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ABSTRACT

Motivation: Protein homology detection and sequence
alignment are at the basis of protein structure prediction,
function prediction and evolutionary analysis. This work
investigates the use of pair HMMs in pairwise protein
sequence alignment. It uses a newly-written local software
called HMMoc to perform the task. The resulting alignments
are evaluated against the HOMSTRAD database of structural
alignments.

Results: The basic sequence to sequence alignment HMM

gives 41.20% using only sequence information, with a slight
improvement when structural information is added. This is
low considering Clustalw performs at 76.88% and EMBOSS

Stretcher (Needleman-Wunch based) performs at 80.16%.
The low performance is indicative of the presence of a bug in
the system. The methodology behind the investigative steps
for bug detection is explained, along with the results obtained
at each step. Due to the complexity and time constraints of
the project, a final answer has not been reached.

Contact: naila.mimouni@bnc.ox.ac.uk,

1 INTRODUCTION

Evolution has resulted in families of homologous proteins,
where members of a family share similar amino acid
sequences and protein secondary structures. The degree of
similarity in sequence can vary from family to family, and
for diverse families pairwise similarity can be very low.
Structure, on the other hand, is more conserved. There are
far more known protein sequences than protein structures.
We can infer the structure of a protein of known sequence
and unknown structure using sequence-structure homology
recognition. Sequence-structure homology recognition uses a
database of known folds to detect the fold that is most likely
to be similar to the fold of the unknown structure.

∗to whom correspondence should be addressed

For accurate structure prediction, it is imperative to have
as “accurate” an alignment as possible between the target
and a sequence of known structure. The work described
in this report tackles the alignment problem. It uses a pair
HMM to align two protein sequences, only using sequence
information first and then adding structural information.
Evaluating the resulting alignments is carried out against the
HOMSTRAD structural alignments.

Section 1.1 is an introduction to protein structure. Section
1.2 discusses fold recognition approaches. Hidden Markov
models, which we use, are described in section 1.3, with a
short introduction to pairHMMs, HMMs used for pairwise
alignment.

1.1 Protein Structure

Proteins are organic macro-molecules which are essential
to the cell’s structure and function. They are a component
of cell membrane, and can perform a range of functions
as enzymes, antibodies, hormones and transport molecules.
An understanding of protein function is facilitated by the
study of protein structure. Protein structures are far more
complex than simple organic chemicals, because the size of
the molecules allow for many possible 3-D arrangements.
Protein structure is described in terms of a hierarchy, in this
work, we will mainly deal with the first two.

1.Proteins are built from an alphabet of twenty smaller
molecules, known asamino acids. A list of amino acids
and their corresponding symbols is included in appendix
1. The primary structure is the sequence of amino acids in
the polypeptide chain. Val-Leu-Ser-Glu-Gly-Glu-Trp-Gln-
Leu-Val- represents the first ten amino acids of myoglobin.
Amino acids contain an amino group (NH2), a carboxyl
group (COOH), and a hydrogen atom attached to a central
α carbon. In addition, each amino acid also has a distinct
side chain (orR group) attached to itsα carbon.

Amino acids form bonds with each other through a
reaction of their respective carboxyl and amino groups.
The resulting bond is called thepeptide bond. A protein
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Fig. 1. The hierarchy of protein structure. Primary structure is the
sequence, secondary structure includes helices and sheets. Tertiary
structure is the overall folding, and quaternary structure is the
grouping of several proteins.

is synthesised by the formation of a linear succession
of peptide bonds between amino acids, and can thus be
referred to as apolypeptide

2.The secondary structure is the organisation of the
polypeptide into regular repetitive patterns over short
segments of amino acids. The limitations imposed on
the primary structure by the peptide bond and hydrogen
bonds allow for only a certain number of conformations.
The polypeptide chain has rotational freedom only about
the bonds formed by theα carbons (φ angle between
Cα and N, andψ angle betweenCα and the carbon
of the carboxyl group).α helices andβ sheets are the
two types of secondary structure seen in protein. These
regular structures are interspersed with regions of irregular
structure that are referred to as loop or coil.

3.Tertiary structure is the overall folding of the whole
polypeptide.

4.Quaternary structure is the grouping of several protein
molecules into a single larger entity; the subunits may act
cooperatively with each other to give the grouping special
properties not possessed by the single subunit (Bourne and
Weissig, 2003).

Figure 1, adapted from http://cwx.prenhall.com/horton/
medialib/mediaportfolio/, gives a graphical representation
of the hierarchy of protein structure.

1.2 Protein Fold Recognition

Using currently-available methods, it is still not possible
to make a sufficiently accurateab initio protein structure
prediction. Instead, databases of folds are created, and
the problem becomes identifying which of the folds in the
database is similar to the unknown fold of a new protein

of known sequence only. This technique is based on the
observation that unrelated proteins adopt the same fold, and
has led to the development of programs that detect structure
similarities in the absence of sequence similarities (Bourne
and Weissig, 2003).

There exists a number of protein structure classifications:
SCOP (Murzinet al., 1995), CATH (Orengoet al., 1997),
and FSSP (Holm and Sander, 1994). Several methods for
sequence structure similarity detection have been developed
in parallel. One class fits a query sequence onto each structure
in a database optimising an energy function derived from
statistical or structural considerations (Threading) (Xu and
Xu, 2000). Another class includes profile methods that use
both sequence and structure such as 3D-PSSM (Kelleyet al.,
2000), and FUGUE (Shiet al., 2001).

Another class of methods for fold recognition is based on
advanced techniques for remote homology detection based on
sequence information alone (explained in the next section).

Profile HMM s
Profile HMMs1 (Haussler et al., 1993; Eddy, 1995),
implemented by programs such asSAM (Karplus et al.,
1998), andHMMER (Eddy, 2001) use the sequence family
to build a profile which includes the position-specific
probabilities of variation in amino acids, as well as insertions
and deletions. This indicates conserved positions (important
to the family), and non-conserved positions which are
variable among family members. The sequence, whose
structure is not known, is then aligned to the profile,
indicating the degree of homology. The membership of a
sequence to a family is either given by the most probable
path through the model (the Viterbi algorithm is explained in
the next section), or by its posterior probability summed over
all possible paths. Figure 2, adapted from Soding (2004),
represents an alignment of a sequence to a profileHMM .

Profile HMMs perform well in homology detection and
sequence alignment because they contain more information
about the sequence family than a single sequence (Krogh
et al., 1994; Eddy, 1998; Karpluset al., 2001). A number of
structure prediction servers rely on profile-profile comparison
(Rychlewskiet al., 2000; Ginalskiet al., 2003; Tanget al.,
2003; Tomii and Akiyama, 2004), and perform well for
fold recognition in automated structure prediction contests
CAFASP, LIVEBENCH, and EVA (Fischer et al., 2003;
Rychlewskiet al., 2003; Kohet al., 2003). Newer methods
for homology detection includeHMM -HMM comparisons
(Soding, 2004).

Motif Detection
Motifs are conserved sequence patterns that describe

1 HMMs are explained in the next section
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Hidden Markov models for protein sequence alignment

Fig. 2. The alignment of a sequence to a profile HMM. The squares
indicate a match state. The diamonds an insert state, and the circles
a delete state. The path through the HMM is shown in bold arrows.

specifically all members within a protein family. Often,
motifs centre around sites that are functionally important
to all members of the family. Motifs can be derived by an
expert to capture biological knowledgePROSITE (Bucher
and Bairoch, 1994), or using automated methodsPRATT

(Jonassen, 1997),MEME (Bailey and Elkan, 1994) andMAST

(Bailey and Gribskov, 1998). Finally,HMMSTR is a HMM

which captures sequence as well as structure features based
on the initiation-sites library of sequence-structure motifs
(Bystroff et al., 2000).

1.3 Description of Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models
which are generally applicable to time series or linear
sequences. They have been widely used in speech recognition
applications (Rabiner, 1989), and have been introduced to
bioinformatics in the late 80’s (Churchill, 1989). A HMM can
be visualised as afinite state machine. Finite state machines
move through a series of states and produce some kind of
output, either when the machine has reached a particular state
or when it is moving from state to state. TheHMM generates
a protein sequence byemittingamino acids as it progresses
through a series of states. Each state has a table of amino
acid emission probabilities, and transition probabilitiesfor
moving from state to state. Transition probabilities define a
distribution over the possible next states.

Any sequence can be represented by a path through the
model. This path follows the Markov assumption, that is, the
choice of the next state is only dependent on the choice of the
current state. However, the state sequence is not known; it is
hidden. Finally, the alignment probability, given the model,
is the product of the emission and transition probabilities
along the path (Karchin, 1999). Figure 3, adapted from
(Eddy, 1996), represents a two-stateHMM modelling aDNA

sequence, with heterogeneous base composition.

Fig. 3. A two-state HMM modelling a DNA sequence, the first
generating AT-rich sequences, and the second generating CG-rich
sequences. State transitions and their associated probabilities are
indicated by arrows, and symbol emission emission probabilities
for A, C, G, T for each state are indicated below the states. This
model generates a state sequence as a Markov chain (middle) and
each sequence generates a symbol according to its own emission
probability distribution (bottom). The probability of the sequence is
the product of the state transitions and the symbol emissions. For
a given observed DNA sequence, the hidden state sequence that
generated it, i.e. whether this position is in a CG-rich or an AT-rich
segment, is inferred.

1.3.1 Parameter EstimationHMM design issues include
defining how many states to model, and how to estimate the
transition and emission probabilities. The former is dealt with
in section 2.2.

When the paths are known for the training sequences, a
Maximum Likelihood approach to estimating the emission
and transition parameters is used as follows:

akl =
Akl∑
l′ Akl′

(1)

ek(b) =
Ek(b)∑
b′ Ek(b′)

(2)

WhereEk(b) is the number of instances in the training data
where symbolb is emitted in statek andAkl is the number of
transitions from statek to l in the training data. Sometimes,
pseudo-counts are added to account for transitions not seen
in the training data.

On the other hand, when the paths are unknown, the Baum-
Welch algorithm, an Expectation Maximisation algorithm,
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initialises parameters and iteratively re-estimates them using
the forward backward values (refer to Durbinet al. (1998) for
a thorough explanation).

1.3.2 The Viterbi Algorithm The most probable state
sequence (or path) can be determined recursively using
the Viterbi algorithm. If the probabilityVk(i) of the most
probable path ending in statek with observationi is known
for all the statesk, then these probabilities can be calculated
for observationxi+1 as:

Vl(i+ 1) = el(xi+1)maxk(Vk(i)akl) (3)

All sequences start in the begin state, and by keeping
pointers backward, the actual state sequence can be found by
backtracking. The full algorithm is presented in Algorithm
1. A very good explanation of theory and implementation of
HMMs along with examples can be found in (Durbinet al.,
1998).

Initialisation (i=0): VS(0) = 1, Vk(0) = 0 for all k 0
Recursion (for i=1...L): Vl(i) = el(xi)maxk(Vk(i− 1)akl

ptri = argmaxk(Vk(i− 1)akl

Termination: P (x, π) = maxkVk(L)ak0

πL = argmaxk(Vk(L)ak0)
Traceback(for i=L...1): πi−1 = ptri(πi)

where:
k,l= hidden states
S= start state
E= end state
π = the most probable path
L= the length of the emission sequence
ptr= the backward pointer.
xi= the ith symbol in the emission sequence
akl=the transition probability from statek to l

el(b)=the emission probability of symbolb from statel
Vk(i)=the most probable path ending in statek with observationi

Algorithm 1: The Viterbi algorithm for estimating the most
probable path

Pair HMM s
Pair HMMs areHMMs used for alignment of two sequences.
They proceed in the same way explained above, except that
they do not emit symbols, but a match state, an insert state,
or a delete state. The design of the pairHMM used for this
project is explained in section 2.2.

1.4 Aims of the work

There exists more known protein sequences than protein
structures, structure prediction relies heavily on sequence
alignment of the protein of unknown structure to other
proteins of known structure. According to recentCASP

reports (Tramontanoet al., 2001; Bradleyet al., 2003),
alignment inaccuracy is still a major problem. The quality of
alignment does not correlate well with the level of sequence
identity, and alignment algorithms do not perform as well for
highly divergent sequences. Therefore, improving sequence
alignments ultimately leads to better structure and function
prediction methods.

Several techniques, including the motif detection and profile
HMMs described above have been developed to tackle the
task. This work investigates the use of pairHMMs for
sequence alignment. It uses a locally-written hidden Markov
model compiler (HMMoc). The parameters are estimated
from the HOMSTRAD alignments. An evolutionary model
is not incorporated. The resulting alignments are evaluated
against theHOMSTRAD alignments. The performance of
the system is low, 41.20% for basic sequence to sequence
alignment, with only a slight improvement when structure
information is added. The next sections explain theHMM

design, the workings of the system, and the steps undertaken
for bug detection. Unfortunately, due to the time constraints
of the project, no final answer has been reached.

2 APPROACH

Sequence alignment is the first step towards protein structure,
which in turn is a step towards function prediction. Because
sequences can be very similar or highly divergent, it
would be useful to have an idea of evolutionary distances.
Ideally, the model should also take in consideration the
varying substitution rates and patterns across sites, the
effect of variation in selection across sites (purifying vs.
positive selection), the interaction between sites as well as
the structural context. A high level representation of the
different components of a pairHMM alignment algorithm
that uses an evolutionary model are shown in figure
4. Surely, incorporating phylogenetic information would
improve alignment accuracy. However, the time constraints
of this project made it unfeasible to incorporate such a model.
Instead, the same approach presented in figure 4 was taken
without including the evolutionary model. More specifically,
figure 5 shows the different steps undertaken for this work.
This includes data preprocessing, parameter estimation, the
use ofHMMoc, a hidden Markov model compiler written
locally, and finally the evaluation.
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Fig. 4. The overall approach for this work does not include an
evolutionary model (shown in blue).

Fig. 5. The different steps undertaken for this work include data
preprocessing, parameter estimation, alignment using HMMoc,
translating the HMMoc alignments and evaluating them.

2.1 Dataset

The dataset used consisted ofHOMSTRAD alignments of
1031 protein families downloaded in September 2004. The
family size varies from 2 members for XPGC to 41
for globin. For the untrimmed data (as it appears in the
HOMSTRAD alignments), the total number of columns is
251,471, and the number of aligned columns (no gap) is
210,665.

As a first step, the whole set of protein families were used
for parameter estimation and evaluation. Different subsets
should be used for parameter estimation and evaluation.
However, due to time constraints, moving to the next step
was not done. Each protein family is represented by the
alignments of its sequences, with additional information such
as secondary structure, Ooi number and solvent accessibility.
The two sequences selected to be aligned were the first
and last sequences in the family alignment file, as they are
assumed to be the most divergent. Figure 6 is an example
of the XPGC family (two members), including sequence,
structure and Ooi number information.

2.2 HMM Design

The HMM design used for global alignment of two protein
sequences is presented in figure 7. There are two silent states,
the begin and end states which do not emit any symbols. The
three non-silent states include the match state indicated by

P1;1a77
sequence

LTREKLIELAILVGTDYNPGGIKGIGLKKALEIVRHSKDPLAKFQKQSDVDL
YAIKEFFLNPPVTDNYNLVWRDPDEEGILKFLCDEHDFSEERVKNGLERLKK
AIKSGKQSTLESWFKR

P1;1b43a
sequence

ISLDDLIDIAIFMGTDYNPGGVKGIGFKRAYELVRS-GVAKDVLKKEV-EY
YDEIKRIFKEPKVTDNYSLSLKLPDKEGIIKFLVDENDFNYDRVKKHVDKL
YNLIANKT--------

P1;1a77
secondary structure and phi angle

CCHHHHHHHHHHHPCCCCCPPCCPCCHHHHHHHHHCCCCHHHHCHHHCCCCH
HHHHHHHHCCCCCCCCCCCCCCCCHHHHHHHHCCCCPCCHHHHHHHHHHHHH
HHHHHHHHHCCCCCCC

P1;1b43a
secondary structure and phi angle

CCHHHHHHHHHHHPCCCCCPPCCPCCHHHHHHHHHC-PCHHHHHHHHC-CP
HHHHHHHHHCCCCCCCCCCCCCCCCHHHHHHHHCCCCPCCHHHHHHHHHHH
HHHHHHHC--------

P1;1b43a
Ooi number

2223334554553432232244223222233233222234433321222334
3333222211110000011222222223222221111222222222322222
2221111111110000

P1;1a77
Ooi number

222333454454333233223422222234333322-22432343233-22
332332222111100000111222232232222211112122222223222
22221111--------

Fig. 6. The XPGC family alignment as it appears in HOMSTRAD,
including sequence and structure. The sequence information
includes the amino acids. The secondary structure and phi angle
includes C for coil, H for helix, E for sheet, and P for positive phi
angle. The Ooi number, a count of the surrounding C alpha atoms
in a 14 Angstrom radius, is presented in numbers.

an M which has an emission probability distributionpxiyi

for emitting the aligned pairxi:yi. Both states X and Y
have a probability distribution of emittingxi in sequencex
andyi in sequencey respectively against a gap. Transition
probabilities between the states are also estimated from the
data. They are shown on top of transition arrows, and follow
the condition that the sum of all transition probabilities
leaving a state sum to 1.

The HMM does not model context dependence, it assumes
independence of columns. It does not have a transition from
state begin to end (no empty alignments), and disallows
transitions from state X to Y (no insertion followed by a
deletion, and no deletion followed by an insertion).

2.2.1 Parameter EstimationParameter estimation was
performed on the HOMSTRAD alignments using the
maximum likelihood method explained in equations (1) and
(2). The alignments were first trimmed to the subsequences
delimited by the first and last aligned amino acid residues.
The resulting emission and transition probabilities are
presented in Appendix 2.
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Fig. 7. The HMM design for the work presented in this report. The
are two silent states, the begin and end states which do not emit
anything. The three non-silent states are the Match state indicated
by M, the insert state indicated by X, the delete state indicated by Y.
The transitions between states are indicated by arrows.

2.3 HMMoc

HMMoc is aHMM compiler written by Gerton Lunter. It is
meant as a high-level abstraction of hidden Markov models.
The low-level details of theHMM computation is hidden
from the user including the posterior probability calculations
and path decoding.HMMoc requires the input of aHMM

topology along with the emission and transition probabilities
in an xml format (presented in appendix 3). It outputs the
most probable path, and the forward backward probabilities
as needed. It allows for multiple output tapes (pairHMMs)
and higher order states. This tool is very useful, as it
simplifies the programming of the technicalities ofHMMs,
while requiring the user to think about theHMM design and
topology. However, as it is a recently developed package, and
was not tested especially for pairHMMs, some time was spent
debugging it.

2.4 Adding Structural Information

A study by Deaneet al. (2004) investigated the most
informative features to use for improvement of alignment
accuracy. Their results illustrate that indels occur mostly in
coil regions about twice as high compared toα helices. Also,
indels are twice as likely to occur inα helices than inβ
sheets. The most significant result relates to the Ooi number;
a count of C-α atoms within a radius of 14̊A of the residue’s
own C-α. The logarithm of the indel propensity is very
nearly linearly related to the Ooi number. This suggests that
incorporating secondary structure information, asα helices
andβ strands could improve alignment. Also, incorporating
Ooi number information would improve it further.

TheHOMSTRAD alignments contain secondary structure and
φ angle information as well as Ooi number information.
The experiment following the basic sequence information
experiment included structure information as classes ofα
helices,β strands, positiveφ angles and coils. Parameter
estimation was conducted as before.

The Ooi numbers in theHOMSTRAD alignments range from
0-8, with very few occurrences of 9. These were grouped into
4 classes, because of syntax limitations imposed byHMMoc.
HMMoc only takes single characters in the alphabet, and
there is not a sufficient number of ASCII characters to assign
a unique character to each mapping of sequence and Ooi
number. This also holds for combining sequence structure
and Ooi number. Parameter estimation was carried out as
before. The results are presented below.

2.5 Evaluation

A few programs had to be built to handle generating input
data in the format required forHMMoc and also translating
its output. Figure 8 includes a typical example of theHMMoc
output. This needs to be translated into an alignment, and
then an evaluation program produces the final result.

The result represents the percentage of correctly-aligned
columns, excluding gapped ones, obtained by the program
divided by the aligned columns, excluding gapped ones,
given by HOMSTRAD. This value is averaged over all
sequences giving the final result.

Evaluation was conducted using theHOMSTRAD database.
HOMSTRAD contains structural alignments, and we therefore
use it as an “independent” set of gold standard alignments.
Because theHMM is for global alignment, the sequences are
trimmed to the subsequences between the first and last amino
acid.

3 RESULTS AND ANALYSIS

The results obtained with the transition and emission
probabilities estimated from the data for basic sequence
information were 41.20%, and 42.05% for sequence
augmented with structure information2. These results were
surprisingly low, and adding structure information did not
improve the results dramatically. This pointed to the presence
of a bug in the code. A thorough re-check of all estimation
and transition probabilities was carried out at this stage.

2 Training on the first and second sequences expectedly decreased the
performance.
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Fig. 8. A typical example (except for the score) of alignment
performed by the pairHMM

3.1 Comparison with Other Alignment
Algorithms

The first step undertaken was to compare the results with
other alignment algorithms: Clustalw andEMBOSSStretcher
(a faster version of the Needleman-Wunch (Myers and Miller,
1998)) were selected.HMMer was considered, but it is a
more sophisticated method than the pairHMM ; it requires the
whole protein family to build a profile and then aligns two
members of that same family. This would definitely give it an
advantage, producing much better results. Clustalw performs
at 76.88%, andEMBOSS Stretcher, performs at 80.16%. A
closer look at the software was taken.

As the model does not allow for transitions from delete to
insert and insert to delete states, a measure of how often they
occur in theHOMSTRAD data is useful. Insert to delete and
delete to insert occur in 12% of the alignments. These will of
course be missed by the pairHMM .

3.2 Rewriting the Code

Clustalw and Stretcher were fed the same data as the pair
HMM , they both use the evaluation code used for the pair
HMM . The difference lies in the parameters used, the code
aroundHMMoc, and the use ofHMMoc itself.

To eliminate the possibility that the code includes a
programming bug (as opposed to a conceptual error), all
the code written for the project (in Perl initially), including
the evaluation code was rewritten in Java. The results were
exactly the same.

3.3 Changing the Parameters

Comparing the gold standard alignments with the alignments
produced by the pairHMM suggested a difference in gap
opening. TheHOMSTRAD alignments contain several small
gaps along the sequence. The pairHMM alignment would
align the correct residues at the beginning, but would not
open a gap when the gold standard does. Changing the
emission and transition parameters was the next step.

3.3.1 Emission Probabilities I worked out the probability
matrix from the BLOSUM62 matrix used by Clustalw. Using
the resulting probability matrix with the original transition
parameters gave a slight improvement of 41.41%. However,
this does not account for the 35% difference with Clustalw.

Similarly, setting all the insertion and deletion emission
parameters to the same value gave 39.45%.

3.3.2 Transition ParametersIn the first model I tried, I set
the transitions match to match, match to insert, and match to
delete to be the same. Similarly, for delete to delete and delete
to match, insert to insert and insert to match. This should give
bad results, as it is equally likely to stay in a match or open a
gap. The result was 34%.

Table 1 summarises the results in percentages for different
combinations of transition probabilities explained in tables 2
and 3. The results vary from 36.53% to 41.71%. The highest
result is obtained with a high match to match transition
probability (80%), and delete/insert to match of 60% and
delete to delete of 38%.

The same combination of transition parameters as specified
in the tables is used with theBLOSUM matrix, only a small
increase is obtained.

I also tried the Baum-Welch method for parameter estimation
using HMMoc. The program gave some compilation errors,
and there was no time to look at it any further.

At this stage, the 35% difference with Clustalw is still not
explained. Several options were investigated. The bug is
either due to a conceptual error, or toHMMoc itself. Due to
the time constraints, it was not possible to pursue the bug
tracking any further.
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Indel 1 Indel 2 Indel 3
Match 1 40.15 37.55 36.53
Match 2 41.61 41.52 37.37
Match 3 41.32 41.71 40.93

Table 1. Summary of the results for the different settings explained in tables
2 and 3

Match-end Match-insert Match-delete Match-match
Match 1 0.05 0.25 0.25 0.45
Match 2 0.05 0.15 0.15 0.65
Match 3 0.05 0.075 0.075 0.80

Table 2. A table describing the labels match 1, match 2, match 3

Delete/Insert-end Delete/Insert-match Delete/Insert-delete
Indel 1 0.02 0.70 0.28
Indel 2 0.02 0.60 0.38
Indel 3 0.02 0.50 0.48

Table 3. A table describing the labels Indel 1, indel 2, indel 3

4 CONCLUSION AND FUTURE WORK

Protein structure prediction methods rely heavily on
sequence alignment. This project examined the use of pair
HMMs for global alignment of two protein sequences. A
newly developedHMM compiler was used.HMMoc requires
the HMM topology and emission probabilities in an xml
format, and outputs the most probable path, abstracting
away all the calculations. The parameter estimation and the
evaluation were conducted using theHOMSTRAD alignments.
The performance of the pairHMM for basic sequence
information was 41.20%, with a slight improvement when
structure information is included. Relative to other alignment
methods, this was at least 35% inferior.

The possibility of the presence of a bug lead to examining
different paths. First, to eliminate the possibility of a
programming bug, the whole code for the project, initially
written in Perl, was re-written in Java. This gave the same
results. Next, theBLOSUM62 matrix, the one used by
Clustalw, was converted into a probability matrix and used.
The results changed only slightly. After that, a combination
of different emission probabilities (match, insert and delete)
and transition probabilities were tried. Still, the results did
not improve. It is clear that there is either a conceptual error,
or HMMoc itself is buggy. Given more time, it would be
interesting to elucidate which of these two hypotheses is
factually correct.

4.1 Including More information

It would have been be useful to measure the impact of
adding more information to the basic sequence alignment.
Adding secondary structure information and Ooi number

information, as well as a combination of both, was
undertaken. None gave a considerable improvement. Using a
system that functions correctly, these are expected to improve
alignment accuracy. Other options include hydrophobicity,
and cis-peptide information, whose absence is not interesting,
but presence potentially useful.

4.2 Evolutionary Model

Current alignment tools, includingSAM (Karplus et al.,
1998) andHMMER (Eddy, 2001) use sequence weighting to
correct for phylogenetic bias during training. Incorporating
a statistical model of protein sequence evolution allows
for estimating selection pressures acting on the sequence
family. The standard evolutionary model is theTKF91 model
(Thorneet al., 1991), which deals with finite sequences and
allows only single residue indel events. An improvement
allowing indels of arbitrary length was developed by Miklos
et al. (2004)

Evolutionary models give a joint distribution of all sequences
in a family, conditioned on their phylogenetic tree (Holm and
Bruno , 2001). Correlation between sequences are therefore
built into the model, which improves alignment accuracy.

4.3 Higher Order Markov Chain

So far, the Markov property states that the probability of
a state depends only on the probability of the previous
state. A higher order Markov model would allow for
building more HMM memory into the states, to capture
residue dependencies. Inhomogeneous Markov chain models
would allow for different probability distributions at different
positions or regions. This includes more information into the
model, and would produce better results.

REFERENCES

Bailey, T. and Elkan, C. (1994) Fitting a mixture model by
expectation maximization to discover motifs in biopolymers,
Proceedings of the Second International Conference on
Intelligent Systems for Molecular Biology, 28-36, AAAI Press,
Menlo Park, California.

Bailey, T. and Gribskov, M. (1998) Combining evidence
using p-values: application to sequence homology searches,
Bioinformatics, 14, 48-54.

Bourne, P., Weissig, H. (2003) Structural Bioinformatics,Wiley-
Liss.

Bradley, P.et al (2003) Rosetta predictions in CASP5: Successes,
failures and prospects for complete automation.Proteins:
Structure, Function, and Genetics., 53, 457-468.

Bucher, P. and Bairoch, A. (1994) A generalized profile syntax
for biomolecular sequence motifs and its function in automatic
sequence interpretation.ISMB, 53-61.

8



Hidden Markov models for protein sequence alignment

Bystroff, C., Thorsson, V. and Baker, D. (2000) HMMSTR: A
hidden Markov model for local sequence-structure correlations
in proteins,J. Mol.Biol., 301, 173-190.

Churchill, G. A. (1998) Stochastic models for heterogeneous DNA
sequences.Bull Math Biol, 51, 79-94.

Deane, C., Perdersen, J. and Lunter, G. (2004)
Insertions and deletions in protein alignment,
Proc. 8th Intl. Conf. Mol. Biol. (Recomb04),
available:http://recomb04.sdsc.edu/posters/deaneATstats.ox.ac.uk
207.pdf.

Durbin, R., Eddy, S., Krogh, A., Mitchison, G. (1998) Biological
Sequence Analysis: Probabilistic models of proteins and nucleic
acids,Cambridge University Press.

Eddy, S. (1995) Multiple alignment using hidden Markov models.
Proc. Third Intl. Conf. Intelligent Systems for Molecular Biology,
114-120.

Eddy, S. (1996) Hidden Markov Models.Current Opinion in
Structural Biology, 6, 361-365.

Eddy, S. (1998) Profile Hidden Markov Models.Bioinformatics, 14,
755-763.

Eddy, S. (2001) HMMER: Profile hidden Markov models for
biological sequence analysis. Available:http://hmmer.wustl.edu/

Fischer, D.et al (2003) CAFASP3: The third critical assessment of
fully automated structure prediction methods.Proteins, 53, 503-
516.

Ginalski, K. et al (2003) ORFeus: Detection of distant homology
using sequence profiles and predicted secondary structure.
Nucleic Acids Research, 31, 4804-3807.

Haussler, D.et al (1993) Protein Modeling using hidden Markov
models: Analysis of Globin.Proceedings of the Hawaii
International Conference on System Sciences, 1, IEEE Computer
Society Press, 792-802

Hegyi, H. & Gerstein, M. (1999) The relationship between protein
structure and function: a comprehensive survey with application
to the yeast genome.J. Mol. Biol, 288, 147-164.

Holm, L. & Sander, C. (1994) The FSSP database of structurally
aligned protein fold families.Nucleic Acids Res., 22(17), 3600-9.

Holmes, I. & Bruno, C. (2001) Evolutionary HMMs: A Bayesian
approach to multiple alignment.Bioinformatics, 17(9), 803-20.

Jonassen, I. (1997) Efficient discovery of conserved patterns using
a pattern paragraph.CABIOS, 13, 509-522.

Karchin, R. (1999) Hidden Markov Models and Protein
Sequence Analysis. ISMB 1999, Available on:
https://www.cse.ucsc.edu/research/compbio/ismb99.handouts/
KK185FP.html

Karplus, K., Barrett, C. and Hughey, R. (1998) Hidden
Markov Models for detecting Remote Protein Homologies,
Bioinformatics, 14(10), 846-856.

Karplus, K. et al (2001) What is the value added by human
intervention in protein structure prediction.Proteins., Suppl.5,
86-91.

Koh, I. et al (2003) EVA: Evaluation of protein structure prediction
servers.Nucleic Acids Research, 31, 3311-3315.

Kelley, L. A., MacCallum, R. M., Sternberg, M. J. E. (2000)
Enhanced genome annotation using structural profiles in the
program 3D-PSSM.J. Mol.Biol., 299, 499-520.

Krogh, A. et al (1994) Hidden markov models in computational
biology: applications to protein modelling.J. Mol.Biol., 235,

1501-1531.
Miklos I., Lunter G.A. & Holmes I. (2004) A ”Long Indel” Model

For Evolutionary Sequence Alignment.Mol. Biol. Evol., 21(3),
529-540.

Mizuguchi, K. et al (1998) HOMSTRAD: A database of protein
structure alignments for homologous families,Protein Sci.,
7(11), 2469-71.

Murzin, A. G., Brenner S. E., Hubbard T., Chothia C. (1995)
SCOP: A structural classification of proteins database for the
investigation of sequences and structures.J. Mol. Biol., 247,
536-540.

Myers, E. W. & Miller, W. (1998) Optimal alignments in linear
space.CABIOS, 4(1), 11-17.

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells,
M.B., and Thornton, J.M. (1997) CATH: A hierarchic
classification of protein domain structures,Structure, 5(8), 1093-
1108.

Rabiner, L. R. (1989) A tutorial on hidden Markov models and
selected applications in speech recognition.Proc. IEEE, 77 (2),
257-285.

Russell, R. B., Saqi, M. A. S., Bates, P. A., Sayle, R. A.& Sternberg,
M. J. E. (1998). Recognition of analogous and homologous
folds. Assessment of prediction success and associated alignment
accuracy using empirical matrices.Protein Eng., 11, 1-9.

Rychlewski, L., Fisher, D., Elofsson, A. (2003) LiveBench-6:
Large-scale automated evaluation of protein structure prediction
servers.Proteins, 53, 542-547.

Rychlewski, L.et al Comparison of sequence-profiles: strategies
for structural prediction using sequence information.Protein
Science, 12, 2262-2272.

Shi, J., Blundell, T. L., Mizuguchi, K. (2001) FUGUE: Sequence-
structure Homology Recognition Using Environment-specific
substitution table and structure-dependent gap penalties.J.
Mol.Biol., 310, 243-257.

Soding, J. (2004) Protein homology detection by HMM-HMM
comparison.Bioinformatics Advance Access, Nov 5th.

Tang, C.et al (2003) On the role of structural information in remote
homology detection and sequence alignment: new methods using
hybrid sequence profiles.J. Mol. Biol., 334, 1034-1062.

Thorne, J. L., Kishino, H. and Felsenstein, J. (1991) An evolutionary
model for maximum likelihood alignment of DNA sequences.J.
Mol. Evol., 33, 114-124.

Tommi, K. and Akiyama, Y. (2004) FORTE: A profile-profile
comparison tool for protein fold recognition.Bioinformatics, 20,
594-595.

Tramontano, A., Leplae, R. and Morea, V. (2001) Analysis and
assessment of comparative modeling predictions in CASP4.
Proteins, 45 Suppl.5, 22-38.

Xu, Y. and Xu, D. (2000) Protein threading using PROSPECT:
Design and evaluationProteins: Structure, Function, and
Genetics., 40, 343-354.

9



1 AMINO ACIDS

Name Abbr. Linear structure formula
Alanine ala A CH3-CH(NH2)-COOH
Arginine arg R HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH

Asparagine asn N H2N-CO-CH2-CH(NH2)-COOH
Aspartic acid asp D HOOC-CH2-CH(NH2)-COOH

Cysteine cys C HS-CH2-CH(NH2)-COOH
Glutamine gln Q H2N-CO-(CH2)2-CH(NH2)-COOH

Glutamic acid glu E HOOC-(CH2)2-CH(NH2)-COOH
Glycine gly G NH2-CH2-COOH
Histidine his H NH-CH=N-CH=C-CH2-CH(NH2)-COOH
Isoleucine ile I CH3-CH2-CH(CH3)-CH(NH2)-COOH
Leucine leu L (CH3)2-CH-CH2-CH(NH2)-COOH
Lysine lys K H2N-(CH2)4-CH(NH2)-COOH

Methionine met M CH3-S-(CH2)2-CH(NH2)-COOH
Phenylalanine phe F Ph-CH2-CH(NH2)-COOH

Proline pro P NH-(CH2)3-CH-COOH
Serine ser S HO-CH2-CH(NH2)-COOH

Threonine thr T CH3-CH(OH)-CH(NH2)-COOH
Tryptophan trp W Ph-NH-CH=C-CH2-CH(NH2)-COOH

Tyrosine tyr Y HO-p-Ph-CH2-CH(NH2)-COOH
Valine val V (CH3)2-CH-CH(NH2)-COOH
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2 EMISSION AND TRANSITION PROBABILITIES

2.1 Emission Parameters for the Insertion and Deletion states

Insertion Deletion
A 0.074 0.057
R 0.045 0.058
N 0.056 0.084
D 0.080 0.091
C 0.008 0.035
Q 0.041 0.072
E 0.076 0.077
G 0.099 0.086
H 0.022 0.063
I 0.036 0.039
L 0.063 0.045
K 0.073 0.082
M 0.017 0.053
F 0.031 0.048
P 0.065 0.092
S 0.068 0.079
T 0.057 0.066
W 0.012 0.054
Y 0.030 0.054
V 0.047 0.042

2.2 Emission Parameters for the Match State

2.3 Transition Parameters
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A R N D C Q E G H I
A 0.361 0.030 0.026 0.031 0.014 0.029 0.048 0.062 0.011 0.032
R 0.050 0.357 0.034 0.035 0.005 0.045 0.055 0.032 0.022 0.022
N 0.050 0.040 0.321 0.087 0.007 0.037 0.055 0.063 0.026 0.018
D 0.046 0.031 0.066 0.396 0.004 0.034 0.100 0.046 0.018 0.012
C 0.083 0.017 0.021 0.014 0.463 0.015 0.017 0.028 0.009 0.037
Q 0.066 0.062 0.043 0.052 0.006 0.258 0.099 0.035 0.029 0.022
E 0.063 0.043 0.037 0.089 0.004 0.057 0.354 0.036 0.017 0.019
G 0.070 0.022 0.036 0.035 0.006 0.017 0.031 0.574 0.010 0.011
H 0.041 0.048 0.050 0.044 0.006 0.047 0.049 0.031 0.350 0.022
I 0.045 0.019 0.013 0.012 0.009 0.014 0.021 0.014 0.008 0.334
L 0.048 0.024 0.013 0.014 0.009 0.017 0.021 0.016 0.011 0.100
K 0.055 0.101 0.044 0.047 0.003 0.050 0.075 0.037 0.021 0.022
M 0.058 0.027 0.021 0.020 0.010 0.023 0.026 0.022 0.013 0.086
F 0.038 0.016 0.014 0.014 0.010 0.014 0.017 0.018 0.015 0.055
P 0.063 0.028 0.024 0.037 0.005 0.022 0.043 0.037 0.012 0.022
S 0.096 0.036 0.049 0.055 0.011 0.030 0.050 0.059 0.016 0.019
T 0.074 0.033 0.037 0.040 0.010 0.030 0.048 0.037 0.014 0.036
W 0.039 0.024 0.016 0.015 0.004 0.014 0.022 0.022 0.014 0.032
Y 0.036 0.028 0.025 0.021 0.007 0.018 0.026 0.020 0.028 0.034
V 0.074 0.021 0.014 0.016 0.014 0.017 0.024 0.018 0.009 0.136

L K M F P S T W Y V
A 0.052 0.038 0.015 0.019 0.034 0.064 0.049 0.006 0.015 0.064
R 0.043 0.116 0.011 0.014 0.025 0.041 0.037 0.007 0.020 0.030
N 0.027 0.059 0.010 0.014 0.025 0.064 0.048 0.005 0.021 0.023
D 0.022 0.048 0.007 0.010 0.030 0.054 0.039 0.004 0.013 0.020
C 0.054 0.013 0.014 0.028 0.016 0.043 0.038 0.004 0.018 0.068
Q 0.043 0.079 0.013 0.016 0.028 0.047 0.045 0.005 0.018 0.034
E 0.030 0.067 0.009 0.011 0.030 0.044 0.042 0.005 0.015 0.028
G 0.019 0.029 0.006 0.010 0.022 0.044 0.027 0.004 0.010 0.017
H 0.043 0.053 0.012 0.027 0.023 0.039 0.033 0.009 0.045 0.028
I 0.153 0.022 0.031 0.039 0.017 0.019 0.034 0.008 0.021 0.167
L 0.423 0.024 0.041 0.053 0.016 0.021 0.029 0.009 0.024 0.087
K 0.037 0.317 0.011 0.011 0.032 0.042 0.044 0.004 0.017 0.030
M 0.175 0.030 0.244 0.047 0.016 0.028 0.041 0.011 0.026 0.076
F 0.116 0.016 0.024 0.401 0.013 0.022 0.023 0.022 0.095 0.057
P 0.032 0.040 0.007 0.012 0.485 0.044 0.036 0.005 0.014 0.032
S 0.034 0.043 0.010 0.016 0.036 0.294 0.088 0.005 0.017 0.036
T 0.047 0.045 0.016 0.017 0.029 0.089 0.315 0.005 0.016 0.062
W 0.061 0.016 0.016 0.066 0.015 0.020 0.022 0.477 0.071 0.034
Y 0.061 0.027 0.015 0.108 0.017 0.026 0.025 0.027 0.408 0.043
V 0.109 0.024 0.022 0.033 0.020 0.028 0.048 0.007 0.022 0.344

Start-match 1033/1034
Start-insert (1/2)/1034
Start-delete (1/2)/1034
Match-end 1033/212016

Match-insert (6817/2)/212016
Match-delete (6817/2)/212016
Match-match 204166/212016
Delete-end 1/27413

Delete-match 6817/27413
Delete-delete 20595/27413

Insert-end 1/27413
Insert-match 6817/27413
Insert-insert 20595/27413

3 XML INPUT FOR HMMOC

<?xml version="1.0"?>

<hml debug="true">

<author>Naila Mimouni</author>

<alphabet id="AminoAcids"> ARNDCQEGHILKMFPSTWYV </alphabet>

12



Hidden Markov models for protein sequence alignment

<output id="sequence1"> <alphabet idref="AminoAcids"/> <identifier
type="length" value="iLen1"/> <identifier type="sequence"
value="iSeq1"/> <code type="parameter" value="int iLen1"/> <code
type="parameter" value="char* iSeq1"/> </output>

<output id="sequence2"> <alphabet idref="AminoAcids"/> <identifier
type="length" value="iLen2"/> <identifier type="sequence"
value="iSeq2"/> <code type="parameter" value="int iLen2"/> <code
type="parameter" value="char* iSeq2"/> </output>

<hmm id="Aligner">

<description> trimmed_probs </description>

<outputs>
<output idref="sequence1"/>
<output idref="sequence2"/>

</outputs>

<block id="block1">
<state id="start"/>

</block>

<block id="block2">
<state id="Match" emission="emitMatch"></state>
<state id="Insertion" emission="emitInsertion"></state>
<state id="Deletion" emission="emitDeletion"></state>

</block>

<block id="block3">
<state id="end" emission="empty"/>

</block>

<graph>
<block idref="block1"/>
<block idref="block2"/>
<block idref="block3"/>

</graph>

<emission id="empty">
<probability><code type="expression"> 1.0 </code></probability>

</emission>

<emission id="emitMatch">
<output idref="sequence1"/>
<output idref="sequence2"/>
<probability>

<code type="statement">
<identifier output="sequence1" value="iSymb1"/>
<identifier output="sequence2" value="iSymb2"/>
<identifier type="result" value="iResult"/>
<![CDATA[

switch (iSymb1) {
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case ’A’:
switch (iSymb2) {

case ’A’: iResult =0.361 ; break;
case ’R’: iResult =0.030 ; break;
case ’N’: iResult =0.026 ; break;
case ’D’: iResult =0.031 ; break;
case ’C’: iResult =0.014 ; break;
case ’Q’: iResult =0.029 ; break;
case ’E’: iResult =0.048 ; break;
case ’G’: iResult =0.062 ; break;
case ’H’: iResult =0.011 ; break;
case ’I’: iResult =0.032 ; break;
case ’L’: iResult =0.052 ; break;
case ’K’: iResult =0.038 ; break;
case ’M’: iResult =0.015 ; break;
case ’F’: iResult =0.019 ; break;
case ’P’: iResult =0.034 ; break;
case ’S’: iResult =0.064 ; break;
case ’T’: iResult =0.049 ; break;
case ’W’: iResult =0.006 ; break;
case ’Y’: iResult =0.015 ; break;
case ’V’: iResult =0.064 ; break;

}
case ’R’:
switch (iSymb2) {

case ’A’: iResult =0.050 ; break;
case ’R’: iResult =0.355 ; break;
case ’N’: iResult =0.034 ; break;
case ’D’: iResult =0.035 ; break;
case ’C’: iResult =0.005 ; break;
case ’Q’: iResult =0.045 ; break;
case ’E’: iResult =0.055 ; break;
case ’G’: iResult =0.032 ; break;
case ’H’: iResult =0.022 ; break;
case ’I’: iResult =0.022 ; break;
case ’L’: iResult =0.043 ; break;
case ’K’: iResult =0.116 ; break;
case ’M’: iResult =0.011 ; break;
case ’F’: iResult =0.014 ; break;
case ’P’: iResult =0.025 ; break;
case ’S’: iResult =0.041 ; break;
case ’T’: iResult =0.037 ; break;
case ’W’: iResult =0.007 ; break;
case ’Y’: iResult =0.020 ; break;
case ’V’: iResult =0.030 ; break;

}
case ’N’:
switch (iSymb2) {

case ’A’: iResult =0.050 ; break;
case ’R’: iResult =0.040 ; break;
case ’N’: iResult =0.320 ; break;
case ’D’: iResult =0.087 ; break;
case ’C’: iResult =0.007 ; break;
case ’Q’: iResult =0.037 ; break;
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case ’E’: iResult =0.055 ; break;
case ’G’: iResult =0.063 ; break;
case ’H’: iResult =0.026 ; break;
case ’I’: iResult =0.018 ; break;
case ’L’: iResult =0.027 ; break;
case ’K’: iResult =0.059 ; break;
case ’M’: iResult =0.010 ; break;
case ’F’: iResult =0.014 ; break;
case ’P’: iResult =0.025 ; break;
case ’S’: iResult =0.064 ; break;
case ’T’: iResult =0.048 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.021 ; break;
case ’V’: iResult =0.023 ; break;

}
case ’D’:
switch (iSymb2) {

case ’A’: iResult =0.046 ; break;
case ’R’: iResult =0.031 ; break;
case ’N’: iResult =0.066 ; break;
case ’D’: iResult =0.397 ; break;
case ’C’: iResult =0.004 ; break;
case ’Q’: iResult =0.034 ; break;
case ’E’: iResult =0.100 ; break;
case ’G’: iResult =0.046 ; break;
case ’H’: iResult =0.018 ; break;
case ’I’: iResult =0.012 ; break;
case ’L’: iResult =0.022 ; break;
case ’K’: iResult =0.048 ; break;
case ’M’: iResult =0.007 ; break;
case ’F’: iResult =0.010 ; break;
case ’P’: iResult =0.030 ; break;
case ’S’: iResult =0.054 ; break;
case ’T’: iResult =0.039 ; break;
case ’W’: iResult =0.004 ; break;
case ’Y’: iResult =0.013 ; break;
case ’V’: iResult =0.020 ; break;

}
case ’C’:
switch (iSymb2) {

case ’A’: iResult =0.083 ; break;
case ’R’: iResult =0.017 ; break;
case ’N’: iResult =0.021 ; break;
case ’D’: iResult =0.014 ; break;
case ’C’: iResult =0.462 ; break;
case ’Q’: iResult =0.015 ; break;
case ’E’: iResult =0.017 ; break;
case ’G’: iResult =0.028 ; break;
case ’H’: iResult =0.009 ; break;
case ’I’: iResult =0.037 ; break;
case ’L’: iResult =0.054 ; break;
case ’K’: iResult =0.013 ; break;
case ’M’: iResult =0.014 ; break;
case ’F’: iResult =0.028 ; break;
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case ’P’: iResult =0.016 ; break;
case ’S’: iResult =0.043 ; break;
case ’T’: iResult =0.038 ; break;
case ’W’: iResult =0.004 ; break;
case ’Y’: iResult =0.018 ; break;
case ’V’: iResult =0.068 ; break;

}
case ’Q’:
switch (iSymb2) {

case ’A’: iResult =0.066 ; break;
case ’R’: iResult =0.062 ; break;
case ’N’: iResult =0.043 ; break;
case ’D’: iResult =0.052 ; break;
case ’C’: iResult =0.006 ; break;
case ’Q’: iResult =0.258 ; break;
case ’E’: iResult =0.099 ; break;
case ’G’: iResult =0.035 ; break;
case ’H’: iResult =0.029 ; break;
case ’I’: iResult =0.022 ; break;
case ’L’: iResult =0.043 ; break;
case ’K’: iResult =0.079 ; break;
case ’M’: iResult =0.013 ; break;
case ’F’: iResult =0.016 ; break;
case ’P’: iResult =0.028 ; break;
case ’S’: iResult =0.047 ; break;
case ’T’: iResult =0.045 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.018 ; break;
case ’V’: iResult =0.034 ; break;

}
case ’E’:
switch (iSymb2) {

case ’A’: iResult =0.063 ; break;
case ’R’: iResult =0.043 ; break;
case ’N’: iResult =0.037 ; break;
case ’D’: iResult =0.089 ; break;
case ’C’: iResult =0.004 ; break;
case ’Q’: iResult =0.057 ; break;
case ’E’: iResult =0.356 ; break;
case ’G’: iResult =0.036 ; break;
case ’H’: iResult =0.017 ; break;
case ’I’: iResult =0.019 ; break;
case ’L’: iResult =0.030 ; break;
case ’K’: iResult =0.067 ; break;
case ’M’: iResult =0.009 ; break;
case ’F’: iResult =0.011 ; break;
case ’P’: iResult =0.030 ; break;
case ’S’: iResult =0.044 ; break;
case ’T’: iResult =0.042 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.015 ; break;
case ’V’: iResult =0.028 ; break;

}
case ’G’:
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switch (iSymb2) {
case ’A’: iResult =0.070 ; break;
case ’R’: iResult =0.022 ; break;
case ’N’: iResult =0.036 ; break;
case ’D’: iResult =0.035 ; break;
case ’C’: iResult =0.006 ; break;
case ’Q’: iResult =0.017 ; break;
case ’E’: iResult =0.031 ; break;
case ’G’: iResult =0.574 ; break;
case ’H’: iResult =0.010 ; break;
case ’I’: iResult =0.011 ; break;
case ’L’: iResult =0.019 ; break;
case ’K’: iResult =0.029 ; break;
case ’M’: iResult =0.006 ; break;
case ’F’: iResult =0.010 ; break;
case ’P’: iResult =0.022 ; break;
case ’S’: iResult =0.044 ; break;
case ’T’: iResult =0.027 ; break;
case ’W’: iResult =0.004 ; break;
case ’Y’: iResult =0.010 ; break;
case ’V’: iResult =0.017 ; break;

}
case ’H’:
switch (iSymb2) {

case ’A’: iResult =0.041 ; break;
case ’R’: iResult =0.048 ; break;
case ’N’: iResult =0.050 ; break;
case ’D’: iResult =0.044 ; break;
case ’C’: iResult =0.006 ; break;
case ’Q’: iResult =0.047 ; break;
case ’E’: iResult =0.049 ; break;
case ’G’: iResult =0.031 ; break;
case ’H’: iResult =0.351 ; break;
case ’I’: iResult =0.022 ; break;
case ’L’: iResult =0.043 ; break;
case ’K’: iResult =0.053 ; break;
case ’M’: iResult =0.012 ; break;
case ’F’: iResult =0.027 ; break;
case ’P’: iResult =0.023 ; break;
case ’S’: iResult =0.039 ; break;
case ’T’: iResult =0.033 ; break;
case ’W’: iResult =0.009 ; break;
case ’Y’: iResult =0.045 ; break;
case ’V’: iResult =0.028 ; break;

}
case ’I’:
switch (iSymb2) {

case ’A’: iResult =0.045 ; break;
case ’R’: iResult =0.019 ; break;
case ’N’: iResult =0.013 ; break;
case ’D’: iResult =0.012 ; break;
case ’C’: iResult =0.009 ; break;
case ’Q’: iResult =0.014 ; break;
case ’E’: iResult =0.021 ; break;
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case ’G’: iResult =0.014 ; break;
case ’H’: iResult =0.008 ; break;
case ’I’: iResult =0.336 ; break;
case ’L’: iResult =0.153 ; break;
case ’K’: iResult =0.022 ; break;
case ’M’: iResult =0.031 ; break;
case ’F’: iResult =0.039 ; break;
case ’P’: iResult =0.017 ; break;
case ’S’: iResult =0.019 ; break;
case ’T’: iResult =0.034 ; break;
case ’W’: iResult =0.008 ; break;
case ’Y’: iResult =0.021 ; break;
case ’V’: iResult =0.167 ; break;

}
case ’L’:
switch (iSymb2) {

case ’A’: iResult =0.048 ; break;
case ’R’: iResult =0.024 ; break;
case ’N’: iResult =0.013 ; break;
case ’D’: iResult =0.014 ; break;
case ’C’: iResult =0.009 ; break;
case ’Q’: iResult =0.017 ; break;
case ’E’: iResult =0.021 ; break;
case ’G’: iResult =0.016 ; break;
case ’H’: iResult =0.011 ; break;
case ’I’: iResult =0.100 ; break;
case ’L’: iResult =0.423 ; break;
case ’K’: iResult =0.024 ; break;
case ’M’: iResult =0.041 ; break;
case ’F’: iResult =0.053 ; break;
case ’P’: iResult =0.016 ; break;
case ’S’: iResult =0.021 ; break;
case ’T’: iResult =0.029 ; break;
case ’W’: iResult =0.009 ; break;
case ’Y’: iResult =0.024 ; break;
case ’V’: iResult =0.087 ; break;

}
case ’K’:
switch (iSymb2) {

case ’A’: iResult =0.055 ; break;
case ’R’: iResult =0.101 ; break;
case ’N’: iResult =0.044 ; break;
case ’D’: iResult =0.047 ; break;
case ’C’: iResult =0.003 ; break;
case ’Q’: iResult =0.050 ; break;
case ’E’: iResult =0.075 ; break;
case ’G’: iResult =0.037 ; break;
case ’H’: iResult =0.021 ; break;
case ’I’: iResult =0.022 ; break;
case ’L’: iResult =0.037 ; break;
case ’K’: iResult =0.318 ; break;
case ’M’: iResult =0.011 ; break;
case ’F’: iResult =0.011 ; break;
case ’P’: iResult =0.032 ; break;
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case ’S’: iResult =0.042 ; break;
case ’T’: iResult =0.044 ; break;
case ’W’: iResult =0.004 ; break;
case ’Y’: iResult =0.017 ; break;
case ’V’: iResult =0.030 ; break;

}
case ’M’:
switch (iSymb2) {

case ’A’: iResult =0.058 ; break;
case ’R’: iResult =0.027 ; break;
case ’N’: iResult =0.021 ; break;
case ’D’: iResult =0.020 ; break;
case ’C’: iResult =0.010 ; break;
case ’Q’: iResult =0.023 ; break;
case ’E’: iResult =0.026 ; break;
case ’G’: iResult =0.022 ; break;
case ’H’: iResult =0.013 ; break;
case ’I’: iResult =0.086 ; break;
case ’L’: iResult =0.175 ; break;
case ’K’: iResult =0.030 ; break;
case ’M’: iResult =0.245 ; break;
case ’F’: iResult =0.047 ; break;
case ’P’: iResult =0.016 ; break;
case ’S’: iResult =0.028 ; break;
case ’T’: iResult =0.041 ; break;
case ’W’: iResult =0.011 ; break;
case ’Y’: iResult =0.026 ; break;
case ’V’: iResult =0.076 ; break;

}
case ’F’:
switch (iSymb2) {

case ’A’: iResult =0.038 ; break;
case ’R’: iResult =0.016 ; break;
case ’N’: iResult =0.014 ; break;
case ’D’: iResult =0.014 ; break;
case ’C’: iResult =0.010 ; break;
case ’Q’: iResult =0.014 ; break;
case ’E’: iResult =0.017 ; break;
case ’G’: iResult =0.018 ; break;
case ’H’: iResult =0.015 ; break;
case ’I’: iResult =0.055 ; break;
case ’L’: iResult =0.116 ; break;
case ’K’: iResult =0.016 ; break;
case ’M’: iResult =0.024 ; break;
case ’F’: iResult =0.399 ; break;
case ’P’: iResult =0.013 ; break;
case ’S’: iResult =0.022 ; break;
case ’T’: iResult =0.023 ; break;
case ’W’: iResult =0.022 ; break;
case ’Y’: iResult =0.095 ; break;
case ’V’: iResult =0.057 ; break;

}
case ’P’:
switch (iSymb2) {
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case ’A’: iResult =0.063 ; break;
case ’R’: iResult =0.028 ; break;
case ’N’: iResult =0.024 ; break;
case ’D’: iResult =0.037 ; break;
case ’C’: iResult =0.005 ; break;
case ’Q’: iResult =0.022 ; break;
case ’E’: iResult =0.043 ; break;
case ’G’: iResult =0.037 ; break;
case ’H’: iResult =0.012 ; break;
case ’I’: iResult =0.022 ; break;
case ’L’: iResult =0.032 ; break;
case ’K’: iResult =0.040 ; break;
case ’M’: iResult =0.007 ; break;
case ’F’: iResult =0.012 ; break;
case ’P’: iResult =0.485 ; break;
case ’S’: iResult =0.044 ; break;
case ’T’: iResult =0.036 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.014 ; break;
case ’V’: iResult =0.032 ; break;

}
case ’S’:
switch (iSymb2) {

case ’A’: iResult =0.096 ; break;
case ’R’: iResult =0.036 ; break;
case ’N’: iResult =0.049 ; break;
case ’D’: iResult =0.055 ; break;
case ’C’: iResult =0.011 ; break;
case ’Q’: iResult =0.030 ; break;
case ’E’: iResult =0.050 ; break;
case ’G’: iResult =0.059 ; break;
case ’H’: iResult =0.016 ; break;
case ’I’: iResult =0.019 ; break;
case ’L’: iResult =0.034 ; break;
case ’K’: iResult =0.043 ; break;
case ’M’: iResult =0.010 ; break;
case ’F’: iResult =0.016 ; break;
case ’P’: iResult =0.036 ; break;
case ’S’: iResult =0.294 ; break;
case ’T’: iResult =0.088 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.017 ; break;
case ’V’: iResult =0.036 ; break;

}
case ’T’:
switch (iSymb2) {

case ’A’: iResult =0.074 ; break;
case ’R’: iResult =0.033 ; break;
case ’N’: iResult =0.037 ; break;
case ’D’: iResult =0.040 ; break;
case ’C’: iResult =0.010 ; break;
case ’Q’: iResult =0.030 ; break;
case ’E’: iResult =0.048 ; break;
case ’G’: iResult =0.037 ; break;
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case ’H’: iResult =0.014 ; break;
case ’I’: iResult =0.036 ; break;
case ’L’: iResult =0.047 ; break;
case ’K’: iResult =0.045 ; break;
case ’M’: iResult =0.016 ; break;
case ’F’: iResult =0.017 ; break;
case ’P’: iResult =0.029 ; break;
case ’S’: iResult =0.089 ; break;
case ’T’: iResult =0.315 ; break;
case ’W’: iResult =0.005 ; break;
case ’Y’: iResult =0.016 ; break;
case ’V’: iResult =0.062 ; break;

}
case ’W’:
switch (iSymb2) {

case ’A’: iResult =0.039 ; break;
case ’R’: iResult =0.024 ; break;
case ’N’: iResult =0.016 ; break;
case ’D’: iResult =0.015 ; break;
case ’C’: iResult =0.004 ; break;
case ’Q’: iResult =0.014 ; break;
case ’E’: iResult =0.022 ; break;
case ’G’: iResult =0.022 ; break;
case ’H’: iResult =0.014 ; break;
case ’I’: iResult =0.032 ; break;
case ’L’: iResult =0.061 ; break;
case ’K’: iResult =0.016 ; break;
case ’M’: iResult =0.016 ; break;
case ’F’: iResult =0.066 ; break;
case ’P’: iResult =0.015 ; break;
case ’S’: iResult =0.020 ; break;
case ’T’: iResult =0.022 ; break;
case ’W’: iResult =0.478 ; break;
case ’Y’: iResult =0.071 ; break;
case ’V’: iResult =0.034 ; break;

}
case ’Y’:
switch (iSymb2) {

case ’A’: iResult =0.036 ; break;
case ’R’: iResult =0.028 ; break;
case ’N’: iResult =0.025 ; break;
case ’D’: iResult =0.021 ; break;
case ’C’: iResult =0.007 ; break;
case ’Q’: iResult =0.018 ; break;
case ’E’: iResult =0.026 ; break;
case ’G’: iResult =0.020 ; break;
case ’H’: iResult =0.028 ; break;
case ’I’: iResult =0.034 ; break;
case ’L’: iResult =0.061 ; break;
case ’K’: iResult =0.027 ; break;
case ’M’: iResult =0.015 ; break;
case ’F’: iResult =0.108 ; break;
case ’P’: iResult =0.017 ; break;
case ’S’: iResult =0.026 ; break;
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case ’T’: iResult =0.025 ; break;
case ’W’: iResult =0.027 ; break;
case ’Y’: iResult =0.408 ; break;
case ’V’: iResult =0.043 ; break;

}
case ’V’:
switch (iSymb2) {

case ’A’: iResult =0.074 ; break;
case ’R’: iResult =0.021 ; break;
case ’N’: iResult =0.014 ; break;
case ’D’: iResult =0.016 ; break;
case ’C’: iResult =0.014 ; break;
case ’Q’: iResult =0.017 ; break;
case ’E’: iResult =0.024 ; break;
case ’G’: iResult =0.018 ; break;
case ’H’: iResult =0.009 ; break;
case ’I’: iResult =0.136 ; break;
case ’L’: iResult =0.109 ; break;
case ’K’: iResult =0.024 ; break;
case ’M’: iResult =0.022 ; break;
case ’F’: iResult =0.033 ; break;
case ’P’: iResult =0.020 ; break;
case ’S’: iResult =0.028 ; break;
case ’T’: iResult =0.048 ; break;
case ’W’: iResult =0.007 ; break;
case ’Y’: iResult =0.022 ; break;
case ’V’: iResult =0.346 ; break;

}
}

]]>
</code>

</probability>
</emission>

<emission id="emitInsertion">
<output idref="sequence1"/>
<probability>

<code type="statement">
<identifier output="sequence1" value="iSymb1"/>
<identifier type="result" value="iResult"/>
<![CDATA[

switch (iSymb1) {
case ’A’: iResult =0.074 ; break;
case ’R’: iResult =0.045 ; break;
case ’N’: iResult =0.056 ; break;
case ’D’: iResult =0.080 ; break;
case ’C’: iResult =0.008 ; break;
case ’Q’: iResult =0.041 ; break;
case ’E’: iResult =0.076 ; break;
case ’G’: iResult =0.099 ; break;
case ’H’: iResult =0.022 ; break;
case ’I’: iResult =0.036 ; break;
case ’L’: iResult =0.063 ; break;
case ’K’: iResult =0.073 ; break;
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case ’M’: iResult =0.017 ; break;
case ’F’: iResult =0.031 ; break;
case ’P’: iResult =0.065 ; break;
case ’S’: iResult =0.068 ; break;
case ’T’: iResult =0.057 ; break;
case ’W’: iResult =0.012 ; break;
case ’Y’: iResult =0.030 ; break;
case ’V’: iResult =0.047 ; break;

}
]]>

</code>
</probability>

</emission>

<emission id="emitDeletion">
<output idref="sequence2"/>
<probability>

<code type="statement">
<identifier output="sequence2" value="iSymb2"/>
<identifier type="result" value="iResult"/>
<![CDATA[

switch (iSymb2) {
case ’A’: iResult =0.057 ; break;
case ’R’: iResult =0.058 ; break;
case ’N’: iResult =0.084 ; break;
case ’D’: iResult =0.091 ; break;
case ’C’: iResult =0.035 ; break;
case ’Q’: iResult =0.072 ; break;
case ’E’: iResult =0.077 ; break;
case ’G’: iResult =0.086 ; break;
case ’H’: iResult =0.063 ; break;
case ’I’: iResult =0.039 ; break;
case ’L’: iResult =0.045 ; break;
case ’K’: iResult =0.082 ; break;
case ’M’: iResult =0.053 ; break;
case ’F’: iResult =0.048 ; break;
case ’P’: iResult =0.092 ; break;
case ’S’: iResult =0.079 ; break;
case ’T’: iResult =0.066 ; break;
case ’W’: iResult =0.054 ; break;
case ’Y’: iResult =0.054 ; break;
case ’V’: iResult =0.042 ; break;

}
]]>

</code>
</probability>

</emission>

<transitions>
<transition from="start" to="Match" probability="start_match" />
<transition from="start" to="Insertion" probability="start_insert" />
<transition from="start" to="Deletion" probability="start_delete" />

<transition from="Deletion" to="end" probability="delete_end" />
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<transition from="Deletion" to="Match" probability="delete_match" />
<transition from="Deletion" to="Deletion" probability="delete_delete" />

<transition from="Match" to="end" probability="match_end"/>
<transition from="Match" to="Insertion" probability="match_insert"/>
<transition from="Match" to="Deletion" probability="match_delete"/>
<transition from="Match" to="Match" probability="match_match"/>

<transition from="Insertion" to="end" probability="insert_end"/>
<transition from="Insertion" to="Match" probability="insert_match"/>
<transition from="Insertion" to="Insertion" probability="insert_insert"/>

</transitions>

<probability id="start_match"><code type="expression"> 1033.0/1034
</code></probability> <probability id="start_insert"><code
type="expression"> (1.0/2)/1034 </code></probability> <probability
id="start_delete"><code type="expression"> (1.0/2)/1034
</code></probability>

<probability id="match_end"><code type="expression"> 1033.0/212016
</code></probability> <probability id="match_insert"><code
type="expression"> (6817.0/2)/212016 </code></probability>
<probability id="match_delete"><code type="expression">
(6817.0/2)/212016 </code></probability> <probability
id="match_match"><code type="expression"> 204166.0/212016
</code></probability>

<probability id="delete_end"><code type="expression"> 1.0/27413
</code></probability> <probability id="delete_match"><code
type="expression"> 6817.0/27413 </code></probability> <probability
id="delete_delete"><code type="expression"> 20595.0/27413
</code></probability>

<probability id="insert_end"><code type="expression"> 1.0/27413
</code></probability> <probability id="insert_match"><code
type="expression"> 6817.0/27413 </code></probability> <probability
id="insert_insert"><code type="expression"> 20595.0/27413
</code></probability>

</hmm>

<!-- Code generation -->

<forward realtype="bfloat" outputTable="yes" name="Forward"
id="fw">

<!-- Specify HMM to make code for -->
<hmm idref="Aligner"/>

</forward>

<backward realtype="bfloat" outputTable="yes" baumWelch="yes"
name="Backward" id="bw">
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<!-- Specify HMM to make code for -->
<hmm idref="Aligner"/>

</backward>

<sample name="Sample" id="smp">

<hmm idref="Aligner"/>

</sample>

<viterbi realtype="bfloat" name="Viterbi" id="vit">

<hmm idref="Aligner"/>

</viterbi>

<codeGeneration file="aligner.cc" header="aligner.h"
language="C++">

<forward idref="fw"/>
<backward idref="bw"/>

<!-- <sample idref="smp"/> -->
<viterbi idref="vit"/>

</codeGeneration>

<codeGeneration file="main.cc" language="C++">

<!-- This is just to package this example in one file. It is
actually rather inconvenient to edit main.cc in here.. -->

<code> <![CDATA[

#include <iostream> #include <fstream> #include <string> #include
<vector>

using namespace std;

#include "aligner.cc"

int main() {
// char seq1[]="LTREKLIELAILVGTDYNP";
// char seq2[]="LTREKLIELAILV";

int count =0;
double** rates;
DPTableAligner* pT1, *pT2, *pT3;

BaumWelchAligner *pBW; int id;
while (!cin.eof())
{

std::string sseq1, sseq2, dummy;
cin >> sseq1;
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cin >> sseq2;

if (cin.eof()) break;

/* Find length of sequences */
int iLen1 = sseq1.size();
int iLen2 = sseq2.size();
count = count +1;
char * seq1 = const_cast<char*>(sseq1.c_str());
char * seq2 = const_cast<char*>(sseq2.c_str());

/* Print sequence, and forward and backward likelihoods. */
/* The backward algorithm also computes Baum-Welch posterior counts */

cout << "count " << count <<endl;
cout << "Sequence1: " << seq1 << endl;

cout << "Sequence2: " << seq2 << endl;
cout << "Forward:" << endl <<

Forward(&pT1,seq1,seq2,iLen1,iLen2) << endl;
cout << "Backward:" << endl <<

Backward(&pBW,pT1,&pT2,seq1,seq2,iLen1,iLen2) << endl;

/* Print posterior counts for all transitions */
for (int i=0; i<pBW->transNum00; i++) {
id = pBW->transId00[i];
//cout << pT1->transitionId[id] << " " <<
// pT1->transitionFrom[id] << "->" << pT1->transitionTo[id]
// << ":" << pBW->transCount00[i] << endl;
}

/* Print Viterbi likelihood, and Viterbi path */

cout << "Viterbi:" << endl;
cout << Viterbi_recurse(&pT3,seq1,seq2,iLen1,iLen2) << endl;
cout << Viterbi_trace(pT3,seq1,seq2,iLen1,iLen2) << endl;

}

return 0; }

]]>

</code>

</codeGeneration>

</hml>
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