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Hidden Markov models for sequence analysis:
extension and analysis of the basic method

Richard Hughey and Anders Krogh1'2

Abstract

Hidden Markov models (HMMs) are a highly effective
means of modeling a family of unaligned sequences or a
common motif within a set of unaligned sequences. The
trained HMM can then be used for discrimination or
multiple alignment. The basic mathematical description
of an HMM and its expectation-maximization training
procedure is relatively straightforward. In this paper, we
review the mathematical extensions and heuristics that move
the method from the theoretical to the practical. We then
experimentally analyze the effectiveness of model regular-
ization, dynamic model modification and optimization
strategies. Finally it is demonstrated on the SH2 domain
how a domain can be found from unaligned sequences using
a special model type. The experimental work was completed
with the aid of the Sequence Alignment and Modeling
software suite.

Introduction

Since their introduction to the computational biology
community (Haussler et al., 1993; Krogh et al., 1994a),
hidden Markov models (HMMs) have gained increasing
acceptance as a means of sequence modeling, multiple
alignment and profiling (Baldi et al., 1994; Eddy, 1995;
Eddy et al., 1995). A HMM is a statistical model similar to
a profile (Gribskov et al., 1987; Bucher & Bairoch, 1994),
but can also be estimated from unaligned sequences.

A linear HMM for a family of nucleotide or amino
acid sequences is a set of positions that roughly corre-
spond to columns in a multiple alignment. Typically, each
position will have three states: match, insert and delete,
corresponding to matching a single character to a column
of the multiple alignment, omitting characters not
modeled by the HMM, or skipping over that column
and proceeding to the next. Probabilities or costs (negative
log-probabilities) are associated with each character
omission and each transition between states. The align-
ment of a sequence is simply the highest-probability, or
lowest-cost, path through the HMM.
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The primary advantage of HMMs over, for example,
profiles is that they can be automatically estimated, or
trained, from unaligned sequences. The most basic
mathematical method of training an HMM does not
work well without the addition of several mathematical
extensions and heuristics. The body of this paper is a study
of three of the most important extensions to the basic
model presented previously (Krogh et al., 1994a): regu-
larizers, dynamic model modification and 'free insertion
modules'. After reviewing these in turn, we present an
experimental evaluation of the utility of these and other
extensions.

System and methods

The Sequence Alignment and Modeling (SAM) software
suite is written in ANSI C for Unix workstations.
Additionally, we have implemented the inner loop in
MPL for the MasPar family of parallel computers. The
system has been tested on DEC Alpha, DECstation, IBM
RS/6000, SGI, and Sun SPARC workstations. The
research described herein was performed on a Sun
SPARC 30/10 and a MasPar MP-2204 connected to a
DEC Alpha 5000/300.

Newly revised and documented workstation and
MasPar versions of SAM are available from our WWW
site: http://www.cse/ucsc.edu/research/compbio/sam.html.
We recently created a server for using SAM to align and
model sequences, which is accessible from the SAM
WWW page. Questions concerning the software and its
distribution can be mailed to sam-info@cse.ucsc.edu.

Algorithm

This section discusses the basic theory and use of HMMs.
Although most aspects of our linear HMMs have been
described previously (Krogh et al., 1994a), this section re-
examines several operational features as the foundation
for the experimental evaluation that follows.

The hidden Markov model

This section briefly describes the structure and basic
theory of the type of HMM used in this work. For a
general introduction to HMMs, see Rabiner (1989). For
additional details on our HMMs, see Krogh et al. (1994a).
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Fig. 1. A linear hidden Markov model.

The basic model topology is shown in Figure 1. Each
position, or module, in the model has three states. A state
shown as a rectangular box is a match state that models
the distribution of letters in the corresponding column of
an alignment. A state shown by a diamond-shaped box
models insertions of random letters between two align-
ment positions, and a state shown by a circle models a
deletion, corresponding to a gap in an alignment. States of
neighboring positions are connected, as shown by lines.
For each of these lines there is an associated 'transition
probability', which is the probability of going from one
state to the other.

This model topology was chosen so as to feature
insertions and deletions similar to biological sequence
alignment techniques based on affine gap penalties. Other
model topologies can certainly be considered—see, for
example, Baldi et al. (1994) and Krogh et al. (1994b)—but
for reasons for efficiency the software described here is
limited to the topology shown in Figure 1. Gibbs sampling
is an alternative approach that does not allow arbitrary
gaps within aligned blocks (Lawrence et al., 1993).

Alignment of a sequence to a model means that each
letter in the sequence is associated with a match or insert
state in the model. Two five-character sequences, A and B,
are shown in a four-state model in Figure 2, along with the
corresponding alignment between the sequences.

One can specify such an alignment by giving the
corresponding sequence of states with the restriction that
the transition lines in the figure must be followed. For
example, to match a letter to the first match state (wj) and
the next letter to the third match state (w3) can only be
done by using the intermediate delete state (d2), so that
part of the alignment can be written as m|</2m3- In HMM
terminology such an alignment of a sequence to a model is
called a path through the model. A sequence can be
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aligned to a model in many different ways, just as in
sequence-to-sequence alignments, or sequence-to-profile
alignments. Each alignment of a given sequence to the
model can be scored by using the probability parameters
of the model.

In the following, a sequence of L letters is denoted
x\...xL. The path specifying the particular alignment is
denoted qx ... qL, where qk is the fcth state in the path. To
simplify notation (as compared to Krogh et al., 1994a),
only the match and insert states are included in the path;
for two states not directly connected, delete states are filled
in as needed. Because the first state in a path is always the
initial state /n0, and the last one is always the end state
mM + x, these two trivial states are also not included in
the state sequence. The number of match positions in the
model is called M, and is referred to as the length of the
model. The probability of an alignment of a sequence to a
model is the product of all the probabilities met in the
path, written as

...xL,q\...qL\mode\) =

(1)

where T{qi\q,_\) is the probability associated with the
transition between states <7,_i and q,. The probability of
matching letter x to state q is called V(x\q). If two states in
the path are not directly connected by a transition, the
transition probability has to be calculated by filling in the
appropriate delete states. For example, the probability of
a transition from the match state at position 1 (m^ to the
insert state at position 4 (j4), passing through delete states
d2, di and d4, is

T(U\mx) = T{d1\mx)T{di\d1)T{d,\d,)T{U\d,) (2)

By taking the negative logarithm of equation (1) it can be
turned into a more familiar type of alignment 'cost':

- log Prob(x, . . . xL, <7,.

(3)

-to..,)-log*>(*,!*,)

-logT(qL+l\qL)

Fig. 2. An example of two sequences whose characters are matches to
states in an HMM, and the corresponding alignment.

Now the numbers can be interpreted as 'penalties'. A term
like — logT(rf,-+i|m,-) is a positive penalty for initiating
a deletion after position i, and — logT(di+l\dj) is the
penalty for continuing a deletion at position i. Some of the
other terms have similar interpretations.

Estimation of the model

One great advantage of HMMs is that they can be
estimated from sequences, without having to align the
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sequences first. The sequences used to estimate or train the
model are called the training sequences, and any reserved
sequences used to evaluate the model are called the test
sequences. The model estimation is done with the
forward-backward algorithm, also known as the Baum-
Welch algorithm, which is described in Rabiner (1989). It
is an iterative algorithm that maximizes the likelihood of
the training sequences. We have modified the algorithm to
implement maximum a posteriori (MAP) estimation.

In the basic algorithm the expected number of times a
certain transition or letter emission is used by the training
sequences is calculated (Rabiner, 1989). For a letter
emission probability V{x\q) this is called n{x\q). Then
the re-estimated parameter is

P(x\q) =
n(x\q)

(4)

where the sum is over all the characters x in the alphabet,
such as the 20 amino acids. The re-estimation formula
for the transition probabilities are similar. To begin
with all the n{x\q) values are found from an arbitrary
initial model. Next, a new set of parameters is found
using equation (4), and the similar formula for the
transition probabilities. Then, using the new model, the
re-estimation procedure is repeated until the change in
the parameters is insignificant.

Prior distribution and regularization. When estimating a
model from data, there is always the possibility that the
model will overfit the data—it models the training
sequences very well, but will not fit other sequences from
the same family. This is particularly likely if there are few
training sequences. With only one training sequence, a
perfect model would have a match state for each residue in
which that residue would have unity probability and all
other residues zero probability. Such a model would give
zero probability to all other sequences than the training
sequence! For larger sets of training data, similar
problems are still present but not as extreme.

To avoid this problem a regularizer can be used.
Regularization is a method of avoiding overfitting the
data, and in Bayesian statistics it is tightly connected with
the so-called prior distribution. The prior distribution is a
distribution over the model parameters; for the HMM it is
a probability distribution over probability distributions.
The prior contains our prior beliefs about the parameters
of the model. In our work we use Dirichlet distributions
for the prior (Berger, 1985; Santner and Duffy, 1989). For
a discrete probability distribution pt,... ,pM a Dirichlet
distribution is described by M parameters a.\,..., aM. The
mean of the Dirichlet distribution is p-t — a,/ao> where
a0 = J2i ai> a nd the variance is inversely proportional to
a0- If "o is large, it is highly probable that/?, ~ Q,/a0. For

each probability distribution in the HMM, a Dirichlet
distribution is used as a prior, and we call the correspond-
ing a values a(x\q) for the distribution over characters,
and a(qj\qj) for the transition probabilities. The re-
estimation formula corresponding to (4) is

V(x\mk) =
n{x\mk) + a(x\mk)

(5)

The set of all the as is called the regularizer. We call this
the MAP estimate, although the correct MAP formula has
a{x\mk) — 1 instead of a(x\mk). Equation (5) is really a
least-squares estimate (see Krogh et al., 1994a), but one
can also view it as a MAP estimate with redefined as.

Even without the theoretical justification, this formula
is appealing. For each parameter in the model a number
(a) is added to the corresponding n before the new
parameter is found. If n is small compared to a, as when
there is little training data, the regularizer essentially
determines the parameter, and

V(x\mk) ~ (6)

(This is the average of the Dirichlet distribution.) The size
of the sum J^x1 a{x'\mk) determines the strength of the
regularization, or the strength of the prior beliefs. If this
sum is small, say 1, just a few sequences will be enough to
'take over' the model. On the other hand, if the sum is
large, say 1000, then of the order of 1000 training
sequences will be needed to make the model differ
significantly from the prior beliefs.

This type of regularization is convenient when modeling
biological sequences because we have prior knowledge
from conventional alignment methods. For example, in
both pairwise and multiple alignments, the penalty for
starting a deletion is usually larger than for a continuing
deletion. This 'prior belief that match-to-delete tran-
sitions are less probable than delete-to-delete transitions
can easily be built into an HMM by setting

The SAM system can also use the more complicated
Dirichlet mixture priors for regularization. These priors
include several different distributions for some number of
different types of columns, such as hydrophobic and
hydrophilic positions. For more information on these
distributions, refer to our previous work (Brown et al.,
1993).

By normalizing the regularizer as in equation (6), a valid
model is obtained. Since this model represents prior
beliefs, it is natural to use it as the initial model for the
estimation process. Usually noise is added to this initial
model for reasons discussed next.

Problems with local maxima. A serious problem with
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any hill-climbing optimization technique is that it often
ends up in a local maximum. The same is true for the
forward-backward procedure used to estimate HMMs by
maximizing the likelihood (or the a posteriori model
probability). In fact, it will almost always end up in a local
maximum.

To deal with this problem, we start the algorithm
several times from different initial models. The resulting
models then represent different local maxima, and we pick
the one with the highest likelihood. The different initial
models are obtained by taking the normalized regularizer
and adding noise to all the parameters. The noise is added
to a model in the following way. A number R of sequences
are generated from the regularizer model, stepping from
state to state and generating characters according to the
regularizer's transition and match distributions. Given a
noise level N,, each of these R paths through the model is
added to the counts with a weight of N//R, before MAP
re-estimation. By default, R is set to 50 random sequences.

One can also add noise to the models during their
estimation and decrease the noise level gradually in a
technique similar to the general optimization method
called simulated annealing (Kirkpatrick and Vecchi,
1983). The initial level of the noise in this annealing
process is called JV0 as above. During the estimation
process the annealing noise is decreased by a speed
determined by r. We have tested two methods for
decreasing the noise:

Linearly: If r > 1, the noise is decreased linearly to zero in
r iterations, so in iteration i

N, = N0(l - i/r) for i < r and Nt = 0 for i > r

Exponentially: If r < 1, the noise is decreased exponen-
tially by multiplying the noise with r in each iteration

Nt = Nor'

An alternative and very elegant way of simulated
annealing is described in Eddy (1995).

Multiple sequence alignment

The probability (1) or the score (3) can (in principle) be
calculated for all possible alignments to a model, and thus
the most probable (i.e. the best) can be found. There exists
a dynamic programming technique, called the Viterbi
algorithm (Rabiner, 1989), that can find the best align-
ment and its probability without going through all the
possible alignments. It is this best alignment to the model
that is used to produce multiple alignments of a set of
sequences. For each of the sequences the alignment to the
model is found. The columns of the multiple alignment are
then determined by the match states. All the amino acids

matched to a particular match state are placed under each
other to form the columns of the alignments. For
sequences that do not have a match to a certain match
state, a gap character is added (Figure 2).

Searching

By summing the probabilities of all the different align-
ments of a sequence to a model, one can calculate the total
probability of the sequence given that model

. . . xjmodel)

... qL\mode\) (7)

where the sum is over all possible alignments (paths)
q\ • •. qi, and the probability in the sum is given by
equation (1). This probability can be calculated efficiently
without having to consider explicitly all the possible
alignments by the forward algorithm (Rabiner, 1989). The
negative logarithm of this probability is called the negative
log-likelihood score

NLL(X] . . . .vjmodel) — - log Prob(xi . . . xjmodel)

(8)

Any sequence can be compared to a model by
calculating this NLL score. For sequences of equal
length the NLL scores measure how 'far' they are from
the model, and can be used to select sequences that are
from the same family. However, the NLL score has a
strong dependence on sequence length and model length
(see Figure 3). One means of overcoming this length bias is
using Z-scores, or the number of standard deviations each
NLL is away from the average NLL of sequences of the
same length, but which are not part of the family being
modeled, or do not contain the motif being modeled.

When searching a database like SwissProt (Bairoch &
Boeckmann, 1994) with an HMM, the smooth average
and the Z-scores are calculated as follows. For a fixed
sequence length we assume that the NLL scores are
distributed as a normal distribution with some outliers
representing the sequences in the modeled family. The
smooth average should be the average of the normal
distribution, and it is found by iteratively removing the
outliers:

1. For k larger than or equal to the minimum sequence
length, find the minimum length ek > k such that the
length interval [k,ek] contains at least K sequences.
We usually use K = 1000. For all such intervals,
calculate the average sequence length tk and the
average NLL score.

2. For any integer length / the smoothed average NLL
score is found by linear interpolation of the average
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Fig. 3. NLL scores versus sequence length for a search of Swiss-Prot using a model of the SH2 domain described in the text. The + show the SH2
containing sequences (the training set), and dots show the ~30000 remaining sequences. All sequences containing the letter 'X' are excluded.

NLLs corresponding to the closest tk < I and tk+i.
For / either smaller than the smallest tk or larger than
the largest tk, linear extrapolation from the two closest
points is used.

3. For each interval the standard deviation of the NLL
scores from the averages is found. For any integer
length the smoothed standard deviation is found by
linear interpolation or extrapolation as above.

4. All sequences with an NLL score more than a certain
number of standard deviations (usually 4) from the
smooth average are considered outliers and excluded
in the next iteration.

5. If the excluded sequences are identical to the ones
excluded in the previous iteration, the process is
stopped. Otherwise it is repeated unless the maximum
number of iterations have been performed.

This procedure often produces excellent results on a
large database like SwissProt, but there is no guarantee
that it works. It is easy to detect when it is not working,
because the sequences in the family, such as the training
sequences, have low Z-scores. In this case, the training
sequences and other obvious outliers can be removed by
hand, and the above process repeated. This method always
yields good results.

In some sequences there are unknown residues that are
indicated by special characters. A completely unknown
residue is represented by the letter X in proteins and by N

in DNA and RNA. For proteins the letters B, meaning
amino acid N or D, and Z (Q or E) are also taken into
account. For DNA and RNA the letters R for purine and
Y pyrimidine are recognized. All other letters that are not
part of the sequence alphabet or equal to one of these
wildcard characters are taken to be unknown, i.e. changed
to X or N depending on the sequence type. The probability
of a wildcard character in a state of the HMM is set equal
to the maximum probability of all the letters it represents.
It has the unfortunate side effect that sequences with many
unknowns automatically receive a large probability, and
these sequences have to be inspected separately. Another
solution would be to set the probability equal to the
average probability of the letters the wildcard represents,
but then the opposite problem might occur. This can also
be chosen as an option in SAM.

Model surgery

It is often the case that during the course of learning, some
match states in the model are used by few sequences, while
some insertion states are used by many sequences. Model
surgery is a means of dynamically adjusting the model
during training.

The basic operation of surgery is to delete modules with
unused match states and to insert modules in place of
overused insert states. In the default case, any match state
used by fewer than half the sequences is removed, forcing
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those sequences to use an insert state or to change
significantly their alignment to the model. Similarly, any
insert state used by more than half the sequences is
replaced with a number of match states approximating the
average number of characters inserted by that insert state.
After surgery the model is retrained to adjust to the new
situation. This process can be continued until the model is
stable.

For finer tuning of the surgery process, the user can
adjust the fraction of sequences that must use a match
state, the fraction of sequences that are allowed to use an
insert state, and the scaling used when replacing an insert
state with one or more match states. While the default
50% usage heuristic stabilizes after a few iterations of
surgery, careless setting of these fine-tuning parameters
can result in a model that oscillates, switching back and
forth between match and insert states.

Modeling domains and motifs

Imagine that the same domain appears in several
sequences. In that case, to build an HMM of that
domain and use it for searching or aligning requires a
few extensions. We augment the HMM by insertion states
on both ends that have no preference for which letters are
inserted (i.e. they have uniform character distributions).
The cost of aligning a sequence to such a model does not
strongly depend on the position of the pattern in the
sequence, and thus it will pick up the piece of the sequence
that best fits the model. A new parameter then has to be
set, namely the probability of making an insertion in these
flanking insertion modules. If this probability is low,
deletions in the main part of the model are encouraged and
insertions discouraged, whereas a high insertion prob-
ability encourages the opposite behavior, because it
becomes 'expensive' to use the flanking insertion states.
The setting of this parameter is most important when
estimating a model like this, because there is a danger of
finding a model in which, for instance, only the delete
states are used if it is too 'cheap' to make insertion in the
flanking modules. These flanking modules are called free
insertion modules (FIMs), because the self-transition
probability in the insert state is set to unity. Other values
can, of course, be used.

FIMs are implemented by only using the delete state
and the insert state in a standard module. All the
transitions from the previous module go into the delete
state, which is ensured by setting the other probabilities to
zero. From the delete state there is a transition to the insert
state with the probability set to one. In the insert state all
characters have the same probability and the probability
of insert-to-insert is set to one. From the delete and insert
states there are transitions to the next module which have

Fig. 4. A model with a FIM in both ends and one at module 4. The width
of a line is proportional to the probability of the transition. This example
uses the RNA alphabet, and the probabilities in the modules other than
the FIMs are set according to our standard regularizer, which strongly
favors the transitions from match state to match state and has a low
probability of starting insertions or deletions.

the same probabilities (delete-to-match and insert-to-
match have the same probability, and so on). Note that
the probabilities do not sum up to one properly in such a
module. A model with three FIMs is shown in Figure 4.

These special modules can be used to learn, align or
discriminate domains that occur once per sequence.
Typically, FIMs are used at the beginning and the end
of a model to allow an arbitrary number of insertions at
either end. To train a model to find several (different)
domains, one can also add FIMs at different positions in
the model. Note, however, that only domains always
occurring in the same order and the same number of times
can be modelled this way. To model domains that come in
different order or in a variable number, a model with
backward transitions is required, which is something that
we might add to SAM at a later stage.

There are two different ways to model subsequences.
The first method is to cut out the subsequences from their
host molecules, build a model from these, and then add a
FIM in both ends afterwards. The second method is to use
the full sequence and train with the FIMs. The second
method is generally easier, but also slower in terms of
CPU time, especially if the sequences are much longer
than the subsequences. In Krogh et al. (1994a) the first
method was used to model the protein kinase catalytic
domain and the EF hand domain, and in this paper the
second method will be demonstrated on the SH2 domain.

In Lawrence and Reilly (1990) and Lawrence et al.
(1993), two related methods of automatically finding
common patterns in a set of sequences are described.
Those papers deal only with gap-less alignments, i.e.
patterns without insertions or deletions. The method
described here can be viewed as an extension to alignments
with gaps.

Additional features

Several additional features also aid the learning perfor-
mance of the SAM system. First, SAM performs the first
training pass (before any surgery occurs) on multiple
models. The best of those models is selected for the
remaining surgery and training iterations. Second, SAM
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Table I. HMM training on various machines

System

Sun 3/110
Sun 4/50
DECstation 5000/240
SGI 440VGX, 1 CPU
DEC Alpha 3000/500
C-Linda, 7 DECstation 5000s (240 and 125)
Cray Y-MP, 1 CPU, vectorized
8K MP-1, optimized
4K MP-2, optimized

Rel. Porting
Difficulty

0
0
0
0
0
4
g

60
60

Performance
(kCUPS)

3.2
37.1
39.2
59.0

107
147
167

1530
1580

Performance
(Sun 4/50s)

0.1
1.0
1.1
1.6
2.9
4.0
4.5

41
43

also supports Viterbi training, in which the model is
trained according to the best path of each sequence
through the model, rather than by the probability
distributions over all possible paths. Although this is
slightly faster, the results are generally not as good. Third,
when models are derived from an alignment or an existing
profile, training of a module's match table or transitions
can be turned off and it can be insulated from the surgery
procedure. This last feature was not used for the results of
this paper, apart from the related protection of FIMs from
surgery.

Implementation and performance

The inner loop of the algorithm is an O(n2) dynamic
programming algorithm that calculates the forward and
backward values for each of the three states at a given
pair of model and sequence indices. The serial implemen-
tation of this algorithm is straightforward. For Cray
vectorization, the two inner loops were modified to
calculate counter-diagonals in order (i.e. (0,1), (1,0),
(0,2), (1,1), (2,0),. . .) to make effective use of the vector
pipelines.

The MasPar parallel processor features a two-dimen-
sional mesh of processing elements (PEs) and a global
router (Nickolls, 1990). For large numbers of sequences,
the best algorithm mapping can be to perform a complete
model-sequence dynamic programming in each PE;
unfortunately, the 64 kbytes of local memory per PE is
too small for such coarse-grain parallelism. Instead, the
array is treated as collection of linear arrays of PEs, where
each linear array contains one model. Thus, if the models
are of length 100, 40 sequence-against-model calculations
are performed at a time using 4000 of the 4096 processing
elements.

The linear arrays are used as follows. During the
forward part of the dynamic programming, the (i, j) value
is computed during step i +j in the rth PE of one of the
linear arrays. This calculation depends on values from
(i— 1,7), {i,j- 1) and ( i - \,j - 1), all of which have

already been calculated in either PE, or PE,_!. The
characters of the sequence are also shifted through the
linear array, one PE at a time, to ensure that character j is
in PE, at time step / +j. During the backward calculation,
this process is reversed, calculating each diagonal at time
n2 — i -j. After all sequences have been compared to the
model, the frequencies are combined using log-time
reduction, and uploaded to the host computer for high-
level processing such as surgery and noise injection.

Performance can be rated in terms of dynamic
programming cell updates per second (CUPS). Performing
both the forward and backward calculations at a single
dynamic programming cell (one character from one
sequence against one model node) is a single-cell update.
The total number of cell updates, which depends greatly
on parameter settings, is the sum of model lengths over all
re-estimation cycles multiplied by the total number of
characters in all the sequences. For the experiments
described in the next section, a typical training run on 50
globins of average length 146 and a model length of 145
with 40 re-estimation cycles, required 50 s on our 4096 PE
MasPar MP-2 or ~7min on a DEC Alpha 3000/400
(longer runs heighten the difference between the two
machines to factors of 10-15). Experiments based on 400
training sequences and an earlier version of the code are
summarized in Table I.

Results and discussion

While several reports have shown the general effectiveness
of HMMs (Brown et al., 1993; Baldi et al., 1994; Krogh et
al., 1994a; Eddy, 1995; Eddy et al., 1995), this section
takes a close look at the effectiveness of each extension to
the basic method.

We choose the globin family for the first of these
illustrative experiments because of our previous familiarity
with the family. From a set of 624 globins, close homologs
were removed using a maximum entropy weighting
scheme (Krogh & Mitchison, 1995) by removing all
sequences with a very small weight (< 10~5), which left
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(a) (b) (c)

Fig. 5. Test NLL scores (average over 117 test sequences) from running SAM 1000 times on 50 other globin sequences with (a) default noise, (b) random
starting model lengths and (c) all heuristics including surgery. The solid vertical line at 334 is the average test sequence score without any random
heuristics (in this case, surgery has no effect on the non-random training routine).

us with 167 globins. For the experiments, our group of 167
sequences was randomly divided into a training set of 50
sequences and a test set of 117 sequences, except in the
experiments on training set size.

The statistical goodness of an HMM is tied to the final
probability result of the test set. SAM reports this as a
negative-log-likelihood (-In/*), or NLL, score. This
section considers the effects of each of the more
important extensions on NLL scores. Ideally, we would
like small NLL scores that, with multiple runs using
different random seeds, are sharply peaked. Such a peaked
distribution implies that far fewer than the thousands of
runs performed in these experiments are required to
generate a good model.

Noise

To find default noise settings, we ran 50 random seeds for
all combinations of nine annealing schedules and seven
noise values. Average performance over the runs was
typically 5% better than without noise, while the best
NLL score over the 50 runs was 12% better than without
noise. Given that the typical mode of running SAM is to
generate many models and pick the best, this 12% value is
quite an improvement. Our chosen default is five
sequences worth of noise using an exponential annealing
schedule with factor 0.8. This is a somewhat arbitrary
choice based on the range of scores obtained—no clear
winner among the settings emerged. The tested setpoints
added between 20% and 350% more re-estimation cycles
over the noiseless case. If less time is available, we suggest
a linear schedule with one noise sequence. In general, as
many models should be created as possible, and then the
best one further refined. This procedure is automated in
SAM.

The histograms in Figure 5 show average test set NLL
scores for 1000 training runs on 50 training globins with
just default noise, random model lengths without noise

and all heuristics (noise, random model lengths and
surgery). The vertical bar at 334 indicates the NLL score
for training without noise. Note in particular how the
combination of noise and surgery both improves the test
set scores and sharpens their distribution, indicating that
far fewer than 1000 runs are needed to generate good
models.

Regular izalion

The effect of regularization is even more dramatic than
the effects of noise and surgery. SAM supports both
Dirichlet and Dirichlet mixture regularization. To gauge
the effects of regularization, we compared no regulariza-
tion to four other choices: the default simple regularizer,
the original nine-component mixture (Brown el al.,
1993), and more recent nine- and 21-component regular-
izers (Karplus, 1995). Histograms of the test set NLL
scores for these experiments, which used the noise
settings determined in the previous experiments, are
shown in Figure 6. Clearly, regularization is needed.
With 50 training sequences, however, the distinction
between the different regularizers is not high, as expected,
since the model is built from a reasonably sized training
set. Although the original nine-component mixture
appears to be the best, this mixture was in part based
on a globin alignment, and thus is at an advantage in this
experiment.

Where regularization truly shines is with small training
sets. Figure 7 shows the performance of the regularization
methods for small training sets. In this case, each test point
represents the average test set NLL score over 20 training
runs, each based on a different random training set of the
indicated size.

The Dirichlet mixture priors require additional running
time, but have somewhat improved performance over the
single-component prior. All four of these regularizers are
available with the SAM distribution.
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Mr r I I 8 0

(d) (e)

Fig. 6. NLL scores on the test set from running SAM 200 times on 50 globin sequences with no regularization (a), and single-component (b), original
nine-component (c), revised nine-component (d), and 21-component (e) regularizers. The solid vertical line at 334 is the score with no random heuristics
and the default regularizer.

Case-study: modeling the SH2 domain with FIMs

In this section we demonstrate the use of FIMs for
modeling domains. We stress that this is mostly for
illustrative purposes, so we will not go deeply into any
biological implications of the model or alignment. We use
the SH2 domain, which is found in a variety of proteins
involved in signal transduction, where it mediates
protein-protein interactions. For a review see Kuriyan
and Cowburn (1993). The domain has a length of ~100.

Initially a file was created with 78 SH2-containing

proteins by searching SwissProt (release 30) for the
keyword 'SH2 domain' (see Table II). Fifty models of
length 100 were trained in batches of 10 with FIMs at both
ends and without surgery. For each batch the model with
the best overall score was examined. Of these five models,
the best-scoring one happened to cover the SH2 domain
almost entirely. It started ~20 amino acids prior to the
domain and ended ~20 amino acids early as compared to
the alignment in Kuriyan and Cowburn (1993). Some of
the other models also covered part of the domain, whereas
others had picked up a different signal. This signal was

10 20 30 40 SO W 70
Nufrtar of tsMng MquwcM

Fig. 7. The effect of training set size and regularization on model building. Especially for small training sets, regularization greatly improved modeling
with respect to the larger test set. The differences in test set scores between the available regularizers are shown in the blowup to the right.
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Table II. All the sequences with a Z-score >7

ID

KSRC.AVISS
KSRC_AVIS2
KSRC_AVIST
KSRC_CHICK
KYES_XENLA
KSRC AVISR
KSRC_RSVSR
KSRC_RSVPA
KSRC_HUMAN
KSRN_MOUSE
KYES_CHICK
KHCK_MOUSE
KFGR_MOUSE
KFYNHUMAN
KFYN_CHICK
KYES_AVISY
KHCK_HUMAN
KFYN XENLA
KYES_MOUSE
KYES_HUMAN
KSR1_XENLA
KSR2_XENLA
KYRK_CHICK
KSRC_RSVH1
KFYN XIPHE
KSRC_RSVP
KLCK_HUMAN
KLCK_MOUSE
KLYN_HUMAN
KFGR HUMAN
KLYN MOUSE
KLYN_RAT
KYES_XIPHE
KFGR FSVGR**'
KBLK MOUSE
KSTK_HYDAT
KABL_MOUSE
KABL_HUMAN
KABL_DROME
KABL FSVHY"*
KSR1_DROME
PIP4_HUMAN
PIP4_RAT
PIP4_BOVIN

Length

568
587
557
533
537
526
526
523
536
541
541
503
517
536
533
528
505
536
541
543
531
531
535
526
536
526
508
508
511
529
511
511
544
545
499
509

1123
1130
1520
439
552

1290
1290
1291

using the

Z 1

67.569
66.610
66.187
63.475
63.177
63.007
63.006
62.815
62.782
62.609
62.162
62.012
61.846
61.811
61.799
61.798
61.731
60.899
60.894
60.808
60.516
60.320
59.673
59.639
59.610
59.370
58.265
58.265
58.265
58.024
57.843
57.843
57.477
55.885
55.812
47.469
47.440
47.408
46.822
43.836
43.509
42.121
41.892
41.533

first model

Z 2

57.941
59.765
56.073
56.653
55.735
57.519
57 519
58.016
56.550
56.243
55.339
51.266
53.802
52.437
51.222
55.872
50.077
51.891
55.201
54.594
54.921
54.793
50.890
54.652
50.490
53.892
49.467
49.287
49.868
50.468
49.468
48.955
50.010
51.428
45.981
43.094
46.331
46.458
41.191
40.175
38.564
39.355
39.526
39.341

ID

PIP5_RAT
PTNB_MOUSE
PIP5_HUMAN
KATK HUMAN
PTNB_HUMAN
GTPA HUMAN
GTPA_BOVIN
KATK_MOUSE
P85A_MOUSE
P84A_BOVIN
P85A_HUMAN
KABL_MLVAB***
KCSK-RAT
CSW_DROME
PTN6_MOUSE
PTN6_HUMAN
KLYK_HUMAN
P85B_BOVIN
KSR2 DROME
SEM5_CAEEL
SHC_HUMAN
KABL_CAEEL""
KFES_FSVST*"
KFES_HUMAN
NCK_HUMAN
GRB2_HUMAN
KFES_FELCA
VAV_MOUSE
KFER HUMAN
KFES_FSVGA*"
GAGC_AVISC
VAV_HUMAN
KFES_MOUSE***
KSYK_PIG
KAKT MLVAT
KFPS_AVISP"»
KFPS_FUJSV**»
KRAC_MOUSE
KTEC_MOUSE
KRAC_HUMAN
KRCB_HUMAN
KFPS_DROME***
SPT6_YEAST
YKF1_CAEEL***

Length

1265
585

1252
659
593

1047
1044
659
724
724
724
746
450
841
595
595
620
724
590
228
473
557
477
822
377
217
820
845
822
609
440
846
820
628
501
533
873
480
527
480
520
803

1451
424

Z 1

41.204
38.255
38.087
37.859
37.700
37.255
36.794
36.593
35.106
35.104
35.042
34.189
34.115
33.930
33.681
32.909
32.546
31.012
30.245
29.742
28.570
28.330
28.243
28.214
28.194
27.546
27.264
25.937
25.905
25.838
25.058
24.997
23.101
22.652
21.399
21.396
21063
20.673
20.547
20.509
16.613
12.358
9.461
7.138

Z 2

41.236
36.095
38.653
31.787
36.920
35.081
34.776
31.475
35.299
35.299
35.389
44.282
30.778
36.004
31.583
30.885
29.987
34.030
30.025
25.657
24.458
32.172
35.183
40.554
26.543
24.833
40.511
29.161
35.117
36.585
24.473
28.856
38.987
28.247
18.600
33.346
36.728
17.461
26.322
17.461
16.221
25.804
13.805
19.053

The score is shown in the columns labelled 'Z 1'. All except the ones marked by ' • • • ' were part of the training set initially extracted from Swiss-Prot. All
the ones marked by '***' were included in the training set. The column labeled 'Z X shows the Z-scores for the new model. The first training set also
contained the fragment KLCK_RAT of length 17. It had a Z-score of 0.18 with the first model, and was then removed from the training set.

probably the kinease catalytic domain of some of the

proteins in the file. It is quite remarkable that the model

can find the domain completely unsupervised, and that

might not always be the case.

Using this first model, a search was made of the entire

SwissProt database and all sequences scoring better than a

Z-score of 7 were examined (not taking sequences with

many 'X' characters into account)—see Table II. All the

sequences in the training set were among those high-

scoring ones, except a fragment of length 17 which was

then deleted from the data set. Of these high-scoring

sequences, 10 had Z-scores of 12 or more, and by checking

the alignment, we consider it to be certain that they

contain SH2. The last sequence with a score of 7.1 we also

believe contains SH2. All these high-scoring sequences

were now included in the data set. The old and new

sequences in the training set are listed in Table II, and all

sequences with Z-scores >4 are shown in Table III.

The model was then modified by deleting the first 20

modules and inserting 30 'blank' modules in the end, so it
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Table III. All the sequences

ID

MYCN CHICK
HLYA_SERMA
PSBO_CHLRE
MYSN_DROME
MYCN SERCA
TRP_YEAST
DRRA STRPE
COAT_RCNMV
GLNA_AZOBR
FIXL_BRAJA
MIXIC_SHIFL
ENL_HUMAN
K2C1_XENLA
RF3_SACUV
TF3A_XENLA
POL_SIVGB
TBP1_YEAST
ORA_PLAFN
PIP1_DROME
ATPF_BACSU
TPM4_RAT
ODO2_YEAST
VSI1_REOVL
ADX_HUMAN
H2B EMENI
HLY4_ECOLI
UBC6_YEAST
BNC3_RAT
PSBO SPIOL
RF3 YEAST
MERA BACSR

that have a Z-score of >4,

Length

441
1608
291

2017
426
707
330
339
468
505
182
559
425
476
344

1009
434
701

1312
170
248
475
470
184
139
478
250
318
332
559
631

but not shown in Table II

Z 1

6.067
5.507
5.426
5.187
5.111
4.994
4.958
4.937
4.831
4.654
4.593
4.592
4.503
4.500
4.467
4.422
4.421
4.407
4.347
4.322
4.294
4.291
4.285
4.276
4.241
4.199
4 164
4.134
4.094
4.094
4.078

ID

KFLK_RAT
PI PI DROME
MYSD_MOUSE
GSPF_ERWCA
DRRA_STRPE
NFL-COTJA
MPP1_NEUCR
CHLB CHLHU
VG24_HSVI1
UFO_MOUSE
TPM SCHPO
POL_MMTVB
RM02 YEAST
UFO_HUMAN
RS15_PODAN
RL9_ARATH
SY61_DISOM
ADX_HUMAN
SYT1_RAT
SYT1_HUMAN
TTL_PIG
DNIV_ECOLI
TTL_BOVIN
RL15_SCHPO

Length

323
1312
1853
408
330
555
577
431
333
888
161
899
371
887
152
197
426
184
421
422
379
184
377

29

Z2

8.445
5.432
5.245
5.227
4.775
4.750
4.718
4.603
4.587
4.521
4.477
4.413
4.378
4.364
4.349
4.336
4.246
4.215
4.171
4.149
4.138
4.084
4.068
4.056

The column labeled 'Z 1' contains the scores from the search with the first model and the one labeled 'Z 2' the scores with the second model.

could better fit the domain. Starting from this modified
model, 20 new models were trained on the new set of 88
protein sequences, and the best one selected. This was the
final model for the SH2 domain (see Figure 8). Using this
model, a new search was performed. The new model
picked up all of the 88 sequences in the training set, and
the smallest score was significantly higher than that of the
first model (13.8 compared to 7.1)—see Table II. It also
found a new one (KFLK_RAT) with a Z-score of 8.4 that
is a fragment and in SwissProt is described as containing
part of the SH2 domain. All other sequences in SwissProt
had Z-scores <5.5, and in the highest scoring ones (Table
III) we did not see any signs of the SH2 domain.

The SH2 domain often occurs several times in the same
protein, which is not modeled properly by such a model
(see above: Modeling domains and motifs). When train-
ing, all domains in a given protein contribute to the model
(because all paths are taken into account), but when
aligning, only the occurrence matching the model best will
be found. There are ways to find all occurrences by finding
suboptimal paths or masking domains already found, the
latter of which is currently being added to SAM.

Conclusion

In principle the HMM method is a simple and elegant way
of modeling sequence families. For practical purposes,
however, various problems arise, of which the most
important ones are discussed in this paper. A variety of
heuristics and extensions to overcome the problems that
are all part of the SAM software package were presented.
Most of these techniques were mentioned in our original
paper (Krogh et al., 1994a), but here we have discussed
them in more detail, and treated them from a more
practical perspective, whereas we have not focused on the
biological results at all.

The algorithm for estimating HMMs is a simple hill-
climbing optimization technique which will very often find
suboptimal solutions resulting in inferior models. Three
methods were introduced to deal with the problem. First,
several different models can be trained and the best one
selected, based on the overall NLL score. Second, noise of
slowly decreasing size can be added during the estimation
process in a fashion similar to simulated annealing. Third,
the surgery method for adding and deleting states from the
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Fig. 8. The second (and final) model of the SH2 domain. The initial section, at a larger magnification is shown below the complete model. The unshaded
modules correspond to secondary structure elements as given in Kuriyan and Cowburn (1993). These elements are 0A, aA,0B, f)C, (3D, (3E, f3F, aB and
/3G. The figure (except the shading) was produced with the program drawmodel in SAM. It is almost impossible to see the actual amino acid distributions
at this scale, but the most important things to notice are that the distributions are quite peaked and that the delete states are used rarely in the conserved
secondary structure elements, both of which are indications of a good model.

model was shown also to help to obtain models with better
NLL scores.

The general theory for HMMs does not tell one how to
choose the topology of the model. In our work we have
chosen a model structure that we believe fits the biological
sequences particularly well, and most of the probability
parameters can be interpreted as penalties familiar from
other alignment methods, such as gap penalties. For
choosing the length of the model, the above-mentioned
surgery heuristics was introduced, which deletes parts of
the model not used very much and inserts more states
where the existing states are 'overloaded'.

In any parameter estimation process overfitting is a
danger, in particular when there are many parameters
and little data. This can be overcome using Dirichlet
and Dirichlet mixture prior distributions to regularize
the models. They are particularly useful because they

incorporate prior biological information and insight into
the model but can be overcome by sufficient numbers of
sequences.

For the problem of modeling domains and other
subsequences we introduced FIMs. These modules treat
the part of the sequences outside the domain as completely
random sequences, and by an example it was shown that
an HMM can locate domains automatically. By using
several FIMs one can model proteins with many
subdomains (always appearing in the same order). By
using long backward transition, one can in principle
model domains occurring several times in different orders,
but it is not currently implemented in the software
package.

SAM is an evolving system. Future additions will
include repeated motif location, alternative scoring
methods using null models, subsequence-to-submodel
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training, sequence weighting, an improved user interface,
and use of our new algorithm for parallel sequence
alignment in limited space to greatly extend the capabil-
ities of the MasPar code (Grice et ai, 1995).
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