': iResult =0.030 ; break;
}

case 'M"

switch (iSymb2) {

case 'A’: iResult =0.058 ; break;
case 'R’ iResult =0.027 ; break;
case 'N’: iResult =0.021 ; break;
case 'D’: iResult =0.020 ; break;
case 'C’: iResult =0.010 ; break;
case 'Q’: iResult =0.023 ; break;
case 'E: iResult =0.026 ; break;
case 'G’: iResult =0.022 ; break;
case 'H: iResult =0.013 ; break;
case I iResult =0.086 ; break;
case 'L iResult =0.175 ; break;
case 'K’: iResult =0.030 ; break;
case 'M’. iResult =0.245 ; break;
case 'F: iResult =0.047 ; break;
case 'P: iResult =0.016 ; break;
case 'S’ iResult =0.028 ; break;
case 'T". iResult =0.041 ; break;
case 'W’: iResult =0.011 ; break;
case 'Y iResult =0.026 ; break;
case 'V': iResult =0.076 ; break;
}

case 'F’:

switch (iSymb2) {

case 'A’: iResult =0.038 ; break;
case 'R’ iResult =0.016 ; break;
case 'N’: iResult =0.014 ; break;
case 'D’: iResult =0.014 ; break;
case 'C’: iResult =0.010 ; break;
case 'Q’: iResult =0.014 ; break;
case 'E’: iResult =0.017 ; break;
case 'G’: iResult =0.018 ; break;
case 'H: iResult =0.015 ; break;
case I iResult =0.055 ; break;
case 'L iResult =0.116 ; break;
case 'K': iResult =0.016 ; break;
case 'M": iResult =0.024 ; break;
case 'F: iResult =0.399 ; break;
case 'P’: iResult =0.013 ; break;
case 'S’ iResult =0.022 ; break;
case 'T". iResult =0.023 ; break;
case 'W': iResult =0.022 ; break;
case 'Y’ iResult =0.095 ; break;
case 'V': iResult =0.057 ; break;
}

case 'P’:

switch (iISymb2) {
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case 'A’: iResult =0.063 ; break;
case 'R’ iResult =0.028 ; break;
case 'N: iResult =0.024 ; break;
case 'D’: iResult =0.037 ; break;
case 'C" iResult =0.005 ; break;
case 'Q’: iResult =0.022 ; break;
case 'E’: iResult =0.043 ; break;
case 'G’: iResult =0.037 ; break;
case 'H: iResult =0.012 ; break;
case 'I': iResult =0.022 ; break;
case 'L iResult =0.032 ; break;
case 'K': iResult =0.040 ; break;
case 'M’: iResult =0.007 ; break;
case 'F’: iResult =0.012 ; break;
case 'P’: iResult =0.485 ; break;
case 'S’: iResult =0.044 ; break;
case 'T": iResult =0.036 ; break;
case 'W’: iResult =0.005 ; break;
case 'Y': iResult =0.014 ; break;
case 'V': iResult =0.032 ; break;
}

case 'S’

switch (iSymb2) {

case 'A’: iResult =0.096 ; break;
case 'R’ iResult =0.036 ; break;
case 'N’: iResult =0.049 ; break;
case 'D" iResult =0.055 ; break;
case 'C" iResult =0.011 ; break;
case 'Q’: iResult =0.030 ; break;
case 'E: iResult =0.050 ; break;
case 'G’: iResult =0.059 ; break;
case 'H: iResult =0.016 ; break;
case 'I': iResult =0.019 ; break;
case 'L iResult =0.034 ; break;
case 'K': iResult =0.043 ; break;
case 'M'’: iResult =0.010 ; break;
case 'F': iResult =0.016 ; break;
case 'P’: iResult =0.036 ; break;
case 'S’: iResult =0.294 ; break;
case 'T": iResult =0.088 ; break;
case 'W’: iResult =0.005 ; break;
case 'Y’: iResult =0.017 ; break;
case 'V': iResult =0.036 ; break;
}

case T

switch (iSymb2) {

case 'A’: iResult =0.074 ; break;
case 'R’ iResult =0.033 ; break;
case 'N": iResult =0.037 ; break;
case 'D: iResult =0.040 ; break;
case 'C" iResult =0.010 ; break;
case 'Q’: iResult =0.030 ; break;
case 'E’: iResult =0.048 ; break;
case 'G’: iResult =0.037 ; break;
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case 'H: iResult =0.014 ; break;
case I iResult =0.036 ; break;
case 'L iResult =0.047 ; break;
case 'K': iResult =0.045 ; break;
case 'M’. iResult =0.016 ; break;
case 'F: iResult =0.017 ; break;
case 'P’: iResult =0.029 ; break;
case 'S’ iResult =0.089 ; break;
case 'T". iResult =0.315 ; break;
case 'W’: iResult =0.005 ; break;
case 'Y iResult =0.016 ; break;
case 'V': iResult =0.062 ; break;
}

case 'W’:

switch (iSymb2) {

case 'A’: iResult =0.039 ; break;
case 'R’ iResult =0.024 ; break;
case 'N’: iResult =0.016 ; break;
case 'D’: iResult =0.015 ; break;
case 'C’: iResult =0.004 ; break;
case 'Q’: iResult =0.014 ; break;
case 'E’: iResult =0.022 ; break;
case 'G’: iResult =0.022 ; break;
case 'H’: iResult =0.014 ; break;
case I iResult =0.032 ; break;
case 'L’: iResult =0.061 ; break;
case 'K': iResult =0.016 ; break;
case 'M": iResult =0.016 ; break;
case 'F: iResult =0.066 ; break;
case 'P’: iResult =0.015 ; break;
case 'S’ iResult =0.020 ; break;
case 'T": iResult =0.022 ; break;
case 'W': iResult =0.478 ; break;
case 'Y’ iResult =0.071 ; break;
case 'V': iResult =0.034 ; break;
}

case 'Y’

switch (iISymb2) {

case 'A’. iResult =0.036 ; break;
case 'R’ iResult =0.028 ; break;
case 'N’: iResult =0.025 ; break;
case 'D’: iResult =0.021 ; break;
case 'C’ iResult =0.007 ; break;
case 'Q’: iResult =0.018 ; break;
case 'E’: iResult =0.026 ; break;
case 'G’: iResult =0.020 ; break;
case 'H: iResult =0.028 ; break;
case 'I'' iResult =0.034 ; break;
case 'L iResult =0.061 ; break;
case 'K': iResult =0.027 ; break;
case 'M'’: iResult =0.015 ; break;
case 'F: iResult =0.108 ; break;
case 'P’: iResult =0.017 ; break;
case 'S iResult =0.026 ; break;
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case 'T": iResult =0.025 ; break;
case 'W’: iResult =0.027 ; break;
case 'Y': iResult =0.408 ; break;
case 'V': iResult =0.043 ; break;
}
case 'V
switch (iSymb2) {
case 'A’: iResult =0.074 ; break;
case 'R’ iResult =0.021 ; break;
case 'N’: iResult =0.014 ; break;
case 'D: iResult =0.016 ; break;
case 'C" iResult =0.014 ; break;
case 'Q’: iResult =0.017 ; break;
case 'E: iResult =0.024 ; break;
case 'G’: iResult =0.018 ; break;
case 'H: iResult =0.009 ; break;
case 'I': iResult =0.136 ; break;
case 'L iResult =0.109 ; break;
case 'K': iResult =0.024 ; break;
case 'M’: iResult =0.022 ; break;
case 'F': iResult =0.033 ; break;
case 'P’: iResult =0.020 ; break;
case 'S’: iResult =0.028 ; break;
case 'T": iResult =0.048 ; break;
case 'W’: iResult =0.007 ; break;
case 'Y’: iResult =0.022 ; break;
case 'V': iResult =0.346 ; break;
}
}
11>
</code>
</probability>
</emission>

<emission id="emitInsertion">
<output idref="sequencel"/>
<probability>
<code type="statement">
<identifier output="sequencel" value="iSymb1"/>
<identifier type="result" value="iResult"/>

<I[CDATA][
switch (iSymb1l) {
case 'A’: iResult =0.074 ; break;
case 'R’ iResult =0.045 ; break;
case 'N’: iResult =0.056 ; break;
case 'D’: iResult =0.080 ; break;
case 'C’: iResult =0.008 ; break;
case 'Q’ iResult =0.041 ; break;
case 'E’: iResult =0.076 ; break;
case 'G’: iResult =0.099 ; break;
case 'H: iResult =0.022 ; break;
case I iResult =0.036 ; break;
case 'L iResult =0.063 ; break;
case 'K': iResult =0.073 ; break;
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1>

</code>

case
case
case
case
case
case
case
case

</probability>
</emission>

'™’

)Fy:

7P7:
'S’

T

W

’Y':
1vy:

<emission id="emitDeletion">
<output idref="sequence2"/>
<probability>
<code type="statement">
<identifier output="sequence2" value="iSymb2"/>
<identifier type="result" value="iResult"/>
<I[CDATA][

switch (iISymb2) {

1>

</code>

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

</probability>
</emission>

<transitions>

<transition
<transition
<transition

<transition

from="start" to="Match" probability="start_match" />

’A':

'R":
'N":
D"
'Cn
Q"

!Ey:

VGY:
H”:

T
L
)K!:

1M1:

'
P
'S”
T

’W’:

Y
'V

iResult =0.017 ; break;

iResult =0.031 ; break;
iResult =0.065 ; break;
iResult =0.068 ; break;
iResult =0.057 ; break;
iResult =0.012 ; break;
iResult =0.030 ; break;
iResult =0.047 ; break;

iResult =0.057 ; break;
iResult =0.058 ; break;
iResult =0.084 ; break;
iResult =0.091 ; break;
iResult =0.035 ; break;
iResult =0.072 ; break;
iResult =0.077 ; break;
iResult =0.086 ; break;
iResult =0.063 ; break;
iResult =0.039 ; break;
iResult =0.045 ; break;
iResult =0.082 ; break;
iResult =0.053 ; break;
iResult =0.048 ; break;
iResult =0.092 ; break;
iResult =0.079 ; break;
iResult =0.066 ; break;
iResult =0.054 ; break;
iResult =0.054 ; break;
iResult =0.042 ; break;

from="start" to="Insertion" probability="start_insert" />
from="start" to="Deletion" probability="start_delete" />

from="Deletion" to="end" probability="delete_end" />
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<transition from="Deletion" to="Match" probability="delete_match" />
<transition from="Deletion" to="Deletion" probability="delete_delete" />

<transition from="Match" to="end" probability="match_end"/>
<transition from="Match" to="Insertion" probability="match_insert"/>
<transition from="Match" to="Deletion" probability="match_delete"/>
<transition from="Match" to="Match" probability="match_match"/>

<transition from="Insertion" to="end" probability="insert_end"/>
<transition from="Insertion" to="Match" probability="insert_match"/>
<transition from="Insertion" to="Insertion" probability="insert_insert"/>

</transitions>

<probability id="start_match"><code type="expression"> 1033.0/1034
</code></probability> <probability id="start_insert"><code
type="expression"> (1.0/2)/1034 </code></probability> <probability
id="start_delete"><code type="expression"> (1.0/2)/1034
</code></probability>

<probability id="match_end"><code type="expression"> 1033.0/212016
</code></probability> <probability id="match_insert"><code
type="expression"> (6817.0/2)/212016 </code></probability>
<probability id="match_delete"><code type="expression">
(6817.0/2)/212016 </code></probability> <probability
id="match_match"><code type="expression"> 204166.0/212016
</code></probability>

<probability id="delete_end"><code type="expression"> 1.0/27413
</code></probability> <probability id="delete_match"><code
type="expression"> 6817.0/27413 </code></probability> <probability
id="delete_delete"><code type="expression"> 20595.0/27413
</code></probability>

<probability id="insert_end"><code type="expression"> 1.0/27413
</code></probability> <probability id="insert_match"><code
type="expression"> 6817.0/27413 </code></probability> <probability
id="insert_insert"><code type="expression"> 20595.0/27413
</code></probability>

</hmm>

<l-- Code generation -->

<forward realtype="bfloat" outputTable="yes" name="Forward"
id="fw">

<l-- Specify HMM to make code for -->
<hmm idref="Aligner"/>

</forward>

<backward realtype="bfloat" outputTable="yes" baumWelch="yes"
name="Backward" id="bw">
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<!-- Specify HMM to make code for -->
<hmm idref="Aligner"/>

</backward>

<sample name="Sample" id="smp">

<hmm idref="Aligner"/>

</sample>

<viterbi realtype="bfloat” name="Viterbi" id="vit">
<hmm idref="Aligner"/>

</viterbi>

<codeGeneration file="aligner.cc" header="aligner.h
language="C++">

<forward idref="fw"/>
<backward idref="bw"/>

<l-- <sample idref="smp"/> -->
<viterbi idref="vit"/>
</codeGeneration>

<codeGeneration file="main.cc" language="C++">

<!--  This is just to package this example in one file. It is
actually rather inconvenient to edit main.cc in here.. -->

<code> <![CDATA][

#include <iostream> #include <fstream> #include <string> #include

<vector>
using namespace std;
#include "aligner.cc"

int main() {

/l char seql[]="LTREKLIELAILVGTDYNP";
Il char seq2[]="LTREKLIELAILV";

int count =0;

double** rates;

DPTableAligner* pT1, *pT2, *pT3;

BaumWelchAligner *pBW; int id;
while (!cin.eof())

{
std::string sseql, sseq2, dummy;
cin >> sseql;
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cin >> sseq?2;
if (cin.eof()) break;

/* Find length of sequences */

int iLenl = sseql.size();

int iLen2 = sseq2.size();

count = count +1;

char * seql = const_cast<char*>(sseql.c_str());
char * seq2 = const_cast<char*>(sseq2.c_str());

[* Print sequence, and forward and backward likelihoods. */
[* The backward algorithm also computes Baum-Welch posterior counts */
cout << "count " << count <<endl,
cout << "Sequencel: " << seql << endl
cout << "Sequence2: " << seq2 << endl
cout << "Forward:" << endl <<
Forward(&pT1,seql,seq2,iLenl,iLen2) << endl;
cout << "Backward:" << endl <<
Backward(&pBW,pT1,&pT2,5eql,seq2,iLenl,iLen2) << endl;
/* Print posterior counts for all transitions */
for (int i=0; i<pBW->transNumO0O; i++) {
id = pBW->transldOOQ[i];
llcout << pT1->transitionld[id] << " " <<
/I pT1l->transitionFrom[id] << "->" << pT1->transitionTolid]
Il << ™" << pBW->transCount00[i] << endl;
}

[* Print Viterbi likelihood, and Viterbi path */
cout << "Viterbi:" << endl;
cout << Viterbi_recurse(&pT3,seql,seq2,iLenl,iLen2) << endl;
cout << Viterbi_trace(pT3,seql,seqg2,iLenl,iLen2) << endl;
}
return O; }
11>
</code>

</codeGeneration>

</hml>
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