Vol. 16 no. 8 2000
Pages 699-706

Six-fold speed-up of Smith—Waterman sequence
database searches using parallel processing on
common microprocessors

Torbjorn Rognes™ and Erling Seeberg

Institute of Medical Microbiology, University of Oslo, The National Hospital,

NO-0027 Oslo, Norway

Received on February 18, 2000; revised on March 22, 2000; accepted on March 23, 2000

Abstract

Motivation: Sequence database searching is among the
most important and challenging tasks in bioinformatics.
The ultimate choice of sequence-search algorithm is that
of Smith—Waterman. However, because of the compu-
tationally demanding nature of this method, heuristic
programs or special-purpose hardware alternatives have
been developed. Increased speed has been obtained at the
cost of reduced sensitivity or very expensive hardware.
Results: A fast implementation of the Smith—Waterman
sequence-alignment algorithm using Single-Instruction,
Multiple-Data (SIMD) technology is presented. This
implementation is based on the MultiMedia eXtensions
(MMX) and Streaming SIMD Extensions (SSE) technology
that is embedded in Intel’s latest microprocessors. Similar
technology exists also in other modern microproces-
sors. Six-fold speed-up relative to the fastest previously
known Smith—Waterman implementation on the same
hardware was achieved by an optimized 8-way parallel
processing approach. A speed of more than 150 million
cell updates per second was obtained on a single Intel
Pentium III 500 MHz microprocessor. This is probably
the fastest implementation of this algorithm on a single
general-purpose microprocessor described to date.
Availability: Online searches with the software are avail-
able at http://dna.uio.no/search/

Contact: torbjorn.rognes @labmed.uio.no

Introduction

The rapidly increasing amounts of genetic-sequence
information available represent a constant challenge to
developers of hardware and software database searching
and handling. The size of the GenBank/EMBL/DDBJ
nucleotide database is now doubling every 15 months
(Benson et al., 2000). The rapid expansion of the genetic-
sequence information is probably exceeding the growth in
computing power available at a constant cost, in spite of

*To whom correspondence should be addressed.

the fact that computing resources also have been increas-
ing exponentially for many years. If this trend continues,
increasingly longer time or increasingly more expensive
computers will be needed to search the entire database.

When looking for sequences in a database similar to
a given query sequence, the search programs compute
an alignment score for every sequence in the database.
This score represents the degree of similarity between
the query and database sequence. The score is calculated
from the alignment of the two sequences, and is based
on a substitution score matrix and a gap-penalty function.
A dynamic programming algorithm for computing the
optimal local-alignment score was first described by Smith
and Waterman (1981), and later improved by Gotoh
(1982) for linear gap-penalty functions.

Database searches using the optimal algorithm are
unfortunately quite slow on ordinary computers, so many
heuristic alternatives have been developed, such as FASTA
(Pearson and Lipman, 1988) and BLAST (Altschul et al.,
1990, 1997). These methods have reduced the running
time by a factor of up to 40 compared with the best-
known Smith—Waterman implementation, however, at the
expense of sensitivity. Because of the loss of sensitivity,
some distantly related sequences may not be detected in a
search using the heuristic algorithms.

Due to the demand for both fast and sensitive searches,
much effort has been made to produce fast imple-
mentations of the Smith—Waterman method. Several
special-purpose hardware solutions have been developed
with parallel processing capabilities (Hughey, 1996), such
as Paracel’s GeneMatcher, Compugen’s Bioccelerator
and TimeLogic’s DeCypher. These machines are able to
process more than 2000 million matrix cells per second,
and can be expanded to reach much higher speeds.
However, such machines are very expensive and cannot
readily be exploited by ordinary users.

A more general form of parallel processing capability
is available in Single-Instruction, Multiple-Data (SIMD)
computers. A SIMD computer is able to perform the same

© Oxford University Press 2000

699

T.Rognes and E.Seeberg

operation on several independent data sources in parallel.
With the introduction of the Pentium MMX microproces-
sor in 1997, Intel made computing with SIMD technology
available in a general-purpose microprocessor in the most
widely used computer architecture—the industry-standard
PC. The technology is also available in the Pentium II
and has been extended in the Pentium III under the name
of Streaming SIMD Extensions (SSE) (Intel, 1999). The
MMX/SSE instruction sets include arithmetic (add, sub-
tract, multiply, min, max, average, compare), logical (and,
or, xor, not) and other instructions (shift, pack, unpack)
that may operate on integer or floating-point numbers.
This technology is primarily designed for speeding up
digital signal processing applications like sound, images
and video, but seems suitable also for genetic-sequence
comparisons. Several other microprocessors with SIMD
technology are or will be made available in the near
future, as shown in Table 1 (Dubey, 1998).

The Smith—Waterman algorithm has been implemented
for several different SIMD computers. Sturrock and
Collins (1993) implemented the Smith—Waterman algo-
rithm for the MasPar family of parallel computers, in a
program called MPsrch. This solution achieved a speed
of up to 130 million matrix cells per second on a MasPar
MP-1 computer with 4096 CPUs and up to 1500 million
matrix cells per second on a MasPar MP-2 with 16384
CPUs.

Alpern et al. (1995) presented several ways to speed
up the Smith—Waterman algorithm including a parallel
implementation utilizing microparallelism by dividing the
64-bit wide Z-buffer registers of the Intel Paragon i860
processors into four parts. With this approach they could
compare the query sequence with four different database
sequences simultaneously. They achieved more than a 5-
fold speed-up over a conventional implementation.

Wozniak (1997) presented a way to implement the
Smith—Waterman algorithm using the Visual Instruction
Set (VIS) technology of Sun UltraSPARC micropro-
cessors. This implementation reached a speed of over
18 million matrix cells per second on a 167 MHz Ultra-
SPARC microprocessor. According to Wozniak (1997),
this represents a speed-up of about 2 relative to the same
algorithm implemented with integer instructions on the
same machine.

Both Alpern et al. (1995) and Wozniak (1997) seem to
have compared their program to a straightforward imple-
mentation of the Smith—Waterman algorithm. However,
the SWAT program (Green, 1993) and recent versions of
SSEARCH (Pearson, 1991) include a non-parallel variant
of the Smith—Waterman algorithm that is about twice as
fast as the straightforward implementation. This is proba-
bly the best reference for speed comparisons.

In this communication, we present an implementation of
the Smith—Waterman algorithm using Intel’s MMX/SSE

technology. It reaches a speed of more than 150 million
cell updates per second on a Pentium III 500 MHz
computer. To our knowledge, this is so far the fastest
implementation of the Smith—Waterman algorithm on a
single-microprocessor general-purpose computer. Rela-
tive to SSEARCH, it represents a speed-up of about 6 or
13, with or without the SWAT-optimizations, respectively.

System and methods

The software was written in C++ with inline assembler
code and was compiled with the GNU egcs compiler. The
computer was running Red Hat Linux 6.1 on a single Intel
Pentium III 500 MHz microprocessor with 128 MB RAM.

Algorithm and implementation
The Smith—Waterman algorithm

To compute the optimal local-alignment score, the dy-
namic programming algorithm by Smith and Waterman
(1981), as enhanced by Gotoh (1982), was used. Given
a query sequence A of length m, a database sequence B
of length n, a substitution score matrix Z, a gap-open
penalty ¢ and a gap extension penalty r, the optimal
local alignment score ¢ can be computed by the following
recursion relations:

ei,j = max{e; j_1, hi—1j —q} —r

Sij=max{fi—1j, hij-1—q}—r

hij = max{h; 1 j—1 + Z[Alil, B[j1], i, fi,j, 0}
t = max{h; ;}.

Here, ¢; j and f; ; represent the maximum local-alignment
score involving the first i symbols of A and the first j
symbols of B, and ending with a gap in sequence B or A,
respectively. The overall-maximum local-alignment score
involving the first i symbols of A and the first j symbols
of B, is represented by &; ; . The recursions should be cal-
culated with i going from 1 to m and j from 1 to n, starting
withe; j = fi j = h;j =0foralli =0or j = 0. The
order of computation of the values in the alignment matrix
is strict because the value of any cell cannot be computed
before the value of all cells to the left and above it has
been computed, as shown by the data-interdependence
graph in Figure 1. A straightforward implementation of
the algorithm has a running time proportional to mn.

The SWAT optimizations

Green (1993) implemented an improved version of the
Smith—Waterman algorithm in the SWAT program and
obtained an increase of speed by a factor of about 2. In
most cells in the matrix, ¢ and f are zero, and hence do
not contribute to 4. As long as & is not larger than the
threshold ¢ + r, which is the penalty of a single symbol
gap, e and f will stay at zero along a column or row in

700

Six-fold speed-up of Smith—Waterman searches

Table 1. Microprocessors with SIMD technology

Manufacturer Microprocessor Name of the technology
AMD K6/K6-2/K6-11T MMX / 3DNow!
Athlon Extended MMX / 3DNow!
Chromatics MPact
Compagq (Digital) Alpha MVI (Motion Video Instruction)
HP PA-RISC MAX(-2)(Multimedia Acceleration eXtensions)
HP / Intel Itanium (Merced) SSE ?

Intel Pentium MMX / 1T
Pentium IIT

MMX (MultiMedia eXtensions)
SSE (Streaming SIMD Extensions)

Velocity Engine (AltiVec)

MDMX (MIPS Digital Media eXtensions)
VIS (Visual Instruction Set)

MicroUnity MediaProcessor
Motorola PowerPC G4
Philips TriMedia
SGI MIPS
Sun SPARC
database sequence
by by, by by bs bs
as —_ 1 — — > —
| | | | | | o
(O]
3, PNNNNNDY
g | | | | | |
35 -
T g, VN D D DN N
2 | | | | | N
g ay * ——>* ——>* ——>+ ——>* ——>+ —_
o | | | | | LN- - =
as| VDNV DN N N NN
| | | | | | -
VXY N N NN

Fig. 1. Computational dependencies in the Smith—Waterman align-
ment matrix.

the matrix. This can save many computations, and is the
basis for the enhancements used to speed up the original
algorithm. It should be noted, however, that this is not
effective if gap penalties are very small, as many cells
will then have a value above the threshold. The SWAT
optimizations are now also implemented in the SSEARCH
program (Pearson, 1991) included in Pearson’s FASTA
package. An alternative version of the program is called
OSEARCH and uses a traditional implementation.

Parallelization

The Smith—Waterman algorithm can be parallelized on
two scales. It is fairly easy to distribute the processing of
each of the database sequences on a number of indepen-
dent processors in a symmetric multiprocessing (SMP)

machine. On a lower scale, however, distributing the work
involved within a single database sequence is a bit more
complicated. Figure 1 shows the data interdependence
in the alignment matrix. The final value, %, of any cell
in the matrix cannot be computed before the value of
all cells to the left and above it has been computed. But
the calculations of the values of diagonally arranged
cells parallel to the minor diagonal (see Figure 2a) are
independent and can be done simultaneously in a parallel
implementation. This fact has been utilized in earlier
SIMD implementations (Hughey, 1996; Wozniak, 1997).

Our approach

We have implemented the Smith—Waterman algorithm
using Intel’s MMX/SSE technology. The pseudo-code for
our implementation is shown in Figure 3. In order to
get complete control over code optimization, and because
of limited support for the MMX/SSE instructions in
high-level languages, the core of the algorithm has been
written in assembly language. The main features of our
implementation are:

e vectors parallel to the query sequence,

o a SWAT-like optimization,

e 8-way parallel processing with 8-bit values,
e query-sequence profiles,

e general code optimizations.

Vectors parallel to the query sequence

Despite the loss of independence between the computation
of each of the vector elements, we decided to use vectors
of cells parallel to the query sequence (as shown in Fig-
ure 2b), instead of vectors of cells parallel to the minor

701

T.Rognes and E.Seeberg

a)
database sequence
by by by by bs bg b; bg by byyby

query sequence
:iQQQQQQQQQQQQQQQQ
BRVNVNVNVONNNONNONNNS
A R R T R R R R R T R R O RRR

\
\
N
N
\

b)
database sequence
by by by by bs bg by bg by by by

a1ﬁﬁﬁﬁﬁﬁr\ﬁﬁﬁﬁ

Ry

C
C

D [C
D [C
D [C
D [C
D [C
D [C
D [C
D [C
D [C

D
D

query sequence

Fig. 2. Vector arrangements in SIMD implementations of the Smith—Waterman algorithm. a. Traditional approach with vectors parallel to the
minor diagonal b. New approach with vectors parallel to the query sequence.

diagonal in the matrix (as shown in Figure 2a). The ad-
vantage of this approach is the much-simplified and faster
loading of the vector of substitution scores from mem-
ory. The disadvantage is that data dependencies within the
vector must be handled. Eight cells are processed simul-
taneously along each column as indicated in Figure 2b.
Each column represent one symbol of the database se-
quence.

A SWAT-like optimization

As already indicated, we have to take into account that
each element in the vector is dependent on the element
above it, because of the possible introduction of gaps in
the query sequence. However, as exploited by the SWAT
optimizations, most cell values are not above the ¢ + r
threshold. If none of the eight cells in the vector are
above that threshold, the f-values can simply be ignored
in the computation of the A-values, thus removing data
dependencies and greatly simplifying the computations. It
is possible to check simultaneously if any of the eight cells
in the vector is above the threshold. In the case that none of
the cells are above the threshold, the computation of the /-
values will be very fast. However, if any of the cell values
are above the threshold, it will be necessary to go through
a somewhat time-consuming process of computing the
correct values for &, e and f.

8-way parallel processing with 8-bit values

The microprocessors provide for the SIMD instructions a
set of registers (usually 64-bit wide) that can be divided
into smaller units. The Pentium family of microprocessors
contains several 64-bit registers that can be treated either
as a single 64-bit (quadword) unit, or as two 32-bit (dou-
bleword), four 16-bit (word), or eight 8-bit (byte) units.
Operations on these units are independent. Hence, the mi-
croprocessor is able to perform up to eight independent
additions or other operations simultaneously.

In order to optimize the speed of the calculations,
we have chosen to divide the MMX-registers of the
microprocessor into as many units as possible, i.e. eight
8-bit units. This allows eight concurrent operations to
take place. Dividing the MMX-registers into eight 8-bit
registers increases the number of parallel operations but
limits the precision of the calculations to the range 0—
255. Unless the sequences are long and very similar, this
poses no problems. In the few cases where this score limit
is surpassed, the use of saturation arithmetic (see below)
will ensure that the overall highest score will stay at 255.
For all sequences that reach a score of 255, the correct
score may subsequently be recomputed by a different
implementation with a larger score range (e.g. using a non-
SIMD implementation).

Using Intel’s MMX/SSE technology, additions and
subtractions can be performed in either unsigned or signed

702

Six-fold speed-up of Smith—Waterman searches

Pseudocode

FUNCTION SWMMX (MM, DSEQ, q, r, m, n)

CHAR ¢
INTEGER i,3j
CONST INTEGER y = m/8

VECTORS H,X,E,F,T1,T2,SCORE,HH[y],EE[y]
CONST VECTORS BASE = [4, 4, 4, 4, 4, 4, 4, 4]
CONST VECTOR8 QQ = [q, 4, 4, 4, @, 4, 4, 4l
CONST VECTORS RR =[r, r, r, r, r, ¥, ¥, rl]
FOR i=0 TO y-1 DO
{

HH[i] = [0, O, O, O, O, O, O, O]

EE[i] = [0, O, O, O, O, O, O, O]
}
SCORE = [0, O, O, O, O, O, O, O]

FOR j = 0 TO n-1 DO

{
X = [0, O, O, O, O, O, O, O]
F = [0, O, O, O, O, O, O, O]
c = DSEQI[]]
FOR i = 0 TO y-1 DO
{
H = HHI[i]
E = EE[i]
Tl = (H RSHIFT 7)
H = (H LSHIFT 1) OR X
X =Tl
H= (H+ MM[c][i]) - BASE
H = MAX(H , E)
F = (H LSHIFT 1) OR (F RSHIFT 7)
F=F- Q0 - RR
IF (any element of F > 0)
{
T2 = F
WHILE (any element of T2 > 0)
{
T2 = (T2 LSHIFT 1) - RR
F = MAX(F , T2)
}
H = MAX(H , F)
F = MAX(H , F + QQ)
}
ELSE
{
F=H
}
HH[i] = H
EE[i] = MAX(H - QQ, E) - RR
SCORE = MAX (SCORE, H)
}
}

RETURN MAX (SCORE[0], SCOREI[1], .. SCORE[7])

Comments

MM is a query-specific score matrix

DSEQ is the database sequence

q and r are gap open and extension penalties

m and n are query and database sequence lengths

One database sequence symbol (c)

Loop indices (i,j)

Number of vectors along query sequence (y)
Vectors (H,X,E,F,T1,T2) and arrays (HH,EE)
Score base vector (constant)

Gap open penalty vector (constant)
Gap extension penalty vector (constant)

Initialise HH-array of H-values from previous column
Initialise EE-array of E-values from previous column

Initialise score vector

For each symbol in the database sequence...
Initialise X-vector for 1. round

Initialise F-vector for 1. round

Get one database symbol

For each vector of 8 matrix cells along query sequence...

Load previous H-vector from HH-array
Load previous E-vector from EE-array

Save previous H[7] for use below
Shift H-vector and OR with H[7] from previous round
Save old H[7] in X for next round

Add score profile vector to H and subtract base
Check if score with database gap is better

Calculate initial F-vector by shifting H and previous F
Subtract single gap penalty

Check if vertical gaps are possible

Compute correct F-vector if necessary

T2 is initial F-vector

Repeat while any element of T2 is nonzero...
Shift and subtract gap extension penalty
Update F if new score is higher

Update H if vertical gap is better
Update F for use in next round

Update F for use in next round
Store H-vector in HH-array
Store E-vector in EE-array

Update Score with new H-vector if it is better

Return largest element in score vector

Fig. 3. Pseudocode for the new approach. The MAX operation returns a vector with the pairwise maximum of the elements of the two
arguments. The LSHIFT and RSHIFT operations shifts the elements of a vector the specified number of times to the left or right. The OR
operation returns the bitwise or of the vector elements. All vector subtractions and additions are saturated and unsigned. The query sequence

is assumed to be padded to a multiple of 8 bytes.

703

T.Rognes and E.Seeberg

mode. In the inner loop of the algorithm, the signed query
profile scores are added to the unsigned /-values. Using
a signed addition, the i-values would have been restricted
to the range of 0—127. Instead, all the values in the query-
sequence score profile were biased by a fixed amount (e.g.
4) so that no values were negative. One signed operation
was then replaced by an unsigned addition followed by
an unsigned subtraction of the bias. The useful data range
was hence expanded to nearly 8 bits (e.g. 0-251), at the
expense of one additional instruction.

Unsigned arithmetics using the MMX technology can
be performed in either a modular (also known as wrap-
around) or in a saturated mode. When using 8-bit-wide
registers, subtracting 25 from 10 will give the result 241
(because 10 — 25 = 241 — 256) in modular mode and 0
in saturated mode. This is very useful in the inner loop
calculations of the Smith—Waterman algorithm because
negative results should be replaced by zero in some of
the calculations. Also, because of the limited precision
of a single byte value, saturated arithmetics are useful to
detect potential overflow in the calculations with very high
scores.

The core of the Smith—Waterman algorithm repeatedly
computes the maximum of two numbers. It is, therefore,
important to make this computation fast. The SSE in-
struction set includes a special instruction (pmaxub) that
computes the largest of two unsigned bytes. This instruc-
tion was not included in the original MMX instruction set,
but can be replaced by an unsigned saturated subtraction
(psubusb) followed by an unsigned saturated addition
(paddusb).

Query-sequence profiles

When the same query sequence is compared with many
different database sequences, a simple speed improvement
is achieved by creating a kind of score profile for the
query sequence. This profile, which can be considered
as a query-specific substitution score matrix, is computed
only once for the entire search, and will save one
memory look-up in the inner loop of the algorithm.
Instead of indexing the original substitution-score matrix
by the query-sequence symbol and the database-sequence
symbol, the new matrix is indexed by the query sequence
position and the database sequence symbol. The score for
matching symbol A (for alanine) in the database sequence
with each of the symbols in the query sequence is stored
sequentially in the first matrix row, followed by the scores
for matching symbol B (ambiguous) in the next row, and
so on. This query-sequence profile is used extensively in
the inner loop of the algorithm and is usually small enough
to be kept in the microprocessor’s first-level cache.

General code optimizations

The use of conditional jumps should be avoided when
it is difficult for the microprocessor to predict whether
to jump or not, because mispredictions require additional
time. In addition, conditional jumps based on the results of
MMX/SSE operations are not straightforward on the Intel
architecture because the status flags are not set by these
instructions. Hence, we have tried to avoid conditional
jumps as much as possible in the core of the algorithm.

In order to achieve the highest speed, the memory
used repeatedly in the calculations should preferably be
contained in the first-level caches of the microprocessor.
In addition to the query-sequence score profile, the vectors
storing the 4 and e values from the last column should also
fit in the cache, but these are usually only about 400 bytes
each for an average sequence.

The h and e vectors, each of length m, have been
grouped into a single vector of length m consisting of
a structure of the two elements. It is generally faster to
access a single vector sequentially than to access two
independent vectors sequentially. The 64-bit memory
accesses used with MMX registers should preferably be
placed on 8-byte boundaries, in order to be as fast as
possible. We have taken this into account when aligning
the data structures. Code alignment also had substantial
effects on the speed.

When the computer is equipped with enough internal
memory to hold the entire database, the use of memory-
mapped files is an effective way to read the database. The
entire sequence file can then be mapped to a particular
address range in the memory. Operating systems are
usually optimized for reading sequential files in this way.

Results

The speed of the new algorithm was evaluated using a test
set of 11 different amino-acid query sequences. The length
of the query sequences ranged from 189 to 567 amino
acids, with 3807 amino acids in total. These sequences
represent members of a range of well-characterized pro-
tein families. The same test set has previously been used
for the evaluation of BLAST 2 (Altschul er al., 1997).
The SWISS-PROT (Bairoch and Apweiler, 2000) release
38 protein database, containing 80 000 sequences with a
total of 29 085 965 amino-acid residues, was searched.
The new algorithm was compared with the Smith—
Waterman implementations SSEARCH and OSEARCH
version 3.2t08 (Pearson, 1991). Searches with the heuristic
programs FASTA version 3.2t08 (Pearson and Lipman,
1988), NCBI BLAST version 1.4.9 (Altschul et al.,
1990), NCBI BLAST version 2.0.10 (Altschul et al.,
1997) and WU-BLAST version 2.0al19 (Gish, 1996)
were also included for comparison. All searches were
performed using the BLOSUMG62 amino-acid substitution

704

Six-fold speed-up of Smith—Waterman searches

score matrix (Henikoff and Henikoff, 1992) and with gap-
open and extension penalties of 10 and 1, respectively.
The options of all programs were set to display the top
500 scores and no alignments. FASTA was run using both
ktup = 1 and ktup = 2. WU-BLAST was run with the
recommended postsw-option. NCBI BLAST 2.0.10 was
run with the option K = 500.

For each query sequence, the total CPU time of the
fastest of three consecutive runs on a minimally loaded
computer was recorded. With a database of only 29 MB
and 128 MB of RAM, all of the database was cached in
the computer’s RAM; disk-reading time should hence be
negligible.

Plots of search time versus query-sequence length for
all programs are shown in Figure 4. The total time
used for searching all of the query sequences was 9182s
for OSEARCH, 4372s for SSEARCH, 796s for FASTA
(ktup = 1), 708s for SW-MMX, 267s for WU-BLAST,
228s for FASTA (ktup = 2), 213s for NCBI BLAST 1.4.9
and 94s for NCBI BLAST 2.0.10.

Among the implementations of the Smith—Waterman
algorithm, our implementation was found to be 13
times faster than OSEARCH and six times faster than
SSEARCH. Our implementation was also slightly faster
than FASTA with krup = 1. FASTA with ktup = 2,
NCBI BLAST 1.4.9 and WU-BLAST were all only
approximately three times faster than ours, while
BLAST 2.0.10 was about 7.5 times faster.

The algorithm performed equally well on longer and
shorter sequences. The average speed was 156 million
matrix-cell updates per second.

The final raw scores computed by our implementation
are equal to those computed by a straightforward Smith—
Waterman implementation. Hence, the sensitivity and
ranking of matching sequences should be equal to other
Smith—Waterman programs, unless the choice of score
matrix, gap penalties or the function for calculating
statistical significance or expectation (Z- or E-value) is
different.

Discussion

Due to the speed achieved by the presented algorithm and
the low cost of Intel Pentium Ill-based computers, we
believe it is now the most cost-effective way to perform
database searches using the Smith—Waterman algorithm.
A symmetric multiprocessing (SMP) computer with eight
Pentium III Xeon CPUs at 600 MHz should be able to
achieve a speed of about 1500 million cell updates per
second. A large cluster of inexpensive computers would
be a more cost-effective solution, and may reach even
higher speeds.

The SIMD technology will most likely evolve further in
the coming microprocessor generations. Implementations
of SIMD technology in future microprocessors will prob-

a)
Speed of Smith-Waterman implementations
1400
——— OSEARCH 3.2t08
1200 { --«-- SSEARCH 3.2t08
—— SWMMX 1,91
‘@ 1000 4
°
c
3
9 800 |
A
o Pl
.g 600 T - - .
5
£ 400 4
Q -
] e
200 A P -
0 e
o] 100 200 300 400 500 600
Query length [amino acids]
b)
Speed of various search algorithms
120
-~ a-- FASTA 3.2t08 (ktup=1) ot
100 SWMMX 1.9.1 ‘
1 --«--WUBLAST 2.0a19
z FASTA 3.2t08 (ktup=2)
2 80! --+--NCBIBLAST1.4.9 g
] ——=— NCBIBLAST2.0.10
k)
o 60
E
=
S 40 |
©
@
/2]
20
0

0 100 200 300 400 500 600
Query length [amino acids]

Fig. 4. Plots with a comparison of the search time versus query
length for, a. Smith-Waterman implementations, and b. heuristic
search algorithms. Our implementation is included in both plots for
reference. The query sequences have accession numbers P00762,
PO1008, PO1111, P02232, P03435, P05013, P07327, P10318,
P10635, P14942 and P25705 in SWISS-PROT.

ably allow even faster variations of the Smith—Waterman
algorithm. The Motorola AltiVec (also known as the
Velocity Engine) technology (Motorola, 1998), which has
just been introduced in the PowerPC G4 microprocessors,
includes 128-bit wide registers that can be divided into
sixteen 8-bit units. A new generation of microprocessors
from Intel called Willamette will also include 128-bit
wide registers for SIMD processing. It would be of great

705

T.Rognes and E.Seeberg

interest to evaluate implementations of the presented
algorithm on these processors. However, it may be even
more interesting and rewarding to exploit the SIMD
technology for entirely new algorithms.

For the initially highest-scoring sequences in the
database, FASTA and BLAST 2 computes an optimal
alignment restricted to either a band or a region surround-
ing the most interesting part of the alignment matrix.
We believe that our approach could easily be extended
to alignments restricted to a band that is, preferably, a
multiple of eight cells wide. However, our approach will
probably be less effective on alignments restricted to
irregular regions, as employed by BLAST 2, because
much of the power of the technology lies in the repetition
of simple operations.

Even the Smith—Waterman alignment algorithm is un-
able to identify all protein similarities based on the pri-
mary sequence alone. In addition to better algorithms, im-
provements in the substitution score matrix, gap penaliz-
ing and the scoring system in general are also required for
an optimization of the overall sensitivity.

Acknowledgements

This work was supported by grants from the Research
Council of Norway and the Norwegian Cancer Society.

References

Alpern,B., Carter,L. and Gatlin,K.S. (1995) Microparallelism and
high performance protein matching. In Proceedings of the 1995
ACM/IEEE Supercomputing Conference: San Diego, California,
Dec 3-8, 1995. http://www.supercomp.org/sc95/proceedings/
549_LCAR/SC95.HTM

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403—
410.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389-3402.

Bairoch,A. and Apweiler,R. (2000) The SWISS-PROT protein
sequence database and its supplement TTEMBL in 2000. Nucleic
Acids Res., 28, 45-48.

Benson,D.A., Karsch-Mizrachi,I.,
Rapp,B.A. and Wheeler,D.L.
Acids Res., 28, 15-18.

Dubey,P.K. (1998) Architectural and design implications of me-
diaprocessing. http://www.research.ibm.com/people/p/pradeep/
tutor.html

Gish,W. (1996) WU-BLAST. http://blast.wustl.edu/

Gotoh,O. (1982) An improved algorithm for matching biological
sequences. J. Mol. Biol., 162, 705-708.

Green,P. (1993) SWAT. http://www.genome.washington.edu/uwgc/
analysistools/swat.htm

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl. Acad. Sci. USA, 89,
10915-10919.

Hughey,R. (1996) Parallel hardware for sequence comparison and
alignment. Comput. Applic. Biosci., 12, 473-479.

Intel (1999) Intel Architecture Software Developer’s manual; Vol-
ume 2: Instruction Set Reference. http://developer.intel.com/
design/pentiumii/manuals/243191.htm

Motorola (1998) AltiVec Technology Programming Environ-
ments Manual. http://www.mot.com/SPS/PowerPC/teksupport/
teklibrary/manuals/altivec_pem.pdf

Pearson,W.R. (1991) Searching protein sequence libraries: compar-
ison of the sensitivity and selectivity of the Smith—Waterman
and FASTA algorithms. Genomics, 11, 635-650.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. USA, 85, 2444—
2448.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195-197.

Sturrock,S.S. and Collins,J.F. (1993) MPsrch V1.3 User Guide.
Biocomputing Research Unit, University of Edinburgh, UK.

Wozniak,A. (1997) Using video-oriented instructions to speed
up sequence comparison. Comput. Appl. Biosci., 13, 145-150.

Lipman,D.J., Ostell,J.,
(2000) GenBank. Nucleic

706

