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Abstract— In a gene expression data matrix a bicluster is a
sub-matrix of genes and conditions that exhibits a high corre-
lation of expression activity across both rows and columns. The
premise behind biclustering is that even related genes may only
be expressed in a synchronized fashion over certain conditions.
Conventional clustering groups over all features and may not
capture these local relationships. Biclustering has the potential to
retrieve these local signals and also to model overlapping groups
of genes. These factors allow better representation of the natural
state of functional modules in the cell.

The mean squared residue is a popular measure of bicluster
quality. One drawback however is that it is biased toward flat
biclusters with low row variance. In this paper we introduce an
improved bicluster score that removes this bias and promotes
the discovery the most significant biclusters in the dataset. We
employ this score within a new biclustering approach based on
the bottom-up search strategy. We believe that the bottom-up
search approach better models the underlying functional modules
of the gene expression dataset.

We evaluate our new score against the mean squared residue
score using a yeast cell cycle expression dataset. We then carry
out a comparative analysis of our biclustering technique against
previously published clustering and biclustering approaches.
Lastly, we use the biclusters discovered by our method to attempt
to putatively annotate unclassified genes.

I. I

Advances in gene expression microarray technologies over
the last decade or so have made it possible to measure the
expression levels of thousands of genes over many experimen-
tal conditions (e.g. different patients, tissue types and growth
environments). The data produced in these experiments are
usually arranged in a data matrix of genes (rows) and condi-
tions (columns). Results from multiple microarray experiments
may be combined and the data matrix may easily exceed
thousands of genes and hundreds of conditions in size.

Depending on the aims of the experiment in question
there may be one or more objectives when analyzing gene
expression datasets. If genes exhibit similar expression activity
across experimental conditions this may be indicative of
an in vivo functional relationship i.e. a common enzymatic
pathway or cellular structure. This premise enables both the
putative classification of unknown genes and the higher level
grouping of genes into classes which may reflect in vivo
system organization [1]. These objectives are the focus of this
paper. Expression profiles of conditions may also be compared
enabling disease types such as cancers to be organized and
classified at a molecular level [2].

Uncovering the relationships between genes and their cor-
responding class information from such large volumes of data
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presents a far from trivial task. The unsupervised learning
technique of cluster analysis was one of the first computational
techniques applied to gene expression data [3]. This technique
aims to group genes into distinct clusters based on their expres-
sion similarities across multiple experimental conditions. For
expression data the most suitable similarity metric is one that
computes correlation, rather than distance, such as Pearson’s
correlation coefficient.

As datasets increase in size however, it becomes increas-
ingly unlikely that genes will retain correlation across the full
set of conditions making clustering problematic. The gene
expression context further exacerbates this problem as it is
not uncommon for the expression of related genes to be
highly similar under one set of conditions and yet indepen-
dent under another set [4]. Given these issues it is perhaps
more prudent to cluster genes over a significant subset of
experimental conditions. This two-way clustering technique
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Fig. 1. A gene expression data matrix. Unlike conventional clustering which
computes object similarity over all experimental conditions, biclustering may
group similar objects over a subset of similar conditions.

has been termed biclustering and was first introduced to gene
expression analysis by Cheng and Church [5]. They developed
a two-way correlation metric called the mean squared residue
score to measure the bicluster quality of selected rows and
columns from the gene expression data matrix. They employed
this metric within a top-down greedy node deletion algorithm
aimed at discovering all the significant biclusters within a gene
expression data matrix. Following this seminal work other
metrics and biclustering frameworks were developed [6],[7],
[8]. However approaches based on Cheng and Church’s mean
squared residue score remain most prevalent in the literature
[9],[10],[11],[12].

One notable drawback however of the mean squared residue
score is that it is also affected by variance, favouring cor-
relations with low variances. Furthermore, because variance



changes by the square of the change in scale, the score
tends to discover correlations over lower scales. These effects
culminate in a bias toward ‘flat’ biclusters containing genes
with relatively unfluctuating expression levels within the lower
scales (fold changes) of the gene expression dataset. This issue
has been articulated previously in [13]. We illustrate the mean
squared residue (H-Score) bias in Figure 2. In this paper we
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H-Score = 2.78 × 10−3 H-Score = 10.6 × 10−3

Fig. 2. Bias of the H-Score over different scales. The relative correlation is
approximately the same yet the difference in H-Score is 4 fold. With a lower
(better) H-score bicluster X (a) is favoured over bicluster 2X (b).

introduce an improved bicluster scoring metric which com-
pensates for this bias and enables the discovery of biclusters
throughout expression data, including those potentially more
interesting correlations over the higher scales (fold changes).

The original Cheng and Church node deletion algorithm was
based on a top-down search approach. It began with the entire
dataset and iteratively deleted rows and columns gradually
improving the mean squared residue score of the sub-matrix.
This top-down global approach is more likely to discover the
best scoring bicluster within a dataset. However this approach
may not be ideal when one wishes to discover a heterogeneous
set of biclusters that reflects the local underlying trends in
the dataset. Our new biclustering approach, termed BUBBLE
(Bottom-Up Biclustering By Locality Expansion), is based
upon the bottom-up search strategy and utilises our improved
scoring function.

We discuss the biclustering approach in detail in section II.
We detail our improved scoring metric in section III-A and
the two steps of our algorithm in sections III-B and III-C
In our evaluation, section IV, we first evaluate our improved
scoring metric against the mean squared residue score. We
then evaluate our biclustering technique by comparison with
previously published clustering and biclustering techniques.
Finally, through examining our biclustered genes, we attempt
to putatively annotate unclassified genes.

II. B G E D

A. The bicluster model of gene expression data

In general biclustering refers to the ‘simultaneous clus-
tering’ of both rows and columns of a data matrix [14].
Hartigan pioneered this type of analysis, which he termed
direct clustering, in the 1970s using two-way analysis of
variance to locate constant valued sub-matrices within datasets.
Biclustering is quite similar in concept to sub-space clustering.
Sub-space clustering aims at improving the object similarities

by selecting subsets of attributes. Biclustering however aims
at improving similarity in both directions, within a subset
of objects (rows) as well as a within a subset of features
(columns). This approach suits the gene expression context
as related genes are thought to be regulated in a synchro-
nised fashion under certain cellular states (conditions) [4].
Biclustering attempts to identify both these related genes
and the states in which they function together. Discovered
biclusters may represent modules of genes which act together
to carry out a specific function required by a specific cellular
state. For example a bicluster could represent a group of
genes which are only co-regulated under certain diseased
states such as cancer. Discovery of such a set would provide
possible drug targets in the treatment of this cancer type. In
normal cells biclustering may also aid in elucidation of normal
functional modules such as genes involved in the cell cycle or
genes involved in transcription. Unclassified genes, or more
correctly unclassified open reading frames (ORFs), may also
be annotated from such a model if they are grouped within a
bicluster with a predominant functional category.

B. The Cheng and Church Approach

Cheng and Church defined a bicluster to be a subset of
genes and a subset of conditions with a high similarity score,
where similarity is a measure of the coherence of genes
and conditions in the subset. A group of genes are said
to be coherent if their levels of expression react in parallel
or correlate across a set of conditions. Similarly, a set of
conditions may also have coherent levels of expression across
a set of genes. Cheng and Church developed a measure, called
the mean squared residue score, which takes into account both
row and column correlations and therefore makes it possible
to simultaneously evaluate the coherence of rows and columns
within a matrix.

They thus defined a bicluster to be a matrix composed
of a subset of genes and a subset of conditions with a low
mean squared residue score (the lower the score the better the
correlation of the rows and columns). The residue score of an
entry ai j in a bicluster B(I, J) (where I is the subset of rows
and J the subset of columns) is a measure of how well the
entry fits into that bicluster. It is defined to be:

R(ai j) = ai j − aI j − aiJ + aIJ (1)

where aiJ is the mean of the ith row in the bicluster, aI j is the
mean of the jth column and aIJ mean of the whole bicluster.
The overall mean squared residue score is:

H(I, J) =
1
|I||J|

∑
i∈I, j∈J

R(ai j)2 (2)

The next problem to be tackled is how to locate these low
scoring biclusters within a parent data matrix. The exhaustive
approach is to sequentially run through all the possible com-
binations of rows and columns of the data matrix and find
the sub-matrices which satisfy a predefined low score, δ (the
set of δ-biclusters). The most significant biclusters, the largest
δ-biclusters, would be of most interest as they capture the



relationships between the largest number of objects. However
the number of possible sub-matrices increases exponentially
with the size of the parent matrix making this task practically
impossible when the matrix exceeds the fairly modest size
of a few hundred elements. Cheng and Church likened the
maximum bicluster search to that of locating a maximum
biclique (largest complete sub-graph) within a parent bipartite
graph which has been shown to be NP-Hard [15].

Cheng and Church designed a set of heuristic algorithms to
efficiently locate these δ-biclusters. The search proceeds in a
top-down manner with the initial solution being the parent
matrix. Initially groups of ill-fitting rows and columns are
deleted in a multiple node deletion phase. This is followed
by a more refined single node deletion phase which continues
until a predefined δ-score threshold is surpassed. If this single
node deletion phase is carried out alone it is in fact possible
to locate larger δ-biclusters but less efficiently. Upon reaching
the chosen score (the δ threshold) a node addition phase is
then carried out to add rows/columns which may have been
missed. Cheng and Church achieve this by adding rows with
mean squared residue scores less than the δ-threshold when
compared with the discovered bicluster. Inversely correlated
rows, which may represent negatively regulated genes, are also
added at this stage by calculating the inverse mean squared
residue score for all rows and adding those less than the
δ-threshold. These relationships are also referred to as anti-
correlated genes and ‘diametrical’ clustering has previously
been employed in discovery of such relationships [16]. The set
of δ-biclusters are discovered sequentially in a deterministic
manner so solutions need to be masked to avoid rediscovery.
This is achieved by replacement of these entries with random
numbers generated from the same range of the dataset. The
Cheng and Church approach is intuitive and powerful, finding
significant bicluster signals within both human and yeast
datasets. However in their seminal paper no effort is made
to interpret these results from a biological perspective by
looking for gene functional group correspondence within the
discovered biclusters. Also one may argue that the top-down
global approach may find an artificially large bicluster rather
than reflect accurately the set of natural bicluster signals.

C. Subsequent Biclustering Approaches

Following the work above several alternative biclustering
approaches have been taken within gene expression analysis.
One approach taken by Tanay et al. [6] likens biclustering to
the search for complete sub-graphs within a bipartite graph.
They developed a statistical model of the expression data
matrix and propose a heuristic algorithm, called SAMBA,
that discovers statistically significant sub-graphs. Lazzeroni
and Owen [7] developed what they termed a plaid model
in which the dataset is represented by a linear function of
variables or layers which correspond to biclusters. Yet another
approach taken by Kluger et al. [8] involved decomposing the
data matrix into its principle components by singular value
decomposition. The resulting eigenvectors are then used to
reorder the data matrix to reveal the set of biclusters as a

checkerboard structure. These approaches are less intuitive and
theoretically quite different from that of Cheng and Church.

Several biclustering approaches using metrics based on
Cheng and Church’s residue scoring have also been pursued.
The approach by Yang et al. avoids random masking, and
what they refer to as the random interference it may cause,
by locating biclusters simultaneously rather than sequentially.
Interestingly they also suggest the possibility of an additional
row variance criterion to the search but do not pursue this
point. In their evaluation Yang et al. only demonstrate im-
provements over Cheng and Church’s technique within two
discovered biclusters.

Cho et al. used the sum squared residue as a biclustering
score rather than the mean squared residue. This is perhaps a
more sensitive to individual row and column changes. Cho
et al. do not improve on Cheng and Church’s results in
terms of bicluster size and quality but succeed in capturing
some significant signals in the data [10]. Both of the above
approaches generally fail to find biclusters as significant, in
terms of size and quality as Cheng and Church. Bleuler et al.
use a stochastic approach in an attempt to improve on Cheng
and Church’s greedy search by implementing an evolutionary
algorithm (EA) [12]. They improve on the original Cheng
and Church algorithm results in terms of bicluster size and
quality discovering larger δ-biclusters. However they do not
improve on the solutions achievable when one implements
Cheng and Church’s refined single node deletion search alone
(see section II-B). Interestingly, the above approaches neglect
to evaluate their bicluster models from a biological perspective
by assessing the functional relationships of the genes in the
biclusters. For a detailed review of the above biclustering
approaches the reader is directed to [17]. Another stochastic
approach by Bryan et al. was based on the global search
technique of simulated annealing. This biclustering approach
achieved improved results over the original Church and Cheng
algorithm. Furthermore it also showed improvements over an
augmented version of Cheng and Church’s algorithm which
dealt with single node deletion only over a defined minimum
number of conditions. This was also the first mean squared
residue biclustering technique to use a fully annotated expres-
sion dataset to biologically validate discovered biclusters [11].

III. B-U B B L E

In general, as with conventional clustering, biclustering
techniques fall into top-down and bottom-up approaches. Top-
down approaches begin by finding an initial approximation of
the solution over the full set of objects and features, in this
case all the rows and columns of the gene expression data
matrix. There is a possibility that this method may however
discover an artificially large bicluster solution which may be
a combination of parts of two or more local solutions.

Top-down methods tend to produce a more uniform set of
clusters in terms of size and shape. This representation may
not accurately model the diverse set of functional modules that
may be present in expression data. Also because they deal



initially with the full set of dimensions, top-down approaches
may not scale well as the dataset increases in size.

Our framework is built around the bottom-up search ap-
proach. It is founded on the premise that searching for inter-
esting structure in higher dimensions can be first reduced to a
search for structure in lower dimensions. In general this search
method is more adept at discovering several local solutions
rather than global solutions. In this way we hope to discover
a more natural set of biclusters that capture the diversity and
organization of functional groups in the cell. This approach
also has the advantage that it is computationally more efficient
to search for solutions over a smaller set of dimensions.

In the bicluster model every sub-matrix within a bicluster is
itself a bicluster. If we can locate the most highly correlated
sub-bicluster then it is likely that we can expand this region,
by adding correlating rows and columns, to reveal the larger
bicluster. Even if biclusters partially overlap, i.e. share some
of the same rows and columns, they must still contain a
significant sub-bicluster which is unique to that bicluster and
justifies the partition.

Our approach, termed BUBBLE, can be divided into two
phases, firstly we perform a stochastic search for the set of
highly correlated sub-biclusters. These are then used as a set
of seeds for the next phase, that of a deterministic expansion
into higher dimensions by adding the best fitting rows and
columns. These algorithms will be discussed in this section but
first we will introduce our improved bicluster scoring metric
that is essential in locating these significant bicluster seeds.

A. An Improved Bicluster Scoring Metric

As already mentioned, the mean squared residue (H-Score)
is affected by the scale of the variance within biclusters.
This point was illustrated in Figure 2 and may bias a search
toward low fold (possibly less interesting) gene correlations.
To address this problem our bicluster scoring metric, the
Hv-Score, takes into account each entry’s distance from its
row mean. The sum of the squares of these distances are
computed and used as the denominator in a new bicluster
scoring measure given in equation 3. The numerator is simply
the sum of the squared residues in the matrix. Minimizing
this function for the selected sub-matrix solution minimizes
the sum of the squared residues while maximizing the sum of
the distances from the row means. The Hv-Score is defined
as:

Hv(I, J) =

∑
i∈I, j∈J

R(ai j)2

∑
i∈I, j∈J

(ai j − aiJ)2
(3)

where R(ai j) is the residue score of each entry, ai j, (see
equation 1) and aiJ is the row mean for each entry. We evaluate
this new metric in section IV-A and use it to locate highly
correlated bicluster seeds across the scales of the dataset in
the seed search step of our approach.

B. Seed Search

The goal of the initial seed search algorithm is to locate
a diverse set of highly correlated bicluster seeds throughout
the gene expression data matrix. If these seeds are significant
in size it is more probable that they represent part of a
larger bicluster of rows and columns. For example a seed that
consists of 10 genes actively correlating over 10 conditions is
likely to be a part of a larger set of related genes and would
be a good base on which to expand.

Our seed search is based on the well known stochastic
search technique of simulated annealing. It has been shown
that simulated annealing search can discover improved biclus-
ter solutions over the best-first greedy search method [11].
Unlike greedy search techniques, simulated annealing allows
the acceptance of reversals in fitness (worse solutions) and
backtracking which gives it the capability to bypass locally
good solutions until it converges on a solution near the
global optimum. The acceptance of reversals is probabilistic
as defined by Boltzman’s equation:

P(∆E) ∝ e−
∆E
T (4)

From the equation it can be seen that this probability
depends on two variables, the size of the reversal ∆E and
Temperature of the system, T . Generally T is first given a
high value to initially allow a large percentage of reversals
to be accepted, this helps the search explore the entire search
space. Gradually this T is lowered and the potential search
space shrinks until it converges on the global optimum. The
number of solutions evaluated (attempts) and the number of
solutions accepted (successes) at each temperature are also
input parameters. These determine how extensive a search is
carried out before the T is lowered.

If we reduce both the initial temperature and the depth of
search at each temperature we can confine the search to a
more local area of the data. Sequential searches will be able
to uncover several local optima rather than one solution close
to the global optimum. With regard to gene expression data,
these regional optima may correspond to the diverse set of
bicluster seeds.

Beginning each seed search at a random starting point will
then hopefully be able to locate a diverse set of local optima
spanning all localities. These optima are then used as seeds and
expanded in size to model the larger set of relationships within
the full bicluster. This seed expansion phase is described in
detail in the following section.

C. Seed Expansion

Upon locating a good set of seeds the deterministic phase
of seed expansion involves adding the best fitting rows and
columns to each seed. Prior to seed expansion the correlation
of the rows and columns in the remainder of the dataset is
measured relative to the seed. The following formulae based
on the residue score, Equation (1), are used to score these
rows and columns.



Algorithm I: Seed Search.

Variable definitions:
x : current solution,
t0 : initial temperature, t : current temperature,
rate : temperature fall rate,
a : attempts, s : successes,
acount : attempt count, scount : success count,
Hv : Hv fitness function, M : data matrix,
row : seed row size,
col : seed column size,

Seed Search (t0, rate, row, col, s, a,M)
1. x← randomSolution(row,col)
2. t ← t0
3. while(x not converging)
4. while(acount < a AND scount < s)
5. xnew ← GenerateNewSolution(M, x)
6. if Hv(xnew) < Hv(x)
7. then x← xnew

8. else if exp(−∆E
T )> random(0,1)

9. then x← xnew

10. t ← Cool(t,rate)
11.return x

All rows (genes) not in Seed(I, J) are scored as follows:

H(I) =
1
|J|

∑
i∈I, j∈J

(ai j − aI j − aiJ + aIJ)2 (5)

where i < I. All columns (conditions) not in the Seed(I, J)
are similarly scored:

H(J) =
1
|I|

∑
i∈I, j∈J

(ai j − aI j − aiJ + aIJ)2 (6)

where j < J.
An important attribute of this expansion phase is that it adds

correlated rows and columns regardless of scales. Rows and
columns are standardized by subtracting the mean and dividing
by the standard deviation. These scores are then sorted and
the best fitting column or row is added in each iteration.
As our main objective in this study is to capture gene (row)
correlations we only add rows during seed expansion.

A key question we now encounter is when to halt this
seed expansion process. One approach is a score or size
threshold. However this method would be somewhat arbitrary
as biclusters representing gene functional modules should
be of different sizes and scores. A method of stopping can
be derived from observing the trends in the scores of the
added rows. It can be seen in Figure 3 that this trend is
not a smooth gradient and is interrupted by steps as the
dissimilarity increased abruptly as a more ill-fitting row is
added. These steps may be viewed as partitions in similarity.
Our stopping method involves recording all growth steps and
stopping expansion at the largest step or partition.
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Fig. 3. The trend in row scores as the are added to the seed at each expansion
iteration. Steps in the gradient may be observed retrospectively.

Algorithm II: The Seed Expansion Phase.

Variable definitions:
r : row, c : column,
R : rows in seed,
C : columns in seed,
rVarT : row variance threshold,
cVarT : column variance threshold,
rT : seed row threshold,
cT : seed column threshold.

SeedExpansion(Seed(R,C),rVarT,cVarT,rT,cT)
1. Score all r < R
2. Score all c < C
3. Sort r scores
4. Sort c scores
5. select best scoring r or c
6. if (variance of r/c > r/cVarT)
7. if (r/c number < r/cT)
8. add r/c to Seed(R,C)
9. re-score Seed(R,C)
10. return expanded Seed(R,C)

D. The Yeast Cell Cycle Dataset

In our evaluation we used the yeast cell cycle dataset from
Cho et al., 1998 [18]. This dataset has been used in previous
biclustering [5],[12] and clustering studies [19]. Cheng and
Church used a subset of 2,884 of the most variable genes from
Cho’s dataset. Unlike expression data from the larger human
genome, yeast data gives a more complete representation in
which all the ORFs and functional modules are covered.

Cho’s dataset contains 6,178 genes, 17 conditions and 6,453
missing values. Rows containing many missing values were
removed giving 6,145 rows with 5,846 missing values. Missing
values were replaced by random values generated between
the first and third quartiles of the data range. This reduces
the impact of these imputed values on the structure of the
dataset. We annotated all genes in our dataset using the MIPS
(Munich Information centre for Protein Sequences) online
functional catalogue [20]. Over 1500 genes in the dataset were
labelled as category 99 (Unclassified). These annotations were
used to evaluate the correspondence of the biclusters to gene
functional modules.



TABLE I
C   H-S   Hv-S. 10  

  Seed Search   . T    D
F C (D.F.C.) MIPS      .

H−Score Hv-Score
Seed D.F.C. MIPS Category D.F.C. MIPS Category

1 40% 99: Unclass. ORFs 70% 12: Protein Synth.
2 50% 14: Protein Fate 60% 10: Cell Cycle
3 30% 01: Metabolism 40% 99: Unclass. ORFs
4 40% 14: Protein Fate 90% 11: Transcription
5 60% 14: Protein Fate 60% 12: Protein Synth.
6 40% 32: Cell Rescue 50% 99: Unclass. ORFs
7 40% 99: Unclass. ORFs 50% 14: Protein Fate
8 20% 12: Protein Synth. 40% 99: Unclass. ORFs
9 50% 14: Protein Fate 50% 12: Protein Synth.

10 40% 14: Protein Fate 70% 10: Cell Cycle

IV. E

In the first part of our evaluation we evaluate our improved
metric, the Hv-Score, against Cheng and Church’s original H-
score. We then carry out comparative evaluations with recent
clustering and biclustering approaches and end by using our
model to putatively annotate several unclassified yeast genes.

A. Evaluation of Metrics

The first part of our evaluation involves a comparison of
the H-Score and the Hv-Score metrics and their ability to
discover good seeds within expression data. We achieve this
by implementing the seed search algorithm with both scores.
In Figure 4 we graphically illustrate the difference between
the seeds found with each metric. The Hv-Score discovers
seeds with significant correlations, 4(b), missed by the biased
mean squared residue, 4(a). The next step is to discern whether
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Fig. 4. Here we present the best scoring seed found with the H-Score (a)
and the Hv-Score (b). The Hv-Score discovers correlations missed by the low
variance biased H-Score.

this more significant correlation translates into discovering
seeds with higher functional enrichment i.e. seeds with a
predominance of one functional category. In Table I we present
the first 10 seeds found in the yeast dataset using each metric.
We see that seeds found using the mean squared residue (H-
Score) have, on average, 40% functional enrichment whereas
those found using the Hv-Score have, on average, 60%.

B. Comparative Evaluation with Clustering

In this section of the evaluation we compare our biclustering
method, BUBBLE, to the published results of a recently devel-
oped clustering method called CLARITY[19]. This approach

was also evaluated using the full yeast cell cycle dataset from
Cho et al. labelled from the MIPS database.

Biclustering has the potential to discover gene relationships
only evident over a subset of conditions however this subset
still needs to be significant in size. We chose a minimum
condition size of 10 for our bicluster seeds. As BUBBLE
has a stochastic seed search step we retrieve 100 biclusters
to achieve good coverage within the dataset. The clusters and
biclusters were evaluated by examining their functional en-
richment i.e. the percentage belonging to the same functional
category. The dominant functional category in each cluster or
bicluster was used to label the group.

We present the results of this evaluation in Table II. The
best clusters from each functional category discovered by
CLARITY are given on the left. It can be seen that for each
cluster discovered by CLARITY our method finds biclusters
with higher functional enrichment. Furthermore BUBBLE also
discovers biclusters with dominant functional categories not
found by clustering, these are presented in Table III in the
next section.

C. Comparative Evaluation with SAMBA

A biclustering method developed by Tanay et al. called
SAMBA (Statistical-Algorithmic Method for Bicluster Anal-
ysis) is mentioned in section II-C. This is one of the best
developed biclustering methods and is implemented within a
software package called Expander [21]. In this section we
compare our biclustering approach to SAMBA. We again
use the yeast cell cycle dataset in this evaluation. SAMBA
discovers 24 biclusters within this dataset. To compare these
two differing biclustering methods we selected the biclusters
with the highest enrichments for each of the 18 functional
categories in MIPS. In Table III we list the most significant
biclusters found and their corresponding MIPS categories. The
largest functional enrichments for each category obtained by
SAMBA and BUBBLE are also listed. For this particular
yeast dataset BUBBLE wins in 14/18 categories in terms of
functional enrichment, loses in 1 and draws in 3. Interestingly
both methods discover a similar distribution across the func-
tional categories. This supports the inference that this is the
natural distribution in the dataset. Both methods also discover
biclusters in which the dominant functional category is a group
of unclassified genes or ORFs. In such groups the function
of such genes may be inferred by other known genes in the
bicluster. However the support for such inferences increases
greatly when unclassified genes are grouped within a bicluster
with a high functional enrichment for a known MIPS category.
Such methods of classifying unclassified genes are examined
in the next section.

D. Putative annotation of unclassified genes

The goal of unsupervised data analysis such as clustering
and biclustering is to try to discover the underlying patterns
within the gene expression data that accurately reflect the
functional modules within the cell. Accurate generation of a
global model of the cell’s functional modules from expression



TABLE II
A             . T    O R F (ORF)  

 (k)    ORF   MIPS    .

Clustering (CLARITY) Biclustering (BUBBLE)
Dominant Functional Category
(M.I.P.S. Code)

k ORFs in
Cluster

ORFs in
Category

Functional
Enrichment

k ORFs in
Bicluster

ORFs in
Category

Functional
Enrichment

Protein Synthesis (12) 0 43 33 77% 78 45 40 89%
Cell Cycle & DNA(10) 8 113 64 57% 31 36 25 69%
Transcription(11) 5 61 24 39% 91 15 9 60%
Energy(02) 21 201 33 16% 46 15 7 47%
Protein Fate(14) 6 86 19 22% 56 15 6 40%
C-Compound Metabolism (01.05) 21 201 32 16 % 53 21 6 40%
Amino Acid Metabolism (01.01) 9 77 9 12% 84 17 3 18%

TABLE III
C  SAMBA  BUBBLE      . T          .

SAMBA BUBBLE
Functional Category (M.I.P.S. Code) ORFs in

Bicluster
ORFs in
Category

Functional
Enrichment

ORFs in
Bicluster

ORFs in
Category

Functional
Enrichment

Metabolism (01) 20 12 60% 15 9 60%
Energy (02) 60 11 18% 15 7 47%
Cell Cycle & DNA (10) 16 11 69% 36 25 69%
Transcription (11) 29 6 21% 15 9 60%
Protein Synthesis (12) 43 21 49% 45 40 89%
Protein Fate (14) 20 4 20% 15 6 40%
Protein with Binding Function (16) 20 5 25% 17 7 42%
Cellular Transport (20) 17 6 35% 17 11 67%
Cell Rescue,Defence & Virulence (32) 32 6 19% 20 6 30%
Biogenesis of Cellular Components (42) 27 8 30% 16 7 44%
Cell Type Differentiation (43) 16 3 19% 15 6 27%
Unclassified Genes (99) 17 7 41% 16 10 63%

data has not yet been achieved. Indeed it might be argued that
the use of gene expression data alone may not be sufficient
to elucidate such a model. As we have seen in the previous
sections certain functional modules may be more easily mod-
elled from their expression data than others. However even
using this partial representation it may be possible to make
inferences about the nature of some unclassified genes or
ORFs.

In the biclustering of gene expression data we notice that
unclassified ORFs are often grouped within biclusters that
have high enrichments for one particular functional category.
Essentially these unclassified ORFs have an expression similar
to an expression signature of a group of related genes. Using
this information we may attempt to putatively annotate func-
tions to unclassified ORFs. Ideally we would then corroborate
this inference with so called ‘wet lab’ experiments but it
may also be possible to garner addition functional evidence
from other sources such as nucleotide or protein sequence
information. In this section we examine three biclusters with
high functional enrichments that contain one or more unclas-
sified ORFs in an attempt to putatively annotate these ORFs.
Additional supporting evidence for the suggested functions
is also presented when available. In Figure 5 we present
three expression biclusters in (a) Protein Synthesis, (b) Cell
Cycle & DNA Processing and (c) Transcription followed by
the ratio of labelled ORFs in each bicluster. They contain 3,
4 and 1 unclassified ORFs respectively, highlighted in bold.
Beneath each graph we list the names of the ORFs and any

available external evidence to support our putative annotation.
We found some additional protein sequence similarities be-
tween ORFs YDR154C, YDL009C and YLR073C and genes
from the functional category to which they were putatively
assigned. YDR210W was found to localize in cell periphery,
where protein synthesis occurs. We also found that YPL267W
was already postulated to be a substrate for the cell cycle
regulator Cdc28p in budding yeast. This available evidence
supports some of our putative annotations which in turn aids in
validation of our model. More substantial evidence is needed
to actually classify these unclassified ORFs, in the form of
in vitro biological experimentation, however these putative
annotations may aid in the design of such experiments.

V. D & FW

In this paper we have demonstrated improvements to the
popular mean squared residue scoring function by removing
the bias it shows toward so called ‘flat’ biclusters. Furthermore
our Hv-Score was shown to be a more effective objective func-
tion from both qualitative graphical illustrations and quantita-
tive functional analysis of biclusters. Our BUBBLE algorithm
which incorporates this scoring function performs well against
recent clustering and biclustering techniques on the yeast
cell cycle dataset. Our chosen method of bicluster validation,
that of functional enrichment, seems the most appropriate
measure when one wishes to apply the model to putatively
annotate unclassified ORFs. Other significance measures for
gene groupings, such as hypergeometric probability scores and



(a) Protein Synthesis (48/61) (b) Cell Cycle & DNA Proc. (16/28) (c) Transcription (9/15)
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Unclassified
ORFs in (a)

Supporting Evidence Unclassified
ORFs in (b)

Supporting Evidence Unclassified
ORFs in (c)

Supporting Evidence

YDR133C - YBR089W - YLR073C Protein sequence similarity to
gene (YOR290C) in this class.YDR154C Protein sequence similarity to

gene (YNR038W) in this class.
YDL009C Protein sequence similarity to

gene (YKL189W) in this class.

YDR210W Localizes in cell periphery. YNL303W -

YPL267W Potential Cdc28p substrate.

Fig. 5. Three functionally enriched biclusters containing unclassified ORFs (bold lines) and supporting protein sequence evidence for these annotations.

p-values, often fail to render much meaning when one wishes
to examine the nature of the bicluster results from real datasets.

The final section on annotation suggests some possible func-
tions for unclassified ORFs. In several cases this annotation
is supported by other bioinformatic methods such as primary
sequence analysis of the hypothesized protein product or the
ORF in question. Accumulating multiple diverse sources of
evidence greatly strengthens such in silico classification.

In future work it is our hope to compound these and further
putative classifications by cross validation across multiple
expression datasets. Cho’s yeast cell cycle dataset is a well
studied dataset and a good benchmark but may lack the condi-
tion number to fully test a subspace clustering method such as
biclustering. Using larger datasets we hope to further validate
our biclustering method and also increase the support for
gene relationships and putative classifications by discovering
biclusters over a larger number of conditions.
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