Segink 2.0-1

L’tle aux enfants.

Firma, ktera dala
vysavac1 _]meno

X/, na obrazku dezi v 1

pu dmét, symbo |Ifl Jici avou de lm

¢1idil v obchode

o pravem Luxu od firmy, kterd dala

..\-. firmy Lux. které charaktertzu)i touhu
ak v Badném obchodé nenajdete. Jwou

selém svete navitévull sveé sakoeniky a

k

vysavad! jméno. Exkluzivani vy

un-lr

I-u;x Sdvikny vyhradne trac
exn '|1|| & neobydejnymi §
l\ wih &0 tak mOZe na viastni ofl a viastni rukon |r|-u.uh| e dok ll\lr Tuxovat® se da jen s pravim Luxem

I u VAS JEDNOU ZAZVONIME. ZATIM NA SHLEDANOU...

Figure 1: The march of progress icon is very common in popular press. This
example is from page 46 of a 1984 summer issue of the tchek edition of Playboy.

The march of progress icon

The cover, an artwork created' by Lionel Humblot, is an allusion to what
Stephen J. Gould considered as a caonical icon of ”[t]he most serious and perva-
sive of all misconceptions about evolution equates the concept with some notion
of progress, usually inherent and predictable, and leading to a human pinnacle”
[25]. Some examples of the so-called "march of progress icon” out of hundreds
in S.J. Gould’s collection from popular press are given in the begining of his
famous book Wonderful life [24].

Note that the underlying conception predates Darwin [58]. We know now
that evolution doesn not equal progress, and this is illutrated here in the cover
by the unusual decreasing size from the initial character (on the left) to the
last one (on the right).

The character on the left

The character on the left is called Casimir, the cult character of the french
TV show lile auz enfants (literally Kid’s island, a french adaptation of Sesame
Street from 1974 to 1975 and then an autonomous production until 1982 when it
eventually ended). Casimir was a muppet, human-sized, with an actor playing
inside, representing an orange dinosaur (the exact taxonomy has never been
published) with yellow and red spots. Casimir was symbolically chosen here for
two reasons. Fisrt, it’s birth correspond to one of the earliest paper from our

1 with Canvas from ACD Systems.

lab about molecular evolution [30]. If you dig into seqinR you will find that
the data from this more than 30 years old paper are still available?:

data(aaindex)
grth <- which(sapply(aaindex, function(x) length(grep("Grantham",

x$A)) = 0))
lapply(aaindex[grthl, "[[", "D")

$GRAR740101
[1] "Composition (Grantham, 1974)"

$GRAR740102
[1] "Polarity (Grantham, 1974)"

$GRAR740103
[1] "Volume (Grantham, 1974)"

Second, Casimir’s life span correspond more or less to the time during which (X
the sequence analysis software called ANALSEQ? [37] was under development mw“"mj Y

in our lab. ANALSEQ has never been published as a regular paper (although
it is mentioned in one of the ACNUC paper [29]), there is only a reference man-
ual in french [37] also available on-line at http://biomserv.univ-1lyonl.fr/
doclogi/docanals/manuel.html. ANALSEQ was entirely written in FORTRA
77, and although you won’t find any fossil code from it within seqinR, we 7
wanted to credit symbolically ANALSEQ as a kind of spiritual ancestor of se- f

qinR with the cover. K IQZR I K os-'u

. gand the SORCERESS

»

The character on the right

www.kirikou.net

The character on the right is called Kirikou. He is the main character of the an- B

imated film Kirikou et la sorciére (Kirikou and the sorceress, 1998) and Kirikou Emll\‘/?.“ and the sorceress, a film
N T . e y ichel Ocelot with original

et les bétes sauvages (Kirikou and the Wild Beasts, 2005). Kirikou was chosen music by Youssou N’Dour.

as a symbol of seqinR development time. SeqinR started in september 2002

as part of the work of Delphine Charif’s master of sciences. The first public pre-

sentation of seqinR was a seminar (2-JUL-2003, Lausanne University, Swiss)

and the first public release on the CRAN* was in october 2004.

Technical details

The cover was saved from Canvas into an EPS® file. This file was then manually
edited to remove non-ASCII characters. It was then converted into RGMLS
format with the following @ code based on grid [74], XML [15] and grImport
[61]:

library(grid)

library (XML)

library(grImport)
PostScriptTrace("../figs/couverture.eps", "../figs/couverture.rgml")

The picture was then edited to add automatically the current seqinR release
number:

2 thanks to aaindex database [41, 92, 62].

3 not to be confused with the ANALYSEQ program by Rodger Staden [89].

4 Comprehensive R Archive Network.

5 Encapsulated Postscrit.

6 RDF (Resource Description Framework) Graph Modeling Language (http://www.cs.
rpi.edu/~puninj/RGML/).

http://biomserv.univ-lyon1.fr/doclogi/docanals/manuel.html
http://biomserv.univ-lyon1.fr/doclogi/docanals/manuel.html
http://www.cs.rpi.edu/~puninj/RGML/
http://www.cs.rpi.edu/~puninj/RGML/

cover <- readPicture("../figs/couverture.rgml")
pdf (file = "../figs/cover.pdf", width = 21/2.54, height = 29.7/2.54)
pushViewport (plotViewport (margins = c(0, 0, 0, 0)))
grid.picture(cover)
grid.text(paste("SeqinR", packageDescription("seqinr")$Version),
gp = gpar(cex = 5), y = unit(0.72, "npc"))
popViewport ()
dev.off ()

And finally inserted at the begining of the INTEX file with:

\atxy (Ocm,Ocm) {
\includegraphics[width=\paperwidth,height=\paperheight]{../figs/cover}
}

Session Informations

This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2
e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

e Base packages: base, datasets, grDevices, graphics, grid, methods, stats,
utils

e Other packages: MASS 7.2-44, XML 1.98-1, aded 1.4-9, ape 2.2-2, grlm-
port 0.3-1, nlme 3.1-89, quadprog 1.4-11, seqinr 2.0-1, tseries 0.10-16,
xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): lattice 0.17-15, tools 2.8.0
There were two compilation steps:
o @ compilation time was: Fri Dec 12 14:54:35 2008

o IATEX compilation time was: December 12, 2008

SeqinR 2.0-1: a contributed package to the
@ project for statistical computing devoted to
biological sequences retrieval and analysis

Charif, D. Humblot, L. Lobry, J.R. Necsulea, A.
Palmeira, L. Penel, S.

December 12, 2008

CONTENTS

I Frontmatter

1 Licence of this document

IT Mainmatter

2 Introduction

2.1
2.2
2.3
24
2.5
2.6
2.7

About ACNUC
About Rand CRAN
About this document
About sequin and seqinRo L
About getting started L
About running R in batch mode
About the learning curve
271 Wheel (the) o
2.7.2 Hotline
2.7.3 Automation oL Lo
2.74 Reproducibility oo
2.75 Finetuning
2.7.6 Data as fast moving targets
2.7.7 Sweave() and xtable()

3 Importing sequences from flat files

3.1

3.2

Importing raw sequence data from FASTA files
3.1.1 FASTA files examples
3.1.2 The function read.fasta()
3.1.3 The function write.fasta()
3.14 Bigroomexamples L.
Importing aligned sequence data
3.2.1 Aligned sequences files examples
3.2.2 The function read.alignment()
3.2.3 A simple example with the louse-gopher data

3

11

13

15
15
16
17
17
17
18
18
18
18
19
19
19
21
24

4 Importing sequences from ACNUC databases

4.1 Chooseabank
4.2 Make your query
4.3 Extract sequences of interest
4.3.1 Introduction
4.3.2 Extacting sequences with getSequence() . .
4.3.3 Extracting sequences with trans-splicing . . .
4.3.4 Extracting sequences from many entries . . .

5 The query language

5.1 Where to find information
5.2 Case sensitivity and ambiguities resolution
5.3 Selection criteria L.
5.3.1 Introduction
53.2 SP=taxon
5.3.3 TID=id,
5.3.4 K=keyword,
9.3.0 T=type
5.3.6 J=journal _name
5.3.7 R=refcode
5.3.8 AU=name
5.3.9 AC=accession_no
5.3.10 N=seq_name
5.3.11 Y=year or Y>year or Y<year
5.3.12 O=orgamelle
5.3.13 M=molecule
5.3.14 ST=status
5.3.15 F=file_name
5.3.16 FA=file_name
5.3.17 FK=file_name
5.3.18 FS=file_name
5.3.19 list_nmame
54 Operators o
5.4.1 AND
5.4.2 ORo
5.4.3 NOT i i
5.4.4 PAR
545 SUB
5.4.6 PS
5.4.7 PK o
5.4.8 UN e
5.4.9 SD
5.4.10 KD

6 Importing zlib-compressed sequences

6.1 Introduction.
6.2 Extacting 78,573 complete human nuclear CDS . . .

6.3 Extacting 78,573 complete human nuclear Proteins

6.4 Sanity check oL

CONTENTS

CONTENTS

7 How to deal with sequences

7.1 Sequence classes e
7.2 Generic methods for sequences
7.2.1 From classes tomethods
7.2.2 From methods toclasses
7.3 Internal representation of sequences
7.3.1 Sequences as vectors of characters
7.3.2 Sequences as stringso

Installation of a local ACNUC socket server and of a local AC-

NUC database on your machine.
8.1 Imtroduction. o
8.2 System requirement
8.3 Setting a local ACNUC database to be queried by the server . .
8.4 Build the ACNUC sockets server from the sources.
8.4.1 Download the sources.
8.4.2 Build the ACNUC sockets server.
8.4.3 Setting the ACNUC sockets server.
8.4.4 Using seqinR to query your local socket server.
8.5 Building your own ACNUC database.
8.5.1 Database flatfiles formats.
8.5.2 Download the ACNUC dababase management tools. . . .
8.5.3 Install the ACNUC dababase management tools.
8.5.4 Database building : index generation
8.6 Misc e
8.6.1 Other tools foracnuc.
8.7 Technical description of the racnucd daemon
8.8 ACNUC remote access protocol
8.9 Citation e

Multivariate analyses
9.1 Correspondence analysis 0.
9.2 Synonymous and non-synonymous analyses

10 Nonparametric statistics

10.1 Introductiono L
10.2 Elementary nonparametric statistics
10.2.1 Introduction
10.2.2 Ranksum oo
10.2.3 Rank variance,
10.2.4 Clustering around the observed centre
10.2.5 Numberof runs oL
10.2.6 Multiple clusters
10.3 Dinucleotides over- and under-representation
10.3.1 Introduction
10.3.2 The rho statistic L.
10.3.3 The z-score statistic
10.3.4 Comparing statistics on a sequence
10.4 UV exposure and dinucleotide content
10.4.1 The expected impact of UV light on genomic content

99
99
108

121
121
121
121
123
125
126
127
128
129
129
129
130
132
134

. 134

6 CONTENTS

10.4.2 The measured impact of UV light on genomic content . . 138

11 RISA in silico with seqinR 145
11.1 Introduction 145
11.2 The primers 145
11.3 Finding a primer location 146
11.4 Compute the length of the intergenic space 147
11.5 Compute IGS for a sequence fragment 147
11.6 Compute IGS for a species. 149
11.7 Loop over many species o oo e 150

11.7.1 Preprocessing: select interesting species 150
11.7.2 Loop over our specie list 150
11.8 Playing with resultso L. 151

IIT Appendix 155

12 FAQ: Frequently Asked Questions 157
12.1 How can I compute a score over a moving window? 157
12.2 How can I extract just a fragment from my sequence? 160
12.3 How do I compute a score on my sequences? 160
12.4 Why do I have not exactly the same G+C content as in codonW? 161
12.5 How do I get a sequence from its name? 166

13 GNU Free Documentation License 169
13.1 APPLICABILITY AND DEFINITIONS 169
13.2 VERBATIM COPYING 171
13.3 COPYING IN QUANTITY 171
13.4 MODIFICATIONS e 172
13.5 COMBINING DOCUMENTS 174
13.6 COLLECTIONS OF DOCUMENTS 174
13.7 AGGREGATION WITH INDEPENDENT WORKS 174
13.8 TRANSLATION 175
13.9 TERMINATION o o 175
13.10FUTURE REVISIONS OF THIS LICENSE 175

14 Genetic codes 177
14.1 Standard geneticcode oL 177
14.2 Available genetic code numbers 177

15 Release notes 189

16 Test suite: run the don’t run 203
16.1 Introductiono 203
16.2 Stop list 203
16.3 Figure list 203
16.4 Don’t run generator L 204

16.4.1 GCO) . . . o o 204
16.4.2 SegAcnucWeb()o 205
16.4.3 alllistranks() 205

16.4.4 autosocket() 206

CONTENTS 7

16.4.5 choosebank()o L 206
16.4.6 closebank() 206
16.4.7 countfreelists() 207
16.4.8 countsubsegs() 207
16.4.9 crelistfromclientdata() 207
16.4.10dia.bactgensize() 208
16.4.11extract.breakpoints() 209
16.4.12getAnnot ()o 209
16.4.13getKeyword () 209
16.4.14getLength() o 210
16.4.15getLocation() 210
16.4.16getName ()o 210
16.4.17getSequence()o 210
16.4.18getTrans() Lo 211
16.4.19getType() 212
16.4.20getlistrank() 212
16.4.21 getliststate() 212
16.4.22gfrag()o 213
16.4.23ghelp() o o 213
16.4.24isenum()o 214
16.4.25knowndbs () 215
16.4.260riloc() Lo 216
16.4.27prepgatannots() 216
16.4.28 prettyseq() 217
16.4.29print.SeqAcnucWeb() 217
16.4.30print.qaw() 217
16.4.31query () oL 217
16.4.32readfirstrec() oL 218
16.4.33rearranged.oriloc() 218
16.4.34residuecount() Lo 218
16.4.35savelist()o 218
16.4.36 setlistname()o 218
16.4.37translate() 219

17 Informations about databases available at pbil 221
17.1 Introductiono 221
17.2 genbank Lo 222
17.3 embl . ..o 222
174 emblwgs 223
17.5 swissproto 223
17.6 ensembl 223
17.7 refseq o oo 225
17.8 nrsub . . . oL 225
17.9 hobacnucl Lo 226
17.10 hobacproto 226
17.11 hovergendna Lo 227
17.12 hovergen Lo 227
17.13 hogenom L Lo 228
17.14 hogenomdna oL e 228

17.15 hogennucl oL 229

17.16 hogenprot .
17.17 hoverclnu .
17.18 hoverclpr
17.19 homolens
17.20 homolensdna
17.21 greview
17.22 polymorphix
17.23 emglib
17.24 HAMAPnucl
17.25 HAMAPprot
17.26 hoppsigen .
17.27 nurebnucl .
17.28 nurebprot .
17.29 taxobacgen
17.30 emblTP
17.31 swissprotTP
17.32 hoverprotTP
17.33 hovernuclTP
17.34 trypano
17.35 ensembl24 .
17.36 ensembl34 .
17.37 ensembl41 .
17.38 ensembld7 .
17.39 ensembl49 .
17.40 macacadd .
17.41 dog4h
17.42 dogd7
17.43 equus49
17.44 pongo49
17.45 rattus49
17.46 mouse38
17.47 homolens4 .
17.48 homolens4dna
17.49 hogendnucl
17.50 hogendprot
17.51 genomicrol
17.52 genomicro?2
17.53 genomicrod
17.54 genomicro4

List of tables
List of figures

Bibliography

CONTENTS

Part 1

Frontmatter

CHAPTER 1

Licence of this document

Licence

Copyright (©2003-2007 J.R. Lobry. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License”; that is in appendix 13 page 169.

Using and contributing
If you want to re-use or contribute to this document, some indications are

given in template.pdf file located in the doc/src/template folder which is
distributed with the seqinR package.

11

12

CHAPTER 1.

LICENCE OF THIS DOCUMENT

Part 11

Mainmatter

13

CHAPTER 2

Introduction

Lobry, J.R.

2.1 About ACNUC

ACNUC! was first a database of nucleic acids developed in the early 80’s in the
same lab (Lyon, France) that issued seqinR. ACNUC was first published as
a printed book in two volumes [21, 22] whose covers are reproduced in margin
there. At about the same time, two other databases were created, one in the
USA (GenBank, at Los Alamos and now managed by the NCBI?), and another
one in Germany (created in Kéln by K. Stiiber). To avoid duplication of efforts
at the european level, a single repository database was initiated in Germany
yielding the EMBL? database that moved from Ko6In to Heidelberg, and then to
its current location at the EBI* near Cambridge. The DDBJ® started in 1986
at the NIG® in Mishima. These three main repository DNA databases are now
collaborating to maintain the INSD” and are sharing data on a daily basis.

The sequences present in the ACNUC books [21, 22] were all the published
nucleic acid sequences of about 150 or more continuous unambiguous nucleotides
up to May or June 1981 from the journal given in table 2.1.

The total number of base pair was 526,506 in the two books. They were
about 4.5 cm width. We can then compute of much place would it take to print
the last GenBank release with the same format as the ACNUC book:

acnucbooksize <- 4.5
acnucbp <- 526506
mybank <- choosebank("genbank")

L A contraction of ACides NUCIléiques, that is NUCleic ACids in french (http://pbil.
univ-lyonl.fr/databases/acnuc/acnuc.html)

2National Center for Biotechnology Information

3European Molecular Biology Laboratory

4European Bioinformatic Institute

5DNA Data Bank of Japan

6National Institute of Genetics

7 International Nucleotide Sequence Database (http://www.insdc.org/)

15

VOLUME 1

NUCLEIC ACID
SEQUENCES
HANDBOOK

Christian Cautier
Manoko Gouy
Monique Jacobeoere
Richard Grantham
Cover of ACNUC book vol. 1
I

|

e

NUCLEIC ACID
SEQUENCES
SHANDBOOK

Ohristian Gautie
an Gowr
Morique Jaote:e
Richard Cranthary

Cover of ACNUC book vol. 2

ACNUC books are about 4.5 cm width

http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html
http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html
http://www.insdc.org/

————— o '

Our local library building in 2007 has
a capacity of about 4 linear km of jour-
nals. That wouldn’t be enough to store
a printed version of GenBank. Picture
by Lionel Clouzeau.

16 CHAPTER 2. INTRODUCTION

Journal name

Biochimie

Biochemistry (ACS)

Cell

Comptes Rendus de l’Académie des Sciences, Paris
European Journal of Biochemistry

FEBS Letters

Gene

Journal of Bacteriology

Journal of Biological Chemistry

Journal of Molecular Biology

Molecular and General Genetics

Nature

Nucleic Acids Research

Proceedings of the National Academy of Sciences of the United States of America
Science

Table 2.1: The list of journals that were manually scanned for nucleic sequences
that were included in the ACNUC books [21, 22]

closebank()

mybank$details

[11 " *ok ok ACNUC Data Base Content *okokok "
[2] " GenBank Rel. 167 (15 August 2008) Last Updated: Oct 26, 2008"

[3] "97,378,213,581 bases; 96,406,734 sequences; 5,646,527 subseqs; 525,953 refers."
[4] "Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I "

bpbk <- unlist(strsplit(mybank$details[3], split = " "))[1]

bpbk

[1] "97,378,213,581"

bpbk <- as.numeric(paste(unlist(strsplit(bpbk, split = ",")),
collapse = ""))

widthem <- acnucbooksize * bpbk/acnucbp
(widthkm <- widthcm/1075)

[1] 8.32283

It would be about 8.3 kilometer long in ACNUC book format to print Gen-
Bank today (December 12, 2008). As a matter of comparison, our local univer-
sitary library buiding® contains about 4 km of books and journals.

2.2 About R and CRAN

@ [36, 75] is a libre language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques:

linear and nonlinear modelling, statistical tests, time series analysis, classifica-

tion, clustering, etc. Please consult the @ project homepage at http://www.R-project
for further information.

The Comprehensive @ Archive Network, CRAN, is a network of servers
around the world that store identical, up-to-date, versions of code and documen-
tation for R. At compilation time of this document, there were 56 mirrors avail-
able from 34 countries. Please use the CRAN mirror nearest to you to minimize
network load, they are listed at http://cran.r-project.org/mirrors.html,
and can be directly selected with the function chooseCRANmirror ().

8 Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; Bibliotheque Universitaire
Sciences, 18-25-27 Avenue Claude BERNARD, F-69622, Villeurbanne, France.

.org/

2.3. ABOUT THIS DOCUMENT 17

2.3 About this document

In the terminology of the @ project [36, 75], this document is a package vi-
gnette, which means that all code outputs present here were actually obtained
by runing them. The examples given thereafter were run under R version
2.8.0 (2008-10-20) on Sun Oct 26 17:49:56 2008 with Sweave [48]. There is
a section at the end of each chapter called Session Informations that gives
details about packages and package versions that were involved?. The last com-
piled version of this document is distributed along with the seqinR package in
the /doc folder. Once seqinR has been installed, the full path to the package
is given by the following @ code :

.find.package("seqinr")
[1] "/Users/lobry/seqinr/pkg.Rcheck/seqinr"

2.4 About sequin and seqinR

Sequin is the well known sofware used to submit sequences to GenBank, seqinR
[8] has definitively no connection with sequin. seqinR is just a shortcut, with
no google hit, for "Sequences in R”.

However, as a mnemotechnic tip, you may think about the seqinR package
as the Reciprocal function of sequin: with sequin you can submit sequences to
Genbank, with seqinR you can Retrieve sequences from Genbank (and many
other sequence databases). This is a very good summary of a major functionality
of the seqinR package: to provide an efficient access to sequence databases
under R.

2.5 About getting started

You need a computer connected to the Internet. First, install @ on your com-
puter. There are distributions for Linux, Mac and Windows users on the CRAN
(http://cran.r-project.org). Then, install the ape, ade4 and seqinr pack-
ages. This can be done directly in an @ console with for instance the command
install.packages("seqinr"). Last, load the seqinR package with:

library(seqinr)

The command lseqinr() lists all what is defined in the package seqinR:

lseqinr () [1:9]

[1] "AAstat" "EXP" nge" "Ge1" Welop il
[6] "GC3" "GCpos" "SEQINR.UTIL" "a"

We have printed here only the first 9 entries because they are too numerous.
To get help on a specific function, say aaa(), just prefix its name with a question
mark, as in 7aaa and press enter.

9 Previous versions of @ and packages are available on CRAN mirrors, for instance at
http://cran.univ-1lyonl.fr/src/contrib/Archive

http://cran.univ-lyon1.fr/src/contrib/Archive

18 CHAPTER 2. INTRODUCTION

2.6 About running R in batch mode

Although @ is usually run in an interactive mode, some data pre-processing
and analyses could be too long. You can run your @ code in batch mode in a
shell with a command that typically looks like :

unix$ R CMD BATCH input.R results.out &

where input.Ris a text file with the ® code you want to run and results.out
a text file to store the outputs. Note that in batch mode, the graphical user
interface is not active so that some graphical devices (e.g. x11, jpeg, png) are
not available (see the R FAQ [34] for further details).

It’s worth noting that @ uses the XDR representation of binary objects in
binary saved files, and these are portable across all @ platforms. The save ()
and load() functions are very efficient (because of their binary nature) for
saving and restoring any kind of @ objects, in a platform independent way. To
give a striking real example, at a given time on a given platform, it was about
4 minutes long to import a numeric table with 70000 lines and 64 columns
with the defaults settings of the read.table() function. Turning it into binary
format, it was then about 8 seconds to restore it with the load () function. It is
therefore advisable in the input.R batch file to save important data or results
(with something like save (mybigdata, file = "mybigdata.RData")) so as to
be able to restore them later efficiently in the interactive mode (with something
like load ("mybigdata.RData")).

2.7 About the learning curve

Introduction

If you are used to work with a purely graphical user interface, you may feel
frustrated in the beginning of the learning process because apparently simple
things are not so easily obtained (ce n’est que le premier pas qui codte !). In
the long term, however, you are a winner for the following reasons.

2.7.1 Wheel (the)

Do not re-invent (there’s a patent [42] on it anyway). At the compilation time
of this document there were 1559 contributed packages available. Even if you
don’t want to be spoon-feed a bouche ouverte, it’s not a bad idea to look around
there just to check what’s going on in your own application field. Specialists all
around the world are there.

2.7.2 Hotline

There is a very reactive discussion list to help you, just make sure to read the
posting guide there: http://www.R-project.org/posting-guide.html before
posting. Because of the high traffic on this list, we strongly suggest to answer yes
at the question Would you like to receive list mail batched in a daily digest? when
subscribing at https://stat.ethz.ch/mailman/listinfo/r-help. Some bons
mots from the list are archived in the @ fortunes package.

http://www.R-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-help

2.7. ABOUT THE LEARNING CURVE 19

2.7.3 Automation

Consider the 178 pages of figures in the additional data file 1 (http://genomebiology.
com/2002/3/10/research/0058/suppl/S1) from [57]. They were produced in

part automatically (with a proprietary software that is no more maintained)

and manually, involving a lot of tedious and repetitive manipulations (such as
italicising species names by hand in subtitles). In few words, a waste of time.

The advantage of the @ environment is that once you are happy with the out-

puts (including graphical outputs) of an analysis for species x, it’s very easy to

run the same analysis on n species.

2.7.4 Reproducibility

If you do not consider the reproducibility of scientific results to be a serious
problem in practice, then the paper by Jonathan Buckheit and David Donoho
[6] is a must read. Molecular data are available in public databases, this is a
necessary but not sufficient condition to allow for the reproducibility of results.
Publishing the @ source code that was used in your analyses is a simple way to
greatly facilitate the reproduction of your results at the expense of no extra cost.
At the expense of a little extra cost, you may consider to set up a RWeb server
so that even the laziest reviewer may reproduce your results just by clicking on
the 7do it again” button in his web browser (i.e. without installing any soft-
ware on his computer). For an example involving the seqinR pacakage, follow
this link http://pbil.univ-1yonl.fr/members/lobry/repro/bioinfo04/ to
reproduce on-line the results from [9].

2.7.5 Fine tuning

You have full control on everything, even the source code for all functions is
available. The following graph was specifically designed to illustrate the first
experimental evidence [79] that, on average, we have also [A]=[T] and [C]=[G] in
single-stranded DNA. These data from Chargaff’s lab give the base composition
of the L (Ligth) strand for 7 bacterial chromosomes.

example (chargaff, ask = FALSE)

[A]

0% - 100 %

[c
5 ‘ 0% —100 %
[m

0%-100% _

http://genomebiology.com/2002/3/10/research/0058/suppl/S1
http://genomebiology.com/2002/3/10/research/0058/suppl/S1
http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/

20 CHAPTER 2. INTRODUCTION

This is a very specialised graph. The filled areas correspond to non-allowed
values beause the sum of the four bases frequencies cannot exceed 100%. The
white areas correspond to possible values (more exactly to the projection from
R* to the corresponding R? planes of the region of allowed values). The lines
correspond to the very small subset of allowed values for which we have in
addition [A]=[T] and [C]=[G]. Points represent observed values in the 7 bacterial
chromosomes. The whole graph is entirely defined by the code given in the
example of the chargaff dataset (?chargaff to see it).

Another example of highly specialised graph is given by the function tablecode ()
to display a genetic code as in textbooks :

tablecode ()

Genetic code 1 : standard

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA GIn CGA Arg
CTG Leu CCG Pro CAG GIh CGG Arg

ATT lle ACT Thr AAT Asn AGT Ser
ATC lle ACC Thr AAC Asn AGC Ser
ATA lle ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Vval GCT Ala GAT Asp GGT Gly
GTC val GCC Ala GAC Asp GGC Gly

GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

It’s very convenient in practice to have a genetic code at hand, and moreover
here, all genetic code variants are available :

tablecode (numcode = 2)

Genetic code 2 : vertebrate.mitochondrial

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA GIn CGA Arg
CTG Leu CCG Pro CAG GIh CGG Arg

ATT lle ACT Thr AAT Asn AGT Ser
ATC lle ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Stp
ATG Met ACG Thr AAG Lys AGG Stp

GTT Val GCT Ala GAT Asp GGT Gly

GTC Vval GCC Ala GAC Asp GGC Gly

GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

2.7. ABOUT THE LEARNING CURVE 21

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Thr CCT Pro CAT His CGT Arg
CTC Thr CCC Pro CAC His CGC Arg

CTA Thr CCA Pro CAA Gln CGA Arg
CTG Thr CCG Pro CAG Gln CGG Arg

ATT 1le ACT Thr AAT Asn AGT Ser

ATC e ACC Thr AAC Asn AGC Ser

ATA Met ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 2.2: Genetic code number 3: yeast.mitochondrial.

As from seqinR 1.0-4, it is possible to export the table of a genetic code
into a KTEX document, for instance table 2.2 and table 2.3 were automatically
generated with the following @ code:

tablecode (numcode = 3, latexfile = "../tables/code3.tex",
size = "small")

tablecode (numcode = 4, latexfile = "../tables/code4.tex",
size = "small")

The tables were then inserted in the IATEX file with:

\input{../tables/code3.tex}
\input{../tables/code4.tex}

2.7.6 Data as fast moving targets

In research area, data are not always stable. Consider figure 1 from [54] which
is reproduced here in figure 2.1. Data have been updated since then, but we can
re-use the same @ code'® to update the figure:

data <- get.db.growth()

scale <- 1

ltymoore <- 1

date <- data$date

Nucleotides <- data$Nucleotides

Month <- data$Month

plot.default(date, loglO(Nucleotides), main = "Update of Fig. 1 from Lobry (2004) LNCS, 3039:679:\nThe exponential g
xlab = "Year", ylab = "LoglO number of nucleotides", pch = 19,
las = 1, cex = scale, cex.axis = scale, cex.lab = scale)

abline(1m(logl0(Nucleotides) ~ date), lwd = 2)

1ml <- Im(log(Nucleotides) ~ date)

10 This code was adapted from http://pbil.univ-1lyonl.fr/members/lobry/repro/
lncs04/

http://pbil.univ-lyon1.fr/members/lobry/repro/lncs04/
http://pbil.univ-lyon1.fr/members/lobry/repro/lncs04/

22 CHAPTER 2. INTRODUCTION

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Tle ACT Thr AAT Asn AGT Ser

ATC e ACC Thr AAC Asn AGC Ser

ATA Tle ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 2.3: Genetic code number 4: protozoan.mitochondrial+mycoplasma.

mu <- 1lmi$coef [2]

dbt <- log(2)/mu

dbt <- 12 * dbt

x <- mean(date)

y <- mean(logl0(Nucleotides))

a <- logl0(2)/1.5

b<-y-a=x*xx

1mi0 <- Im(loglO(Nucleotides) ~ date)

for (i in seq(-10, 10, by = 1)) if (i != 0) abline(coef = c(b +
i, a), col = "black", lty = ltymoore)

2.7. ABOUT THE LEARNING CURVE 23

Log10 number of nucleotides

1985 1990 1995 2000

Figure 2.1: Screenshot of figure 1 from [54]. The exponential growth of ge-
nomic sequence data mimics Moore’s law. The source of data is the decem-
ber 2003 release note (realnote.txt) from the EMBL database available at
http://www.ebi.ac.uk/. External lines correspond to what would be expected
with a doubling time of 18 months. The central line through points is the best
least square fit, corresponding to a doubling time of 16.9 months.

Update of Fig. 1 from Lobry (2004) LNCS, 3039:679:
The exponential growth of genome sequence data

Log10 number of nucleotides

1985 1990 1995 2000 2005

Year

The doubling time is now 16.7 months.

http://www.ebi.ac.uk/

24 CHAPTER 2. INTRODUCTION

2.7.7 Sweave() and xtable()

For IXTEX users, it’s worth mentioning the fantastic tool contributed by Friedrich
Leish [48] called Sweave () that allows for the automatic insertion of @ outputs
(including graphics) in a BTEX document. In the same spirit, there is a package
called xtable [11] to coerce @ data into BTEX tables.

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), 1386-apple-darwing.8.2

e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:

o @ compilation time was: Sun Oct 26 17:50:03 2008

o IATEX compilation time was: December 12, 2008

CHAPTER 3

Importing sequences from flat files

Charif, D. Lobry, J.R.

3.1 Importing raw sequence data from FASTA
files

3.1.1 FASTA files examples

The FASTA format is very simple and widely used for simple import of biological
sequences. It was used originally by the FASTA program [69]. It begins with a
single-line description starting with a character ’>?, followed by lines of sequence
data of maximum 80 character each. Lines starting with a semi-colon character
’; 7 are comment lines. Examples of files in FASTA format are distributed with
the seqinR package in the sequences directory:

list.files(path = system.file("sequences", package = "seqinr"),
pattern = ".fasta")

[1] "ATH1_pep_cm_20040228.fasta" "Anouk.fasta"

[3] "bb.fasta" "bordetella.fasta"

[6] "ct.fasta" "ecolicgpeb.fasta"

[7] "gopher.fasta" "humanMito.fasta"

[9] "legacy.fasta" "louse.fasta"

[11] "malM.fasta" "ortho.fasta"

[13] "seqAA.fasta" "smallAA.fasta"

Here is an example of a FASTA file:

cat(readLines(system.file("sequences/seqAA.fasta", package = "seqinr")),
sep = "\n")
>A06852 183 residues

MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LCx

Here is an example of a FASTA file with comment lines:

cat(readLines(system.file("sequences/legacy.fasta", package = "seqinr")),
sep = "\n")

25

26 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

>LEGACY 921 bp

: Example of a FASTA file using comment lines starting with a semicolon
as allowed in the original FASTA program:

; if (line[0]!'='>'&& line[0]!=';"') {

; for (i=l_offset; (n<maxs && rn < sstop)&&

H ((ic=qascii[line[i]&AAMASK])<EL); i++)
; if (ic<NA && ++rn > sstart) seq[n++]= ic;

; if (ic == ES || rn > sstop) break;

; From file getseq.c in FASTA program version 35.2.5

ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

3.1.2 The function read.fasta()

The function read.fasta() imports sequences from FASTA files into your
workspace.

DNA file example
The example file looks like:

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
cat(readLines(dnafile), sep = "\n")

>XYLEECOM.MALM 921 bp ACCESSION EO00218, X04477
ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

With default arguments the output looks like:

read.fasta(file = dnafile)
$XYLEECOM.MALM
[1] Ila||

[PSTT]

ngn "g" a a" a a" "g" "g" gl Mg o nmEn o mgnomgn o owgn ongn "g“ ngn
[19] WMo mEn o mon mgn men nwen ugn HEM o mEn men mpn men npn ngu mgn o ngn ongn ongn
[37] II.t|| ncll llan "t llcn llall (LIPS LI TIPS L [P 1} "t" "t" Ilau "C” II.t|| Nt Nt "C" llan
[55] ngn o ngn o nen ngu nen ngn u%n u%u u%n NGl MGl g mgn nen n%n uiu ngn o nen
g g g g g g
[73] nen o mgn nen llgll nen o nen ||gn ngn o ngn ugu MEM o NEN Mg Ngn o Mo e agn nen
[91] "g" ngn o omgn o omen owen ngu WM Mgl Mg Ngn N Mo g e wen ngn ngu nen
[109] "g" ngn onen "g" nen ”g" nen o nen o ngn Ilgll MM M Mgl e e e e g

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 27

[127] |lt" "C" "tll |lgll "Cll ||tll "gll IIC" "gll llc" lltll llg" llcll lla" Ilall "C" llall ||all
[145] "c" "t et MM MM McM Mg ugh Mgl Mgi o Wen Wgnowgn non ongn o wgn ngn wen
[163] |lg" Ilall "tll Ilcll "all Ilall "tll llc" "tll lla" llall lla" llall lc" Ilcll |lc" Ilall ||gll
[181] ||a" "C" "Cll ||a|| "C" "C" "C" ||a|| "all "C" lltll ||g" "gll ||Cl| llgll ||a" "C" "C"
[199] ||g" non "cll IIgH "gll Ilc|| "CII lla|| "all llc" llall |la" llcll ||t" Ilgll ||a" Ilall "Cll
[217] n n |lt|| "tll ||C|| "C" ||Cl| Nyt Npn "C" ||a|| lltll ||C" llall nen lltll n n o ongn ||tll
||gll Nall el Ml e Ngen llgll llg" Mg Nl A el NN ||gll nan l|gll Ilgll "nan
[235] "c™" Mc" t"g" "g" "g! tgh Mgt Mt Mgt Mgt te! tgh Mgt Mg MM t"a' "g! ¢
[253] |lg" lltll "cll "C" "Cll ||gll "gll IIC" "all lla" llall llcll llall llt" Iltll |lg" llgll "C"
[271] "g" "a" "a" "c" "g" Mgh "al Ugh MM MM MgM Mgt tgh Mgh Mgt onwen ngn ugn
[289] |la" Ilcll "cll Ilall "gll IICll "gll lla" "all llg" lltll llg" llall lla" Ilcll |la" Ilall ||all
[307] ||C" |la|| "a" ||a|| "C" ||C|| "all ||g|| "C" ||g" lltll ||t" "tll ||t" lltll ||g" "C" nen
[325] "C" Ilcll "gll Ila|l "all llc|| "gll ll-t" "gll llc" lltll |lg" llall ||t" Iltll "C" Iltll "tll
[343] ||g" |la|| "tll ||C|| "all ||g|| "all |a|l "C" ||a|| lltll ||g" llall ||C" "C" "C" "C" ||all
[361] ||tll IICII llall non IICII Ilc|| lltll llt" "CII lltll lltll "C" IICII "C" IICII l|all Ilgll IICII
[379] |la" llgll "tll |ltll "all ||tll "tll llt" "cll lla" llcll llcll lltll lla" llCll "C" llall ||gll
[397] "g" Mal Mg NCh NEh Mg Mgl NGl HoH Mgl Hp Nl gl Mg Bl g g g
[415] |l§" Ilcll "all Ilgll "all Iltll "fll llgﬂ "gll ll%" lltll llg" llgll lla" Ilill |lg" Ilgll ||cll
[433] ||g" ||-t|| "t" ||a|| "t" neyn "C" ||g|| "C" "C" lltll ||g" "all ||c" llall ||C" "C" "gll
[451] ||g" Ilcll "t Ilt|l "tll non "gll llg" "gll llc" llall |lg" llcll ||a" Ilall ||a" Ilall "all
[469] ||C" |lt|| "tll ||t|| "all ||t|| "gll ||t|| "tll ||C|| lltll ||g" llgll ||t" "C" ||t" |lt|| "tll
[487] ||all IICII IIC" Ila|l IICII IIgH llgll lla" llall llall llall |lall llgll ||all Iltll "C" Iltll IICII
[505] "C" llall "gll ||cl| "all ||gll "all I|C|l "gll lla" "C" "C" "C" lla" llall "C" llt" ||gll
[523] "c" "gM McM Mgh Mah MM MGh WeM Mgt WMgh mGn o ugn ngn o ngu mgn o wgn ugw nen
[541] |lt" Ilall "tll non "cll "C" "all lla" Nyt 1men nen llc" non llt" Ilcll n n o ongn ||tll
[559] ngn ngn nen ||%|| nen "g" ngn ngn ll%ll u%vv n%ll ||gvv ngu ngn g v|§n Il%ll net
[577] |lc" Ilcll "C" non "all llt" "CII llc|l "gll llg" lltll |lt" llgll "C" Iltll "C" Ilgll "tll
[595] ||c" |la|| "tll ||a|| "C" ||C|| "all "C“ "C" ||g|| llall ||t" llgll ||g" "C" ||t" |lt|| "all
[613] "C" Iltll "t Ila|l llall Ila|| "CII llt|| llgll llall l'all |lall llgll ||tll Ilgll ||all Ilall llall
[631] |la" "C" nen ||al| "all ||Cll "tll ||C|l "C" lla" llgll "C" lltll llcll llCll |la" llg" "C"
[649] "g" "gM Mgh "LU Mgh Mgh Mgl WEH Ngu o Wgh Mgl ugl o WEn Now o mEn o wgnougw ngn
[667] |lt" Iltll "tll Ilgll "gll Iltll "tll llc" "cll llt" llcll llc" llgll llc" Iltll |lc" IICII ||all
[685] "g'" MM MpM o MEM MG Mgl Mgl LN WE Mgl Nl NGl Mgl HE Nl Mgl ngh
[703] |l§" Ilall "C" Ila|l "C” ||§u "gll llc|l nen llg" llcll |l§" ll%ll "C" Ilall |l§" II%II "tll
[721] ||g" |lt|| "gll ||g|| "CII ||t|| "gll "C“ "all "C" IIC" ||C" llgll ||C" lltll ||C" "C" "gll
[739] ||g" Ilcll llall Ilc|l llcll IIgH llgll llt|| nn llall l'all |lgll llall ||all Ilall ||al| Ilgll "Cll
[757] |lg" |lal| "gll ||Cl| "Cll ||gll "all ||t|l nen llc" lltll "C" llall lla" "C" |lg" |la|l "C"
[775] ngn nen "g" ||gu ngm omgn o ngn "g" MWLM ME N Mgl I Ml W e g g e
[793] |la" IICII "cll Ilgll "cll Ilgll "all llt" "cll lla" llall lla" llall lla" Ilcll |lg" IICII ||tll
[811] "g" "M "ch Mgt Mgt Mgt Mgl tgh Mgl Mg Wgh HgH g Ngnompw o wgn o ngn o upn
[829] |lg" Ilall "tll Ila|l "all llgll "gll llc|l "gll llt" lltll |la|| llall lla" Ilall |lc" Iltll "gll
[847] ||C" |lt|| "tll ||g|| "all ||t|| "gll ||a|| "all ||g" IIC" ||t" llgll ||a" llall ||C" |lg|| "Cll
[865] ||t" Iltll Mttt llgll Ila|| lltll llc|| "gll lla" "CII |lall lltll "C" Iltll ||gll Ilcll "Cll
[883] "C" |lgl| "tll ||tl| "Cll ||Cll "all ||C|l "C" llt" lltll l|t" llall llt" "C" |la" |lg|| "C"
[901] "a" "gh MgM Mgt Mgh Mgt wph g MU Wgh Hgh o uGH g U mgh ngn ugn ngn

[919] "t" Ilall llall
attr(,"name")
[1] "XYLEECOM.MALM"

attr(,"Annot")

[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"

attr(,"class")
[1] "SeqFastadna"

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters can be neutralized, for instance:

read.fasta(file = dnafile, as.string = TRUE)

$XYLEECOM.MALM
[1] "atgaaaatgaataaaagtctcatcgtcctctgtttatcagcagggttactggecaagegegectggaattagecttgecgatgttaactacgtaccgecaaaacaccagegacg

attr(,"name")

[1] "XYLEECOM.MALM"

attr(,"Annot")

[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")

[1] "SeqFastadna"

Forcing to lower case letters can be disabled this way:

read.fasta(file = dnafile, as.string = TRUE, forceDNAtolower = FALSE)

$XYLEECOM.MALM
[1] "ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCGCCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACG

28 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

attr(,"name")

[1] "XYLEECOM.MALM"

attr(,"Annot")

[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")

[1] "SeqFastadna"

Protein file example
The example file looks like:

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
cat(readLines(aafile), sep = "\n")

>A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LCx*

Read the protein sequence file, looks like:

read.fasta(aafile, seqtype = "AA")

$A06852
b ||M|| "PII ||Rl| llLll llF" llSll ||Y" llLll ||L" |IG|| "V" ||w|| "Lll ||L|| "Lll ||s|| "Qll ||LY|
[19: IIPH "RII IIE" "III |IP" IIGII ||Qll IISII ||T" IINII ||Dl| IIFH "Ill IIKH "All IIC|| "GII IIR"
[37: ||E|l "Lll ||v|| llRll ||L" llwll l|V" llEll |lI|| |IC|| ||Gll ||S|| "Vll ||sl| llwll ||G|l "Rll ||T||
[55: IIAH "LII IIS" HLII IIEII IIEII ||P" IIQII ||Lll IIEII ||Tll IIGH IIPII IIPH llAll IIEH "TII IIM"
[73- IIPH "SII IIS" "III llT" IIKII llD" IIAII |lEl| IIIII ||Lll llKll "Mll llMll "Lll IIEH IIFII llv"
[91= WpM MM MWLM WM wQW WEN N[N MR WAW WTH W] W WGH WEW NRM wQu uwpw nwgn upw
[109: IIRH "EII IIL" "QII |IQ" IISII llA" IISII |lK" IIDII ||S" IINH "Lll IINll "Fll IIEH "EII IIF"
[127: ||K|| "Kll ||I|| llIll IIL" llNll ||R" llQll ||N" |IE|| ||Al| ||E|| "Dll ||K|| "SII ||L|| "Lll ||E"
[145: IIL|| "KII IIN" "LII |IG|| IILII ||D|| IIKII ||H" Ilsll ||Rl| IIKII IIKII IIRH "Lll IIFH "RII IIM"
[163: ||T|l "Lll I|S|| llEll |IK" llcll llC" llQll |lV" llGll ||Cl| ||I|l "Rll ||Kll "Dll ||I|l "All llR"
[181: IIL|| llcll Nyt
attr(,"name")

[1] "A06852"
attr(,"Annot")
[1] ">A06852 183 residues"

attr(,"class")
[1] "SeqgFastaAA"

The same, but as string and without attributes setting, looks like:

read.fasta(aafile, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)

$A06852
[1] "MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEEPQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKAT

3.1.3 The function write.fasta()

This function writes sequences to a file in FASTA format. Read 3 coding se-
quences sequences from a FASTA file:

ortho <- read.fasta(file = system.file("sequences/ortho.fasta",
package = "seqinr"))

length(ortho)

[1]1 3

ortho[[1]1][1:12]

[1] ||all lltll llgll llgll "CII lltll "C" lla" llgll llcll llgll llg"

Select only third codon positions:

ortho3 <- lapply(ortho, function(x) x[seq(from = 3, to = length(x),
by = 3)1)
ortho3[[1]][1:4]

[1] "g" ngn Ilgll ngn

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 29

Write the modified sequences to a file:
tmpf <- tempfile()

write.fasta(sequences = ortho3, names = names(ortho3), nbchar = 80,
file.out = tmpf)

Read them again from the same file and check that sequences are preserved:
ortho3bis <- read.fasta(tmpf, set.attributes = FALSE)

identical (ortho3bis, ortho3)
[1] TRUE

3.1.4 Big room examples
Oriloc example (Chlamydia trachomatis complete genome)

A more consequent example is given in the fasta file ct.fasta which contains
the complete genome of Chlamydia trachomatis that was used in [17]. You
should be able to reproduce figure 1b from this paper with the following code:

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",
package = "seqinr"), g2.coord = system.file("sequences/ct.coord",

package = "seqinr"), oldoriloc = TRUE)
plot(outst, outsk/1000, type = "1", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb", main = expression(italic(Chlamydia ~
“trachomatis) ~ ~“complete ~ “genome), las = 1)

abline(h = 0, 1ty = 2)
text (400, -4, "Terminus")
text (850, 9, "Origin")

Chlamydia trachomatis complete genome

Origin

Cumulated composite skew in Kb

Terminus

T T T T T T
0 200 400 600 800 1000

Map position in Kb

Note that the algorithm has been improved since then and that it’s more
advisable to use the default option oldoriloc = FALSE if you are interested in

30 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

the prediction of origins and terminus of replication from base composition biases
(more on this at http://pbil.univ-1lyonl.fr/software/oriloc.html). See
also [59] for a recent review on this topic.

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",
package = "seqinr"), g2.coord = system.file("sequences/ct.coord",
package = "seqinr"))
plot(outst, outsk/1000, type = "1", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb", main = expression(italic(Chlamydia ~
“trachomatis) ~ ~“complete ~ “genome), las = 1)
mtext ("New version")
abline(h = 0, 1ty = 2)
text (400, -4, "Terminus")
text (850, 9, "Origin")

Chlamydia trachomatis complete genome

New version

Origin

Cumulated composite skew in Kb

-4 — Terminus

T T T T T T
0 200 400 600 800 1000

Map position in Kb

Example with 21,161 proteins from Arabidobpsis thaliana

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters and the automatic attribute settings can be neutralized, for
instance :

smallAA <- system.file("sequences/smallAA.fasta", package = "seqinr")
read.fasta(smallAA, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)
$smallAA

[1] "SEQINRSEQINRSEQINRSEQINR*"

This is interesting to save time and space when reading large FASTA files.
Let’s give a practical example. In their paper [31], Matthew Hannah, Arnd
Heyer and Dirk Hincha were working on Arabidobpsis thaliana genes in or-
der to detect those involved in cold acclimation. They were interested by

5

Arabidobpsis thaliana. Source: wikipedia

http://pbil.univ-lyon1.fr/software/oriloc.html

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 31

the detection of proteins called hydrophilins, that had a mean hydrophilic-
ity of over 1 and glycine content of over 0.08 [19], because they are though
to be important for freezing tolerance. The starting point was a FASTA file
called ATH1_pep_cm_20040228 downloaded from the Arabidopsis Information
Ressource (TAIR at http://www.arabidopsis.org/) which contains the se-
quences of 21,161 proteins.

athfile <- system.file("sequences/ATH1_pep_cm_20040228.fasta",
package = "seqinr")

system.time(ath <- read.fasta(athfile, seqtype = "AA", as.string = TRUE,
set.attributes = FALSE))

user system elapsed
5.781 0.134 6.407

It’s about 10 seconds here to read 21,161 protein sequences. We save them
in XDR binary format® to read them faster later at will:

save(ath, file = "ath.RData")

system.time(load("ath.RData"))

user system elapsed
0.329 0.009 0.341

Now it’s less than a second to load the whole data set thanks to the XDR
format. The object size is about 15 Mo in RAM, that is something very close
to the flat file size on disk:

object.size(ath)/2720
[1] 14.65537
file.info(athfile)$size/2720

[1] 15.89863

Using strings for sequence storage is very comfortable when there is an effi-
cient function to compute what you want. For instance, suppose that you are
interested by the distribution of protein size in Arabidopsis thaliana. There is
an efficient vectorized function called nchar () that will do the job, we just have
to remove one unit because of the stop codon which is translated as a star (*)
in this data set. This is a simple and direct task under @®:

nres <- nchar(ath) - 1
hist(loglO(nres), col = grey(0.7), xlab = "Protein size (loglO scale)",
ylab = "Protein count", main = expression(italic(Arabidopsis ~
“thaliana)))

1 this is a multi-platform compatible binary format: you can save data under unix and
load them under Mac OS X, for instance, without problem.

http://www.arabidopsis.org/

32 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Arabidopsis thaliana

o
o _
o —
[es]
o
o _|
o
©
- N
c
3
o
°c S |
£ =]
o <
Q I
o
2
o
o
o _|
o
N
o - L

[T T T
15 2.0 2.5 3.0 35

Protein size (log10 scale)

However, sometimes it is more convenient to work with the single character
vector representation of sequences. For instance, to count the number of glycine
(G), we first play with one sequence, let’s take the smallest one in the data set:

which.min(nres)
At2g25990. 1
9523
ath[[9523]]
[1] "MAGSQREKLKPRTKGSTRCx*"

s2c(ath[[952311)

[1] HMMOMAN MGM MG HQU WRN MR NN NN NKH HDH HRH O WTH WK MGH nGH NN R
[19] ncll Nyt

s2c(ath[[9523]]) == "G"

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

sum(s2c(ath[[9523]]) == "G")
[1] 2

We can now easily define a vectorised function to count the number of
glycine:
ngly <- function(data) {
res <- sapply(data, function(x) sum(s2c(x) == "G"))

names (res) <- NULL
return(res)

Now we can use ngly() in the same way that nchar() so that computing
glycine frequencies is very simple:

ngly(ath[1:10])
[11 25 5 29 128 8 27 27 26 21 18

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 33

fgly <- ngly(ath)/nres

And we can have a look at the distribution:

hist(fgly, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")
abline(v = 0.08, col = "red")
legend("topright", inset = 0.01, 1ty = 1, col = "red", legend = "Threshold for hydrophilines")

Distribution of Glycine frequency

20000
|

—— Threshold for hydrophilines

10000 15000
| |

Protein count

5000
|

1

[T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Glycine content

Let’s use a boxplot instead:

boxplot(fgly, horizontal = TRUE, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")

abline(v = 0.08, col = "red")

legend("topright", inset = 0.01, 1ty = 1, col = "red", legend = "Threshold for hydrophilines")

34 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Distribution of Glycine frequency

—— Threshold for hydrophilines

15
>
Q
° |
c - - - - o® moman anam 0 00 oo
©
< ‘
o
T T T T T T I
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Glycine content

The threshold value for the glycine content in hydrophilines is therefore very
close to the third quartile of the distribution:

summary (fgly)

Min. 1st Qu. Median ean 3rd Qu
0.00000 0.04907 0.06195 0. 06475 0.07639 0. 59240

We want now to compute something relatively more complex, we want the
Kyte and Doolittle [46] hydropathy score of our proteins (aka GRAVY score).
This is basically a linear form on amino acid frequencies:

20
s=Y aifi
=1

where «; is the coefficient for amino acid number 7 and f; the relative frequency
of amino acid number i. The coefficients «; are given in the KD component of
the data set EXP:

data (EXP)
EXP$KD
[1] -3.9 -3.5 -3.9 -3.5 -0.7 -0.7 -0.7 -0.7 -4.5 -0.8 -4.5 -0.8 4.5 4.5
[15] 1.9 4.5 -3.5 -3.2 -3.5 -3.2 -1.6 -1.6 -1.6 -1.6 -4.5 -4.5 -4.5 -4.5
[29] 3.8 3.8 3.8 3.8 -3.5 -3.5 -3.5 -3.5 1.8 1.8 1.8 1.8 -0.4 -0.4
[43] -0.4 -0.4 4.2 4.2 4.2 4.2 0.0 -1.3 0.0 -1.3 -0.8 -0.8 -0.8 -0.8
[571 0.0 2.5 -0.9 2.5 3.8 2.8 3.8 2.8

This is for codons in lexical order, that is:
words ()
[1] l|aaall llaacll llaag" llaat" llacall l|accll llacgll llact" Ilaga" llagcll l|aggll llagtll
[13] "ata" "a‘tc” "a‘tg" "att" "Caa" "CaC" "Cag" "Ca " "CCa" "CCC" "ch" “CCt”

[25] "eoa" "cec" "c "oNneot" Meta" "ctc" "ctg" "ctt" "gaa" "gac" "gag" "gat"
[37] n g non g non ggn " gtu n non non gu oot ugt " ngt " vvgtgll ||gttu

geca® “gcct “gcgt ge gga” "ggc' "ggg 'gg gta® “gtc’ "gitg’ g
[49] "taa" "tac" "tag" "tat" "tca" "tcc" "tcg" ntot" "tga" "tgc" "tgg" "tgt"
[61] "tta" "ttc" "ttg" nggg"

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 35

But since we are working with protein sequences here we name the coefficient
according to their amino acid :

names (EXP$KD) <- sapply(words(), function(x) translate(s2c(x)))

We just need one value per amino acid, we sort them in the lexical order,
and we reverse the scale so as to have positive values for hydrophilic proteins as
in [31] :

kdc <- EXP$KD [unique (names (EXP$KD))]
kdc <- -kdc[order (names(kdc))]

kdc
* A C D E F G H I K L M N P Q
0.0 -1.8 -2.5 3.5 3.5 -2.8 0.4 3.2 -4.5 3.9 -3.8-1.9 3.5 1.6 3.5
R S T \ W Y
4.5 0.8 0.7 -4.2 0.9 1.3

Now that we have the vector of coefficient «;, we need the amino acid relative
frequencies f;, let’s play with one protein first:

ath[[9523]]
[1] "MAGSQREKLKPRTKGSTRC*"
s2c(ath[[9523]]1)

[1] Mo mpn o ngn ngn uQu WRM WEN MEKM MM MKH upu o npw o wTH NEH wGH o ngn wpn npn
[19] non ngn

table(s2c(ath[[952311))

* ACEGKLMPQRST
1111231111322

table(factor(s2c(ath[[9523]]), levels = names(kdc)))

* ACDEFGHIKLMNPQRSTVWY
111010200311011322000

Now that we know how to count amino acids it’s relatively easy thanks to
R’s matrix operator %*% to define a vectorised function to compute a linear form
on amino acid frequencies:

linform <- function(data, coef) {

f <- function(x) {
aaseq <- s2c(x)
freq <- table(factor(aaseq, levels = names(coef)))/length(aaseq)
return(coef %*% freq)

¥

res <- sapply(data, f)

names (res) <- NULL

return(res)

}
kdath <- linform(ath, kdc)

Let’s have a look at the distribution:

boxplot(kdath, horizontal = TRUE, col = grey(0.7), main = "Distribution of Hydropathy index",

xlab = "Kyte and Doolittle GRAVY score")
abline(v = 1, col = "red")

legend("topleft", imset = 0.01, 1ty = 1, col = "red", legend = "Threshold for hydrophilines")

36 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Distribution of Hydropathy index

—— Threshold for hydrophilines

-1 0 1 2

Kyte and Doolittle GRAVY score

The threshold is therefore much more stringent here than the previous one
on glycine content. Let’s define a vector of logicals to select the hydrophilines:

hydrophilines <- fgly > 0.08 & kdath > 1
head (names (ath) [hydrophilines])

[1] "At1g02840.1" "At1g02840.2" "At1g02840.3" "At1g03320.1" "At1g03820.1"
[6] "At1g04450.1"

Check with a simple graph that there is no mistake here:

library (MASS)
dst <- kde2d(kdath, fgly, n = 50)
filled.contour(x = dst, color.palette = topo.colors, plot.axes = {
axis(1)
axis(2)
title(xlab = "Kyte and Doolittle GRAVY score", ylab = "Glycine content",
main = "Hydrophilines location")
abline(v = 1, col = "yellow")
abline(h = 0.08, col = "yellow")
points(kdath[hydrophilines], fgly[hydrophilines], col = "white")
legend("topleft", imset = 0.02, 1lty = 1, col = "yellow",
bg = "white", legend = "Threshold for hydrophilines",
cex = 0.8)
b

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 37

Hydrophilines location

| 30
0.5 — 25
0.4 20
<
]
<
3
s 03
£
o
=
O]
0.2
0.1
0.0

Kyte and Doolittle GRAVY score

Everything seems to be OK, we can save the results in a data frame:

athres <- data.frame(list(name = names(ath), KD = kdath, Gly = fgly))
head(athres)

name KD Gly
At1g01010.1 At1g01010.1 0.7297674 0.05827506
At1g01020.1 At1g01020.1 -0.1674419 0.03906250
At1g01030.1 At1g01030.1 0.8136490 0.08100559
At1g01040.1 At1g01040.1 0.4159686 0.06705081
At1g01050.1 At1g01050.1 0.4460094 0.03773585
At1g01060.1 At1g01060.1 0.7444272 0.04186047

We want to check now that the results are consistent with those reported pre-
viously. The following table is extracted from the file pgen.0010026.st003.x1s
provided as the supplementary material table S3 in [31] and available at http://
www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.
0010026 .st003.x1s. Only the protein names, the hydrophilicity and the glycine
content were extracted:

hannah <- read.table(system.file("sequences/hannah.txt", package = "seqinr"),
sep = "\t", header = TRUE)
head (hannah)
AGI Hydrophilicity Glycine
1 At2gl19570 -0.10 0.07
2 At2g45290 -0.25 0.09
3 At4g29570 -0.05 0.07
4 At4g29580 -0.10 0.06
5 At4g29600 -0.14 0.06
6 At5g28050 -0.11 0.08

The protein names are not exactly the same because they have no extension.
As explained in [31], when multiple gene models were predicted only the first
was one used. Then:

http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls

38 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

hannah$AGI <- paste(hannah$AGI, "1", sep = ".")
head (hannah)

AGI Hydrophilicity Glycine
1 At2gl19570.1 -0.10 0.07
2 At2g45290.1 -0.25 0.09
3 At4g29570.1 -0.05 0.07
4 At4g29580.1 -0.10 0.06
5 At4g29600.1 -0.14 0.06
6 At5g28050.1 -0.11 0.08

We join now the two data frames thanks to their common key:

join <- merge(hannah, athres, by.x = "AGI", by.y = "name")
head(join)

AGI Hydrophilicity Glycine KD Gly
1 At1g01120.1 -0.10 0.06 0.10699433 0.05871212
2 At1g01390.1 0.02 0.06 0.00914761 0.06458333
3 At1g01390.1 0.02 0.06 0.00914761 0.06458333
4 At1g01420.1 -0.05 0.07 0.06203320 0.07276507
5 At1g01420.1 -0.05 0.07 0.06203320 0.07276507
6 At1g01480.1 -0.20 0.07 0.20080483 0.06653226

Let’s compare the glycine content :

plot(join$Glycine, join$Gly, xlab = "Glycine content in Hannah et al. (2005)",
ylab = "Glycine content here", main = "Comparison of Glycine content results")
abline(c(0, 1), col = "red")

Comparison of Glycine content results

N
—
o
o
F!
o O
o
[)
<
<
o]
g 8
OO
o
2
5 ©
(]
> 2
O
<
<
o
N
Q
o

T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12

Glycine content in Hannah et al. (2005)
The results are consistent, we have just lost some resolution because there

are only two figures after the decimal point in the Excel? file. Let’s have a look
at the GRAVY score now:

2 this software is a real pain for the reproducibility of results. This is well documented,
see http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html and references
therein.

http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html

3.2. IMPORTING ALIGNED SEQUENCE DATA 39

plot(join$Hydrophilicity, join$KD, xlab = "GRAVY score in Hannah et al. (2005)",
ylab = "GRAVY score here", main = "Comparison of hydropathy score results",
las = 1)

abline(c(0, -1), col = "red")

abline(v = 0, lty = 2)

abline(h = 0, 1ty = 2)

Comparison of hydropathy score results

1.0

GRAVY score here
o
3

o
o

-0.5

I I
-1.0 -0.5 0.0 0.5

GRAVY score in Hannah et al. (2005)

The results are consistent, it’s hard to say whether the small differences
are due to Excel rounding errors or because the method used to compute the
GRAVY score was not exactly the same (in [31] they used the mean over a
sliding window).

3.2 Importing aligned sequence data

3.2.1 Aligned sequences files examples
mase

Mase format is a flatfile format use by the SeaView multiple alignment editor
[18], developed by Manolo Gouy and available at http://pbil.univ-1lyoni.
fr/software/seaview.html. The mase format is used to store nucleotide or
protein multiple alignments. The beginning of the file must contain a header
containing at least one line (but the content of this header may be empty). The
header lines must begin by ;;. The body of the file has the following structure:
First, each entry must begin by one (or more) commentary line. Commentary
lines begin by the character ;. Again, this commentary line may be empty. After
the commentaries, the name of the sequence is written on a separate line. At
last, the sequence itself is written on the following lines.

http://pbil.univ-lyon1.fr/software/seaview.html
http://pbil.univ-lyon1.fr/software/seaview.html

40 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

e 06 test.mase

File © | Props © | Sites | Species T | Footers + | search:| Gotos| Edit T |ﬂ|
69

ﬁ sel=0
Langur
Baboon
Human
Rat
Cow
Horse

¥
J[><-+_ !!Id T UJ!H

Figure 3.1: The file test.mase under SeaView. This is a graphical multiple
sequence alignment editor developped by Manolo Gouy [18]. SeaView is able to
read and write various alignment formats (NEXUS, MSF, CLUSTAL, FASTA,
PHYLIP, MASE). It allows to manually edit the alignment, and also to run
DOT-PLOT or CLUSTALW programs to locally improve the alignment.

masef <- system.file("sequences/test.mase", package = "seqinr")

cat(readLines(masef), sep = "\n")

;;Aligned by clustal on Tue Jun 30 17:36:11 1998

;empty description
Langur
-KIFERCELARTLKKLGLDGYKGVSLANWVCLAKWESGYNTEATNYNPGDESTDYGIFQINSRYWCNNGKPGAVDACHISCSALLQNNIADAVACAKRVVSDQGI

éaboon
-KIFERCELARTLKRLGLDGYRGISLANWVCLAKWESDYNTQATNYNPGDQSTDYGIFQINSHYWCNDGKPGAVNACHISCNALLQDNITDAVACAKRVVSDQGI

Human
-KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQINSRYWCNDGKPGAVNACHLSCSALLQDNIADAVACAKRVVRDQGI
ﬁat
-KTYERCEFARTLKRNGMSGYYGVSLADWVCLAQHESNYNTQARNYDPGDQSTDYGIFQINSRYWCNDGKPRAKNACGIPCSALLQDDITQAIQCAKRVVRDQGI
Cow
-KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESSYNTKATNYNPSSESTDYGIFQINSKWWCNDGKPNAVDGCHVSCSELMENDIAKAVACAKKIVSEQGI

Horse
-KVFSKCELAHKLKAQEMDGFGGYSLANWVCMAEYESNFNTRAFNGKNANGSSDYGLFQLNNKWWCKDNKRSSSNACNIMCSKLLDENIDDDISCAKRVVRDKGM

A screenshot copy of the same file as seen under SeaView is given in figure
3.1.

clustal

The CLUSTAL format (*.aln) is the format of the ClustalW multialignment
tool output [33, 94]. It can be described as follows. The word CLUSTAL is on
the first line of the file. The alignment is displayed in blocks of a fixed length,
each line in the block corresponding to one sequence. Each line of each block
starts with the sequence name (maximum of 10 characters), followed by at least
one space character. The sequence is then displayed in upper or lower cases, -’
denotes gaps. The residue number may be displayed at the end of the first line
of each block.

clustalf <- system.file("sequences/test.aln", package = "seqinr")
cat(readLines(clustalf), sep = "\n")

CLUSTAL W (1.82) multiple sequence alignment

FOSB_MOUSE MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60
FOSB_HUMAN MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60
koo okok o sk stk ok sk koo sk koo ok ok ok o sk s ok sk s sk ok ok sk ok sk ok ok ok

3.2. IMPORTING ALIGNED SEQUENCE DATA 41

FOSB_MOUSE ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPAVDPYDMPGTSYSTPGLSAYSTGGASGS 120
FOSB_HUMAN ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPVVDPYDMPGTSYSTPGMSGYSSGGASGS 120
3k 3k ke ok >k ok sk sk sk gk ok ok ok sk Sk Sk ok ok ke ok sk sk ok sk kool sk sk sk skokosk | sk sk sk sk sk okosk sk ke sk skoskoskokok 3 k| skok 3 kokokoskoskk
FOSB_MOUSE GGPSTSTTTSGPVSARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180
FOSB_HUMAN GGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180
skokskokskok dkckokokok | 3k dk ok k ok 3k ok 3k ok 5k ok >k 5k %k 5k >k 3k >k 3k 5k 3k 5k 3k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k >k >k >k 5k %k %k k k k
FOSB_MOUSE DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240
FOSB_HUMAN DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240
3k >k 3k 3k 3k 3k 3k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 3k dk 3k >k 3k >k 3k %k 3k >k 3k >k 3k 3k dk 3k >k 3k >k 3k %k 3k >k 3k >k 3k >k dk >k >k 3k >k >k >k 3k >k 3k *k >k k
FOSB_MOUSE LPGSTSAKEDGFGWLLPPPPPPPLPFQSSRDAPPNLTASLFTHSEVQVLGDPFPVVSPSY 300
FOSB_HUMAN LPGSAPAKEDGFSWLLPPPPPPPLPFQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSY 300
skokskok 3 | kokokokokok | skokokokokokokokokokokokokok 3k 3 sk okokok ok ok sk ok sk ok sk ok sk sk k sk kk kkokkokkkk | kkk
FOSB_MOUSE TSSFVLTCPEVSAFAGAQRTSGSEQPSDPLNSPSLLAL 338
FOSB_HUMAN TSSFVLTCPEVSAFAGAQRTSGSDQPSDPLNSPSLLAL 338

3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk 3 ok ok ok K ok sk ok ok sk ok k sk k k

phylip

PHYLIP is a tree construction program [16]. The format is as follows: the
number of sequences and their length (in characters) is on the first line of the
file. The alignment is displayed in an interleaved or sequential format. The
sequence names are limited to 10 characters and may contain blanks.

phylipf <- system.file("sequences/test.phylip", package = "seqinr")
cat (readLines (phylipf), sep = "\n")

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
Salmo gairAAGCCTTGGC AGTGCAGGGT
H. SapiensACCGGTTGGC CGTTCAGGGT
Chimp AAACCCTTGC CGTTACGCTT
Gorilla AAACCCTTGC CGGTACGCTT

GAGCCCGGGC AATACAGGGT AT
GAGCCGTGGC CGGGCACGGT AT
ACAGGTTGGC CGTTCAGGGT AA
AAACCGAGGC CGGGACACTC AT
AAACCATTGC CGGTACGCTT AA

msf

MSF is the multiple sequence alignment format of the GCG sequence analy-
sis package (http://www.accelrys.com/products/gcg/index.html). It be-
gins with the line (all uppercase) !!NA_MULTIPLE_ALIGNMENT 1.0 for nu-
cleic acid sequences or !/AA_MULTIPLE_ALIGNMENT 1.0 for amino acid se-
quences. Do not edit or delete the file type if its present (optional). A description
line which contains informative text describing what is in the file. You can add
this information to the top of the MSF file using a text editor (optional). A
dividing line which contains the number of bases or residues in the sequence,
when the file was created, and importantly, two dots (..) which act as a di-
vider between the descriptive information and the following sequence informa-
tion (required). msf files contain some other information: the Name/Weight, a
Separating Line which must include two slashes (//) to divide the name/weight
information from the sequence alignment (required) and the multiple sequence
alignment.

msff <- system.file("sequences/test.msf", package = "seqinr")
cat(readLines(msff), sep = "\n")

http://www.accelrys.com/products/gcg/index.html

42 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

PileUp of: @Pi3k.Fil
Symbol comparison table: GenRunData:Pileuppep.Cmp CompCheck: 1254

GapWeight: 3.000
GapLengthWeight: 0.100

Pi3k.Msf MSF: 377 Type: P July 12, 1996 10:40 Check: 167 ..

Name: Torl_Yeast Len: 377 Check: 7773 Weight: 1.00
Name: Tor2_Yeast Len: 377 Check: 8562 Weight: 1.00
Name: Frap_Human Len: 377 Check: 9129 Weight: 1.00
Name: Esrl_Yeast Len: 377 Check: 8114 Weight: 1.00
Name: Tell_Yeast Len: 377 Check: 1564 Weight: 1.00
Name: Pi4k_Human Len: 377 Check: 8252 Weight: 1.00
Name: Stt4_Yeast Len: 377 Check: 9117 Weight: 1.00
Name: Pikl_Yeast Len: 377 Check: 3455 Weight: 1.00
Name: P3k1_Soybn Len: 377 Check: 4973 Weight: 1.00
Name: P3k2_Soybn Len: 377 Check: 4632 Weight: 1.00
Name: Pi3k_Arath Len: 377 Check: 3585 Weight: 1.00
Name: Vp34_Yeast Len: 377 Check: 5928 Weight: 1.00
Name: Plla_Human Len: 377 Check: 6597 Weight: 1.00
Name: P11b_Human Len: 377 Check: 8486 Weight: 1.00
//
1 50
Torl_Yeast GHE DIRQDSLVMQ LFGLVNTLLK NDSECFKRHL DIQQYPAIPL
Tor2_Yeast GHE DIRQDSLVMQ LFGLVNTLLQ NDAECFRRHL DIQQYPAIPL
Frap_Human GHE DLRQDERVMQ LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL
Esrl_Yeast KKE DVRQDNQYMQ FATTMDFLLS KDIASRKRSL GINIYSVLSL

Tell_Yeast .KALMKGSND DLRQDAIMEQ VFQQVNKVLQ NDKVLRNLDL GIRTYKVVPL
Pi4k_Human ..AAIFKVGD DCRQDMLALQ IIDLFKNIFQ LV....GLDL FVFPYRVVAT

Stt4_Yeast ..AAIFKVGD DCRQDVLALQ LISLFRTIWS SI....GLDV YVFPYRVTAT
Pikl_Yeast ...VIAKTGD DLRQEAFAYQ MIQAMANIWV KE....KVDV WVKRMKILIT
P3k1_Soybn TCKIIFKKGD DLRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT
P3k2_SoybnIFKKGD DIRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT

Pi3k_Arath ..KLIFKKGD DLRQDQLVVQ MVWLMDRLLK LE....NLDL CLTPYKVLAT
Vp34_Yeast .YHLMFKVGD DLRQDQLVVQ IISLMNELLK NE....NVDL KLTPYKILAT

Plla_Human ...IIFKNGD DLRQDMLTLQ IIRIMENIWQ NQ....GLDL RMLPYGCLSI
P11b_Human ...VIFKNGD DLRQDMLTLQ MLRLMDLLWK EA....GLDL RMLPYGCLAT
51 100

Torl_Yeast SPKSGLLGWV PNSDTFHVLI REHRDAKKIP LNIEHWVMLQ MAPDYENLTL
Tor2_Yeast SPKSGLLGWV PNSDTFHVLI REHREAKKIP LNIEHWVMLQ MAPDYDNLTL
Frap_Human STNSGLIGWV PHCDTLHALI RDYREKKKIL LNIEHRIMLR MAPDYDHLTL
Esrl_Yeast REDCGILEMV PNVVTLRSIL STKYESLKIK Y..... SLKS LHDRWQHTAV
Tell_Yeast GPKAGIIEFV ANSTSLHQIL SKLHTNDKIT FDQARKGMKA VQTKSN....
Pi4k_Human APGCGVIECI PDCTS..... RDQLGRQTDF GMYDYFTRQY
Stt4_Yeast APGCGVIDVL PNSVS..... RDMLGREAVN GLYEYFTSKF
Pikl_Yeast SANTGLVETI TNAMSVHSIK KALTKKMIED AELDDKGGIA SLNDHFLRAF
P3k1_Soybn GQDEGMLEFI P.SRSLAQI.LSENRSII SYLQ......
P3k2_Soybn GQDEGMLEFI P.SRSLAQI. ..LSENRSII SYLQ......
Pi3k_Arath GHDEGMLEFI P.SRSLAQI. ..LSEHRSIT SYLQ......
Vp34_Yeast GPQEGAIEFI P.NDTLASI. . .LSKYHGIL GYLK......
P1la_Human GDCVGLIEVV RNSHTIMQI. ..Q.CKGGLK GALQFNSHTL
P11b_Human GDRSGLIEVV STSETIADI. . .QLNSSNVA AAAAFNKDAL

FASTA

Sequence in fasta format begins with a single-line description (distinguished by
a greater-than (>) symbol), followed by sequence data on the next line.

fastaf <- system.file("sequences/Anouk.fasta", package = "seqinr")
cat(readLines(fastaf), sep = "\n")

>LmjF01.0030

ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGTGTGCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCAGAGGACTTCAACCGCTACGGCGTCGTAGAGGCGATGGACATTTTGCGGCTG
CGTGACGCCATCGAGTACATCAAGGCTAATCCGCTCCCCGCCTCGCGCTCTGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGGCGGCAGTACACAGCACGCGGAACCACAGTCCTTTGCCGGTCG
ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCCTCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAGC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCCTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGACAGACAGGGAGCGGCAAGACACACACGATGCTGGGCAAGGGCCCCGAGCCGGGC

3.2. IMPORTING ALIGNED SEQUENCE DATA

CTCTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTC
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCC
CTGCGAGCCCTCGAGGACGACAAGGGCCGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGTGTTCGCAGCTGC
GGCTCCACCGGCGCCAATGACACAAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACGTTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCTGACACGGTGGACTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATC
AACAAGAGCCTACTCGCGCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCGAACAACAATGCCGAGCACACGCTGAAC
ACGCTGCGCTACGCCGATCGTGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACT
GTGTGCATGCCCGACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGCCTTTCTACGGCCGCCCCGCTTTTCTCCGGCTCTTCGACG
GCTGCGCCAGCACTTAGAAGCACGCTACTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGCCAAGTCGACTCTCGTCACCCCGAAGCCGCCGTCGCGCGATCGGACTCCG
GACATGGTGTGCACTAAGCGGCCCCGCGACTCAGACAGAAGCGGCGAGGACGAAGTGGTA
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGAGCGGCGCCGAGCTTGTCGCG
GCCCAGCGCAGTCGCGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCAGC
TTTGTGGAGCGCGCACGTCTGCTGGTGAGCGAGAAACGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGAGGAGCTCGACAAGATCGCGCAGCAGGTCGCCGACATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG

>LinJ01.0030
ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGAGTTCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCGGAGGACTTCAACCGCTACGGCGTCGTAGAGGCAATGGACATTTTGCGGCTG
CGCGACGCCATCGAGTACATCAAGGCCAACCCGCTCCCCGCCTCGCGCTCCGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGACGGCAGTACACAGCACGCGGAACCACCGTCCTTTGCGGGTCG
ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCATCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAAC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCGTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGGCAGACAGGGAGCGGCAAGACACACACGATGCTCGGCAAGGGCCCCGAGCCGGGC
CTGTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTT
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCA
CTGCGAGCCCTCGAGGACGACAAGGGGAGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGCGTTCGCAGCTGC
GGCTCCACCGGCGCCAACGACACGAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACATTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCCGACACGGTGGATTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATT
AACAAGAGCCTACTCGCTCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCCAACAACAATGCCGAGCACACGCTGAAC
ACGTTGCGCTACGCCGATCGCGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACC
GTGTGCGTGCCCAACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGGCTTTCTGCGGCCGCCCCGCTTTTCTCCGGCACTTCGACG
GCTGCCCCAGCATGTAAAAGCACGTTGCTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGGCAAGTCGACTCTCGTCACCCCGAAGCCACTGTCGCGCGATCGGACTCCG
GACATGGTGTGCGCTAAGCGGCCCCGCGACTCAGACCGAAGCGGCGAAGACGAAGTGGTG
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGGGCGGCGCCGAGCTCGTGGCG
GCCCAGCGCAGTCGTGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCACC
TTTGTCGAGCGCGCACGCCTGCTGGTGAGCGAGAAGCGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGACGAGCTCGATAAGATCGCGCAGCAGGTCGCCAGCATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG

3.2.2 The function read.alignment ()

43

Aligned sequence data are very important in evolutionary studies, in this rep-
resentation all vertically aligned positions are supposed to be homologous, that
is sharing a common ancestor. This is a mandatory starting point for compar-
ative studies. There is a function in seqinR called read.alignment () to read
aligned sequences data from various formats (mase, clustal, phylip, fasta or
msf) produced by common external programs for multiple sequence alignment.

example (read.alignment)

rd.lgn mase <- read.alignment(file = system.file("sequences/test.mase", package

= "seqinr"), format

= "mase"

rd.lgn clustal <- read.alignment(file = system.file("sequences/test.aln", package = "seqinr"), format="clustal")

rd.lgn phylip <- read.alignment(file = system.file("sequences/test.phylip", package = "seqinr"), format =

rd.1lgn msf <- read.alignment(file = system.file("sequences/test.msf", package

"seqinr"), format

"msf")

"phylip")

44 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

rd.lgn fasta <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"), format =

3.2.3 A simple example with the louse-gopher data

Let’s give an example. The gene coding for the mitochondrial cytochrome ox-
idase I is essential and therefore often used in phylogenetic studies because of
its ubiquitous nature. The following two sample tests of aligned sequences of
this gene (extracted from ParaFit [47]), are distributed along with the seqinR
package:

louse <- read.alignment(system.file("sequences/louse.fasta",

package = "seqinr"), format = "fasta")
louse$nam
[1] "gi|548117|gb|L32667.1|GYDCYTOXIB" "gi|548119|gb|L32668.1|GYDCYTOXIC"
[3] "gil|548121|gb|L32669.1|GYDCYTOXID" "gi|548125|gb|L32671.1|GYDCYTOXIF"
[6] "gil|548127|gb|L32672.1|GYDCYTOXIG" "gi|548131|gb|L32675.1|GYDCYTOXII"
[7] "gil|548133|gb|L32676.1|GYDCYTOXIJ" "gi|548137|gb|L32678.1|GYDCYTOXIL"

gopher <- read.alignment(system.file("sequences/gopher.fasta",

package = "seqinr"), format = "fasta")
gopher$nam
[1] "gi|548223|gb|L32683.1|PPGCYTOXIA" "gi|548197 |gb|L32686.1|0GOCYTOXIA"
[3] "gil|548199|gb|L32687.1|0GOCYTOXIB" "gi|548201|gb|L32691.1|0GOCYTOXIC"

[5]
[7]

"gi|548203|gb|L32692.1]|0GOCYTOXID"
"gi|548231|gb|L32694.1|PPGCYTOXIE"

"gi|548229|gb|L32693.1|PPGCYTOXID"
"gi|548205|gb|L32696.1|0GOCYTOXIE"

Figure 3.2: Louse (left) and gopher (right). Images are from the wikipedia
(http://www.wikipedia.org/). The picture of the chewing louse Damalinia
limbata found on Angora goats was taken by Fiorella Carnevali (ENEA, Italy).
The gopher drawing is from Gustav Miitzel, Brehms Tierleben, Small Edition
1927.

The aligned sequences are now imported in your @ environment. The 8
genes of the first sample are from various species of louse (insects parasitics on
warm-blooded animals) and the 8 genes of the second sample are from their
corresponding gopher hosts (a subset of rodents), see figure 3.2 :

1l.names <- readLines(system.file("sequences/louse.names",

package = "seqinr"))
1l.names
[1] "G.chapini " "G.cherriei " "G.costaric " "G.ewingi " "G.geomydis "

[e]

"G.oklahome " "G.panamens " "G.setzeri "

http://www.wikipedia.org/

3.2. IMPORTING ALIGNED SEQUENCE DATA 45

g.names <- readlLines(system.file("sequences/gopher.names",

package = "seqinr"))
g.names
[1] "G.brevicep " "O.cavator " "O.cherriei " "O.underwoo " "O.hispidus "
[6] "G.bursl " "G.burs2 " "0.heterodu"

SeqinR has very few methods devoted to phylogenetic analyses but many
are available in the ape package [67]. This allows for a very fine tuning of the
graphical outputs of the analyses thanks to the power of the @ facilities. For
instance, a natural question here would be to compare the topology of the tree
of the hosts and their parasites to see if we have congruence between host and
parasite evolution. In other words, we want to display two phylogenetic trees
face to face. This would be tedious with a program devoted to the display of a
single phylogenetic tree at time, involving a lot of manual copy/paste operations,
hard to reproduce, and then boring to maintain with data updates.

How does it looks under @7 First, we need to infer the tree topologies from
data. Let’s try as an illustration the famous neighbor-joining tree estimation
of Saitou and Nei [80] with Jukes and Cantor’s correction [39] for multiple
substitutions.

library(ape)

louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")
gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")
1 <- nj(louse.JC)

g <- nj(gopher.JC)

Now we have an estimation for #llustrative purposes of the tree topology for
the parasite and their hosts. We want to plot the two trees face to face, and for
this we must change R graphical parameters. The first thing to do is to save
the current graphical parameter settings so as to be able to restore them later:

op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical pa-
rameters are not all settable, we just want to save those we can change at will.
Now, we can play with graphics :

g$tip.label <- paste(1:8, g.names)
1$tip.label <- paste(1:8, 1l.names)
layout (matrix(data = 1:2, nrow = 1, ncol = 2), width = c(1.4,

1

par(mar = c(2, 1, 2, 1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length = FALSE, main = "gopher (host)",
cex.main = 2)

plot(l, direction = "1", use.edge.length = FALSE, cex = 1.4,
main = "louse (parasite)", cex.main = 2)

46 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

gopher (host) louse (parasite)

— 8 O.heterodu 1 G.chapini
——— 3O.cherriei 4 G.ewingi
4 O.underwoo 6 G.oklahome
—— 2 O.cavator 5 G.geomydis

1 G.brevicep 8 G.setzeri
——— 7G.burs2 7 G.panamens
—— 6G.bursl 3 G.costaric

5 O.hispidus 2 G.cherriei

We now restore the old graphical settings that were previously saved:

par (op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd () command, create a text file called
essai.r with your favourite text editor, and copy/paste the previous @ com-
mands, that is :

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")
gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")
1.names <- readLines(system.file("sequences/louse.names", package = "seqinr"))

g.names <- readLines(system.file("sequences/gopher.names", package = "seqinr"))

library(ape)

louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")
gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")

1 <- nj(louse.JC)

g <- nj(gopher.JC)

g$tip.label <- paste(1:8, g.names)

1$tip.label <- paste(1:8, 1.names)

layout (matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))
par (mar=c(2,1,2,1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)
plot(l,direction="1", use.edge.length=FALSE, cex = 1.4,
main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to @ console to
enter the command :

source("essai.r")

This should reproduce the previous face-to-face phylogenetic trees in your
@ graphical device. Now, your boss is unhappy with working with the Jukes and
Cantor’s model [39] and wants you to use the Kimura’s 2-parameters distance
[43] instead. Go back to the text editor to change model = "JC69" by model
= "K80", save the file, and in the @ console source("essai.r") again, you
should obtain the following graph :

3.2. IMPORTING ALIGNED SEQUENCE DATA 47

gopher (host) louse (parasite)
—— 8 O.heterodu 3 G.costaric
——— 3 O.cherriei 2 G.cherriei
— 4 O.underwoo 8 G.setzeri
——— 2 O.cavator 7 G.panamens
1 G.brevicep 4 G.ewingi
——— 7G.burs2 6 G.oklahome
——— 6G.bursl 5 G.geomydis }
5 O.hispidus 1 G.chapini

Now, something even worst, there was a error in the aligned sequence set:
the first base in the first sequence in the file louse.fasta is not a C but a T.
To locate the file on your system, enter the following command:

system.file("sequences/louse.fasta", package = "seqinr")

[1] "/Users/lobry/seqinr/pkg.Rcheck/seqinr/sequences/louse.fasta"

Open the louse.fasta file in your text editor, fix the error, go back to
the @ console to source("essai.r") again. That’s all, your graph is now
consistent with the updated dataset.

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2
e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:

e @ compilation time was: Sun Oct 26 17:53:17 2008

e IATEX compilation time was: December 12, 2008

48 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

CHAPTER 4

Importing sequences from

ACNUC databases

Charif, D. Lobry, J.R.

Introduction

As a rule of thumb, after compression one nucleotide needs one octet of disk
space storage (because you need also the annotations corresponding to the se-
quences), so that most likely you won’t have enough space on your computer
to work with a local copy of a complete DNA database. The idea is to import
under @ only the subset of sequences you are interested in. This is done in
three steps:

1. Choose the bank you want to work with.
2. Select the sequences you are interested in.
3. Retrieve sequences from server into your workspace.

We now give a full example of those three steps under the ACNUC system
21, 22, 29, 27, 28].

4.1 Choose a bank

Select the database from which you want to extract sequences with the choosebank ()
function. This function initiates a remote access to an ACNUC database. Called
without arguments, choosebank () returns the list of available databases:

choosebank ()

[1] "genbank" "embl" "emblwgs" "swissprot" "ensembl"

[6] "refseq" "nrsub" "hobacnucl" "hobacprot" "hovergendna"
[11] "hovergen" "hogenom" "hogenomdna" "hogennucl" "hogenprot"
[16] "hoverclnu" "hoverclpr" "homolens" "homolensdna" "greview"
[21] "polymorphix" "emglib" "HAMAPnucl" "HAMAPprot" "hoppsigen"
[26] "nurebnucl" "nurebprot" "taxobacgen"

49

50 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

Biological sequence databases are fast moving targets, and for publication
purposes it is recommended to specify on which release you were working on
when you made the job. To get more informations about available databases on
the server, just set the infobank parameter to TRUE. For instance, here is the
result for the three first databases on the default server at the compilation time
(December 12, 2008) of this document:

choosebank (infobank = TRUE) [1:3,]

bank status

1 genbank on
2 embl on
3 emblwgs on
info
1 GenBank Rel. 167 (15 August 2008) Last Updated: Oct 26, 2008

2 EMBL Library Release 96 (September 2008) Last Updated: Oct 25, 2008
3 EMBL Whole Genome Shotgun sequences Release 96 (September 2008)

Note that there is a status column because a database could be unavailable
for a while during updates. If you try call choosebank(bank = "bankname")
when the bank called bankname is off from server, you will get an explicit error
message stating that this bank is temporarily unavailable, for instance:

res <- try(choosebank("off"))
cat(res)

Error in acnucopen(bank, socket)
Database with name -->0ff<-- is currently off for maintenance, please try again

Some special purpose databases are not listed by default. These are tagged
databases that are only listed if you provide an explicit tagbank argument to the
choosebank () function. Of special interest for teaching purposes is the TP tag,
an acronym for Travauxr Pratiques which means ”practicals”, and corresponds
to frozen databases so that you can set up a practical whose results are stable
from year to year. Currently available frozen databases at the default server
are:

choosebank(tagbank = "TP", infobank = TRUE)

bank status info
1 emblTP on frozen EMBL release
2 swissprotTP on frozen SwissProt release
3 hoverprotTP on frozen Hovergen release - protein sequences
4 hovernuclTP on frozen Hovergen release - nucleotide sequences
5 trypano on frozen trypano database

Now, if you want to work with a given database, say GenBank, just call
choosebank () with "genbank" as its first argument, the result is saved in the
variable banknameSocket in the workspace:

choosebank ("genbank")
str(banknameSocket)

List of 9

$ socket :Classes 'sockconn', 'connection' atomic [1:1] 5
..— attr(*, "conn_id")=<externalptr>
bankname: chr "genbank"
banktype: chr "GENBANK"
totsegs : num 1.02e+08
totspecs: num 598454
totkeys : num 9391212
release : chr "
status :Class 'AsIs' chr "on"
details : chr [1:4] " *okok ACNUC Data Base Content *Kokok

closebank()

R-cR-C - -CE-c - -c -l

later.

GenBank Rel. 167 (15 August 2008) Last Updated: Oct 26, 2008"

4.1. CHOOSE A BANK 51

The components of banknameSocket means that in the database called
genbank at the compilation time of this document there were 102,053,262
sequences from 598,454 species and a total of 9,391,212 keywords. The status
of the bank was on, and the release information was GenBank Rel. 167 (15
August 2008) Last Updated: Oct 26, 2008. For specialized databases, some
relevant informations are also given in the details component, for instance:

choosebank ("taxobacgen")
cat (banknameSocket$details, sep = "\n")

*okokok ACNUC Data Base Content *okokok
TaxoBacGen Rel. 7 (September 2005)
1,151,149,763 bases; 254,335 sequences; 847,767 subseqs; 63,879 refers.
Data compiled from GenBank by Gregory Devulder
Laboratoire de Biometrie & Biologie Evolutive, Univ Lyon I

This database is a taxonomic genomic database.

It results from an expertise crossing the data nomenclature database DSMZ
[http://wuw.dsmz.de/species/bacteria.htm Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany]

and GenBank.

- Only contains sequences described under species present in

Bacterial Nomenclature Up-to-date.

- Names of species and genus validly published according to the
Bacteriological Code (names with standing in nomenclature) is

added in field "DEFINITION".

- A keyword "type strain" is added in field "FEATURES/source/strain" in
GenBank format definition to easyly identify Type Strain.

Taxobacgen is a genomic database designed for studies based on a strict
respect of up-to-date nomenclature and taxonomy.

closebank ()

As from seqinR 1.0-3, the result of the choosebank() function is automat-
ically stored in a global variable named banknameSocket, so that if no socket
argument is given to the query() function, the last opened database will be
used by default for your requests. This is just a matter of convenience so that
you don’t have to explicitly specify the details of the socket connection when
working with the last opened database. You have, however, full control of the
process since choosebank() returns (invisibly) all the required details. There
is no trouble to open simultaneously many databases. You are just limited by
the number of simultaneous connections your build of @ is allowed!.

For advanced users who may wish to access to more than one database at
time, a good advice is to close them with the function closebank() as soon
as possible so that the maximum number of simultaneous connections is never
reached. In the example below, we want to display the number of taxa (i.e.
the number of nodes) in the species taxonomy associated with each available
database (including frozen databases). For this, we loop over available databases
and close them as soon as the information has been retrieved.

banks <- c(choosebank(), choosebank(tagbank = "TP"))
nbanks <- length(banks)
ntaxa <- numeric(nbanks)
for (i in seq_len(nbanks)) {
bkopenres <- try(choosebank(banks[i]))

if (inherits(bkopenres, "try-error")) {
ntaxal[i] <- NA

else {
ntaxal[i] <- as.numeric(banknameSocket$totspecs)

closebank ()

1 As from @ 2.4.0 he maximum number of open connections has been increased from 50
to 128. Note also that there is a very convenient function called closeAllConnections() in
the @ base package if you want to close all open connections at once.

Felis catus. Source: wikipedia

52 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

names (ntaxa) <- banks

dotchart(loglO(ntaxa[order(ntaxa)]), pch = 19, main = "Number of taxa in available databases",

xlab = "LoglO(number of taxa)")

Number of taxa in available databases

e

0200
[e]e]e)
OSD
=3

QX.CX%OD
535
0-33_”
m><

LN) e,

[e)e]
<<
@O
==
[e]e]
j=j o)
C
cees,

Log10(number of taxa)

4.2 Make your query

For this section, set up the default bank to GenBank, so that you don’t have to
provide the sockets details for the query () function:

choosebank ("genbank")

Then, you have to say what you want, that is to compose a query to select
the subset of sequences you are interested in. The way to do this is docu-
mented under ?query, we just give here a simple example (more details are
given in chapter 5 page 61). In the query below, we want to select all the cod-
ing sequences (t=cds) from cat (AND sp=felis catus) that are not (AND NOT)
partial sequences (k=partial). We want the result to be stored in an object
called completeCatsCDS.

query("completeCatsCDS", "sp=felis catus AND t=cds AND NOT k=partial")

Now, there is in the workspace an object called completeCatsCDS, which
does not contain the sequences themselves but the sequence names (and various
relevant informations such as the genetic code and the frame) that fit the query.
They are stored in the req component of the object, let’s see the name of the
first ten of them:

4.2. MAKE YOUR QUERY 53

getName (completeCatsCDS$req[1:10])

[1] "AB000483.PE1" "ABO00484.PE1" "AB0O00485.PE1" "AB004237"
[5] "AB004238" "AB009279.PE1" "AB009280.PE1" "AB010872.UGT1A1"
[9] "AB011965.SDF-1A" "AB011966.SDF-1B"

The first sequence that fit our request is AB000483.PE1, the second one is
AB000484 .PE1, and so on. Note that the sequence name may have an extension,
this corresponds to subsequences, a specificity of the ACNUC system that al-
lows to handle easily a subsequence with a biological meaning, typically a gene.
The list of available subsequences in a given database is given by the function
getType (), for example the list of available subsequences in GenBank is given
in table 4.1.

Type Description
1 CDS .PE protein coding region
2 LOCUS sequenced DNA fragment
3 MISC_RNA .RN other structural RNA coding region
4 RRNA .RR mature ribosomal RNA
5 SCRNA .SC small cytoplasmic RNA
6 SNRNA .SN small nuclear RNA
7 TRNA TR mature transfer RNA

Table 4.1: Available subsequences in genbank

The component call of completeCatsCDS keeps automatically a trace of
the way you have selected the sequences:

completeCatsCDS$call
query(listname = "completeCatsCDS", query = "sp=felis catus AND t=cds AND NOT k=partial")

At this stage you can quit your @ session saving the workspace image. The
next time an @ session is opened with the workspace image restored, there
will be an object called completeCatsCDS, and looking into its call component
will tell you that it contains the names of complete coding sequences from Felis
catus.

In practice, queries for sequences are rarely done in one step and are more
likely to be the result of an iterative, progressively refining, process. An impor-
tant point is that a list of sequences can be re-used. For instance, we can re-use
completeCatsCDS to get only the list of sequences that were published in 2004:

query("ccc2004", "completeCatsCDS AND y=2004")
length(ccc2004$req)

[1] 60
ccc2004$nelem
[1] 60

Hence, there were 60 complete coding sequences published in 2004 for Felis
catus in GenBank.

As from release 1.0-3 of the seqinR package, there is new parameter virtual
which allows to disable the automatic retrieval of information for all list ele-
ments. This is interesting for list with many elements, for instance :

54 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

query("allcds", "t=cds", virtual = TRUE)
allcds$nelem

[1] 6067613

There are therefore 6,067,613 coding sequences in this version of GenBank?.
It would be long to get all the informations for the elements of this list, so we
have set the parameter virtual to TRUE and the req component of the list has
not been documented:

allcds$req
[1] NA

However, the list can still be re-used?, for instance we may extract from this
list all the sequences from, say, Mycoplasma genitaliuvm:

query("small", "allcds AND sp=mycoplasma genitalium", virtual = TRUE)
small$nelem

[1] 935

There are then 935 elements in the list small, so that we can safely repeat
the previous query without asking for a virtual list:

query("small", "allcds et sp=mycoplasma genitalium")
getName (small$req[1:10])

[1] "AY191424" "AY386807" "AY386808" "AY386809" "AY386810" "AY386811"
[7] "AY386812" "AY386813" "AY386814" "AY386815"

Here are some illustrations of using virtual list to answer simple questions
about the current GenBank release.

Man. How many sequences are available for our species?
query("man", "sp=homo sapiens", virtual = T)
man$nelem
[1] 11551823
ere are 11, , sequences from Homo sapiens.
Th 11,551,823 seq f H D
ex. How many sequences are annotated with a keyword startin sex?
S H y seq tated with a keyword starting by sex?
query("sex", "k=sex@", virtual = T)
sex$nelem
[1] 1346
There are 1,346 such sequences.
tRNA. How many complete tRNA sequences are available?
query("trna", "t=trna AND NOT k=partial", virtual = T)

trna$nelem

[1] 324327

2 which is stored in the release component of the object banknameSocket and current value
is today (December 12, 2008): banknameSocket$release = GenBank Rel. 167 (15 August
2008) Last Updated: 0Oct 26, 2008.

3 of course, as long as the socket connection with the server has not been lost: virtual lists
details are only known by the server.

4.3. EXTRACT SEQUENCES OF INTEREST 55

There are 324,327 complete tRNA sequences.

Nature vs. Science. In which journal were the more sequences published?

query("nature", "j=nature", virtual = T)
nature$nelem

[1] 1740183

query("science", "j=science", virtual = T)
science$nelem

[1] 1338780

There are 1,740,183 sequences published in Nature and 1,338,780 se-
quences published in Science, so that the winner is Nature.

Smith. How many sequences have Smith (last name) as author?

query("smith", "au=smith", virtual = T)
smith$nelem

[1] 4183000

There are 4,183,000 such sequences.
YK2. How many sequences were published after year 2000 (included)?
query ("yk2", "y>2000", virtual = T)

yk2$nelem
[1] 84819267

There are 84,819,267 sequences published after year 2000.

Organelle contest. Do we have more sequences from chloroplast genomes or
from mitochondion genomes?

query("chloro", "o=chloroplast", virtual = T)
chloro$nelem

[1] 197367

query("mito", "o=mitochondrion", virtual = T)
mito$nelem

[1] 650254

There are 197,367 sequences from chloroplast genomes and 650,254 se-
quences from mitochondrion genomes, so that the winner is mitochon-
drion.

closebank ()

4.3 Extract sequences of interest

4.3.1 Introduction

There are two functions to get the sequences. The first one, getSequence(),
uses regular socket connections, the second one, extractseqs(), uses zlib com-
pressed sockets, which is faster but the function is experimental (details in chap-

ter 6 page 75).

56 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

4.3.2 Extacting sequences with getSequence()

For this section we set up the bank to emb1TP which is a frozen subset of EMBL
database to allow for the reproducibility of results.

choosebank ("emblTP")

We suppose that the sequences we are interested in are all the complete
coding sequences from Felis catus :
query("completeCatsCDS", "sp=felis catus AND t=cds AND NOT k=partial")
(nseq <- completeCatsCDS$nelem)
[1] 257

Thus, there were 257 complete CDS from Felis catus in this release of EMBL.
The sequences are obtained with the function getSequence (). For example,
the first 50 nucleotides of the first sequence of our request are:
myseq <- getSequence(completeCatsCDS$req[[1]1])
myseq[1:50]

[1] ngn o ngn ngu Mgl Mol M Mg g o Mg e e nen ugn ngm o ngn o mgn o ngn

[19] Mgl Ml Mgl Ml Mgl i i i e e e I gl el i g it g dg
[37] Mgl WLl LN Mgl Ml Bt gl gl Nl e gl e e nen

They can also be coerced as string of character with the function c2s():

c2s(myseq[1:501)
[1] "atgaccaacattcgaaaatcacacccccttaccaaaattattaatcactc"

We can also use the argument as.string to retrive sequences directly as
strings:
substr(getSequence (completeCatsCDS$req[[1]], as.string = TRUE),

1, 50)
[1] "atgaccaacattcgaaaatcacacccccttaccaaaattattaatcactc"
g g

Note that what is done by getSequence() is much more complex than a
simple substring extraction because subsequences of biological interest are not
necessarily contiguous, nor on the same DNA strand, nor even from the same
entry.

4.3.3 Extracting sequences with trans-splicing
Consider for instance the following coding sequence from sequence AE003734:

query("trs", "N=AE003734.PE35")
annots <- getAnnot(trs$reql[[1]])

cat (annots, sep = "\n")
FT CDS join(complement (153944 . .154157) ,complement (153727..153866) ,
FT complement (152185..153037),138523..138735,138795. .138955)
FT /codon_start=1
FT /db_xref="FLYBASE:FBgn0002781"
FT /db_xref="GOA:(Q86B86"
FT /db_xref="TrEMBL:Q86B86"
FT /note="mod (mdg4) gene product from transcript CG32491-RZ;
FT trans splicing"
FT /gene="mod (mdg4)"
FT /product="CG32491-PZ"
FT /locus_tag="CG32491"
FT /protein_id="AA041581.1"
FT /translation="MADDEQFSLCWNNFNTNLSAGFHESLCRGDLVDVSLAAEGQIVKA

FT HRLVLSVCSPFFRKMFTQMPSNTHAIVFLNNVSHSALKDLIQFMYCGEVNVKQDALPAF

4.3. EXTRACT SEQUENCES OF INTEREST o7

FT ISTAESLQIKGLTDNDPAPQPPQESSPPPAAPHVQQQQIPAQRVQRQQPRASARYKIET
FT VDDGLGDEKQSTTQIVIQTTAAPQATIVQQQQPQQAAQQIQSQQLQTGTTTTATLVSTN
FT KRSAQRSSLTPASSSAGVKRSKTSTSANVMDPLDSTTETGATTTAQLVPQQITVQTSVV
FT SAAEAKLHQQSPQQVRQEEAEYIDLPMELPTKSEPDYSEDHGDAAGDAEGTYVEDDTYG
FT DMRYDDSYFTENEDAGNQTAANTSGGGVTATTSKAVVKQQSQNYSESSFVDTSGDQGNT
FT EAQVTQHVRNCGPQMFLISRKGGTLLTINNFVYRSNLKFFGKSNNILYWECVQNRSVKC
FT RSRLKTIGDDLYVTNDVHNHMGDNKRIEAAKAAGMLIHKKLSSLTAADKIQGSWKMDTE
FT GNPDHLPKM"

To get the coding sequence manually you would have join 5 different pieces
from AE003734 and some of them are in the complementary strand. With
getSequence () you don’t have to think about this. Just make a query with the
sequence name:

query ("transspliced", "N=AE003734.PE35")
length(transspliced$req)

[1]1 1
getName (transspliced$req[[1]1])

[1] "AE003734.PE35"

Ok, now there is in your workspace an object called transspliced which
req component is of length one (because you have asked for just one sequence)
and the name of the single element of the req component is AE003734.PE35
(because this is the name of the sequence you wanted). Let see the first 50 base
of this sequence:

getSequence (transspliced$req[[1]]) [1:50]

[1] ngn o ngn ngu "g" nen ngn ugu ngn nen ngn ngn nen ugn ngn ugn nen omgn ongn
[19] "gm ngn nen ngn Ilgll nen ngn ngn "g" ngn "g" nen ngn "g" ||gn ngn o ngn nen
[37] Mg Mgt Nl el el el g gt neit g nen llgll ngn ongn

All the complex trans-splicing operations have been done here. You can
check that there is no in-frame stop codons? with the getTrans() function to
translate this coding sequence into protein:

getTrans (transspliced$req[[1]]) [1:50]

[1] nMn o mpAn wpn mpn ngn nQn L5 AU S SURD SO o LUINTN S AN Y EUNS \ CUNCD ~CU D | AU LI S
[19] LSTURLY Y NS - UD * AUNSLD ~SUNSETUNNS ST Yo LU ~ KUY e XUNTY » LUNIS SRURNUA VATRNNID » USSR fAUNSUESURNUD ol
[37] AN wpm wEn o ngn QM omIn myn nge WAM O WHM wRM wLn owyn o owpn

table(getTrans (transspliced$req[[1]]))

* AC D EF GHTI KLMNDNUPIQIRST VWY
147 7 33 25 15 29 12 20 26 33 12 27 25 52 19 48 47 34 3 12

In a more graphical way:

aacount <- table(getTrans(transspliced$reql[[1]]))

aacount <- aacount[order (aacount)]

names (aacount) <- aaa(names(aacount))

dotchart (aacount, pch = 19, xlab = "Stop and amino-acid counts",
main = "There is only one stop codon in AE003734.PE35")

abline(v = 1, 1ty = 2)

4 Stop codons are represented by the character * when translated into protein.

58 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

There is only one stop codon in AE003734.PE35

Gin
Ser
Thr
Ala
Val
Leu
Asp
Gly
Asn
Lys
Pro
Glu
lle
Arg
Phe
Tyr
Met
His
Cys
Trp
Stp

S
.

T T T T
10 20 30 40 50

o

Stop and amino—acid counts

Note that the relevant variant of the genetic code was automatically set
up during the translation of the sequence into protein. This is because the
transspliced$reql[[1]] object belongs to the SeqAcnucWeb class:

class(transspliced$req[[1]1])
[1] "SegAcnucWeb"

Therefore, when you are using the getTrans () function, you are automati-
cally redirected to the getTrans.SeqAcnucWeb() function which knows how to
take into account the relevant frame and genetic code for your coding sequence.

4.3.4 Extracting sequences from many entries

Consider the following CDS from M19233:

query("multi", "AC=M19233 AND T=CDS")
cat (getAnnot (multi$req[[1]]), sep = "\n")

FT CDS join(M17883.1:988..1155,M17883.1:1504..1650,

FT M17883.1:2451..2648,M17883.1:3098..3328,625..758)

FT /codon_start=1

FT /db_xref="GOA:Q13763"

FT /db_xref="TrEMBL:Q13763"

FT /partial

FT /gene="AMY1A"

FT /product="alpha-amylase"

FT /protein_id="AAA57345.1"

FT /translation="MKLFWLLFTIGFCWAQYSSNTQQGRTSIVHLFEWRWVDIALECER
FT YLAPKGFGGVQVSPPNENVAIHNPFRPWWERYQPVSYKLCTRSGNEDEFRNMVTRCNNV
FT GVRIYVDAVINHMCGNAVSAGTSSTCGSYFNPGSRDFPAVPYSGWDFNDGKCKTGSGDI
FT ENYNDATQVRDCRLSGLLDPALGKDYVRSKIAEYMNHLIDIGVAGFRIDASKHMWPGDI
FT KAILDKLHNLNSNWFPEGSKPFIYQEVIDLGGEPIKSSDYFGNGRVTEFKYGAKLGTVI

FT RKWTGEKMSYL"

4.3. EXTRACT SEQUENCES OF INTEREST

The CDS here is obtained by joining pieces

is not a problem:

getTrans (multi$req[[11]1)

[1: "M"
[19: "S"
[37: "V"
[55; nVn
[73_ uwn
[91] "E"
:109: "Y"
[127] "s"
:145: "P"
:163: uIn
[181] "L"
'199_ |INII
[217] "M"
'235' ||Nl|
[253] "G"
[271] "F"
:289: uMn

ngn
npyn
npn
"
nyyn
npn
nyn
ngn
nyn
ngn
npn
nygn
nyn
nyyn
ngn
ngn
ngn

ngn
nwn
ngn
nyn
ngn
ngn
npn
nn
ngn
nyn
npn
ngn
npn
ngn
ngn
nyn
nyn

npn
nan
npn
ngn
ngn
ngn
npn
non
ngn
nyn
npn
nyn
ngn
npn
npn
ngn
nyn

"
nan
ngn
npn
nyn
ngn
nyn
ng
nyn
nyn
ngn
npn
npn
ngn
nyn
npn

nyn
ngn
ngn
npn
nan
III(\JIH
nyn
ngn
npn
npn
ngn
nyn
ngn
ngn
ngn
ngn

ngn
ngn
ngn
nyn
npn
ny"
ny
nyn
nEn
nAn
ngn
ngn
ngn
ngn
ngn
ngn

npn
nwn
ngn
nEn
nyn
nyn
nygn
npn
npyn
nn
npn
nyn
npn
ngn
ngn
ngn

table(aaa(getTrans (multi$req[[1]]1)))

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr
14 28

15 16
Val
19

19

17

8

7

6

nn
ngn
ngn
ny
ngn
nn
Yl
"
npn
nan
nyn
npn
ngn
npn
npn
nn

17

nyn
nyn
nyn
nyn
nyn
ng"
non
npn
ngn
nyn
nyn
ngn
ngn
ngn
nyn
nyn

18

ngn
nyn
ngn
npn
ngn
non
ngn
ngn
ngn
ngn
"R
ngn
npn
nyn
npn
nyn

16

59

from different entries, but this

nEn
il
npn
nyn
ngn
Ol
npy
ngn
non
npn
ngn
ng"
ngn
nyn
ngn
ngn

6

non
npn
npn
nygn
non
nyn
npn
ngn
ngn
non
ngn
nyn
ngn
nan
0\
ngn

15

nyn
ngn
ngn
nyn
nn
nyn
nyn
npn
nwn
ng"
nyn
npn
nygn
nEn
ngn
nyn

npn
ngn
ngn
npn
ngn
ngn
ngn
npn
ngn
ngn
npn
npn
nyn
nyn
ngn
nTn

14 21

naqn
"
nEn
ngn
ngn
nyn
Ll
npn
ngn
ngn
nEn
ngn
ngn
nyn
nyn
ngn

12

There is no stop codon here because the sequence is partial.

closebank ()

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2

e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

nyn
ngn
ngn
"R
ngn
ngn
ngn
npn
ngn
ngn
nyn
ngn
L\l
npn
nn
ngn

10

ngn
"
el
npn
ny
nyn
nn
nyn
npn
ngn
M
:d
ngn
ngn
ngn
ngn

14

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:

e @ compilation time was: Sun Oct 26 17:59:06 2008

e INTEX compilation time was: December 12, 2008

60 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

CHAPTER 5

The query language

Lobry, J.R.

5.1 Where to find information

The last version of the documentation for the query language is available online

at http://pbil.univ-1lyonl.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE.
This documentation has been imported within the documentation of the query ()

function, but the last available update is the online version. The query language

is a specificity of the ACNUC system [29, 27, 28, 26].

5.2 Case sensitivity and ambiguities resolution

The query language is case insensitive, for instance:

choosebank ("emblTP")

query("lowercase", "sp=escherichia coli", virtual = TRUE)
query("uppercase", "SP=Escherichia coli", virtual = TRUE)
lowercase$nelem == uppercase$nelem

[1] TRUE

closebank()

Three operators (AND, OR, NOT) can be ambiguous because they can also
occur within valid criterion values. Such ambiguities can be solved by encapsu-
lating elementary selection criteria between escaped double quotes. For example:

choosebank ("emblTP")

query("ambig", "\"sp=Beak and feather disease virus\" AND \"au=ritchie\"",
virtual = T)

ambig$nelem

[1] 18
closebank ()

61

http://pbil.univ-lyon1.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE

62 CHAPTER 5. THE QUERY LANGUAGE

5.3 Selection criteria

5.3.1 Introduction

Selection criteria are in the form c=something (without space before the = sign)
or list_name where 1list_name is a previously constructed list.

5.3.2 SP=taxon

This is used to select sequences attached to a given taxon or any other below in
the tree. The at sign @ substitutes as a wildcard character for any zero or more
characters. Here are some examples:

choosebank ("emb1TP")
query("bb", "sp=Borrelia burgdorferi", virtual = T)
bb$nelem

[1] 1682

query("borrelia", "sp=Borrelia", virtual = T)
borrelia$nelem

[1] 3173
closebank ()

Here is an example of use of the wildcard @ to look for sapiens species:

choosebank ("emblTP")

query("sapiens", "sp=@sapiens@", virtual = T)
sapiens$nelem

[1] 2216556

query("sapienspecies", "PS sapiens")

getName (sapienspecies)

[1] "HOMO SAPIENS"

"HOMO SAPIENS NEANDERTHALENSIS"

[3] "HOMO SAPIENS X HUMAN PAPILLOMAVIRUS TYPE"
"HOMO SAPIENS X SIMIAN VIRUS 40"

[5] "HOMO SAPIENS X HUMAN ENDOGENOUS RETROVIR"
[6] "HOMO SAPIENS X HUMAN T-CELL LYMPHOTROPIC"
"HEPATITIS B VIRUS X HOMO SAPIENS"

[8] "HOMO SAPIENS X HEPATITIS B VIRUS"

"HOMO SAPIENS X HUMAN IMMUNODEFICIENCY VI"
[10] "SYNTHETIC CONSTRUCT X HOMO SAPIENS"
"HUMAN PAPILLOMAVIRUS X HOMO SAPIENS"

["MUS SP. X HOMO SAPIENS"

[13] "HOMO SAPIENS X HUMAN PAPILLOMAVIRUS"

["HOMO SAPIENS X HUMAN ADENOVIRUS TYPE 5"
[15] "HOMO SAPIENS X HERV-H/ENV62"

["HOMO SAPIENS X HERV-H/ENV60"

[17] "HOMO SAPIENS X HERV-H/ENV59"

["EXPRESSION VECTOR PTH-HIN X HOMO SAPIENS"
[19] "ADENO-ASSOCIATED VIRUS 2 X HOMO SAPIENS"
["SIMIAN VIRUS 40 X HOMO SAPIENS"

[21] "HOMO SAPIENS X MUS MUSCULUS"

[22] "HOMO SAPIENS X INFLUENZA B VIRUS (B/LEE/"
["MUS MUSCULUS X HOMO SAPIENS"

[24] "CRICETULUS GRISEUS X HOMO SAPIENS"

["TRYPANOSOMA CRUZI X HOMO SAPIENS"

[26] "HOMO SAPIENS X TRYPANOSOMA CRUZI"

closebank()

5.3.3 TID=id

This is used to select sequences attached attached to a given numerical NCBI’s
taxonomy ID. For instance, the taxonomy ID for Homo sapiens neanderthalensis
is 63221:

Homo neanderthalensis. Source:
wikipedia

5.3. SELECTION CRITERIA 63

choosebank ("genbank")
query("hsn", "TID=63221", virtual = T)
hsn$nelem

[1] 1339

query("hsnsp", "PS hsn")
getName (hsnsp)

[1] "HOMO SAPIENS NEANDERTHALENSIS"
closebank()

5.3.4 K=keyword

This is used to select sequences attached to a given keyword or any other below
in the tree. The at sign @ substitutes as a wildcard character for any zero or
more characters. Example:

choosebank ("emblTP")

query("ecoliribprot", "sp=escherichia coli AND k=rib@ prot@",

virtual = T)
ecoliribprot$nelem

[1] 105
closebank ()

5.3.5 T=type

This is used to select sequences of specified type. The list of available type for
the currently opened database is given by function getType ():

choosebank ("emblTP")

getType ()

sname libel
2661 CDS .PE protein coding region
2662 ID Locus entry
2663 MISC_RNA .RN other structural RNA coding region
2664 RRNA .RR Ribosomal RNA coding gene
2665 SCRNA .8C small cytoplasmic RNA
2666 SNRNA .SN small nuclear RNA
2667 TRNA .TR Transfer RNA coding gene
closebank ()

For instance, to select all coding sequences from Homo sapiens we can use:

choosebank ("emblTP")
query("hscds", "sp=Homo sapiens AND t=cds", virtual = T)
hscds$nelem

[1] 150513
closebank ()

5.3.6 J=journal_name

This is used to select sequences published in journal specified using defined
journal code. For instance to select all sequences published in Science:

choosebank ("emblTP")
query("allsegsfromscience", "J=Science", virtual = TRUE)

allsegsfromscience$nelem

[1] 930397
closebank()

64 CHAPTER 5. THE QUERY LANGUAGE

The list of available journal code can be obtained from the readsmj () func-
tion this way:
choosebank ("emblTP")

nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)

head(smj[!is.na(smj$nature) & smj$nature == "journal", c("sname",
"libel")])

sname libel
21 ABP Acta Biochim. Pol.
22 ABSTR-SOCNEUROSCI Abstr. - Soc. Neurosci.
23 ABSTRGENMEETAMSOCM Abstr. Gen. Meet. Am. Soc. Microbiol.
24 ABSTRMIDWINTERRESM Abstr. Midwinter Res. Meet. Assoc. Res. Otolaryngol.
25 ACTAAGRICSCANDAANI Acta Agric. Scand. A Anim. Sci.
26 ACTABIOCHIMBIOPHYS Acta Biochim. Biophys. Sin.
closebank()

5.3.7 R=refcode

This is used to select sequences from a given bibliographical reference specified
as jcode/volume/page. For instance, to select sequences associated with the
first publication [1] of the complete genome of Rickettsia prowazekii, we can use:

choosebank ("emblTP")
query("rpro", "R=Nature/396/133")
getName (rpro)

[1] "RPDNAOMPB" "RPXXO01" "RPXX02" "RPXX03" "RPXX04"
closebank ()

5.3.8 AU=name

This is used to select sequences having a specified author (only last name, no
initial).
choosebank ("emblTP")

query ("Graur", "AU=Graur")
Graur$nelem

[1] 48
closebank ()

5.3.9 AC=accession_no

This is used to select sequences attached to specified accession number. For in-
stance if we are looking for sequences attached to the accession number AY382159:
choosebank ("emblTP")

query ("ACexample", "AC=AY382159")
getName (ACexample$req[[1]])

[1] "AY382159"
annotations <- getAnnot (ACexample$req[[1]11)

cat (annotations, sep = "\n")

ID AY382159 standard; genomic DNA; PRO; 783 BP.
XX

AC AY382159;

XX

SV AY382159.1

XX

DT 08-0CT-2003 (Rel. 77, Created)
DT 08-0CT-2003 (Rel. 77, Last updated, Version 1)

5.3. SELECTION CRITERIA 65

DE Borrelia burgdorferi strain FP1 OspA gene, partial cds.

0S Borrelia burgdorferi (Lyme disease spirochete)
ocC Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia;
0C Borrelia burgdorferi group.

XX

RN [1]

RP 1-783

RA Hao Q., Wan K.;
RT ;

RL Submitted (03-SEP-2003) to the EMBL/GenBank/DDBJ databases.
RL Department of Lyme Spirochetosis, CDC, Beijing 102206, China

FH Key Location/Qualifiers

FH

FT source 1..783

FT /db_xref="taxon:139"

FT /mol_type="genomic DNA"

FT /organism="Borrelia burgdorferi"

FT /strain="FP1"

FT CDS <1..>783

FT /codon_start=1

FT /transl_table=11

FT /product="0spA"

FT /protein_id="AAQ89576.1"

FT /translation="ALIACKQNVSSLDEKNSASVDLPGEMKVLVSKEKDKDGKYSLKAT
FT VDKLELKGTSDKNNGSGTLEGEKTDKSKAKLTISDDLSKTTFEVFKEDGKTLVSRKVSS
FT KDKTSTDEMFNEKGELSAKTMTRENGTKLEYTEMKSDGTGKTKEVLKNFTLEGRVANDK
FT VTLEVKEGTVTLSKEIAKSGEVTVALNDTNTTQATKKTGAWDSKTSTLTISVNSKKTTQ
FT LVFTKQDTITVQKYDSAGTNLEGTAVEIKTLDELKNALK"

XX

SQ Sequence 783 BP; 342 A; 124 C; 145 G; 172 T; O other;

closebank ()

5.3.10 N=seq_name

This is used to select sequences of a given name'. Sequences names are not nec-
essarily stable, so that it’s almost always better to work with accession numbers.
Anyway, the distinction between sequence names and accession numbers is on
a vanishing way because they tend more and more to be the same thing (as in
the example just below). The use of the at sign @ to substitute as a wildcard
character for any zero or more characters is possible here.

choosebank ("emblTP")
query ("Nexample", "N=AY382159")
getName (Nexample$req[[11]1)

[1] "AY382159"
annotations <- getAnnot(Nexample$req[[1]])

cat (annotations, sep = "\n")
ID AY382159 standard; genomic DNA; PRO; 783 BP.
XX
AC AY382159;
XX
SV AY382159.1
XX

DT 08-0CT-2003 (Rel. 77, Created)
DT 08-0CT-2003 (Rel. 77, Last updated, Version 1)

DE Borrelia burgdorferi strain FP1 OspA gene, partial cds.

0S Borrelia burgdorferi (Lyme disease spirochete)
0ocC Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia;
0C Borrelia burgdorferi group.

RN [1]

1 j.e. what is documented in the ID or the LOCUS field

66 CHAPTER 5. THE QUERY LANGUAGE

RP 1-783
RA Hao Q., Wan K.;
RT ;

RL Submitted (03-SEP-2003) to the EMBL/GenBank/DDBJ databases.
RL Department of Lyme Spirochetosis, CDC, Beijing 102206, China

FH Key Location/Qualifiers
FH
FT source 1..783
FT /db_xref="taxon:139"
FT /mol_type="genomic DNA"
FT /organism="Borrelia burgdorferi"
FT /strain="FP1"
FT CDS <1..>783
FT /codon_start=1
FT /transl_table=11
FT /product="0spA"
FT /protein_id="AAQ89576.1"
FT /translation="ALIACKQNVSSLDEKNSASVDLPGEMKVLVSKEKDKDGKYSLKAT
FT VDKLELKGTSDKNNGSGTLEGEKTDKSKAKLTISDDLSKTTFEVFKEDGKTLVSRKVSS
FT KDKTSTDEMFNEKGELSAKTMTRENGTKLEYTEMKSDGTGKTKEVLKNFTLEGRVANDK
FT VTLEVKEGTVTLSKEIAKSGEVTVALNDTNTTQATKKTGAWDSKTSTLTISVNSKKTTQ
FT LVFTKQDTITVQKYDSAGTNLEGTAVEIKTLDELKNALK"
XX
SQ Sequence 783 BP; 342 A; 124 C; 145 G; 172 T; O other;
closebank()

5.3.11 Y=year or Y>year or Y<year

This is used to select sequences published in a given year (Y=year), or in a
given year and after this year (Y>year), or in a given year and before this year
(Y<year).

choosebank ("emblTP")

query ("Yexample", "Y=1999", virtual = TRUE)
Yexample$nelem

[1] 955274
closebank ()

5.3.12 (O=organelle

This is used to select sequences from specified organelle named following defined
code (e.g., chloroplast). The list of available organelle codes can be obtained
from the readsmj () function this way:

choosebank ("genbank")

nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)

smj[!is.na(smj$nature) & smj$nature == "organelle", c("sname",
"libel")]
sname libel
3827 CHLOROPLAST Chloroplast genome
3828 MITOCHONDRION Mitochondrial genome
3829 NUCLEOMORPH Nucleomorph genome
3830 PLASTID non-green plastid genome
closebank ()

To select for instance all sequences from chloroplast genome we can use:

choosebank ("emblTP")
query("Oexample", "O=chloroplast", virtual = TRUE)

Oexample$nelem
[1] 65011
closebank ()

5.3. SELECTION CRITERIA 67

5.3.13 M=molecule

This is used to select sequences according to the chemical nature of the se-
quenced molecule?. The list of available organelle code can be obtained from
the readsmj () function this way:

choosebank ("genbank")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)

smj[!is.na(smj$nature) & smj$nature == "molecule", c("sname",
"libel™)]
sname libel
4 CRNA <NA>
5 DNA Sequenced molecule is DNA
6 MRNA sequenced molecule is mRNA
7 RNA Sequenced molecule is RNA
8 RRNA sequenced molecule is rRNA
9 SCRNA sequenced molecule is small cytoplasmic RNA
10 SNORNA sequenced molecule is small nucleolar RNA
11 SNRNA sequenced molecule is small nuclear RNA
12 TRNA sequenced molecule is tRNA
closebank()

To select for instance all sequences sequenced from DNA we can use:

choosebank ("emblTP")
query("Mexample", "M=DNA", virtual = TRUE)
Mexample$nelem

[1] 7421752
closebank ()

5.3.14 ST=status

This is used to select sequences from specified data class (EMBL) or review
level (UniProt). The list of status codes can be obtained from the readsmj ()
function this way:

choosebank ("embl")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)

smj[!is.na(smj$nature) & smj$nature == "status", c("sname",
"libel")]
sname libel
1 ANN Annotated CON data class
2 EST Expressed Sequence Tags data class
3 GSS Genome Survey Sequence data class
4 HTC High Throughput cDNA data class
5 HTG High Throughput Genome sequencing data class
6 PAT Patent data class
7 STD standard data class
8 STS Sequence Tagged Site data class
9 TPA Third Party Annotation data class
10 TSA Transcriptome Shotgun Assembly data class
closebank ()

choosebank ("swissprot")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)

smj[!is.na(smj$nature) & smj$nature == "status", c("sname",
"libel™)]
sname libel
1 REVIEWED Entry was reviewed and annotated by UniProtKB curators
2 UNREVIEWED Computer-annotated entry
closebank()

2as named in ID or LOCUS annotation records

68 CHAPTER 5. THE QUERY LANGUAGE

To select for instance all fully annotated sequences from Uniprot we can use:

choosebank ("swissprot")
query("STexample", "ST=REVIEWED", virtual = TRUE)
STexample$nelem

[1] 392667
closebank ()

5.3.15 F=file_name

This is used to select sequences whose names are in a given file, one name per
line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of sequence names distributed with the seqinR package:

choosebank ("emblTP")
fileSQ <- system.file("sequences/bb.mne", package = "seqinr")
cat(readLines(fileSQ), sep = "\n")

A04009.0SPA
A04009.0SPB
A22442
A24006
A24008
A24010
A24012
A24014
A24016
A33362
A67759.PE1
AB011063
AB011064
AB011065
AB011066
AB011067
AB035616
AB035617
AB035618
AB041949.VLSE

clfcd("listSQ", file = fileSQ, type = "SQ")

getName (1istSQ)

[1] "A04009.0SPA" "A04009.0SPB" "A22442" "A24006"

[5] "A24008" "A24010" "A24012" "A24014"

[9] "A24016" "A33362" "A67759.PE1" "AB011063"

[13] "AB011064" "AB011065" "AB011066" "AB011067"

[17] "AB0O35616" "AB035617" "AB035618" "AB041949.VLSE"
closebank ()

5.3.16 FA=file_name

This is used to select sequences whose accession numbers are in a given file, one
name per line. This is not directly implemented in seqinR, you have to use the
function crelistfromclientdata() or its short form clfcd() for this purpose.
Here is an example with a file of sequence accession numbers distributed with
the seqinR package:

choosebank ("emblTP")
fileAC <- system.file("sequences/bb.acc", package = "seqinr")
cat(readLines(fileAC), sep = "\n")

AY382159
AY382160
AY491412
AY498719
AY498720
AY498721

5.3. SELECTION CRITERIA 69

AY498722
AY498723
AY498724
AY498725
AY498726
AY498727
AY498728
AY498729
AY499181
AY500379
AY500380
AY500381
AY500382
AY500383

clfcd("listAC", file = fileAC, type = "AC")
getName (1istAC)

[1] "AY382159" "AY382160" "AY491412" "AY498719" "AY498720" "AY498721"
[7] "AY498722" "AY498723" "AY498724" "AY498725" "AY498726" "AY498727"
[13] "AY498728" "AY498729" "AY499181" "AY500379" "AY500380" "AY500381"
[19] "AY500382" "AY500383"

closebank ()

5.3.17 FK=file_name

This is used to produces the list of keywords named in given file, one keyword
per line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of keywords distributed with the seqinR package:

choosebank ("emblTP")
fileKW <- system.file("sequences/bb.kwd", package = "seqinr")
cat(readLines(fileKW), sep = "\n")

PLASMID
CIRCULAR
PARTIAL
5'-PARTIAL
3'-PARTIAL
MOTA GENE

MOTB GENE
DIVISION PRO
GYRB GENE
JOINING REGION
FTSA GENE

RPOB GENE

RPOC GENE

FLA GENE

DNAJ GENE

TUF GENE

PGK GENE

RUVA GENE

RUVB GENE
PROMOTER REGION

clfcd("listKW", file = fileKW, type = "KW")

getName (1istKW)

[1] "PLASMID" "CIRCULAR" "PARTIAL" "5'-PARTIAL"

[5] "3'-PARTIAL" "MOTA GENE" "MOTB GENE" "DIVISION PRO"
[9] "GYRB GENE" "JOINING REGION" "FTSA GENE" "RPOB GENE"

[13] "RPOC GENE" "FLA GENE" "DNAJ GENE" "TUF GENE"

[17] "PGK GENE" "RUVA GENE" "RUVB GENE" "PROMOTER REGION"
closebank ()

5.3.18 FS=file_name

This is used to produces the list of species named in given file, one species per
line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of species names distributed with the seqinR package:

70 CHAPTER 5. THE QUERY LANGUAGE

choosebank ("emblTP")
fileSP <- system.file("sequences/bb.sp", package = "seqinr")
cat(readLines(fileSP), sep = "\n")

BORRELIA ANSERINA
BORRELIA CORIACEAE
BORRELIA PARKERI
BORRELIA TURICATAE
BORRELIA HERMSII
BORRELIA CROCIDURAE
BORRELIA LONESTARI
BORRELIA HISPANICA
BORRELIA BARBOURI
BORRELIA THEILERI
BORRELIA DUTTONII
BORRELIA MIYAMOTOI
BORRELIA PERSICA
BORRELIA RECURRENTIS
BORRELIA BURGDORFERI
BORRELIA AFZELII
BORRELIA GARINII
BORRELTA ANDERSONII
BORRELIA VALAISIANA
BORRELIA JAPONICA

clfcd("1listSP", file = fileSP, type = "SP")

getName (1istSP)

[1] "BORRELIA ANSERINA" "BORRELIA CORIACEAE" "BORRELIA PARKERI"

[4] "BORRELIA TURICATAE" "BORRELIA HERMSII" "BORRELIA CROCIDURAE"
[7] "BORRELIA LONESTARI" "BORRELIA HISPANICA" "BORRELIA BARBOURI"
[10] "BORRELIA THEILERI" "BORRELIA DUTTONII" "BORRELIA MIYAMOTOI"
[13] "BORRELIA PERSICA" "BORRELIA RECURRENTIS" "BORRELIA BURGDORFERI"
[16] "BORRELIA AFZELII" "BORRELIA GARINII" "BORRELIA ANDERSONII"
[19] "BORRELIA VALAISIANA" "BORRELIA JAPONICA"

closebank()

5.3.19 1list_name

A list name can be re-used, for instance:

choosebank ("emblTP")

query ("MyFirstListName", "Y=2000", virtual = TRUE)
MyFirstListName$nelem

[1] 885225

query("MySecondListName", "SP=Borrelia burgdorferi", virtual = TRUE)
MySecondListName$nelem

[1] 1682

query("MyThirdListName", "MyFirstListName AND MySecondListName",
virtual = TRUE)
MyThirdListName$nelem

[1] 131
closebank ()

5.4 Operators

5.4.1 AND

This is the binary operator for the logical and: a sequence belongs to the re-

sulting list if, and only if, it is present in both operands. To select for instance

sequences from Borrelia burgdorferi that are also coding sequences we can use:
choosebank ("emblTP")

query ("ANDexample", "SP=Borrelia burgdorferi AND T=CDS", virtual = TRUE)
ANDexample$nelem

[1] 3218
closebank ()

5.4. OPERATORS 71

5.4.2 OR

This is the binary operator for the logical or: a sequence belongs to the resulting
list if it is present in at least one of the two operands. To select for instance
sequences from Borrelia burgdorferi or from Escherichia coli we can use:

choosebank ("embl1TP")
query ("ORexample", "SP=Borrelia burgdorferi OR SP=Escherichia coli",

virtual = TRUE)
ORexample$nelem

[1] 28584
closebank ()

5.4.3 NOT

This is the unary operator for the logical negation. To select for instance se-
quences from Borrelia burgdorferi that are not partial we can use:

choosebank ("emblTP")
query ("NOTexample", "SP=Borrelia burgdorferi AND NOT K=PARTIAL",

virtual = TRUE)
NOTexample$nelem

[1] 3266
closebank ()

5.4.4 PAR

This is a unary operator to compute the list of parent sequences of a list of
sequences. The reciprocal operator is SUB. To check the reciprocity we can use
for instance:

choosebank ("emblTP")

query("A", "T=TRNA", virtual = TRUE)

query("B", "PAR A", virtual = TRUE)

query("C", "SUB B", virtual = TRUE)

query("D", "PAR C", virtual = TRUE)

query ("emptySet", "B AND NOT D", virtual = TRUE)
emptySet$nelem

[11 o

closebank ()

5.4.5 SUB

This is a unary operator to add all subsequences of members of the single list
operand.

choosebank ("emblTP")
query ("SUBexample", "AC=AE000783", virtual = T)

SUBexample$nelem
[1] 70

query ("SUBexample2", "SUB SUBexample", virtual = T)
SUBexample2$nelem

[1] 943
closebank ()

72 CHAPTER 5. THE QUERY LANGUAGE

5.4.6 PS

This unary operator is used to get the list of species attached to member se-
quences of the operand list.

choosebank ("emblTP")

query ("PSexample", "K=hyperthermo@", virtual = T)
query ("PSexample2", "PS PSexample")

getName (PSexample2)

[1] "BACILLUS LICHENIFORMIS" "DESULFUROCOCCUS"
[3] "PYROCOCCUS FURIOSUS"

closebank ()

5.4.7 PK

This unary operator is used to get the list of keywords attached to member
sequences of the operand list.

choosebank ("emblTP")
query ("PKexample", "AC=AE000783", virtual = T)

query ("PKexample2", "PK PKexample")

getName (PKexample2)

[1] "DIVISION PRO" "CDS" "RRNA" "TRNA"
[56] "SOURCE" "RELEASE 75"

closebank ()

5.4.8 UN

This unary operator is used to get the list of sequences attached to a list of
species or keywords.

choosebank ("emblTP")
fileSP <- system.file("sequences/bb.sp", package = "seqinr")
cat(readLines(fileSP), sep = "\n")

BORRELIA ANSERINA
BORRELIA CORIACEAE
BORRELIA PARKERI
BORRELIA TURICATAE
BORRELIA HERMSII
BORRELIA CROCIDURAE
BORRELIA LONESTARI
BORRELIA HISPANICA
BORRELIA BARBOURI
BORRELTA THEILERI
BORRELIA DUTTONII
BORRELIA MIYAMOTOI
BORRELIA PERSICA
BORRELIA RECURRENTIS
BORRELIA BURGDORFERI
BORRELIA AFZELII
BORRELTA GARINII
BORRELIA ANDERSONII
BORRELIA VALAISIANA
BORRELIA JAPONICA

clfcd("1listSP", file = fileSP, type = "SP")
query ("UNexample", "UN listSP", virtual = TRUE)
UNexample$nelem

[1] 2786
closebank()

5.4. OPERATORS 73

5.4.9 SD

This unary operator computes the list of species placed in the tree below the
members of the species list operand.

choosebank ("emblTP")

query("hominidae", "SP=Hominidae", virtual = T)
query("hsp", "PS hominidae", virtual = T)
hsp$nelem
[11 19
query ("SDexample", "SD hsp")
getName (SDexample)

[1; "HOMINIDAE" "PONGO"

[3] "PONGO PYGMAEUS" "PONGO PYGMAEUS ABELII"

[56] "PONGO PYGMAEUS PYGMAEUS" "PONGO SP."

[7] "HOMO/PAN/GORILLA GROUP" "GORILLA"

[9: "GORILLA GORILLA" "GORILLA GORILLA BERINGEI"
[11] "GORILLA GORILLA GRAUERI" "GORILLA GORILLA GORILLA"
[13: "GORILLA GORILLA UELLENSIS" "PAN"

[15: "PAN TROGLODYTES" "PAN TROGLODYTES SCHWEINFURTHII"
[17] "PAN TROGLODYTES TROGLODYTES" "PAN TROGLODYTES VERUS"

[19: "PAN TROGLODYTES VELLEROSUS" "PAN PANISCUS"

[21] "HOMO" "HOMO SAPIENS"

[23] "HOMO SAPIENS NEANDERTHALENSIS"

closebank ()

5.4.10 KD

This unary operator computes the list of keywords placed in the tree below the
members of the keywords list operand.

choosebank ("emblTP")

query("cat", "SP=Felis catus", virtual = TRUE)

query("catkw", "PK cat", virtual = TRUE)
catkw$nelem

[11 540

query ("KDexample", "KD catkw", virtual = TRUE)
KDexample$nelem

[1] 572
closebank ()

Session Informations

This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), i386-apple-darwin8.8.2
e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, aded 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:
e @ compilation time was: Sun Oct 26 18:04:21 2008
o IATEX compilation time was: December 12, 2008

74

CHAPTER 5. THE QUERY LANGUAGE

CHAPTER 6

Importing zlib-compressed
sequences

Lobry, J.R.

6.1 Introduction

There are two functions to get the sequences from an ACNUC server. The
first one, getSequence(), uses regular socket connections, the second one,
extractseqs (), uses zlib compressed sockets, which is faster but the function
is experimental and has not been extensively tested. This last function is not
implemented for Windows platforms. exseq() is an alias for extractseqs().

The timings thereafter were from an home-ADSL connection, and are only
indicative. For this chapter we set up the bank to emblTP which is a frozen
subset of the EMBL database to allow for the reproducibility of results.

(tcb <- system.time(choosebank("emblTP")))

user system elapsed
0.073 0.002 5.550

It was then about 6 seconds to select the relevant database.

6.2 Extacting 78,573 complete human nuclear
CDS

We suppose that the sequences we are interested in are all the complete coding
sequences from Homo sapiens that are encoded in the nucleus (we don’t want
sequences from human mitochondrion).

(tqu <- system.time(query("hsCDS", "sp=Homo sapiens AND t=cds AND o=nuclear AND NOT k=partial",
virtual = TRUE)))

user system elapsed
0.001 0.000 12.840

(0]

76 CHAPTER 6. IMPORTING ZLIB-COMPRESSED SEQUENCES

(nseq <- hsCDS$nelem)
[1] 78573
(tex <- system.time(mycds <- extractseqs("hsCDS")))

user system elapsed
13.884 1.350 88.041

We have used a virtual query to speed up things: it was about 13 seconds
to create on the server a list of 78573 sequences. We have downloaded the
sequences in zlib compressed mode: it was about 88 seconds to dowload the
sequences in the object mycds, which looks like :

cat (head(mycds), sep = "\n")

>A00127.PE1 2217 residues

ATGCGGGGTCCGAGCGGGGCTCTGTGGCTGCTCCTGGCTCTGCGCACCGTGCTCGGAGGC
ATGGAGGTGCGGTGGTGCGCCACCTCGGACCCAGAGCAGCACAAGTGCGGCAACATGAGC
GAGGCCTTCCGGGAAGCGGGCATCCAGCCCTCCCTCCTCTGCGTCCGGGGCACCTCCGCC
GACCACTGCGTCCAGCTCATCGCGGCCCAGGAGGCTGACGCCATCACTCTGGATGGAGGA
GCCATCTATGAGGCGGGAAAGGAGCACGGCCTGAAGCCGGTGGTGGGCGAAGTGTACGAT

cat(tail(mycds), sep = "\n")

ATCACTGCGGCCCCAGAGAGAGAGGGCATAGGCCACGGCGGCCCCAAGCTATGCTGCACA
CTGAGCTCCCTCAGCTCCGCTGCTGAGACTGGCCGGGACCCGCTGGACAGCGAGGAGGAG
GCAACCAGCGGCGCCCAGGATGAACGTGGCCTGAAGCCGCCTTCCCGGGGCCAGTTTCCT
TCCCTCTCAGCCAGGGATGCCTCGAGCAGCCACAGGGGCAGGAACGTCCTGACTGCCATC

CTGCTGCTGCTGCGGGAGCTGGATGCAGAGGGGCTGGAGGCCGTGCAGCAGACTGTGGGC
AGCCGGCTGCAGGCCCTGCGTGGGGAAGAGGTGCAGGAGCACGCCGAGTGA

We save now the sequences in a local FASTA file for future use:

(twl <- system.time(writeLines(mycds, "mycds.fasta")))

user system elapsed
0.883 0.816 3.471

It was then about 3 seconds to dump the sequences on a local file. We read
the sequences as strings without setting attributes to save time:

(trf <- system.time(mycdss <- read.fasta("mycds.fasta", as.string = TRUE,
set.attributes = FALSE)))

user system elapsed
23.774 0.644 25.491

It was then about 25 seconds to read the sequences as strings. We save them
in XDR format:

(tsrd <- system.time(save(mycdss, file = "mycdss.RData")))

user system elapsed
41.192 0.330 42.113

It was then about 42 seconds to save the sequences in XDR format. How
long is it to load the sequences from XDR format?

(tlrd <- system.time(load("mycdss.RData")))

user system elapsed
1.367 0.038 1.427

It was then about 1 seconds to load the sequences from an XDR formated
file.

6.3. EXTACTING 78,573 COMPLETE HUMAN NUCLEAR PROTEINS 77

6.3 Extacting 78,573 complete human nuclear
Proteins

Now, we also want the corresponding proteins. We download the translated
CDS from the server:

(texp <- system.time(myprot <- extractseqs("hsCDS", operation = "translate")))

user system elapsed
2.846 0.651 57.206

It was then about 57 seconds to get the protein sequences from the server.
The object myprot looks like:

cat (head (myprot), sep = "\n")

>A00127.PE1 739 residues

MRGPSGALWLLLALRTVLGGMEVRWCATSDPEQHKCGNMSEAFREAGIQPSLLCVRGTSA
DHCVQLIAAQEADAITLDGGAIYEAGKEHGLKPVVGEVYDQEVGTSYYAVAVVRRSSHVT
IDTLKGVKSCHTGINRTVGWNVPVGYLVESGRLSVMGCDVLKAVSDYFGGSCVPGAGETS
YSESLCRLCRGDSSGEGVCDKSPLERYYDYSGAFRCLAEGAGDVAFVKHSTVLENTDGKT
LPSWGQALLSQDFELLCRDGSRADVTEWRQCHLARVPAHAVVVRADTDGGLIFRLLNEGQ

cat(tail(myprot), sep = "\n")

>7Z93322.PE1 257 residues
MKLTRKMVLTRAKASELHSVRKLNCWGSRLTDISICQEMPSLEVITLSVNSISTLEPVSR
CQRLSELYLRRNRIPSLAELFYLKGLPRLRVLWLAENPCCGTSPHRYRMTVLRTLPRLQK
LDNQAVTEEELSRALSEGEEITAAPEREGIGHGGPKLCCTLSSLSSAAETGRDPLDSEEE
ATSGAQDERGLKPPSRGQFPSLSARDASSSHRGRNVLTAILLLLRELDAEGLEAVQQTVG
SRLQALRGEEVQEHAE*

We save the protein sequences in a local FASTA file for future use:

(twl2 <- system.time(writeLines(myprot, "myprot.fasta")))

user system elapsed
0.334 0.288 1.017

It was then about 1 seconds to dump the protein sequences on a local file.
We read the sequences as strings without setting attributes to save time:

(trf2 <- system.time(myprots <- read.fasta("myprot.fasta",
as.string = TRUE, set.attributes = FALSE)))

user system elapsed
10.366 0.183 10.745

It was then about 11 seconds to read the protein sequences as strings. We
save them in XDR format:

(tsrd2 <- system.time(save(myprots, file = "myprots.RData")))

user system elapsed
4.087 0.166 4.317

It was then about 4 seconds to save the protein sequences in XDR, format.
How long is it to load the protein sequences from XDR format?

(tlrd2 <- system.time(load("myprots.RData")))

user system elapsed
0.917 0.029 0.992

It was then about 1 seconds to load the protein sequences from an XDR
formated file.

78 CHAPTER 6. IMPORTING ZLIB-COMPRESSED SEQUENCES

6.4 Sanity check

As a quick sanity check, we plot the distribution of protein size:

x <- loglO(nchar (myprots) - 1)
dstx <- density(x)
plot(dstx, main = paste("Protein size distribution in the human genome\nn = ",

length(myprots), "proteins"), xlab = "Number of amino-acids in log 10 scale",
las = 1)

polycurve <- function(x, y, base.y = min(y), ...) polygon(x = c(min(x),
x, max(x)), y = c(base.y, y, base.y), ...)

polycurve(dstx$x, dstx$y, col = "yellow")

Protein size distribution in the human genome
n = 78573 proteins

1.5
1.0
2
®
c
a
0.5
0.0
T T T T T
0 1 2 3 4
Number of amino-acids in log 10 scale
closebank ()

Session Informations
This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2
e Locale: C
e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15
There were two compilation steps:
o @ compilation time was: Sun Oct 26 18:10:20 2008

o IATEX compilation time was: December 12, 2008

CHAPTER 7

How to deal with sequences

Charif, D. Lobry, J.R.

7.1 Sequence classes

There are currently 5 classes of sequences, depending on the way they were
obtained:

e SeqFastadna is the class for nucleic acid sequences that were imported
from a fasta file.

e SeqFastaA A is the class for amino-acid acid sequences that were im-
ported from a fasta file.

e seqAcnucWeb is the class for the sequences coming from an ACNUC
database server.

e SeqFrag is the class for the sequences that are fragments of other se-
quences.

e gaw is the class for the result of a call to the query () function.

7.2 Generic methods for sequences

All sequence classes are sharing a common interface, so that there are very few
method names we have to remember. In addition, all classes have their specific
as.ClassName method that return an instance of the class, and is.ClassName
method to check whether an object belongs or not to the class. Available meth-
ods are summarized in table 7.1.

79

80 CHAPTER 7. HOW TO DEAL WITH SEQUENCES

Methods Result Type of result
getFrag a sequence fragment a sequence fragment
getSequence the sequence vector of characters
getName the name of a sequence string

getLength the length of a sequence numeric vector
getTrans translation into amino-acids vector of characters
get Annot sequence annotations vector of string

getLocation position of a Sequence on its parent sequence list of numeric vector

Table 7.1: Available methods for sequence classes.

7.2.1 From classes to methods

To obtain the list of methods available for a given class, try this at your
@ prompt:

methods(class = "SeqFastadna")

[1] getAnnot.SeqFastadna getFrag.SeqFastadna getLength.SeqFastadna
[4] getName.SeqFastadna getSequence.SeqFastadna getTrans.SeqFastadna
[7] summary.SeqFastadna

methods(class = "SeqFastaAA")

[1] getAnnot.SeqFastaAA getFrag.SeqFastalAA getLength.SeqFastaAA
[4] getName.SeqFastaAA getSequence.SeqFastaAA summary.SeqFastaAA

methods(class = "SegAcnucWeb")

[1] getAnnot.SegAcnucWeb getFrag.SeqAcnucWeb getKeyword.SegAcnucWeb
[4] getLength.SegqAcnucWeb getLocation.SegAcnucWeb getName.SegAcnucWeb
[7] getSequence.SeqAcnucWeb getTrans.SeqAcnucWeb plot.SegAcnucWeb

[10] print.SeqAcnucWeb

methods(class = "SeqFrag")

[1] getFrag.SeqFrag getLength.SeqFrag getName.SeqgFrag
[4] getSequence.SeqFrag getTrans.SeqFrag

methods(class = "qaw")

[1] getAnnot.qaw getFrag.qaw getKeyword.qaw getLength.qaw
[6] getLocation.qaw getName.qaw getSequence.qaw getTrans.qaw
[9] print.qaw

7.2.2 From methods to classes

To obtain the list of classes for which a given method exists, try this at your
@ prompt:

methods (getFrag)

[1] getFrag.SeqAcnucWeb getFrag.SeqFastaAA getFrag.SeqFastadna

[4] getFrag.SeqFrag getFrag.character getFrag.default

[7] getFrag.list getFrag.logical getFrag.qaw

methods (getSequence)

[1] getSequence.SeqAcnucWeb getSequence.SeqFastaAA getSequence.SeqFastadna
[4] getSequence.SeqFrag getSequence.character getSequence.default
[7] getSequence.list getSequence.logical getSequence.qaw
methods (getName)

[1] getName.SegqAcnucWeb getName.SeqFastaAA getName.SeqFastadna

[4] getName.SeqFrag getName.default getName.list

[7] getName.logical getName.qaw

methods (getLength)

7.3. INTERNAL REPRESENTATION OF SEQUENCES

[1] getLength.SegAcnucWeb getLength.SeqFastaAA getLength.SeqFastadna

[4] getLength.SeqFrag getLength.character getLength.default
[7] getLength.list getLength.logical getLength.qaw
methods (getTrans)

[1] getTrans.SegAcnucWeb getTrans.SeqFastadna getTrans.SeqFrag
[4] getTrans.character getTrans.default getTrans.list

[7] getTrans.logical getTrans.qaw

methods (getAnnot)

[1] getAnnot.SeqgAcnucWeb getAnnot.SeqFastaAA getAnnot.SeqFastadna
[4] getAnnot.default getAnnot.list getAnnot.logical
[7] getAnnot.qaw

methods (getLocation)
[1] getLocation.SegAcnucWeb getLocation.default getLocation.list
[4] getLocation.logical getLocation.qaw

7.3 Internal representation of sequences

81

The default mode of sequence storage is done with vectors of characters instead
of strings!. This is very convenient for the user because all @ tools to ma-
nipulate vectors are immediatly available. The price to pay is that this storage
mode is extremly expensive in terms of memory. They are two utilities called
s2c() and c2s() that allows to convert strings into vector of characters, and

vice versa, respectively.

7.3.1 Sequences as vectors of characters

In the vectorial representation mode, all the very convenient @ tools for index-

ing vectors are at hand.

1. Vectors can be indexed by a vector of positive integers saying which ele-
ments are to be selected. As we have already seen, the first 50 elements
of a sequence are easily extracted thanks to the binary operator from:to,

as in:

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")

myseq <- read.fasta(file = dnafile) [[1]]
1:50

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
[25] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[49] 49 50

myseq[1:50]

[1] ng ngn ngll ngtt onmgh o ngn ongn o ngn llgll gt Mgt mgn ongnongn o ngn
[19] MM mEn mon mgn men nmen ngn WEMonen mon mpn men nen ngn ngn
[37] "t non C" nall IIgn "C" llan llgll ||gn llgll "t" "t n ||an n Cll "t n

21 22 23 24
45 46 47 48

ngn ongn ngn
ngn ll%u ngn

The seq() function allows to build more complexe integer vectors. For
instance in coding sequences it is very common to focus on third codon
positions where selection is weak. Let’s extract bases from third codon

positions:

tcp <- seq(from = 3, to = length(myseq), by = 3)
tepl[1:10]

1 This default behaviour can be neutralized by setting the as.string argument to TRUE.

82

CHAPTER 7. HOW TO DEAL WITH SEQUENCES

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp <- myseq[tcp]
myseqtcp[1:10]

[1] |lgn llall ||gn ngnonmgn o ngen "C" nen nCll nen

2. Vectors can also be indexed by a vector of negative integers saying which

elements have to be removed. For instance, if we want to keep first and
second codon positions, the easiest way is to remove third codon positions:

—-tcp[1:10]
[1] -3 -6 -9 -12 -15 -18 -21 -24 -27 -30

myseqfscp <- myseq[-tcp]
myseqfscp[1:10]

[1] Hgl Mgl Hgi Ngh N N Ngi g g ngn

3. Vectors are also indexable by a vector of logicals whose TRUE values say

which elements to keep. Here is a different way to extract all third coding
positions from our sequence. First, we define a vector of three logicals
with only the last one true:

ind <- c(F, F, T)
ind

[1] FALSE FALSE TRUE

This vector seems too short for our purpose because our sequence is much
more longer with its 921 bases. But under @ vectors are automatically
recycled when they are not long enough:

(1:30) [ind]
[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp2 <- myseq[ind]

The result should be the same as previously:

identical (myseqtcp, myseqtcp2)
[1] TRUE
This recycling rule is extremely convenient in practice but may have sur-

prising effects if you assume (incorrectly) that there is a stringent dimen-
sion control for @ vectors as in linear algebra.

Another advantage of working with vector of characters is that most ® func-

tions are vectorized so that many things can be done without explicit looping.
Let’s give some very simple examples:

(tota <- sum(myseq == "a"))
[1] 238

7.3. INTERNAL REPRESENTATION OF SEQUENCES 83

Base count in XYLEECOM.MALM

0 50 100 150 200 250

Figure 7.1: Visual representation of the base counts in a nucleic acid sequence.

The total number of a in our sequence is 238. Let’s compare graphically the
different base counts in our sequence. The following code was used to produce
figure 7.1:

basecount <- table(myseq)

myseqname <- getName (myseq)

dotchart (basecount, xlim = c(0, max(basecount)), pch = 19,
main = paste("Base count in", myseqname))

The following code was used to display (¢f figure 7.2) the dinucleotide counts
in the sequence:

dinuclcount <- count(myseq, 2)
dotchart (dinuclcount [order (dinuclcount)], xlim = c(0, max(dinuclcount)),
pch = 19, main = paste("Dinucleotide count in", mysegqname))

The following code was used to display (¢f figure 7.3) the codon usage in
the sequence:

codonusage <- uco(myseq)
dotchart.uco(codonusage, main = paste("Codon usage in", myseqname))

84

CHAPTER 7. HOW TO DEAL WITH SEQUENCES

aa
cc
gc
cg
ac
ca
tg
ga
ct
a9
tc
tt
gt
ag
at
ta

quence.

Dinucleotide count in XYLEECOM.MALM

20 40 60 80

Figure 7.2: Visual representation of dinucleotide counts in a nucleic acid se-

7.3. INTERNAL REPRESENTATION OF SEQUENCES 85

Codon usage in XYLEECOM.MALM

ata o
att
atc o

ASn | o
aat °
aac o

ASP e O e e

Figure 7.3: Visual representation of codon usage in a coding sequence with
the function dotchart.uco(). Codons are grouped by amino-acid for a given
genetic code. Black dots are the sums by synonymous codons, that is the amino-
acid count.

86 CHAPTER 7. HOW TO DEAL WITH SEQUENCES

7.3.2 Sequences as strings

If you are interested in (fuzzy) pattern matching, then it is advisable to work
with sequence as strings to take advantage of regular expression implemented in
@. The function words.pos () returns the positions of all occurrences of a given
regular expression. Let’s suppose we want to know where are the trinucleotides
“cgt” in a sequence, that is the fragment CpGpT in the direct strand:

mystring <- c2s(myseq)

(cgt <- words.pos("cgt", mystring))

[1] 24 90 216 245 252 315 330 405 432 452 552 592 648 836 883
substring(mystring, cgt, cgt + 2)

[1] "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt" "Cgt"
[13] "Cgt" "Cgt" "Cgt"

We can also look for the fragment CpGpTpY to illustrate fuzzy matching
because Y (IUPAC code for pyrimidine) stands C or T:

(cgty <- words.pos("cgt[ct]", mystring))

[1] 24 216 252 315 432 452 552 592 836 883

substring(mystring, cgty, cgty + 3)

[1] "cgtc" "cgtt" "cgtc" "cgtt" "cgtt" "cgtt" "cgtc" "cgtc" "cgtt" "cgtt"

To look for all CpC dinucleotides separated by 3 or 4 bases:

(cc34cc <- words.pos("cc.{3,4}cc", mystring, perl = TRUE))
[1] 72 119 176 177 539 577 578 638 677 682 730 731 736 881 882
substring(mystring, cc34cc, cc34cc + 7)

[1] "ccttgceg" "ccattcca" "cccagacc" "ccagacca" "cctatgec" "cccgatcc"
[7] "ccgatccg" "ccagctcc" "ccgetcca" "ccagectcc" "cccgetece" "ccgetceg!
[13] "ccggcacc" "cccgttec" "ccgttcca"

Virtually any pattern is easily encoded with a regular expression. This is
especially useful at the protein level because many functions can be attributed
to short linear motifs.

Session Informations

This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2

Locale: C

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:
o @ compilation time was: Sun Oct 26 18:11:55 2008
o IA4TEX compilation time was: December 12, 2008

CHAPTER 8
Installation of a local ACNUC

socket server and of a local

ACNUC database on your

machine.

Penel, S.

8.1 Introduction

This chapter is under development.

8.2 System requirement

Basically if you are installing @ from the sources, you should be able to build a
ACNUC socket server. The socket server will build under a number of common
Unix and Unix-alike platforms. You will need several tools: programs are writ-
ten in C thus you will need a means of compiling C (as gcc compilation tools
for linux or unix, Apple Developer Tools for MacOSX). You need as well library
zlib and sockets (standards on linux and unix).

8.3 Setting alocal ACNUC database to be queried
by the server

First of all yo need an ACNUC database, built by yourself or downloaded from
the PBIL ftp server. An ACNUC database is composed of two sets of files:

1. the acnuc index files.

87

88CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC

2. the database files (i.e. flat files in EMBL/GenBank or SwissProt format).

These two sets will be located in the index and flat_files directories
respectively.

An example of an ACNUC database is available on the PBIL ftp server at this

url: ftp://pbil.univ-1yonl.fr/pub/seqinr/demoacnuc/acnucdatabase.tar.
Z.

You may install the database as it follows: Let ACNUC_HOME be the base
directory for ACNUC installation.

dir.create("./ACNUC_HOME", showWarning = FALSE)

Let ACNUC_HOME/ACNUC_DB be the directory where you want to in-
stall the databases and ACNUC_HOME/ACNUC_DB/demoacnuc the directory
where you want to install the demo database.

dir.create("./ACNUC_HOME/ACNUC_DB", showWarning = FALSE)
dir.create("./ACNUC_HOME/ACNUC_DB/demoacnuc", showWarning = FALSE)

e Dowload the ACNUC database in the ./ACNUC_HOME/ACNUC_DB/demoacnuc/
directory.

download.file("ftp://pbil.univ-1lyonl.fr/pub/seqinr/demoacnuc/acnucdatabase.tar.z2",
destfile = "./ACNUC_HOME/ACNUC_DB/demoacnuc/acnucdatabase.tar.Z")

e Uncompress and untar the acnucdatabase.tar.Z file

pwd <- getwd()

setwd ("./ACNUC_HOME/ACNUC_DB/demoacnuc/")
system("gunzip -f acnucdatabase.tar.Z")
system("tar -xvf acnucdatabase.tar")
system("rm -f acnucdatabase.tar")

setwd (pwd)

Now you sould get the following directories:

ACNUC_HOME/ACNUC_DB/demoacnuc/index
ACNUC_HOME/ACNUC_DB/demoacnuc/flat_files

The directory ACNUC_HOME/ACNUC_DB/demoacnuc contains:

dir("./ACNUC_HOME/ACNUC_DB/demoacnuc")
[1] "flat_files" "index"

These directories contain respectively:

dir("./ACNUC_HOME/ACNUC_DB/demoacnuc/index")

[1] "ACCESS" "AUTHOR"
[3] "BIBLIO" "EXTRACT"
" " " "
5 Eonos: e
[9] "LONGL" "MERES"
[11] "SHORTL" "SMJYT"
[13] "SPECIES" "SUBSEQ"
[15] "TAXIDS" "TEXT"

[17] "custom_qualifier_policy"
dir("./ACNUC_HOME/ACNUC_DB/demoacnuc/flat_files")
[1] "escherichia.dat" "id.log" "yeast.dat"

This database contains the complete genome of Escherichia coli K12 W3110
and Saccharomyces cerevesiae.

ftp://pbil.univ-lyon1.fr/pub/seqinr/demoacnuc/acnucdatabase.tar.Z
ftp://pbil.univ-lyon1.fr/pub/seqinr/demoacnuc/acnucdatabase.tar.Z

8.4. BUILD THE ACNUC SOCKETS SERVER FROM THE SOURCES. 89

8.4 Build the ACNUC sockets server from the
sources.

Once you have a local ACNUC database available on your server you need to
install the sockets server.

8.4.1 Download the sources.

The code source of the racnucd server is available on the PBIL server at this
url:

http://pbil.univ-1lyonl.fr/databases/acnuc/racnucd.html
Alternatively you can download directly the source from the ftp at:

ftp://pbil.univ-1lyonl.fr/pub/acnuc/unix/racnucd.tar

8.4.2 Build the ACNUC sockets server.
You may install the racnucd server as it follows: let ACNUC_HOME/ACNUC_SOFT/
be the base directory for the ACNUC softs.

dir.create("./ACNUC_HOME/ACNUC_SOFT", showWarning = FALSE)

e Dowload the racnucd.tar file into ACNUC_HOME/ACNUC_SOFT.

download.file("ftp://pbil.univ-lyonl.fr/pub/acnuc/unix/racnucd.tar",
destfile = "./ACNUC_HOME/ACNUC_SOFT/racnucd.tar")

e Untar the racnucd.tar file

setwd("./ACNUC_HOME/ACNUC_SOFT/")
system("tar -xvf racnucd.tar")
system("rm -f racnucd.tar")

setwd (pwd)

Now you sould get the following directory:

dir("./ACNUC_HOME/ACNUC_SOFT/")
[1] "racnucd"
dir("./ACNUC_HOME/ACNUC_SOFT/racnucd/")

[1] "bit.c" "dbplaces" "dir_acnuc.h"
[4] "dir_io.c" "dir_io.h" "execute.c"

[7] "execute.h" "extract.c" "knowndbs"

[10] "lngbit.c" "makefile" "md5.c"

[13] "misc_acnuc.c" "ordre.h" "parser.c"

[16] "prep_acnuc_requete.c" "pretty_seq.c" "proc_requete.c"
[19] "racnucd.ini" "requete_acnuc.h" "serveur.c"

E22% "serveur.h" "simext.h" "use_acnuc.c"

25] "utilquery.c" "zsockw.c"

Go into ACNUC_HOME/ACNUC_SOFT/racnucd/ and type make. This should
create the racnucd executable.
setwd ("./ACNUC_HOME/ACNUC_SOFT/racnucd")

system("make")
dir(pattern = "racnucd")

[1] "racnucd" "racnucd.ini"
setwd (pwd)

90CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC

8.4.3 Setting the ACNUC sockets server.

The server is configured by several parameters described in a configuration file
racnuc.ini. The racnucd.ini file is structued as follows:

cat(readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/racnucd.ini"),
sep = "\Il")

port=5558
maxtime=8000
known_db_file=knowndbs
db_env_names=dbplaces

port is the port of the socket server

maxtimle is the time delay of the connection

knowndbs is a file containing the list of available databases

dbplaces is a file containing the path of the available databases

You may want to change the port of the socket server, according to the
availabilities and restricttions on your machine. For example , lets use the port
49152 in a new racnucd.new file.

initline <- readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/racnucd.ini")
initline[1] = "port=49152"
writeLines(initline, "./ACNUC_HOME/ACNUC_SOFT/racnucd/racnucd.new")
cat(readLinss(;./ACNUC_HUME/ACNUC_SOFT/racnucd/racnucd.new"),

sep = "\n"

port=49152
maxtime=8000
known_db_file=knowndbs
db_env_names=dbplaces

Configuring the knowndbs file.
The knowndbs contains:

cat(readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/knowndbs") ,
n

sep = "\p"
embl | on | | EMBL sequence data library |
swissprot | on | | UniProt |

Each line defines a database, the four fields indicating respectively the name
of the database, its status (on or off), a tag and a short description.

You should set the files knowndbs according to your installation. Let’s call
the database you installed previously demoacnuc. Modify the knowndbs as
follows:

demoacnuc | on | | Demo Database |

writeLines("demoacnuc | on | | Demo Database | ", "./ACNUC_HOME/ACNUC_SOFT/racnucd/knowndbs")
knowndbs <- readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/knowndbs")

cat (knowndbs, sep = "\n")

demoacnuc | on | | Demo Database |

8.4. BUILD THE ACNUC SOCKETS SERVER FROM THE SOURCES. 91

Configuring the dbplaces file.
The dbplaces contains:

dbplaces <- readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/dbplaces")
cat(dbplaces, sep = "\n")

#defines location of acnuc databases index files and flat files

setenv swissprot ' /Users/mgouy/Documents/acnuc/petite/swissprot /Users/mgouy/Documents/acnuc/petite/s
setenv embl ' /Users/mgouy/Documents/acnuc/petite/embl /Users/mgouy/Documents/acnuc/petite/embl’

Each line set the acnuc and gcgacnuc variables for each database.
You should set the files dbplaces according to your installation: modify the
dbplaces as follows:

setenv demoacnuc ' ACNUC_HOME/ACNUC_DB/demoacnuc/index ACNUC_HOME/ACNUC_DB/demoacnuc/flat

indexpath <- normalizePath("./ACNUC_HOME/ACNUC_DB/demoacnuc/index")
ffpath <- normalizePath("./ACNUC_HOME/ACNUC_DB/demoacnuc/flat_files")
newdb <- paste("setenv demoacnuc '", indexpath, " ", ffpath,

ll|||’ sep = ll||’ Collapse = ||||)
writeLines(newdb, "./ACNUC_HOME/ACNUC_SOFT/racnucd/dbplaces")
dbplaces <- readLines("./ACNUC_HOME/ACNUC_SOFT/racnucd/dbplaces")
cat(dbplaces, sep = "\n")

setenv demoacnuc '/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/demoacnuc/index /Users/lobry/se

Launch the server.

Finaly, in the ACNUC_HOME/ACNUC_SOFT /racnucd/ directory, lauche the
server as follow :

setwd("./ACNUC_HOME/ACNUC_SOFT/racnucd")
system("./racnucd racnucd.new > racnucd.log &")

Sys.sleep(1)
system("ps | grep racnucd", intern = TRUE)

[1] "28875 p3 S+ 0:00.01 ./racnucd racnucd.new"
[2] "28876 p3 S+ 0:00.01 sh -c ps | grep racnucd"
[3] "28878 p3 S+ 0:00.00 grep racnucd"
cat(readLines("racnucd.log"), sep = "\n")

st k3K oK ok ok o o o K K oK oK ok ok o o K oK oK oK ok ok o o K K oK oK ok ok o o K K ok oK ok ok o o K K oK oK ok ok o o o K K ok ok oK
Start of remote acnuc server : Sun Oct 26 18:13:16 2008

setwd (pwd)

The server is now ready.

8.4.4 Using seqinR to query your local socket server.

Launch @, load the seqinr package and type
choosebank (host="my_machine" ,port=49152, info=T)

for example:

library(seqinr)
hostname <- "localhost"
choosebank (host = hostname, port = 49152, info = TRUE)

bank status

1 demoacnuc on
info
1 ACNUC database example. (September 2007) Last Updated: Oct 15, 2007

92CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC

You can query the database. For example:

choosebank(bank = "demoacnuc", host = hostname, port = 49152)
query("mylist", "k=rib@ prot@")

mylist$nelem

[1] 39

getName (mylist$req)

[1] "AP009048.PE25" "AP009048.PE405" "AP009048.PE830" "AP009048.PE3223"
[5] "AP009048.PE3465" "AP009048.PE3466" "AP009048.PE3516" "U00091.PE38"
[9] "UO0093.PE119" "U00093.PE123" "U00094 .PE65" "U00094 .PE8T"
[13] "U00094.PE262" "U00094 . PE393" "U00094 . PE400" "X59720.PE36"
[17] "Y13134.PE91" "Y13134.PE272" "Y13135.PE271" "Y13137.PE286"
[21] "Y13138.PE70" "Y13138.PE198" "Y13138.PE280" "Y13139.PE53"
[25] "Y13139.PE110" "Y13139.PE316" "Y13140.PE89" "Z47047 .PE17T"
[29] "Z47047.PE180" "Z71256 .PE178" "Z271256 .PE289" "Z71256.PE313"
[33] "Z71256.PE317" "Z71256 .PE534" "Z71256 .PE637" "Z71256.PE694"
[37] "Z71257.PE43" "Z71257 .PE75" "Z71257 .PE263"

8.5 Building your own ACNUC database.

One of the interest of a local server is to be able use your own ACNUC database.

8.5.1 Database flatfiles formats.

ACNUC database are build from flat files in several possible format : EMBL,
Genbank or SwissProt. Instructions to install ACNUC databases are given at
this url :

http://pbil.univ-1lyonl.fr/databases/acnuc/localinstall.html

8.5.2 Download the ACNUC dababase management tools.

The code source of the ACNUC tools server are available on the PBIL server at
this url:

ftp://pbil.univ-lyonl.fr/pub/acnuc/unix/acnucsoft.tar

8.5.3 Install the ACNUC dababase management tools.
ANCUC management tools are described at this url :
http://pbil.univ-lyonl.fr/databases/acnuc/acnuc_gestion.html

Let ACNUC_HOME/ACNUC_SOFT /tools be the base directory for the AC-
NUC tools.

dir.create("./ACNUC_HOME/ACNUC_SOFT/tools", showWarning = FALSE)

e Dowload the acnucsoft.tar file into ACNUC_HOME/ACNUC_SOFT /tools.

download.file("ftp://pbil.univ-lyonl.fr/pub/acnuc/unix/acnucsoft.tar",
destfile = "./ACNUC_HOME/ACNUC_SOFT/tools/acnucsoft.tar")

e Untar the acnucsoft.tar file

8.5. BUILDING YOUR OWN ACNUC DATABASE.

setwd("./ACNUC_HOME/ACNUC_SOFT/tools/")
system("tar -xvf acnucsoft.tar")

system("rm -f acnucsoft.tar")
setwd (pwd)

e Go into ACNUC_SOFT/ and type;

make

93

This should create the ACNUC management tools and ACNUC querying
tools.

setwd("./ACNUC_HOME/ACNUC_SOFT/tools/")
system("make")

dir ()

[1] "acnuc2fasta"
[4] "acnucf2c.o"
[[7% "arbrebin.c"

10] "bit.o

[13] "connectindex"
[16] "conv_to_bigannots.c"
[19] "dir_io.c"
[22] "dynlist.c"
[25] "extract.o"
[28] "gestion_acnuc.o"
[31] "initf"
[34] "lngbit.c"
[37] "mdshrt_lng.c"
[40] "misc_acnuc.o"
[43] "newordalphab.c"
[46] "proc_requete.c"
[49] "query.c"
[62] "readidreport.o"
[65] "renamediv"
[68] "smjytload"
[61] "sortsubseq.c"
[64] "testmatchindex"
[67] "two_banks.o"
[70] "use_acnuc.c"
[73] "utilgener.h"
[76] "utilgener2.o"
[79] "voyage"

setwd (pwd)

"acnuc2fasta.c"
"acnucgener"
"arbrebin.o"
"compressnewdiv"
"connectindex.c"
"coperations.c"
"dir_io.h"
"dynlist.o"
"fortran_ex.f"
"hashacc.c"
"initf.c"
"lngbit.o"
"mdshrt_lng.o
"ncbitaxo.h"
"pretty_seq.c"
"proc_requete.o"
"query.o"
"readncbitaxo"
"renamediv.c"
"smjytload.c"
"supold"
"testmatchindex.c"
"updatehelp"
"use_acnuc.o"
"utilgener.o"
"utilquery.c"
"voyage.c"

"

"acnucf2c.c"
"acnucgener.c"
"bit.c"
"compressnewdiv.c"
"conv_to_bigannots"
"dir_acnuc.h"
"dir_io.o"
"extract.c"
"gestion_acnuc.c"
"hashacc.o"
"libcacnuc.a"
"makefile"
"misc_acnuc.c"
"newordalphab"
"pretty_seq.o"

n qllery"
"readidreport.c"
"readncbitaxo.c"
"simext.h"
"sortsubseq"
"supold.c"
"two_banks.c"
"updatehelp.c"
"utilgener.c"
"utilgener2.c"
"utilquery.o"

8.5.4 Database building : index generation

You can now build your own database. All you need is a flat files in EMBL,
GenBank or SwissProt format. You can download a file example at :

ftp://pbil.univ-lyonl.fr/pub/seqinr/demoacnuc/escherichia_uniprot.dat.

Let’s use this SwissProt file to build your database

e Let ACNUC_HOME/ACNUC_DB/mydb be the directory for your databases.

dir.create("./ACNUC_HOME/ACNUC_DB/mydb", showWarning = FALSE)

This directory should contain the index and flat_files directories.

94CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC

dir.create("./ACNUC_HOME/ACNUC_DB/mydb/index", showWarning = FALSE)
dir.create("./ACNUC_HOME/ACNUC_DB/mydb/flat_files", showWarning = FALSE)

e Download the escherichia_uniprot.dat.Z file into ACNUC_HOME/ACNUC_DB/mydb/flat_fil

download.file("ftp://pbil.univ-lyonl.fr/pub/seqinr/demoacnuc/escherichia_uniprot.dat.zZ",
destfile = "./ACNUC_HOME/ACNUC_DB/mydb/flat_files/escherichia_uniprot.dat.zZ")

e Uncompress the escherichia_uniprot.dat.Z file

setwd ("./ACNUC_HOME/ACNUC_DB/mydb/flat_files/")
system("gunzip -f escherichia_uniprot.dat.Z")
setwd (pwd)

e A simple building of the index can be done with the script buildindex.csh
available at:

ftp://pbil.univ-lyonl.fr/pub/seqinr/demoacnuc/buildindex.csh

You can copy this file in ACNUC_HOME/ACNUC_DB/mydb and execute
it by typing:

./buildindex.csh escherichia_uniprot

download.file("ftp://pbil.univ-1lyonl.fr/pub/seqinr/demoacnuc/buildindex.csh",
destfile = "./ACNUC_HOME/ACNUC_DB/mydb/buildindex.csh")

setwd ("./ACNUC_HOME/ACNUC_DB/mydb/")

system("chmod +x ./buildindex.csh")

system("./buildindex.csh escherichia_uniprot > ./build.log")

cat(readLines("build.log", 50), sep = "\n")

Build a protein database in:

->/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/mydb

ACNUC environment:
->/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/mydb/index
->/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/mydb/flat_files

ACNUC tools in:
->/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/mydb/../../ACNUC_SOFT/tools

flat file: escherichia_uniprot.dat
->/Users/lobry/seqinr/pkg/inst/doc/src/mainmatter/ACNUC_HOME/ACNUC_DB/mydb/flat_files/escherichia_

Begin to build index...
Sun Oct 26 18:13:52 CET 2008

Initialise
Normal end.

Generation des index
Program started at Sun Oct 26 18:13:53 2008

New division created: escherichia_uniprot

Removing updated sequences

0 modified sequences removed

Loading acc nos started at Sun Oct 26 18:13:53 2008
finished at Sun Oct 26 18:13:53 2008

Start loading ncbi species taxonomy

Warning: file $acnuctaxo/id.report not found
Sequence loading started at Sun Oct 26 18:13:53 2008

BUILDING YOUR OWN ACNUC DATABASE. 95

---->3MG1_ECOLI

---->3MG2_ECOLI

---->6PGD_ECOLI

---->6PGL_ECOLI

---->A4UR75_ECOLI
---->A4UR76_ECOLI
—---—->A4UR77_ECOLI
---->A4UR78_ECOLI
---->A4UR79_ECOLI
---->A4UR80_ECOLI
---->A4UR81_ECOLI
---->A4UR83_ECOLI
---->A4UR84_ECOLI
---->A4UR86_ECOLI
---->A5A605_ECOLI
---->A5A607_ECOLI
---->A5A609_ECOLI

cat(tail(readLines("build.log"), 50), sep = "\n")

Program finished at Sun Oct 26 18:13:56 2008
write_quick_meres...done

lues=4461 chargees=4461 difference=0
seqs/second=1487.00

run newordalphab

Sorting file SUBSEQ.NEW

Writing list of loci and unvalid seqgs
Sorting file SMJYT.NEW

Computing sequence hashing

Writing SPECIES.NEW

Writing KEYWORDS.NEW

Writing hashing data

Short lists of keywords and info records
Sorting file ACCESS.NEW

Sorting file BIBLIO.NEW

Writing LOCUS.NEW and lists of access#s and refers
Sorting file AUTHOR.NEW

Writing lists of seqs and authors for refers
Writing lists of refers for authors

Writing tree structure of keywords

Writing tree structure of species

Replacing old index files by new ones

Normal end

run updatehelp
Sun Oct 26 18:13:58 CET 2008
Index have been sucessfully build.

Testing the index:

Opening a flat database in 2 divisions
Sorry, no help available for this command: CONT
[27 free lists available]

Command? (or H for help)
Enter your selection criteria, or H(elp) (EX: sp=equus and k=globin@)
List LIST1 contains 4461 sequences

Command? (or H for help)
List name, or H(elp) ? [LIST1] Name of file to write list content? [default= listl.mne]
Command? (or H for help)
End of ACNUC retrieval program
4461 4461 93681 test.mn

setwd (pwd)

You can check the building in the build.log file.

96CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC

r8 06 acnuc retrieval of EMBL Library Release 78 WITHOUT ESTs (March 2004)
urrent lists
Tistl *

List content

BO0
ABOD4238 m
ABBBSSS?
ABBBA279 .PE1
ABBBA256 .PE1
ABB18567 .PE1
ABB18503 .PE1
ABB18572.UGT1A1
ABB11965 .SDF-1A
ABB11966 .SDF-1B
(\ (: (: \ ABB16716.PE1
replace by parents add subseqs. del. list del. all lists oot T EE
ABB16712.C~MU
(select by length | (select by date) (total base #) ABA18479.PE1
ABB21767 .PE1
ABB22910 -
ABB23952.C026 =

(save list) (extract seqs. to file) (editlist) (scan annots.

rQuerg

(clear) = exec = |sp=felis catus et t=cds I _ by name Gehooscrarmoioh
— v

rStatus
Query Ok.

hoose shown

Text data output
ID ABOQ4237 standard; genomic DNA; ORG; 1140 BP.

XX ;
AC ABO04237; u
XX

SV ABO4237.1

XX

DT ©3-NOV-1997 (Rel. 53, Created)
DT ©3-MAR-2000 (Rel. 62, Last updated, Version 2)

XX

DE Felis catus mitochondrial DNA for cytochrome b, complete cds.

XX

KN cytochrome b.

XX

0S Felis catus (cat)

0C Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; A

0C Eutheria; Carnivora; Fissipedia; Felidae; Felis. v

(&) <
Figure 8.1: Screenshot of query_win

8.6 Misc

8.6.1 Other tools for acnuc

Several powerful tools dedicated to query ACNUC databases are available. The
programs query and query_win allow to query an ACNUC database according
to the same criteria than described in seqinR. It allows as well several func-
tionality to extract biological data. query_win is a graphical version of query
(¢f figure 8.1). query is an command-line version which allows to query and
ACNUC database through scripts. Both query and query_win are available
as a client or a local application. More information on these programs can be
found at: http://pbil.univ-1lyonl.fr/software/query_win.html

Note: The local version of query is distributed with the ACNUC manage-
ment tools, thus it is already available in your ./ACNUC_HOME/ACNUC_SOFT /tools/
directory. Before using it you need to set two environment variables, acnuc and
geganuc :

setenv acnuc MYDATABASE/index
setenv gcgacnuc MYDATABASE/flat_files

http://pbil.univ-lyon1.fr/software/query_win.html

8.7. TECHNICAL DESCRIPTION OF THE RACNUCD DAEMON 97

where MYDATABASE is the path to the database you want to query (for ex-
ample: ./ACNUC_HOME/ACNUC_DB/demoacnuc/ or ./ACNUC_HOME/ACNUC_DB/mydb/)

8.7 Technical description of the racnucd daemon

Technical information about the acnuc socket server is available at this url:
http://pbil.univ-1lyonl.fr/databases/acnuc/racnucd.html.

8.8 ACNUC remote access protocol

Description of the socket communication protocol with acnuc is availble at this
url: http://pbil.univ-1yonl.fr/databases/acnuc/remote_acnuc.html

8.9 Citation

You can use a citation along these lines:

Sequences from [cite your source of data] were structured under the ACNUC
model [27], hosted [at give your URL if public] by an ACNUC server [26] and
analyzed with the seqinR client [8] under the @ statistical environment [75].

For IATEX users, these references are available in the book.bib file that ships
with seqinR in the seqinr/doc/src/config/ folder. To locate this file on your
computer try:

(seqinrloc <- normalizePath(.path.package("seqinr")))

[1] "/Users/lobry/seqinr/pkg.Rcheck/seqinr"

setwd(seqinrloc)

dir()

[1] "CITATION" "CONTENTS" "DESCRIPTION" "INDEX" "Meta"

[61 "R" "R-ex" "data" "doc" "help“

[11] "html" "latex" "libs" "man" "sequences"
setwd("./doc/src/config")

dir()

[1] "atxy.sty" "book.bib" "commonrnw.rnw" "commontex.tex"

[6] "sessionInfo.rnw"
cat(readLines("book.bib", n = 5), sep = "\n")

@incollection{seqinr,
author = {Charif, D. and Lobry, J.R.},
title = {Seqin{R} 1.0-2: a contributed package to the {R} project for statistical computing devoted to biological
booktitle = {Structural approaches to sequence evolution: Molecules, networks, populations},
year = {2007},

Session Informations
This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwin8.8.2
e Locale: C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

http://pbil.univ-lyon1.fr/databases/acnuc/racnucd.html
http://pbil.univ-lyon1.fr/databases/acnuc/remote_acnuc.html

98CHAPTER 8. INSTALLATION OF A LOCAL ACNUC SOCKET SERVER AND OF A LOCAL AC
e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:
e @ compilation time was: Sun Oct 26 18:13:58 2008

e IATEX compilation time was: December 12, 2008

CHAPTER 9

Multivariate analyses

Lobry, J.R.

9.1 Correspondence analysis

This is the most popular multivariate data analysis technique for amino-acid
and codon count tables, its application, however, is not without pitfalls [71]. Tts
primary goal is to transform a table of counts into a graphical display, in which
each gene (or protein) and each codon (or amino-acid) is depicted as a point.
Correspondence analysis (CA) may be defined as a special case of principal
components analysis (PCA) with a different underlying metrics. The interest
of the metrics in CA, that is the way we measure the distance between two
individuals, is illustrated bellow with a very simple example (Table 9.1 inspired
from [20]) with only three proteins having only three amino-acids, so that we
can represent exactly on a map the consequences of the metric choice.
data(toyaa)

toyaa

Ala Val Cys
1130 70 O
2 60 40 O
3 60 35 5

Ala Val Cys
1 130 70 0
2 60 40 0
3 60 35 5

Table 9.1: Data to be loaded with data(toyaa) .

Let’s first use the regular Euclidian metrics between two proteins ¢ and 7,

J
d*(i,i') = (nij — niy)? 9.1)
=1

99

100 CHAPTER 9. MULTIVARIATE ANALYSES

to visualize this small data set:

library (ade4)
pco <- dudi.pco(dist(toyaa), scann = F, nf = 2)
myplot <- function(res, ...) {
plot(res$1il[, 1], res$1il, 2], ...)
text(x = res$lil, 1], y = res$li[, 2], labels = 1:3, pos = ifelse(res$lil,
2] <0, 1, 3))
perm <- c(3, 1, 2)
lines(c(res$lil, 1], res$lilperm, 1]), c(res$lil, 21,
res$li[perm, 2]))

myplot(pco, main = "Euclidian distance", asp = 1, pch = 19,
xlab = "", ylab = "", las = 1)

Euclidian distance

30

20 —

10

_10 —]

_20 —]

=20 0 20 40

From this point of view, the first individual is far away from the two others.
But thinking about it, this is a rather trivial effect of protein size:

rowSums (toyaa)

1 2 3
200 100 100

With 200 amino-acids, the first protein is two times bigger than the others so
that when computing the Euclidian distance (9.1) its n;; entries are on average
bigger, sending it away from the others. To get rid of this trivial effect, the first
obvious idea is to divide counts by protein lengths so as to work with protein
profiles. The corresponding distance is,

9.1. CORRESPONDENCE ANALYSIS 101

J
Plii) =D~ Ty 9:2)

Jj=1

where n;, and n;, are the total number of amino-acids in protein ¢ and 4/,
respectively.

profile <- toyaa/rowSums(toyaa)
profile

Ala Val Cys
1 0.65 0.35 0.00
2 0.60 0.40 0.00
3 0.60 0.35 0.05

pcol <- dudi.pco(dist(profile), scann = F, nf = 2)

myplot(pcol, main = "Euclidian distance on protein profiles",
asp = 1, pch = 19, xlab = "", ylab = "", ylim = range(pcol$lil,
2]) * 1.2)

Euclidian distance on protein profiles

< 3
o
S
AN
o
S
o
o
S
AN
2 N
T 5 1
I I I I I
~0.04 -0.02 0.00 0.02 0.04

The pattern is now completely different with the three protein equally spaced.
This is normal because in terms of relative amino-acid composition they are all
differing two-by-two by 5% at the level of two amino-acids only. We have clearly
removed the trivial protein size effect, but this is still not completely satisfac-
tory. The proteins are differing by 5% for all amino-acids but the situation is
somewhat different for Cys because this amino-acid is very rare. A difference

102 CHAPTER 9. MULTIVARIATE ANALYSES

of 5% for a rare amino-acid has not the same significance than a difference of
5% for a common amino-acid such as Ala in our example. To cope with this,
CA make use of a variance-standardizing technique to compensate for the larger
variance in high frequencies and the smaller variance in low frequencies. This
is achieved with the use of the chi-square distance (x?) which differs from the
previous Euclidean distance on profiles (9.2) in that each square is weighted by
the inverse of the frequency corresponding to each term,

J
P (i) = nee Y (M3 My 93)

Nej Tie N e

where n,; is the total number of amino-acid of kind j and n.. the total
number of amino-acids. With this point of view, the map is now like this:

coa <- dudi.coa(toyaa, scann = FALSE, nf = 2)

myplot(coa, main = expression(paste(chi”2, " distance")),
asp = 1, pch = 19, xlab = "", ylab = "")
2 .
X~ distance
]
o
1
o | 3
o
— 2
S -
|
N
o —
|
T T T T T
-0.3 -0.2 -0.1 0.0 0.1

The pattern is completely different with now protein number 3 which is
far away from the others because it is enriched in the rare amino-acid Cys as
compared to others.

The purpose of this small example was to demonstrates that the metric
choice is not without dramatic effects on the visualisation of data. Depending

9.1. CORRESPONDENCE ANALYSIS 103

on your objectives, you may agree or disagree with the x? metric choice, that’s
not a problem, the important point is that you should be aware that there is
an underlying model there, chacun a son goit ou chacun a son godt, it’s up to
you.

Now, if you agree with the x? metric choice, there’s a nice representation
that may help you for the interpretation of results. This is a kind of ”biplot”
representation in which the lines and columns of the dataset are simultaneously
represented, in the right way, that is as a graphical translation of a mathematical
theorem, but let’s see how does it look like in practice:

scatter(coa, clab.col = 0.8, clab.row = 0.8, posi = "none"
NULL
d=0.5
= - [Aa[1]
=] 27

[Vall[z]

What is obvious is that the Cys content has a major effect on protein vari-
ability here, no scoop. Please note how the information is well summarised here:
protein number 3 differs because it’s enriched in in Cys ; protein number 1 and
2 are almost the same but there is a small trend protein number 1 to be enriched
in Ala. As compared to to table 9.1 this graph is of poor information here, so
let’s try a more big-rooom-sized example (with 20 columns so as to illustrate
the dimension reduction technique).

Data are from [56], a sample of the proteome of Escherichia coli. According
to the title of this paper, the most important factor for the between-protein

104 CHAPTER 9. MULTIVARIATE ANALYSES

variability is hydrophilic - hydrophobic gradient. Let’s try to reproduce this
assertion :

download.file(url = "ftp://pbil.univ-lyonl.fr/pub/datasets/NAR94/data.txt",
destfile = "data.txt")

ec <- read.table(file = "data.txt", header = TRUE, row.names = 1)

ec.coa <- dudi.coa(ec, scann = FALSE, nf = 1)

F1 <- ec.coa$lil, 1]

hist(F1, proba = TRUE, xlab = "First factor for amino-acid variability",
col = grey(0.8), border = grey(0.5), las = 1, ylim = c(O,
6), main = "Protein distribution on first factor")

lines(density(F1, adjust = 0.5), lwd = 2)

Protein distribution on first factor

Density
w
l

/\
N\ /1YL
0 ™ N g
[I I I |
0.4 0.2 0.0 0.2 0.4

First factor for amino-acid variability

There is clearly a bimodal distribution of proteins on the first factor. What
are the the amino-acid coordinates on this factor?

aacoo <- ec.coa$col, 1]

names (aacoo) <- rownames (ec.coa$co)

aacoo <- sort(aacoo)

dotchart(aacoo, pch = 19, xlab = "Coordinate on first factor",

main = "Amino acid coordinates on first factor")

9.1. CORRESPONDENCE ANALYSIS 105

Amino acid coordinates on first factor

bhe oot
met .

ly .
eu .
ser .
val .
ala .

.
thr .
Cys L
pro .
asn .
his o

arg .
asp .

I I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3

Coordinate on first factor

Aliphatic and aromatic amino-acids have positive values while charged amino-
acids have negative values'. Let’s try to compute the GRAVY score (i.e. the
Kyte and Doolittle hydropathic index[46]) of our proteins to compare this with
their coordinates on the first factor. We need first the amino-acid relatives fre-
quencies in the proteins, for this we divide the all the amino-acid counts by the
total by row:

ecfr <- ec/rowSums(ec)
ecfr[1:5, 1:5]

ar leu ser thr pro
FOLE 0.05829596 0.10313901 0.06278027 0.08520179 0.03587444
MSBA 0.06529210 0.10309278 0.08591065 0.06185567 0.02233677
NARV 0.06637168 0.12831858 0.06637168 0.05752212 0.03539823
NARW 0.05627706 0.16450216 0.05627706 0.03030303 0.04329004
NARY 0.06614786 0.06420233 0.05058366 0.03891051 0.06031128

We need also the coefficients corresponding to the GRAVY score:

gravy <- read.table(file = "ftp://pbil.univ-lyonl.fr/pub/datasets/NAR94/gravy.txt")
gravy[1:5,]

Vi
1 Ala
2 Arg
3 Asn
4 Asp
5 Cys

coef

V2
1.
-4.
-3.
-3.

2.

<-

o1 o101 01 0

gravy$v2

The coefficient are given in the alphabetical order of the three letter code
for the amino acids, that is in a different order than in the object ecfr:

IThe physico-chemical classes for amino acids are given in the component AA.PROPERTY of
the SEQINR.UTIL object.

106 CHAPTER 9. MULTIVARIATE ANALYSES

names (ecfr)

[1] "arg" "leu" "ser" "thr" "pI‘O" "ala" ||g1yn "yal" "lyS" "asn" "gln" "hig"
[13] "glll" "asp" "tyr" "CyS" "phe" "ile" "met" "tI‘p"

We then re-order the columns of the data set and check that everthing is
OK:

ecfr <- ecfr[, order(names(ecfr))]
ecfr[1:5, 1:5]

ala asn as

arg P cys
FOLE 0.08520179 0.05829596 0.04035874 0.05381166 0.008968610
MSBA 0.08247423 0.06529210 0.03608247 0.05154639 0.003436426
NARV 0.05309735 0.06637168 0.01769912 0.02212389 0.013274336
NARW 0.09090909 0.05627706 0.02597403 0.09090909 0.017316017
NARY 0.06225681 0.06614786 0.03891051 0.05642023 0.035019455

all(names(ecfr) == tolower(as.character(gravy$vi)))
[1] TRUE

Now, thanks to R build-in matrix multiplication, it’s only one line to compute
the GRAVY score:

gscores <- as.matrix(ecfr) ¥*J, coef
plot(gscores, F1, xlab = "GRAVY Score", ylab = "F1 Score",
las = 1, main = "The first factor is protein hydrophaty")

The first factor is protein hydrophaty

900% o
o o ¢ o
0.4 Sos ° %
850,95 O
o DM{% °C§3 ;%O
o o
o °2§ Qg%
mo
o
0.2 °e @ °
Q
O
(8]
[9p]
—
L 0.0
-02 4 |
I I I I I
-1.0 -0.5 0.0 0.5 1.0

GRAVY Score

The proteins with high GRAVY scores are integral membrane proteins, and
those with low scores are cytoplasmic proteins. Now, suppose that we want to

9.1. CORRESPONDENCE ANALYSIS 107

adjust a mixture of two normal distributions to get an estimate of the proportion
of cytoplasmic and integral membrane proteins. We first have a look on the
predefined distributions (Table 9.2), but there is apparently not an out of the
box solution. We then define our own probability density function and then

d p q r
beta dbeta pbeta gbeta rbeta
binom dbinom pbinom gbinom rbinom
cauchy dcauchy pcauchy qcauchy rcauchy
chisq dchisq pchisq qchisq rchisq
exp dexp pexp qexp rexp
f df pf qf rf
gamma dgamma pgamma ggamma rgamimma
geom dgeom pgeom qgeom rgeom
hyper dhyper phyper ghyper rhyper
Inorm dlnorm plnorm glnorm rlnorm
logis dlogis plogis qlogis rlogis
nbinom dnbinom pnbinom = gnbinom rnbinom
norm dnorm pnorm qnorm rnorm
pois dpois ppois qpois rpois
signrank dsignrank psignrank gsignrank rsignrank
t dt pt qt rt
unif dunif punif qunif runif
weibull dweibull pweibull qweibull rweibull
wilcox dwilcox pwilcox qwilcox rwilcox

Table 9.2: Density, distribution function, quantile function and random gener-
ation for the predefined distributions under R

use fitdistr from package MASS to get a maximum likelihood estimate of the
parameters:

dmixnor <- function(x, p, ml, sdl, m2, sd2) {
p * dnorm(x, ml, sd1) + (1 - p) * dnorm(x, m2, sd2)

}

library (MASS)

e <- fitdistr(F1, dmixnor, list(p = 0.88, ml = -0.04, sdl = 0.076,
m2 = 0.34, sd2 = 0.07))$estimate

e

P ml sdl m2 sd2
0.88405009 -0.03989489 0.07632235 0.33579162 0.06632259

hist(F1, proba = TRUE, col = grey(0.8), main = "Ajustement with a mixture of two normal distributions",
xlab = "First factor for amino-acid variability", las = 1)

xx <- seq(from = min(F1), to = max(F1), length = 200)

lines(xx, dmixnor(xx, e[1], e[2], e[3], el[4], e[5]), 1lwd = 2)

108 CHAPTER 9. MULTIVARIATE ANALYSES

Ajustement with a mixture of two normal distributions

Density

—/ \W/A\¥
—(;.4 —(;.2 0!0 0!2 0!4

First factor for amino—acid variability

9.2 Synonymous and non-synonymous analyses

Genetic codes are surjective applications from the set codons (n = 64) into the
set of amino-acids (n = 20) :

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 109

The surjective nature of genetic codes
Genetic code number 1

Adapted from insert 2 in Lobry & Chessel (2003) JAG 44:235

Two codons encoding the same amino-acid are said synonymous while two
codons encoding a different amino-acid are said non-synonymous. The distinc-
tion between the synonymous and non-synonymous level are very important in
evolutionary studies because most of the selective pressure is expected to work
at the non-synonymous level, because the amino-acids are the components of
the proteins, and therefore more likely to be subject to selection.

K, and K, are an estimation of the number of substitutions per synonymous
site and per non-synonymous site, respectively, between two protein-coding
genes [49]. The % ratio is used as tool to evaluate selective pressure (see
[35] for a nice back to basics). Let’s give a simple illustration with three orthol-
ogous genes of the thioredoxin familiy from Homo sapiens, Mus musculus, and
Rattus norvegicus species:

ortho <- read.alignment(system.file("sequences/ortho.fasta",

package = "seqinr"), format = "fasta")
kaks.ortho <- kaks(ortho)
kaks.ortho$ka/kaks.ortho$ks
AK002358.PE1 HSU78678.PE1
HSU78678.PE1 0.1243472
RNU73525.PE1 0.1405012 0.1356036

The % ratios are less than 1, suggesting a selective pressure on those pro-

s
teins during evolution.

110 CHAPTER 9. MULTIVARIATE ANALYSES

For transversal studies (i.e. codon usage studies in a genome at the time it
was sequenced) there is little doubt that the strong requirement to distinguish
between synonymous and an non-synonymous variability was the source of many
mistakes [71]. We have just shown here with a scholarship example that the
metric choice is not neutral. If you consider that the x? metric is not too bad,
with respect to your objectives, and that you want to quantify the synonymous
and an non-synonymous variability, please consider reading this paper [55], and
follow this link http://pbil.univ-1lyonl.fr/members/lobry/repro/jag03/
for on-line reproducibility.

Let’s now use the toy example given in table 9.3 to illustrate how to study
synonymous and non-synonymous codon usage.

data(toycodon)
toycodon

gca gcc gecg get gta gtc gtg gtt tgt tgc
1 33 32 32 33 18 17 17 18 0 O
2 13 17 17 13 8 12 12 8 O O
3 16 14 14 16 8 9 10 8 3 2

gca gce geg get gta gte gtg gtt tgt tge
1 33 32 32 33 18 17 17 18 0 0
2 13 17 17 13 g8 12 12 8 0 0
3 16 14 14 16 8 9 10 8 3 2

Table 9.3: A very simple example of codon counts in three coding sequences to
be loaded with data(toycodon) .

Let’s first have a look to global codon usage, we do not take into account
the structure of the genetic code:

global <- dudi.coa(toycodon, scann = FALSE, nf = 2)

nn nn

myplot(global, asp = 1, pch = 19, xlab = , ylab = , main = "Global codon usage")

http://pbil.univ-lyon1.fr/members/lobry/repro/jag03/

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 111

Global codon usage

N
S
2
]
o
3
o]
o
— 1
d —
T
T T T T I
-0.3 -0.2 -0.1 0.0 0.1

From a global codon usage point of view, coding sequence number 3 is away.
To take into account the genetic code structure, we need to know for which
amino-acid the codons are coding. The codons are given by the names of the
columns of the object toycodon:

names (toycodon)

[1] "gca" "gCC" ugcgu "gct" "gta" "gtc" "gtg" "gtt" "tgt" "th"

Put all codon names into a single string:
c2s (names (toycodon))
[1] "gcagccgeggetgtagtegtggtttgttge"
Transform this string as a vector of characters:

s2c(c2s(names (toycodon)))

(L ey e van gy e ven gy e g gy e v g e tat gt e e
g t g g t t t g t t g c

Translate this into amino-acids using the default genetic code:

translate(s2c(c2s(names(toycodon))))
[1] IIAII llA" IIAII llA" IIvll "V" llvll "V" ||cll "CII

Use the three letter code for amino-acid instead:

aaa(translate(s2c(c2s(names(toycodon)))))
[1] llAla" "Alall ||A1all lIAla" Ilval" "Val" "Valll ||Valll IICyS" Ilcysll

Make this a factor:

112 CHAPTER 9. MULTIVARIATE ANALYSES

facaa <- factor(aaa(translate(s2c(c2s(names(toycodon))))))
facaa

[1] Ala Ala Ala Ala Val Val Val Val Cys Cys
Levels: Ala Cys Val
The non synonymous codon usage analysis is the between amino-acid anal-
ysis:

nonsynonymous <- t(between(dudi = t(global), fac = facaa,

scann = FALSE, nf = 2))
myplot (nonsynonymous, asp = 1, pch = 19, xlab = "", ylab = "",
main = "Non synonymous codon usage")

Non synonymous codon usage

N

8

<

R

o

S 3
1

-

o' —

|

I I I I I

-01 0.0 0.1 0.2 0.3

This is reminiscent of something, let’s have a look at amino-acid counts:

by (t(toycodon), facaa, colSums)
INDICES: Ala

1 2 3
130 60 60

INDICES: Cys
123
005

INDICES: Val
1 2 3
70 40 35

This is exactly the same data set that we used previously (table 9.1) at the
amino-acid level. The non synonymous codon usage analysis is exactly the same
as the amino-acid analysis. Coding sequence number 3 is far away because it
codes for many Cys, a rare amino-acid. Note that at the global codon usage
level, this is also the major visible structure. To get rid of this amino-acid
effect, we use the synonymous codon usage analysis, that is the within amino-
acid analysis:

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 113

synonymous <- t(within(dudi = t(global), fac = facaa, scann = FALSE,

nf = 2))
myplot (synonymous, asp = 1, pch = 19, xlab = "", ylab = "",
main = "Synonymous codon usage")
Synonymous codon usage
=
a
o
3
L0
o
o
o
S
e
2
1
To)
(=]
S
T
T T T T
-0.10 -0.05 0.00 0.05

Now, coding sequence number 2 is away. When the amino-acid effect is
removed, the pattern is then completely different. To interpret the result we
look at the codon coordinates on the first factor of synonymous codon usage:

tmp <- synonymous$co[, 1, drop = FALSE]
tmp <- tmp[order(tmp$Axisl), , drop = FALSE]
colcod <- sapply(rownames(tmp), function(x) ifelse(substr(x,

3, 3) == "c" || substr(x, 3, 3) == "g", "blue", "red"))
pchcod <- ifelse(colcod == "red", 1, 19)
dotchart (tmp$Axisl, labels = toupper (rownames(tmp)), color = colcod,
pch = pchcod, main = "Codon coordinates on first factor\nfor synonymous codon usage")

legend("topleft", inset = 0.02, legend = c("GC ending codons",
"AT ending codons"), text.col = c("blue", "red"), pch = c(19,
1), col = c("blue", "red"), bg = "white")

114

GTT
GTA
GCT
GCA
TGC
TGT
GCG
GCC
GTG

GTC

Codon coordinates on first factor

CHAPTER 9. MULTIVARIATE ANALYSES

for synonymous codon usage

e GC ending codons
o AT ending codons

-0.10 —-0.05

0.00 0.05

0.10

At the synonymous level, coding sequence number 2 is different because it
is enriched in GC-ending codons as compared to the two others. Note that this
is hard to see at the global codon usage level because of the strong amino-acid

effect.

P'Z Beore

+0.4 L] . .

+0.2

-i.2

-0LE

+0.1 +i,

3

+0.5
CAL sCore

Figure 9.1: Screenshot of figure 5 from [56]. Each point represents a protein.
This was to show the correlation between the codon adaptation index (CAI
Score) with the second factor of correspondence analysis at the amino-acid level
(F2 Score). Highly expressed genes have a high CAI value.

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 115

To illustrate the interest of synonymous codon usage analyses, let’s use now
a more realistic example. In [56] there was an assertion stating that selection
for translation optimisation in Escherichia coli was also visible at the amino-
acid level. The argument was in figure 5 of the paper (¢f fig 9.1), that can be
reproduced? with the following R code:

ec <- read.table(file = "ftp://pbil.univ-lyonl.fr/pub/datasets/NAR94/data.txt",
header = TRUE, row.names = 1)
ec.coa <- dudi.coa(ec, scann = FALSE, nf = 3)
F2 <- ec.coa$lil, 2]
tmp <- read.table(file = "ftp://pbil.univ-1lyonl.fr/pub/datasets/NAR94/ec0li999.cai")
cai <- exp(tmp$V2)
if (cor(cai, F2) > 0) F2 <- -F2
plot(cai, F2, pch = 20, xlab = "CAI Score", ylab = "F2 Score",
main = "Fig 5 from Lobry & Gautier (1994) NAR 22:3174")

Fig 5 from Lobry & Gautier (1994) NAR 22:3174

F2 Score
0.0

CAl Score

So, there was a correlation between the CAI (Codon Adaptation Index [85])
and the second factor for amino-acid composition variability. However, this is
not completely convincing because the CAI is not completely independent of
the amino-acid composition of the protein. Let’s use within amino-acid cor-
respondence analysis to remove the amino-acid effect. Here is a commented
step-by-step analysis:

data(ec999)
class(ec999)

[1] "list"

names (ec999) [1:10]

[1] "ECFOLE.FOLE" "ECMSBAG.MSBA" "ECNARZYW-C.NARV" "ECNARZYW-C.NARW"
[5] "ECNARZYW-C.NARY" "ECNARZYW-C.NARZ" "ECNIRBC.NIRB" "ECNIRBC.NIRD"
[9] "ECNIRBC.NIRC" "ECNIRBC.CYSG"

2 the code to reproduce all figures from [56] is available at http://pbil.univ-1lyonl.fr/
members/lobry/repro/nar94/

http://pbil.univ-lyon1.fr/members/lobry/repro/nar94/
http://pbil.univ-lyon1.fr/members/lobry/repro/nar94/

116 CHAPTER 9. MULTIVARIATE ANALYSES

ec999([[1]1][1:50]

[1] ngn ongn "g“ WM MM Mg Ml et g e e e g ngn nen omgn o mgn o ngn
[19] ngn ngm o ngn llgu nen "g" ngn nen o nen o men nen ugn "g" nEnongn o nmen ngn nen
[37] ngll ngn ongn IIgn nen llgn ngn o ngn o ngn |lgn ngnongn llgll nen

This is to load the data from [56] which is available as ec999 in the seqinR
package. The letters ec are for the bacterium FEscherichia coli and the number
999 means that there were 999 coding sequences available from this species at
that time. The class of the object ec999 is a list, which names are the coding
sequence names, for instance the first coding sequence name is ECFOLE.FOLE.
Each element of the list is a vector of character, we have listed just above the 50
first character of the first coding sequence of the list with ec999[[1]1] [1:50],
we can see that there is a start codon (ATG) at the beginning of the first coding
sequence.

ec999.uco <- lapply(ec999, uco)
class(ec999.uco)

[1] "list"
class(ec999.uco[[1]1])
[1] "table"

ec999.uco[[1]]

aaa aac aag aat aca acc acg act aga agc agg agt ata atc atg att caa cac cag
9 5 2 4 2 8 0o 2 0 4 8 6 2 3 7
cat cca ccc ccg cct cga cgc cgg cgt cta ctc ctg ctt gaa gac gag gat gca gcc
7 1 1 6 O 17 1 4 1 3 13 3 12 3 1 9 1 6
gcg get gga gge ggg gegt gta gtc gtg gtt taa tac tag tat tca tcc tcg tect tga
r 5 2 3 0 4 0 5 9 4 0 2 0 2 2 3 2 1 1
tgc tgg tgt tta ttc ttg ttt
1 0 1 1 4 2 3

This is to compute the codon usage, that is how many times each codon
is used in each coding sequence. Because ec999 is a list, we use the function
lapply () to apply the same function, uco(), to all the elements of the list and
we store the result in the object ec999.uco. The object ec999.uco is a list too,
and all its elements belong to the class table.

df <- as.data.frame(lapply(ec999.uco, as.vector))

dim(df)
[1]1 64 999

df[1:5, 1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
1 9 15 2 6 23
2 5 18 2 4 16
3 2 8 1 3 4
4 4 3 2 2 4
5 2 3 1 1 0

This is to put the codon usage into a data.frame. Note that the codons are
in row and the coding sequences are in columns. This is more convenient for the
following because groups for within and between analyses are usually handled
by row.

row.names (df) <- names(ec999.uco[[1]])

df[1:5, 1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
aaa 9 15 2 6 23
aac 5 18 2 4 16
aag 2 8 1 3 4
aat 4 3 2 2 4
aca 2 3 1 1 0

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 117

This is to keep a trace of codon names, just in case we would like to re-order
the dataframe df. This is important because we can now play with the data at
will without loosing any critical information.

ec999.coa <- dudi.coa(df = df, scannf = FALSE)
ec999.coa

Duality diagramm

class: coa dudi

$call: dudi.coa(df = df, scannf = FALSE)

$nf: 2 axis-components saved

$rank: 63

eigen values: 0.05536 0.02712 0.02033 0.01884 0.01285 ...
vector length mode content

1 $cw 999 numeric column weights

2 $1lw 64 numeric row weights

3 $eig 63 numeric eigen values
data.frame nrow ncol content

1 $tab 64 999 modified array

2 $1i 64 2 row coordinates

3 $11 64 2 row normed scores

4 $co 999 2 column coordinates

5 $c1 999 2 column normed scores

other elements: N

This is to run global correspondence analysis of codon usage. We have set
the scannf parameter to FALSE because otherwise the eigenvalue bar plot is
displayed for the user to select manually the number of axes to be kept.

facaa <- as.factor(aaa(translate(s2c(c2s(rownames(df))))))

facaa

[1] Lys Asn Lys Asn Thr Thr Thr Thr Arg Ser Arg Ser Ile Ile Met Ile Gln His
[19] Gln His Pro Pro Pro Pro Arg Arg Arg Arg Leu Leu Leu Leu Glu Asp Glu Asp
[37] Ala Ala Ala Ala Gly Gly Gly Gly Val Val Val Val Stp Tyr Stp Tyr Ser Ser
[65] Ser Ser Stp Cys Trp Cys Leu Phe Leu Phe
21 Levels: Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe ... Val

This is to define a factor for amino-acids. The function translate() use by
default the standard genetic code and this is OK for E. coli.

ec999.syn <- within(dudi = ec999.coa, fac = facaa, scannf = FALSE)
ec999.syn

Within analysis

call: within(dudi = ec999.coa, fac = facaa, scannf = FALSE)

class: within dudi

$nf (axis saved) : 2
$rank: 43
$ratio: 0.6438642

eigen values: 0.04855 0.0231 0.01425 0.007785 0.006748 ...

vector length mode content
1 $eig 43 numeric eigen values
2 $lw 64 numeric row weigths
3 $cw 999 numeric col weigths
4 $tabw 21 numeric table weigths
5 $fac 64 numeric factor for grouping

data.frame nrow ncol content

1 $tab 64 999 array class-variables

2 $1i 64 2 row coordinates

3 $11 64 2 row normed scores

4 $co 999 2 column coordinates

5 $c1 999 2 column normed scores

6 $1s 64 2 supplementary row coordinates
7 $as 2 2 inertia axis onto within axis

This is to run the synonymous codon usage analysis. The value of the ratio
component of the object ec999.syn shows that most of the variability is at the
synonymous level, a common situation in codon usage studies.

118 CHAPTER 9. MULTIVARIATE ANALYSES

ec999.btw <- between(dudi = ec999.coa, fac = facaa, scannf = FALSE)
ec999.btw

Between analysis
call: between(dudi = ec999.coa, fac = facaa, scannf = FALSE)
class: between dudi

$nf (axis saved) : 2
$rank: 20
$ratio: 0.3561358

eigen values: 0.01859 0.0152 0.01173 0.01051 0.008227 ...

vector length mode content
1 $eig 20 numeric eigen values
2 $1lw 21 numeric group weigths
3 $cw 999 numeric col weigths

data.frame nrow ncol content

1 $tab 21 999 array class-variables

2 $1i 21 2 class coordinates

3 $11 21 2 class normed scores

4 $co 999 2 column coordinates

5 $c1 999 2 column normed scores

6 $1s 64 2 row coordinates

7 $as 2 2 inertia axis onto between axis

This is to run the non-sysnonymous codon usage analysis, or amino-acid
usage analysis.

x <- ec999.syn$col, 1]

y <- ec999.btw$col, 2]

if (cor(x, y) < 0) y <- -y

kxy <- kde2d(x, y, n = 100)

nlevels <- 25

breaks <- seq(from = min(kxy$z), to = max(kxy$z), length = nlevels +

1)
col <- cm.colors(nlevels)
image (kxy, breaks = breaks, col = col, xlab = "First synonymous factor",
ylab = "Second non-synonymous factor", xlim = c(-0.5,
0.5), ylim = ¢(-0.3, 0.3), las = 1, main = "The second factor for amino-acid variability is\ncor
contour (kxy, add = TRUE, nlevels = nlevels, drawlabels = FALSE)
box ()

abline(c(0, 1), 1ty = 2)

abline(Im(y ~ x))

legend("topleft", 1ty = c(2, 1), legend = c("y = x", "y = Im(y"x)"),
inset = 0.01, bg = "white")

9.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 119

The second factor for amino-acid variability is
correlated with gene expressivity

0.3

S y=x
— y=Im(y~x)

0.0

Second non-synonymous factor
|
=]
s
|

|

o

(V)
1

-0.3 T T T T T
-0.4 -0.2 0.0 0.2 0.4

First synonymous factor

This is to plot the whole thing. We have extracted the coding sequences
coordinates on the first synonymous factor and the second non-synonymous
factor within x and y, respectively. Because we have many points, we use the
two-dimensional kernel density estimation provided by the function kde2d ()
from package MASS.

To be completed

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2
e Locale: C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:

e @ compilation time was: Sun Oct 26 18:14:47 2008

o INTEX compilation time was: December 12, 2008

120 CHAPTER 9. MULTIVARIATE ANALYSES

aaa a prec p h tot gc
1 Ala A pyr 1 5 12 h
2 Cys C 3pg 7 9 25 m
3 Asp D oaa 1 6 13 m
4 Glu E akg 3 6 15 m
5 Phe F 2 pep,eryP 13 19 52 1
6 Gly G 3pg 2 5 12 h
7 His H penP 20 9 38 m
8 le I pyr, oaa 4 14 32 1
9 Lys K oaa,pyr 4 13 30 1
10 Leu L 2 pyr, acCoA 3 12 27 1
11 Met M oaa, Cys, -pyr 10 12 34 m
12 Asn N oaa 3 6 15 1
13 Pro P akg 4 8 20 h
14 Gln @Q akg 4 6 16 m
15 Arg R akg 11 8 27 h
16 Ser S 3pg 2 5 12 m
17 Thr T oaa 3 8 19 m
18 Val V 2pyr 2 11 23 m
19 Trp W 2 pep, eryP, PRPP, -pyr 28 23 74 m
20 Tyr Y eryP, 2 pep 13 18 50 1

Table 9.4: Aerobic cost of amino-acids in Escherichia coli and G+C classes to
be loaded with data(aacost).

CHAPTER 10

Nonparametric statistics

Palmeira, L. Lobry, J.R.

10.1 Introduction

Nonparametric statistical methods were initially developped to study variables
for which little or nothing is known concerning their distribution. This makes
them particularly suitable for statistical analysis of biological sequences, in par-
ticular for the study of over- and under-representation of k-letter words (cf
section number 10.3).

10.2 Elementary nonparametric statistics

10.2.1 Introduction

Those rank statistics are those that were available under the ANALSEQ soft-
ware [37, 29]. Formulae were taken from [10]. We consider here a sequence of
booleans, for instance:

(x <= rep(c(T, F), 10))

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[13] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

We note N the total number of elements in the vector:

(N <- length(x))
[1] 20

‘We note M the total number of TRUE elements in the vector:

(M <- sum(x))
[1] 10

We note w the ranks of TRUE elements:

121

122 CHAPTER 10. NONPARAMETRIC STATISTICS

(omega <- which(x))
[1] 1 3 5 7 9 11 13 15 17 19

With one exception, the statistics names are the same as in the ANALSEQ
software.

As a practical application, we want to study the isochore structure in Mus
musculus chromosome 1 using non-overlapping windows of 100 kb. Data were
computed this way:

choosebank("ensembl")

n <- 201

res <- rep(-1, 10 * n)

chrl <- paste("MOUSE1_", 1:n, sep = "")
i<-1

for (frag in chril) {
myseq <- gfrag(frag, 1, 1077)
for (w in seq(l, nchar(myseq), by = 1075)) {
res[i] <- GC(s2c(substr(myseq, start = w, stop = w +
1075 - 1)))
i<-i+1

res <- res[res >= 0]

res[res == 0] <- NA

res <- 100 * res

closebank ()

save(res, file = "chrl.RData")

The folowing representation follows the conventions used in Fig 2 from [68].

load("chril.RData")

n <- length(res)

xx <- seq_len(n)/10

plot(xx, res, type = "1", las = 1, ylab = "G+C content [%]",
main = "Isochores in mouse chromosome 1", xaxt = "n",
xlab = "Position on the chromosome [Mb]")

axis(1, at = seq(0, 200, by = 10))

breaks <- c(0, 37.5, 42.5, 47.5, 52.5, 100)

lev <- cut(res, breaks = breaks, labels = c("darkblue", "blue",

"yellow", "orange", "red"), ordered = T)
segments(x0 = xx, yO = min(res, na.rm = TRUE), x1 = xx, yl = res,
col = as.character(lev), lend = "butt")

segments (x0 = xx[is.na(res)], yO = min(res, na.rm = T), x1 = xx[is.na(res)],
y1 = max(res, na.rm = T), col = grey(0.7))

lines(xx, res)

abline(h = breaks, lty = 3)

Isochores in mouse chromosome 1

55 o

50 4

45 |

40 L

G+C content [%]

35 —

T T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Position on the chromosome [Mb]

The gray area represent undocumented parts of the chromosome, we won’t
consider them in the following and recode the sequence in TRUE and FALSE if
the values are above or below the median, respectively:

yy <- res[!is.na(res)]

n <- length(yy)

xx <- seq_len(n)/10

hline <- median(yy)

plot(yy ~ xx, type = "n", axes = FALSE, ann = FALSE)

10.2. ELEMENTARY NONPARAMETRIC STATISTICS 123

polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)), col = "black",
border = NA)

usr <- par("usr")

rect(usr[1], usr[3], usr[2], hline, col = "white", border = NA)

lines(xx, yy)

abline(h = hline)

box ()

axis(1)

axis(2, las = 1)

title(xlab = "Position on the chromosome [Mb]", ylab = "G+C content [%]",
main = "Isochores in mouse chromosome 1")

Isochores in mouse chromosome 1

G+C content [%]

Position on the chromosome [Mb]

Our logical vector is therefore defined as follows:
appli <- yy > median(yy)
head (appli)
[1] FALSE FALSE FALSE FALSE FALSE FALSE
tail(appli)
[1] TRUE TRUE TRUE FALSE TRUE FALSE

10.2.2 Rank sum
The statistic SR is the sum of the ranks of TRUE elements.

SR=>j

JEw
,ok—kkk——————————— ==> SR low (18)
--------- Hokok—— KKk ==> SR high (81)
M(N+1
E(SR) — %
M(N+1)(N—-M
visr) = MEFUEZAD

SR <- function(bool, N = length(bool), M = sum(bool)) {
stopifnot(is.logical(bool))
SR <- sum(seq_len(N) [bool])
E<-Mx* (N + 1)/2
V<-Mx*x (N+ 1)« (N - M/12
return(list(SR = SR, stat = (SR - E)/sqrt(V)))

}

SR(s2c ("*kk—kkk——————————— ") == "x")
$SR

[11 18

$stat
[1] -2.84605

124 CHAPTER 10. NONPARAMETRIC STATISTICS

SR(s2¢c("-=====—-- wkk——kkk!l) == k')

$SR
[1] 81

$stat
[1] 2.713602

Here is a way to obtain the same result using the standard @ wilcox.test ()
function to make a Wilcoxon’s rank sum test [95]:

SRh <- s2c("-=—==———- skk——kkk") == M
x <- seq_len(length(SRh))

x[!'SRh] <- -1 * x[!SRh]
wilcox.test(x)$statistic

\'

81

The probabilities for all possibe outcomes for the rank sums are given by
dwilcox () but note the w shift:

m <- sum(SRh)

n <- length(SRh) - m

pdf <- dwilcox(x = O0:(n * m), m = m, n = n)

plot(x = 0:(m * n) + m * (m + 1)/2, y = pdf, xlab = "Possible rank sums",
ylab = "Density", main = paste("--------- kkk——dkk 1 N =",

length(SRh), "M =", sum(SRh)), pch = 19)

points(SR(SRh)$SR, dwilcox(x = SR(SRh)$SR - m * (m + 1)/2,
m=m, n=mn), col ="red", pch = 19)

arrows(x0 = SR(SRh)$SR, yO = 0.01, x1 = SR(SRh)$SR, yl1 = 0.0015,
length = 0.1)

text (SR(SRh)$SR, 0.01, "Observed\nvalue", pos = 3)

<

S 4

o (1

.. L]
. .
. .
L] L]

™ . .

o

o) .

L] o
. .
. .

2 o
8 o .)

o
[}
A . .

L] L]
. . Observed

- . . value

o 4 . .

o . .

. .
. .
L] o
Ld L]
o %,
(] ()
8 — 000"... ..°’0000
o
T T T T T T I
20 30 40 50 60 70 80

Possible rank sums

Real case application

SR(appli)$stat

10.2. ELEMENTARY NONPARAMETRIC STATISTICS 125
[1] 10.08087

The rank sum is higher than expected at random, there is an excess of GC
rich regions at the rigth end (3’end) of the chromosome.

10.2.3 Rank variance

This statistics is the variance of ranks:

VR= Y (-)2

; 2
JEW
—————— ook ——————— ==> VR low (6)
kK ——m—mmmmm KKKk ==> VR high (323)

M(N 4 1)(N — 1)
12
M(N — M)(N + 1)(N + 2)(N — 2)
180

VR <- function(bool, N = length(bool), M = sum(bool)) {
stopifnot(is.logical(bool))
VR <- sum((seq_len(N) [bool]l - (N + 1)/2)°2)
E<- (Mx* (N+ 1) » (N - 1))/12
V<= M*x (N-M x (N+1) *« (N+2) % (N - 2))/180
return(list(VR = VR, stat = (VR - E)/sqrt(V)))

}
VR(s2c("===--- Fokokokmm e my == k)

$VR
[1] 6

$stat
[1] -2.337860
VR(s2c ("*k*k————m————— sfokkxk!) == "x")

$VR
[1] 323

$stat
[1] 3.470246

We can use simulations to have an idea of the probability density function
of the rank variance, for instance:

VRh <- s2c("#¥k—————————— Kkkk) == MxM

simVR <- replicate(5000, VR(sample(VRh))$VR)

hist(simVR, col = grey(0.7), main = paste("*x*k-———-—-—-——- *kxkx ;N =",
length(VRh), "M =", sum(VRh)), xlab = "Possible rank variances",

proba = TRUE)
lines(density(simVR), lwd = 2)
arrows (VR(VRh)$VR, 0.004, VR(VRh)$VR, 0, le = 0.1)

126 CHAPTER 10. NONPARAMETRIC STATISTICS

ek _ xkk - N =17 M=7
o]
o
g - !
°
©
o
8 -
o
2
2 =
[} o
o e
o
o
o
8
o
o
o
8 -
o

[T T T T T 1
50 100 150 200 250 300 350

Possible rank variances

Real case application

VR(appli) $stat
[1] 4.618334

The variance of ranks is higher than expected at random, there is an excess
of GC rich regions at the telomeric ends of the chromosome.

10.2.4 Clustering around the observed centre
Let note C(w) the observed centre:
M41y :
_ w (M) if M is odd
Clw) = { w (]\E’ +1) if M is even
The statistic CC! is the dispersion around C(w) is defined by:
CC=>_li - C)l
JEW

—— kKR ———m— ==> CC low (6)
ook ——————— ook ———— ==> CC high (30)

Noting |z | the floor of x, we have:

(N+ D[5[M
M+1

I the original notation was GC in the ANALSEQ software, we use CC instead to avoid a
collision with the GC() function to compute the G+C content.

E(CC) =

10.2. ELEMENTARY NONPARAMETRIC STATISTICS

and

M-DMEHNFHN=M) o6 N1 is odd

48(M+2
V(CC) = { M(N+1)(N—1\/})(M2)+2*M+4)
A8(M+1)2

if M is even

CC <- function(bool, N = length(bool), M = sum(bool)) {
stopifnot(is.logical(bool))
C <- median(seq_len(N) [bool])
GC <- sum(abs(seq_len(N) [bool]l - C))
E <= ((N + 1) * floor(M/2) * floor((M + 1)/2))/(M + 1)
if (MA%2 == 1)
V<- ((M=-1) %« (M+3) *« (N+ 1) *« (N - M)/(48 *

™+ 2))
else V<= (M *x (N + 1) x (N - M * (M2 + 2 % M+ 4))/(48 *
M+ 1)°2)

return(list(GC = GC, stat = (GC - E)/sqrt(V)))
}
CC(S2C("___***** _________ ll) == "*ll)
$GC
[1] 6
$stat
[1] -2.645751
CC(s2¢ (" ¥kk——mm—em Kokk————N) == MxM)
$GC
[1] 30
$stat

[1] 1.337987

Real case application

CC(appli)$stat
[1] 3.748402

127

The dispersion around the observed centre is higher than expected at ran-

dom, there is a trend for GC rich sequences to avoid this centre.

10.2.5 Number of runs

The statistics NS is the number of runs in the sequence:

——skokk———kokk——kkk— ==> NS low (7)
— sk sk —k =k —k— k= — sk ==> NS high (17)
E(NS) = g§£g§€:;§42 41
~ 2M(N - M)(2M(N — M) — N)

NS <- function(bool, N = length(bool), M = sum(bool)) {
stopifnot(is.logical(bool))
NS <- length(rle(bool)$lengths)
DMNmM <- 2 * M * (N - M)
E <- DMNmM/N + 1
V <- (DMNmM * (DMNmM - N))/(N * N * (N - 1))
return(list(NS = NS, stat = (NS - E)/sqrt(V)))

NS (s2c ("——skkk———skkk——kxx=") == "x")

128 CHAPTER 10. NONPARAMETRIC STATISTICS

$NS

[11 7

$stat

[1] -1.242299

NS (s2c (" —*k—k—k—sk—k—k—k—k=") == "x")

$NS
[11 17

$stat
[1] 3.786054

The same result can be obtained with the function runs.test () from pack-
age tseries [93] this way:

library(tseries)
NSh <- s2c("—*k—k—k—k—k—k—k—x-") == "x"
tseries::runs.test(as.factor(NSh))$statistic

Standard Normal
3.786054

Real case application

NS (appli)$stat
[1] -33.75721

The number of runs is much less than expected at random, there is a trend
for GC rich sequences to aggregate in consecutive runs: this is the isochore
structure.

10.2.6 Multiple clusters

The statistics GM is the variance of the length nj of FALSE runs (including
runs of length zero) between two TRUE. Let note:

e ni(w) the number of FALSE between w(k — 1) and w(k) for 2 < k < M.
e 1 (w) the number of FALSE before w(1).

e nyi41(w) the number of FALSE after w(M).

M+1 2
1 N-M
M Zi:l <m(w)_ M+1>

— kK — sk — sk — sk — sk — sk ok — ==> GM low (0)
sokok—————— ok sk — ok — ==> GM high (3.5)
N+ 1(N-M)
E(GM) =
(GM) = BT o)
AN-M-—1)(N+1)(N+2)(N - M)

M(M + 2)2(M + 3)(M + 4)

10.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 129

GM <- function(bool, N = length(bool), M = sum(bool)) {
stopifnot(is.logical(bool))
XGM <= (N - M)/(M + 1)
LSO <- GM <- 0
for (i in seq_len(N)) {
if (booll[il) {
GM <- GM + (LSO - XGM)"2
LSO <- 0

else {
LSO <- LSO + 1

}
GM <- (GM + (LSO - XGM)"2)/M
E<- ((N+ 1) x (N-M)/(M+ 1) x (M+ 2))
V- (4 *x (W-M-1) «x (W+ 1) * (N+2)*x (N-M)/(M=*
M+ 2)72 %« (M + 3) x (M + 4))
return(list(GM = GM, stat = (GM - E)/sqrt(V)))
GM(82¢ (M—k—sk—k—sk—sk—k—k=—x=") == '"x")

$GM
[11 o

$stat
[1] -1.863782
GM(s2c ("*kxk—————— kkk—kkk—"1) == "x")

$GM
[1] 3.511111

$stat
[1] 3.279144

Real case application

GM(appli)$stat
[1] 301.4908

The number of cluster is much higher than expected at random, there is a
trend for GC rich sequences to aggregate in clusters: this is again the reflect of
the isochore structure in this chromosome.

10.3 Dinucleotides over- and under-representation

10.3.1 Introduction

We will briefly describe two statistics for the measure of dinucleotide over- and
under-representation in sequences [40, 66], which can both be computed with
seqinR. We will subsequently use them to answer the long-time controversial
question concerning the relationship between UV exposure and genomic content
in bacteria [87, 2].

10.3.2 The rho statistic

The p statistic (rho ()), presented in [40], measures the over- and under-representation
of two-letter words:

f&y
Ja X fy
where f,, and f, are respectively the frequencies of dinucleotide zy and
nucleotide z in the studied sequence. The underlying model of random gener-
ation considers dinucleotides to be formed according to the specific frequencies

p(ry) =

130 CHAPTER 10. NONPARAMETRIC STATISTICS

of the two nucleotides that compose it (pz, = 1). Departure from this value
characterizes either over- or under-representation of dinucleotide xy.

We expect the p statistic of a randomly generated sequence to be neither
over- nor under-represented. Indeed, when we compute the p statistic on 500
random sequences, we can fit a normal distribution which is centered on 1 (see
Fig. 10.1)

set.seed (1)

n <- 500

di <- 4

lseq <- 6000

rhoseq <- replicate(n, rho(sample(s2c("acgt"), size = lseq,
replace = TRUE)))

x <- seq(min(rhoseqldi, 1), max(rhoseql[di, 1), length.out = 1000)

y <- dnorm(x, mean = mean(rhoseqldi, 1), sd = sd(rhoseq[di,

DD
histo <- hist(rhoseq[di,], plot = FALSE)
plot(histo, freq = FALSE, xlab = expression(paste(rho, " statistic")),
main = paste("Distribution for dinucleotide", toupper(labels(rhoseq) [[1]][dil),
"on", n, "random sequences"), las = 1, col = grey(0.8),
border = grey(0.5), ylim = c(0, max(c(y, histo$density))))
lines(x, y, 1ty = 1, col = "red")
abline(v = 1, 1ty = 3, col = "blue", lwd = 2)
legend("topleft", inset = 0.01, legend = c("normal fit", expression(paste(rho,
"=1"))), 1ty = c(1, 3), col = c("red", "blue"), lwd = c(1,
2))

The downside of this statistic, is that the model against which we compare
the sequence under study is fixed. For several types of sequences, dinucleotides
are far from being formed by mere chance (CDS, ...). In this case, the model
used in the p statistic becomes trivial, and the over- or under-representations
measured are mainly due to the strong constraints acting on those sequences.

10.3.3 The z-score statistic

The z-score statistic (zscore()) is inspired by the p statistic, and is defined
so that several different models can be used for the determination of over- and
under-representation [66]. It allows for a finer measure of over- and under-
representation in sequences, according to the chosen model.

The z-score is defined as follows:

ZSCOTC -

Py _'lz<pxy)
Var(pzy)

where E(pzy) and Var(ps,) are the expected mean and variance of pgy
according to a given model that describes the sequence.

This statistic follows the standard normal distribution, and can be computed
with several different models of random sequence generation based on permu-
tations from the original sequence (modele argument). More details on those
models can be obtained in the documentation for the zscore() function, by
simply typing 7zscore.

For instance, if we want to measure the over- and under-representation of
dinucleotides in CDS sequences, we can use the codon model, which measures
the over- and under-representations existing in the studied sequence once codon
usage bias has been erased. For intergenic sequences, or sequences for which no
good permutation model can be established, we can use the base model.

10.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 131

Distribution for dinucleotide AT on 500 random sequences

fitted normal distribution.

12
—— normal fit
p=1
10 - / N
8 —
=2
2 6 -
[0
e
4 —
2 —
0 — — S
[I | I]
0.90 0.95 1.00 1.05 1.10

p statistic

Figure 10.1: Distribution of the p statistic computed on 500 random sequences
of length 6000. The vertical dotted line is centered on 1. The curve draws the

132 CHAPTER 10. NONPARAMETRIC STATISTICS

10.3.4 Comparing statistics on a sequence

Let’s have a look at what these different statistics can show. First, we will
extract a CDS sequence of FEscherichia coli’s chromosome from the Genome
Reviews database. Let’s use, for instance, the following CDS:

choosebank ("greview")

query("coli", "N=U00096 ET T=CDS ET K=2.3.1.79@")
sequence <- getSequence(coli$req[[1]1])

annot <- getAnnot(coli$req[[1]1])

closebank()
cat(annot, sep = "\n")
FT CDS complement (478591..479142)
FT /codon_start=1
FT /gene="maa {UniProt/Swiss-Prot:P77791}"
FT /locus_tag="b0459 {UniProt/Swiss-Prot:P77791}"
FT /product="Maltose O-acetyltransferase
FT {UniProt/Swiss-Prot:P77791}"
FT /EC_number="2.3.1.79 {UniProt/Swiss-Prot:P77791}"
FT /function="maltose O-acetyltransferase activity
FT {G0:0008925}"
FT /protein_id="AAC73561.1 {EMBL:U000963}"
FT /db_xref="EMBL:AAB40214.1 {UniProt/Swiss-Prot:P77791}"
FT /db_xref="EMBL:CAA11147.1 {UniProt/Swiss-Prot:P77791}"
FT /db_xref="EcoGene:EG14239 {UniProt/Swiss-Prot:P77791}"
FT /db_xref="G0:0008925 {GOA:P77791}"
FT /db_xref="HOGENOM:HBG023156 {HogenProt:P77791}"
FT /db_xref="InterPro:IPR001451 {UniProt/Swiss-Prot:P77791}"
FT /db_xref="InterPro:IPR011004 {UniProt/Swiss-Prot:P77791}"
FT /db_xref="UniParc:UPIO00002EA96 {EMBL:AAC73561}"
FT /db_xref="UniProt/Swiss-Prot:P77791 {EMBL:U00096}"
FT /transl_table=11
FT /translation="MSTEKEKMIAGELYRSADETLSRDRLRARQLIHRYNHSLAEEHTL
FT RQQILADLFGQVTEAYIEPTFRCDYGYNIFLGNNFFANFDCVMLDVCPIRIGDNCMLAP
FT GVHIYTATHPIDPVARNSGAELGKPVTIGNNVWIGGRAVINPGVTIGDNVVVASGAVVT
FT KDVPDNVVVGGNPARIIKKL"
FT /h(C+G)="CG<50%"
FT /note="C+G content in third codon positions = 47.8 % "

We can see that this CDS encodes a maltose O-acetyltransferase protein.
We will now compare the three following nonparametric statistics:

e the p statistic,
e the z-score statistic with base model,

e and the z-score statistic with codon model.

The z-score statistic has been modified to incorporate an exact analytical
calculation of the base model where the old version (seqinR 1.1-1 and previ-
ous versions) incorporated an approximation for large sequences. This has been
possible with the help of Sophie Schbath [82], and the new version of this calcu-
lation can be obtained with the argument exact set to TRUE (FALSE being the
default). The analytical solution for the codon model is from [23]. The following
code was used to produce figure 10.2:

rhocoli <- rho(sequence)

zcolibase <- zscore(sequence, model = "base", exact = TRUE)

zcolicodon <- zscore(sequence, model = "codon", exact = TRUE)

par (mfrow = c(3, 1), lend = "butt", oma = c(0, 0, 2, 0), mar = c(3,
4, 0, 2))

col <- c("green", "blue", "orange", "red")

plot(rhocoli - 1, ylim = c¢(-0.5, 0.5), las = 1, ylab = expression(rho),
lwd = 10, xaxt = "n", col = col)

axis(l, at = 1:16, labels = toupper (words(2)))
abline(h = 0)
plot(zcolibase, ylim = c(-2.5, 2.5), las = 1, ylab = "zscore with base model",

10.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 133

Comparison of the three statistics

f T T T T T T T T T T T T T T 1
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

zscore with base model
o

f T T T T T T T T T T T T T T 1
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

zscore with codon model
o
|
||
|
I

f T T T T T T T T T T T T T T 1
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Figure 10.2: Three different non-parametric statistics (from left to right: p,
zscore with base model, zscore with codon model), computed on the same
sequence from Fscherichia coli. In order to make the figures easily comparable,
we substracted 1 to the rho() results, so that all 3 statistics are centered at 0.

lwd = 10, xaxt = "n", col = col)
axis(1, at = 1:16, labels = toupper (words(2)))

abline(h = 0)

plot(zcolicodon, ylim = c(-2.5, 2.5), las = 1, ylab = "zscore with codon model",
lwd = 10, xaxt = "n", col = col)

axis(1l, at = 1:16, labels = toupper (words(2)))

abline(h = 0)

mtext ("Comparison of the three statistics", outer = TRUE,
cex = 1.5)

The first two panels in figure 10.2 are almost identical: this is due to the way
the z-score statistic has been built. The statistic computed with the base model
is a reflection of the p statistic. The difference being that the z-score follows
a standard normal distribution, which makes easier the comparisons between
the results from the base model and the ones from the codon model. The last
pannel (z-score with codon model), is completely different: almost all over- and
under-representations have been erased. We can safely say that these over- and

134 CHAPTER 10. NONPARAMETRIC STATISTICS

under-representations were due to codon usage bias.

On the last panel, four dinucleotides stand out: CC and TT seem rather
under-represented, CT and TC rather over-represented. This means that, in
this sequence, codons ending with a given pyrimidine tend to be more frequently
followed by a codon starting with the other pyrimidine than expected by chance.
This is not a universal feature of Fscherichia coli, and is probably due to the
amino-acid composition of this particular sequence. It seemed a funny example,
as the following part will also relate to pyrimidine dinucleotides. However, what
we see on this CDS from FEscherichia coli has nothing to do with what follows...

10.4 UV exposure and dinucleotide content

In the beginning of the 1970’s, two contradictory papers considered the question
of the impact of UV exposure on genomic content. Both papers had strong
arguments for either side, and the question remained open until recently [66].

10.4.1 The expected impact of UV light on genomic con-
tent

On this controversy, the known facts are: pyrimidine dinucleotides (CC, TT,
CT and TC) are the major DNA target for UV-light [83]; the sensitivities of
the four pyrimidine dinucleotides to UV wavelengths differ and depend on the
micro-organism [83]:

G+C content CC (%) CT + TC (%) TT (%)

Haemophilus influenzae 62 5 24 71
Escherichia coli 50 7 34 59
Micrococcus lysodetkticus 30 26 55 19

Table 10.1: Proportion of dimers formed in the DNA of three bacteria after
irradiation with 265 nm UV light. Table adapted from [83].

The hypothesis presented by Singer and Ames [87] is that pyrimidine dinu-
cleotides are avoided in light-exposed micro-organisms. At the time, only G4C
content is available, and — based exclusively on the sensitivity of the four pyrim-
idine dinucleotides in an Escherichia coli chromosome — they hypothesize that
a high G+C will result in less pyrimidine target. Indeed, they find that bacteria
exposed to high levels of UV have higher G+C content than the others. Bak et
al. [2] strongly criticize their methodology, but no clear cut answer is achieved.

In an FEscherichia coli chromosome, it is true that a sequence with a high
G+C content will contain few phototargets: the following code was used to
produce figure 10.3.

worstcase <- function(gc) {
c <- gc

t <- (1 - ge)
(0.59 * t * t + 0.34 * t *x c + 0.07 *x c *x c)/2

randomcase <- function(gc) {
c <- gc/2
t <- (1 - ge)/2

10.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 135

0.59 x t xt + 0.34 *xt x c+ 0.07 * c xc

bestcase <- function(gc) {
c <= (ge)/2
t <= (1 - ge)/2
if ((c + t) <= 0.5) {
0

}
else {
c <= (c+t-0.5)/2
t <- (¢ +t - 0.5)/2
3 0.59 * t *x t + 0.34 *x t *x ¢ + 0.07 * c * c

}

xval <- seq(from = 0, to = 100, length = 100)

yrand <- sapply(xval/100, randomcase)

yworst <- sapply(xval/100, worstcase)

ybest <- sapply(xval/100, bestcase)

plot(xval, 100 * yworst, las = 1, type = "1", lwd = 2, 1ty = 1,

xlab = "G+C content [%]", ylab = "Phototargets weighted density [%]",
main = "Estimated as in Escherichia coli chromosome",
ylim = c(0, max(100 * yworst)))

points(xval, 100 * yrand, type = "1", lwd = 2, 1ty = 2)

points(xval, 100 * ybest, type = "1", lwd = 2, 1ty = 3)

abline(v = c(25, 75), 1ty = 2)

arrows (25, 25, 75, 25, code = 1, le
arrows (25, 25, 75, 25, code = 2, le
text (50, 25, "Biological range", pos = 3)

nn
o
=
~

In a Micrococcus lysodeikticus sequence (the following code was used to pro-
duce figure 10.4), we can see that this is no longer true...

worstcase <- function(gc) {
c <- gc
t <= (1 - ge)
(0.19 * t *x t + 0.565 * t * c + 0.26 * c * c)/2

randomcase <- function(gc) {
c <- gc/2
t <= (1 - ge)/2
0.19 * t * t + 0.55 * t * ¢ + 0.26 * c * C

bestcase <- function(gc) {
c <= (gc)/2
t <- (1 - ge)/2
if ((c + t) <= 0.5) {
0

}
else {
c <= (c+t-0.5)/2
t <- (¢ +t - 0.5)/2
0.19 x t * t + 0.56 x t *x ¢ + 0.26 * c * cC

}
xval <- seq(from = 0, to = 100, length = 100)
yrand <- sapply(xval/100, randomcase)
yworst <- sapply(xval/100, worstcase)
ybest <- sapply(xval/100, bestcase)
plot(xval, 100 * yworst, las = 1, type = "1", lwd = 2, 1ty = 1,
xlab = "G+C content [%]", ylab = "Phototargets weighted density [%]",
main "Estimated as in Micrococcus lysodeikticus chromosome",
ylim = c(0, max(100 * yworst)))
points(xval, 100 * yrand, type = "1", lwd
points(xval, 100 * ybest, type = "1", lwd
abline(v = c(25, 75), 1ty = 2)
arrows (25, 25, 75, 25, code = 1, le = 0.1)
arrows (25, 25, 75, 25, code = 2, le = 0.1)
text (50, 25, "Biological range", pos = 3)

2)
3)

2, 1ty
2, 1ty

These two figures (figure 10.3 and 10.4) show that the density of phototargets
depends on:

e the degree of aggregation of pyrimidine dinucleotides in the sequence,

136 CHAPTER 10. NONPARAMETRIC STATISTICS

Estimated as in Escherichia coli chromosome

30

Biological range

20 —

10

Phototargets weighted density [%0]
'_\
[6)]
L

G+C content [%)]

Figure 10.3: Density of phototargets, weighted by their frequency in the FEs-
cherichia coli chromosome, and calculated for different G+C contents and for
three kinds of random genomes. The weights are as follows: 0.59 x f;; + 0.34 %
(fic + fer) +0.07 * fo. (where fy, is the frequency of dinucleotide zy in the
specified genome). Three models of random genomes are analyzed. In the worst
case (solid curve), the genome is the concatenation of a sequence of pyrimidines
and a sequence of purines: all pyrimidines are involved in a pyrimidine dinu-
cleotide. In the best case (dotted curve), the genome is an unbroken succession
of pyrimidine-purine dinucleotides: no pyrimidine is involved in a pyrimidine
dinucleotide. In the "random case” (dashed curve), the frequency of a pyrimi-
dine dinucleotide is the result of chance (fy, = fz X fy).

10.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 137

Estimated as in Micrococcus lysodeikticus chromosome

T T
| T
1 1
= — | |
g 12 ! !
[[
n —] | |
c 10 1 |
(%] | |
g 1 1
— | |
g 8 . .
< | |

=) - - —mm——
(] — | == I
; 6 __—l"_ |
2 --- | |
— | 1
= 4 [[
< 1 1

+—

i) 1 1
o) — 1 1
< 2 | |
o 1 1
| |

0_ e de e oo ennaaeaan
1 1

G+C content [%)]

Figure 10.4: Density of phototargets, weighted by their frequency in the Mi-
crococcus lysodeikticus chromosome, and calculated for different G+C con-
tents and for three kinds of random genomes. The weights are as follows:
0.19 * fir + 0.55 % (fre + fer) + 0.26 % feo. See figure 10.3 for more details.

138 CHAPTER 10. NONPARAMETRIC STATISTICS

e the sensitivities of the four pyrimidine dinucleotides.

Instead of looking at G+C content, which is an indirect measure of the im-
pact of UV exposure on genomic content, let us look at pyrimidine dinucleotide
content.

Are CC, TT, CT and TC dinucleotides avoided in light-exposed bacteria?

10.4.2 The measured impact of UV light on genomic con-
tent

On all available genomes (as retrieved from Genome Reviews database on June
16, 2005), we have computed the mean of the z-score with the base model on all
intergenic sequences, and the mean of the z-score with the codon model on all
CDS. The results show that there is no systematic under-representation of none
of the four pyrimidine dinucleotides (see figure 10.5 produced by the following
code).

data(dinucl)
par (mfrow = c(2, 2), mar = c(4, 4, 0.5, 0.5) + 0.1)
myplot <- function(x) {
plot(dinucl$intergenic[, x], dinucl$coding[, x], xlab = "intergenic",
ylab = "coding", las = 1, ylim = c(-6, 4), xlim = c(-3,
3), cex = 0)
rect(-10, -10, -1.96, 10, col = "yellow", border = "yellow")
rect(1.96, -10, 10, 10, col = "yellow", border = "yellow")
rect(-10, -10, 10, -1.96, col = "yellow", border = "yellow")
rect(-10, 1.96, 10, 10, col = "yellow", border = "yellow")

abline(v = 0, lty = 3)
abline(h = 0, 1ty = 3)
abline(h = -1.96, 1ty = 2)
abline(h = +1.96, 1ty = 2)
abline(v = -1.96, 1ty = 2)
abline(v = +1.96, 1ty = 2)

points(dinucl$intergenic[, x], dinucl$coding[, x], pch = 21,
col = rgb(0.1, 0.1, 0.1, 0.5), bg = rgb(0.5, 0.5,

0.5, 0.5))
legend("bottomright", inset = 0.02, legend = paste(substr(x,
1, 1), "p", substr(x, 2, 2), " bias", sep = ""), cex = 1.25,
bg = "white")

box ()

¥

myplot ("CT")
myplot ("TC")
myplot ("CC")
myplot ("TT")

However, we have little or no information on the exposure of this bacteria to
UV light. In order to fully answer this question, let’s do another analysis and
look at Prochlorococcus marinus genome.

Prochlorococcus marinus seems to make an ideal model for investigating this
hypothesis. Three completely sequenced strains are available in the Genome
reviews database: two of these strains are adpated to living at a depth of more
than 120 meters (accession numbers AE017126 and BX548175), and the other
one at a depth of 5 meters (accession number BX548174).

Living at a depth of 5 meters, or at a depth of more than a 120 meters
is totally different in terms of UV exposure: the residual intensity of 290 nm
irradiation (UVb) in pure water can be estimated to 56% of its original intensity
at 5 m depth and to less than 0.0001% at more than 120 m depth. For this
reason, two of the Prochlorococcus marinus strains can be considered to be

10.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 139

coding
coding

coding

coding

o CpC bias

TpT bias

I 1 I I I I I I 1 I I I I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

intergenic intergenic

Figure 10.5: Plot of the mean zscore statistics for intergenic sequences (x-
axis) and for coding sequences (y-axis), for each of the four pyrimidine din-
ucleotides. On each plot, a dot corresponds to the mean of these two statistics
in a given prokaryote chromosome. The null x and y axis (dotted lines), and
the 5% limits of significance for the standard normal distribution (dashed lines)
are plotted as benchmarks. It should be noted that the variability within one
chromosome is sometimes as great as that between different chromosomes.

140 CHAPTER 10. NONPARAMETRIC STATISTICS

adapted to low levels of UV exposure, and the other one to much higher levels.
Is pyrimidine dinucleotide content different in these three strains? And is it
linked to their UV exposure?

We have computed the z-score with the codon model on all CDS from each
of these three strains (as retrieved from Genome Reviews database on June 16,
2005). Figure 10.6 was produced with the following code:

data(prochlo)
oneplot <- function(x) {
plot(density(prochlo$BX548174[, x]), ylim = c(0, 0.4),
xlim = c(-4, 4), 1ty = 3, main = paste(substr(x, 1,
1), "p", substr(x, 2, 2), " bias", sep = ""),
xlab = "", ylab = "", las = 1, type = "n")
rect(-10, -1, -1.96, 10, col = "yellow", border = "yellow")
rect(1.96, -1, 10, 10, col = "yellow", border = "yellow")
lines(density(prochlo$BX548174[, x]), 1ty = 3)
lines(density(prochlo$AE017126[, x]), 1ty = 2)
lines(density(prochlo$BX548175[, x]), 1ty = 1)
abline(v = c(-1.96, 1.96), 1ty = 5)
box ()

¥

par(mfrow = c(2, 2), mar = c(2, 3, 2, 0.5) + 0.1)
oneplot ("CT")

oneplot ("TC")

oneplot ("CC")

oneplot ("TT")

Figure 10.6 shows that there is no difference between the relative abundances
of pyrimidine dinucleotides in these three strains. We can say that pyrimidine
dinucleotides are not avoided, and that the hypothesis by Singer and Ames
[87] no longer stands [66]. The following code was used to produce figure 10.7
that summarizes the relationship between pyrimidine dinucleotides and UV-
exposure.

data(prochlo)
par(oma = ¢(0, 0, 3, 0), mfrow = c(1, 2), mar = c(5, 4, O,
0), cex = 1.5)
example (waterabs, ask = FALSE)
abline(v = 260, 1lwd = 2, col = "red")
par(mar = c(5, 0, 0, 2))
plot(seq(-5, 3, by = 1), seq(0, 150, length = 9), col = "white",
ann = FALSE, axes = FALSE, xaxs = "i", yaxs = "i")
axis(1, at = c(-1.96, 0, 1.96), labels = c(-1.96, 0, 1.96))
lines(rep(-1.96, 2), c(0, 150), lty = 2)
lines(rep(1.96, 2), c(0, 150), 1ty = 2)
title(xlab = "zscore distribution", cex = 1.5, adj = 0.65)
selcol <- c(6, 8, 14, 16)
z5 <- prochlo$BX548174[, selcol]
2120 <- prochlo$AE017126[, selcoll]
2135 <- prochlo$BX548175[, selcol]
todo <- function(who, xx, col = "black", bottom, loupe) {
dst <- density(whol[, xx])
sel <- which(dst$x >= -3)
lines(dst$x[sel]l, dst$ylsel] * loupe + (bottom), col = col)

¥

todo2 <- function(who, bottom, loupe) {
todo(who, "CC", "blue", bottom, loupe)
todo(who, "CT", "red", bottom, loupe)
todo(who, "TC", "green", bottom, loupe)
todo(who, "TT", "black", bottom, loupe)

todo3 <- function(bottom, who, leg, loupe = 90) {
lines(c(-5, -3), c(150 - leg, bottom + 20))
rect(-3, bottom, 3, bottom + 40)
text(-2.6, bottom + 38, paste(leg, "m"))

todo2(who, bottom, loupe)

¥
todo3(bottom = 110, who = z5, leg = 5)

10.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 141

CpT bias TpC bias

Figure 10.6: Each figure shows the distributions of the zscore in all coding se-
quences corresponding to each of the three strains of Prochlorococcus marinus.
In each figure, the distribution for the MED4 (a high-light adapted strain) is
shown as a solid line; the distribution for the SS120 (a low-light adapted strain)
is shown as a dashed line, and the distribution for the MIT 9313 (a low-light
adapted strain) is shown as a dotted line. The 5% limits of significance for the
standard normal distribution (dashed vertical lines) are plotted as benchmarks.

142 CHAPTER 10. NONPARAMETRIC STATISTICS

Dinucleotide composition for three Prochlorococcus marinus ecotypes

Depth under water surface (m)

300 400 500 600 -1.96 0 1.96

Wavelength (nm) zscore distribution

Figure 10.7: This figure is from figure 2.7 in [65], see also the example section
in data(prochlo). The left panel represents the absorbtion of light by pure
water in the visible spectrum (gradient in color) and in the near UV (gradient
in gray scale). Corresponding data were compiled from [73] and [52]. For DNA,
the biological relevant wavelength is at 260 nm (red vertical line) corresponding
to its maximum for light absorbtion. The right panel shows the distribution
of the z-codon statistic for the four pyrimidine dinucleotides (viz CpC CpT
TpC TpT) for the coding sequences of three different ecotypes (5 m, 120 m,
135 m) of Prochlorococcus marinus. The complete genome sequences accession
numbers are BX548175 (P. marinus MIT9313 [78] 5 m, high UV exposure),
AE017126 (P. marinus SS120 strain CCMP1375 [14] 120 m, low UV exposure)
and BX548174 (P. marinus MED4 [78] 135 m, low UV exposure).

todo3(bottom = 50, who = z120, leg = 120)
todo3(bottom = 5, who = z135, leg = 135)
legend(-4.5, 110, c("CpC", "CpT", "TpC", "TpT"), lty = 1,

pt.cex = cex, col = c("blue", "red", "green", "black"))
mtext (expression(paste("Dinucleotide composition for three ",
italic("Prochlorococcus marinus"), " ecotypes")), outer = TRUE,

cex = 2, line = 1)

Session Informations
This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2

e Locale: C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

10.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 143
e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:
e @ compilation time was: Sun Oct 26 18:24:10 2008

e INTEX compilation time was: December 12, 2008

144 CHAPTER 10. NONPARAMETRIC STATISTICS

CHAPTER 11

RISA wn silico with seqinR

Lobry, J.R.

11.1 Introduction

By RISA we mean here Ribosomal Intergenic Spacer Analysis. Ribosomal genes
are highly conserved so that it is relatively easy to design universal PCR primers.
On the other hand the intergenic space is under weaker selective pressure, yield-
ing more between species variability in terms of length.

Making a RISA in silico is an interesting task for seqinR : we want to ex-
tract ribosomal genes from general databases and then to compute the fragment
length between the two primers.

11.2 The primers

Let’s use the following primer in the 16S, also known as S-D-Bact-1522-b-S-20
[76]:
library(seqinr)

(amol <- tolower ("TGCGGCTGGATCCCCTCCTT"))
[1] "tgcggctggatccecteett"

Let’s use the following primer in the 23S, also known as L-D-Bact-132-a-A-18
[76]:

(amo2 <- tolower ("CCGGGTTTCCCCATTCGG"))
[1] "ccgggtttccccattegg"

We work thereafter with its complementary sequence as follows:

cplt <- function(x) c2s(comp(rev(s2c(x))))
(amo2 <- cplt(amo2))

[1] "ccgaatggggaaacccgg"

145

146 CHAPTER 11. RISA IN SILICO WITH SEQINR

11.3 Finding a primer location

We want to fing a substring allowing for mismatches (say 3) but no indels!.
Let’s write a function for this. Here we just use a moving window to count the
number of matches for all positions and return the one with the maximum value.
If the maximum number of matches if not enough, NA is returned instead. In
the verbose the function produces a plot to check that everything is OK.

find.amo <- function(amo, myseq, verbose = FALSE, nmiss = 3) {
y <- numeric(nchar(myseq))
myseq2 <- s2c(myseq)
for (k in seq_len(nchar(myseq) - nchar(amo))) {
y[k] <- sum(s2c(amo) == myseq2[k:(k + nchar(amo) -
IDAD)

if (verbose)
plot(1l:nchar(myseq), y, type = "h", ylim = c(0, nchar(amo)),
main = amo)
nmismatch <- nchar(amo) - max(y)
if (verbose)
print (paste(nmismatch, "mismatch"))
if (nmismatch > nmiss) {
warning(paste("too many mismatches:", nmismatch))
return(NA)

if (verbose)

rug(which.max(y), col = "red")
return(which.max(y))

Example with a random sequence:

rseq <- c2s(sample(s2c("acgt"), 500, rep = T))
find.amo(amol, rseq, verbose = TRUE)

[1] "9 mismatch"
[1] NA

tgcggctggatceectectt

20
|

T T T T T T
0 100 200 300 400 500

1:nchar(myseq)

Now insert a perfect target for the first primer at position 100 in this random
sequence to check that everything is OK :

substr(rseq, 100, 100 + nchar(amol)) <- amol
find.amo(amol, rseq, verb = T)

[1] "O mismatch"
[1] 100

11t would be better to code this as a regular expression to use standard tools but I don’t
know how to do this.

11.4. COMPUTE THE LENGTH OF THE INTERGENIC SPACE 147

tgcggctggatecectectt

20

T T T T T T
0 100 200 300 400 500

1:nchar(myseq)

11.4 Compute the length of the intergenic space

More exactly we want to compute the length of the fragment amplified between
two PCR primers. Here it is, note that we have to take into account whether
the primers are on the direct or complementary strand and the length of the
primers:

risa.length <- function(myseq, amol, amo2, forward, verbose = FALSE) {
if (forward) {
posamol <- find.amo(amol, myseq, verbose = verbose)
posamo2 <- find.amo(amo2, myseq, verbose = verbose)

else {

posamol <- find.amo(cplt(amol), myseq, verbose = verbose)

posamo2 <- find.amo(cplt(amo2), myseq, verbose = verbose)
if (is.na(posamol))

return(list(res = NA, posamol = NA, posamo2 = NA))

if (is.na(posamo2))

return(list(res = NA, posamol = NA, posamo2 = NA))
return(list(res = abs(posamo2 - posamol) + ifelse(forward,

nchar (amo2), nchar(amol)), posamol = posamol, posamo2 = posamo2))

Let’s check this with an artificial example by inserting the second primer at
position 300 in our random sequence:

nchar (amo2)
[1] 18

substr(rseq, 300, 300 + nchar(amo2)) <- amo2
risa.length(rseq, amol, amo2, forward = T)$res

[1] 218
risa.length(cplt(rseq), amol, amo2, forward = F)$res
[1] 218

Looks OK for me.

11.5 Compute IGS for a sequence fragment

By sequence fragment we mean here a genbank entry accessed by its name
(mnemo in the code thereafter). There could be more than one rRNA operon
in the sequence fragment but there should be the same number of 16S and 23S
genes. There is a maximum length to the 16S-23S segemnt to avoid problems

148 CHAPTER 11. RISA IN SILICO WITH SEQINR

(bp) 100 200 300 400 500 600 700
L 1 1 1 1

r T T T T

w-subdivision of Proteobacteria (18/ 43) [
B-subdivision of Proteobacteria (9/26) [0 o0 "]

900 1,000 1,100 1,200 1,300 1,400 1,500
L 'l 1]

y-subdivision of Proteobacteria (22/ 63)

-subdivision of Proteobacteria (1/ 1) |

High GC gram positive bacteria (16/ 78)

Low GC gram posilive bacteria (17/92) | =71

Chlamydiae 5/ 19 2 =

Cyanobacteria (5 9) o [T

Spirochetes (/3 [0T00

Cytophagales (3/3) [1 0

Figure 11.1: Screenshot of a part of figure 1 in [76] showing the observed range
of ribosomal intergenic space length in bacterial species (n = 428).

when genes are not annotated in consecutive order, in this case NA is returned.
The default maximum length of 10 kb is conservative, the maximum observed
value is 1.5 kb (¢f Fig. 11.1), some post-processing of the results is most likely
necessary to remove outliers. In case of problem during the query process the
value -Inf is returned to denote this.

mn2risa <- function(mnemo, amol, amo2, maxlength = 10000, verbose = FALSE){
if (verbose) print(paste("mn2risa -->", mnemo))
#

Make a list on server with the requested entry name:
#

try.res <- try(query("frag", paste("N=", mnemo)))
if (inherits(try.res, "try-error")) return(-Inf)

From this make a list with all subsequences that are rRRA genes
with a keyword containing 16S anywhere in it:

#

try.res <- try(query("fragi6S", "frag ET T=RRNA ET K=016S@"))

if (inherits(try.res, "try-error")) return(-Inf)

if (verbose) print(paste("n 16S = ", fragi6S$nelem))

#

The same but with 23S anywhere in keywords:

#

try.res <- query("frag23s", "frag ET T=RRNA ET K=0@23SQ")
if (verbose) print(paste("n 23S = ", frag23S$nelem))

if (inherits(try.res, "try-error")) return(-Inf)

#

We want the same number of 16S and 23S rRNA in the entry:

#

if (fragl6S$nelem != frag23S$nelem) return(NA)

#

We retrieve the location of all 16S and 23S rRNA in this genbank entry:
#

try.res <- try(locl6S <- getLocation(fragil6s))
if (inherits(try.res, "try-error")) return(-Inf)
try.res <- try(loc23S <- getLocation(frag23S))
if (inherits(try.res, "try-error")) return(-Inf)
#

The result is a vector with as many elements as rRNA operons

n <- fragl6S$nelem
risa <- numeric(n)
#

We loop now over all operons:
#

for(i in seq_len(n)){
coord.16S <- loc16S[[i]]
coord.23S <- loc23S[[i]]
#
Test if the genes are in the forward or reverse strand:

#
if (coord.16S[1] < coord.23S[1]){

11.6. COMPUTE IGS FOR A SPECIES 149

forward <- TRUE

if (verbose) print("forward")
} else {

forward <- FALSE

if (verbose) print("bacward")

¥

if (verbose) print(paste("16S at", coord.16S[1], coord.16S[2], "23S at", coord.23S[1], coord.23S[2]))
#

Check that our operon is not too long:

#

xmin <- min(coord.16S, coord.23S)

xmax <- max(coord.16S, coord.23S)

if (xmax - xmin > maxlength){
warning (paste("Operon too long found, NA returned", mnemo, i))
risa[i] <- NA
next

Get just the sequence of the operon from the genbank entry. This
is the only place where we are retrieving sequence data. This
return an objet of class SeqFrag that we cast into a simple
character string.

HEHFERHRHY

try.res <- try(myseq <- as.character(getFrag(frag$req[[1]], xmin, xmax)))
if (inherits(try.res, "try-error")){
risa[i] <- -Inf
next
if (verbose) print(paste("nchar myseq = ", nchar(myseq)))
#
Compute the IGS length on this operon
#

risa[i] <- risa.length(myseq, amol, amo2, forward, verbose = F)$res

return(risa)

Example with a fragment with one 16S and two 23S genes, NA is returned as
expected :

mn2risa("BBRNAOPR", amol, amo2, verb = T)

Example with a fragment with seven 16S and seven 23S genes, the seven
IGS lengths are returned :

mn2risa("AE0O05174", amol, amo2, verb = T)

11.6 Compute IGS for a species

We could work in fact at any taxonomical level, but suppose here that we are
interested by the species level. All we have to do is to find the list of fragment
where there is at least one 16S and one 23S gene. We use here all the power of
ACNUC query language.

sp2risa <- function(sp, amol, amo2, verbose = TRUE){
if (verbose) print(paste("sp2risa -->", sp))
#

protect query with quotes, get all sequences attached the specie
#

try.res <- try(query("cursp", paste("\"sp=", sp, "\"", sep=""), virtual=TRUE))
if (inherits(try.res, "try-error")) return(-Inf)

#
Get all 16S rRNA genes:
#

try.res <- try(query("resl", "cursp ET T=RRNA ET K=016SQ@", virtual=TRUE))
if (inherits(try.res, "try-error")) return(-Inf)
#

Replace by mother sequences:
#

try.res <- try(query("resl", "ME resl", virtual=TRUE))

150 CHAPTER 11. RISA IN SILICO WITH SEQINR

if (inherits(try.res, "try-error")) return(-Inf)
#

Get all 23S rRNA genes:

#

try.res <- try(query("res2","cursp ET T=RRNA ET K=023S@", virtual=TRUE))
if (inherits(try.res, "try-error")) return(-Inf)
#

Replace by mother sequences:
#

try.res <- try(query("res2","ME res2",virtual=TRUE))
if (inherits(try.res, "try-error")) return(-Inf)
#

Keep only sequences that contains at least one 16S and 23S:
#

try.res <- try(query("res3", "resl ET res2"))
if (inherits(try.res, "try-error")) return(-Inf)

if (verbose) print(paste("number of mother sequences = ", res3$nelem))
segnames <- getName (res3)

result <- vector("list", res3$nelem)

names (result) <- segnames

#

Loop over all sequences:

#

for(i in seq_len(res3$nelem)){
try.res <- try(result[[i]] <- mn2risa(seqnames([i], amol, amo2, verbose = verbose))
if (inherits(try.res, "try-error")) result[[i]] <- -Inf

}

return(result)

11.7 Loop over many species

11.7.1 Preprocessing: select interesting species

We select bacterial species for which there is at least one entry with at least one
16S and one 23S gene:

#
Choose a bank:

#

choosebank ("genbank")

#

Select all bacterial sequences with 23S:

#

query("allbact", "SP=bacteria ET T=RRNA ET K=023SQ@", virtual = TRUE)
#

Replace by mother sequences:

#

query("allbact", "ME allbact", virtual = TRUE)
#

Look for 16S in them:

#

query("allbact", "allbact ET T=RRNA ET K=Q16SQ@", virtual = TRUE)
#

Get species names:

#

query("splist", "PS allbact")

#

Save them into a file:

#

splist <- getName(splist)
head(splist)

length(splist)

save(splist, file = "splist.RData")

11.7.2 Loop over our specie list

We loop now over our specie list. As this is long, we run it overnight in batch,
saving results on the fly to spy them. When the species name is a single word

11.8. PLAYING WITH RESULTS

this is most likely a genus, then to avoid redundancy in computation with the
underlying species, it is not considered and a +Inf value is set. An empty list
means that no fragment with both 16S and 23S genes were found. A missing
value NA means that the PCR primers were not found. A -Inf value means a
problem while querying the server.

load("splist.RData")

resultat <- vector("list", length(splist))

names (resultat) <- splist

i<-1
for (sp in splist) {

print (paste("===>", sp))

if (length(unlist(strsplit(sp, split
resultat[[i]] <- +Inf

i<-1i+1
next

")) == 1) o

try.res <- try(resultat[[i]] <- sp2risa(sp = sp, amol,

amo2, verbose = TRUE))
if (inherits(try.res, "try-error"))
resultat[[i]] <- -Inf

save(resultat, file
print(paste("=>", resultat[[i]]))

i<-1i+1

"resultat.RData")

11.8 Playing with results

load("resultat.RData")

There shouldn’t be any null entries in results, except if we are spying them.

lesnull <- (unlist(lapply(resultat, is.null)))

(nnull <- sum(lesnull))

[1]1 1

resultat <- resultat[!lesnull]

Show how many fragments we have by species :

table(unlist(lapply(resultat, length)))

1 2 3 4
15667 2563 114 51
16 17 18 19
4 3 6 1
39 45 64 69

1 1 1 1

5
24
20

4
71

1

6
22
21

1
72

1

7
27
22
5
80
1

8
11
23

1

107

1

9
10
24

2

139

1

10
6
25
1

11
6
26
3

12
3
29
2

13
2
31
1

Show how many IGS of different size we have per species.

14
6
35
1

15
5
37
1

igsdbysp <- unlist(lapply(resultat, function(x) length(unique(unlist(x)))))
plot(table(igsdbysp), xlab = "Number of IGS of different size",

ylab = "Number of species")

CHAPTER 11. RISA IN SILICO WITH SEQINR

152
o
S _|
s
-
[}
@ o
c o _|
o O
o
7]
—
5]
=
©
o
IS
=}
Zz o
S _
o)
o |I|...

FrTTTTTTTTTTT
1 3 5 7 9 11

24 29

Number of IGS of different size

Which are the species with the most important number of IGS?

tail (igsdbysp[order (igsdbysp)], n = 30)

KLEBSIELLA PNEUMONIAE 342
PSEUDOMONAS PUTIDg

SHEWANELLA SEDIMINIS HAW—EB;
VIBRIO CHOLERAE

VIBRIO PARAHAEMOLYTICUS RIMD 221063;
HELIOBACTERIUM MODESTICALDUM ICEI
PSEUDOMONAS FLUORESCEN;

VIBRIO PARAHAEMOLYTICUg
ALKALIPHILUS METALLIREDIGENS QYME
BRADYRHIZOBIUM JAPONICUﬁ
GEOBACILLUS KAUSTOPHILUS HTA422
ESCHERICHIA CDL?

VIBRIO FISCHERI ESliZ
PHOTOBACTERIUM PROFUNDUM Séé
STAPHYLOCOCCUS AURE%%

How many IGS do we have there:

brut <- unlist(resultat)
length(brut)

[1] 7659

brut2 <- brut[!is.na(brut)]
length (brut2)

CAMPYLOBACTER JEJUNI
SHEWANELLA WOODYI ATCC 5190;
ESCHERICHIA COLI CFTO?;
VIBRIO VULNIFICU;

BACILLUS HALODURANS C—12g
CUPRIAVIDUS NECATD;
CANDIDATUS COMPETIBACTER PHUSPHATIg
BACILLUS HALODURANg
SORANGIUM CELLULOSUﬁ
PSYCHROMONAS INGRAHAMII 3?
RHODOPSEUDOMONAS PALUSTRIg
GEOBACILLUS KAUSTDPHIL%g
KLEBSIELLA PNEUMDNIig
BACILLUS CERE&%

UNCULTURED SYNECHOCOCCUS S%Z

11.8. PLAYING WITH RESULTS 153
[1] 4373

tab <- table(brut2)
x <- as.numeric(unlist(dimnames(tab)))
y <- tab
plot(x, y, type = "h", ylim = c(0, max(y)), main = "Global distribution of IGS length",
las = 1, ylab = "Count", xlab = "Size in bp", xlim = c(O,
1500))
dst <- density(brut2, adj = 0.2)
lines(dstx, dsty * max(y)/max(dst$y), col = "red", xpd = NA)

Global distribution of IGS length

150

100

Count

50

0 500 1000 1500

Size in bp

Session Informations
This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2

Locale: C

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15,
tools 2.8.0

There were two compilation steps:

e @ compilation time was: Sun Oct 26 18:25:07 2008

e IXTEX compilation time was: December 12, 2008

154 CHAPTER 11. RISA IN SILICO WITH SEQINR

Part 111

Appendix

155

CHAPTER 12
FAQ: Frequently Asked Questions

Lobry, J.R.

12.1 How can I compute a score over a moving
window?

As an illustration, suppose that we want to reproduce a part of figure 1 from
[63] whose screenshot is given is given in figure 12.1.

The score here is the GC-skew computed in non-overlapping windows of
10 Kb for a 1.6 Mb sequence. We need a fragment of Escherchia coli K12
chromosome from 67.4 min to 4.1 min on the genetic map'. Let’s put this
fragment into the string myseq:
choosebank ("greview")

myseql <- gfrag("U00096", start = 3217270, length = 1077)
myseq2 <- gfrag("U00096", start = 1, length = 194133)

1 The sequence is also directly available with data(m16j).

origin of replication

(C-GY(C+G) %

PN
[P

Figure 12.1: Screenshot of a part of figure 1 from [53]. The GC-skew is computed
in non-overlapping windows of 10 Kb along a 1.6 Mb fragment of the Escherichia
coli chromosome. The sequence is available with data(m16j).

157

158 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

closebank ()
myseq <- paste(myseql, myseq2, sep = "")
nchar (myseq)

[1] 1616539

This is not exactly the same sequence that was used in [53] but very close
to?. We define a function called gcskew() that computes our score for a given
string x:

gcskew <- function(x) {
if (!is.character(x) || length(x) > 1)

stop("single string expected")
tmp <- tolower(s2c(x))

nC <- sum(tmp == "c")

nG <- sum(tmp == "g")

if (nC + nG == 0)
return(NA)

return(100 * (nC - nG)/(nC + nG))

écskew("GCCC")

[1] 50

gcskew ("GCCCNNNNNN")
[1] 50

Note some defensive programming tricks used here:

e We check that the argument x is a single string.

o We expand it as vector of single chars with s2¢ () only within the function
to avoid big objects in the workspace.

e We force to lower case letters with tolower () so that we can use upper
case letters too.

We avoid division by zero and return NA in this case.

e We do not divide by the length of x but by the actual number of C and
G so that ambiguous bases such as N do not introduce biases.

We move now along the sequence to compute the GC-skew:

step <- 10000
wsize <- 10000
starts <- seq(from = 1, to = nchar(myseq), by = step)
starts <- starts[-length(starts)]
n <- length(starts)
result <- numeric(n)
for (i in seq_len(n)) {
result[i] <- gcskew(substr(myseq, starts[il, starts[i] +
wsize - 1))

The following code® was used to produce figure 12.2.

2 The sequence used in [53] was a 1,616,174 bp fragment obtained from the concatenation
of nine overlapping sequences (U18997, U00039, L10328, M87049, L19201, U00006, U14003,
D10483, D26562 [88, 7, 12, 72, 4, 96]). Ambiguities have been resolved since then and its was
a chimeric sequence from K-12 strains MG1655 and W3110 [32], the sequence used here is
from strain MG1655 only [5].

3 This code is adapted from the code at http://www.stat.auckland.ac.nz/ paul/
RGraphics/chapter3.html for figure 3.25 in Paul Murrell’s book [60]. This book is a must
read if you are interested by @’s force de frappe in the graphic domain.

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html

12.1. HOW CANI1COMPUTE A SCORE OVER A MOVING WINDOW?159

GC skew in Escherichia coli

10

ongk]ofrepﬁcaﬁon

WW

0 200 400 600 800 1000 1200 1400 1600

(C-G)/(C+G) %

-10 <

position (Kbp)

Figure 12.2: Re-creation of figure 12.1 from scratch.

xx <- starts/1000
yy <- result
n <- length(result)

hline <- 0

plot(yy ~ xx, type = "n", axes = FALSE, ann = FALSE, ylim = c(-10,
10))

polygon(c(xx[1], xx, xx[nl), c(min(yy), yy, min(yy)), col = "black",
border = NA)

usr <- par("usr")

rect(usr[1], usr[3], usr[2], hline, col = "white", border = NA)

lines(xx, yy)

abline(h = hline)

box ()

axis(1l, at = seq(0, 1600, by = 200))
axis(2, las = 1)

title(xlab = "position (Kbp)", ylab = "(C-G)/(C+G) %", main = expression(paste("GC skew in

italic(Escherichia ~ “coli))))
arrows(860, 5.5, 720, 0.5, length = 0.1, 1lwd = 2)

text (860, 5.5, "origin of replication", pos = 4)

You can now play with the wsize and step parameters to explore the signal
(but note that with overlapping windows your points are no more independent)
or use all the smoothing tools available under @. Figure 12.3 shows for in-
stance what can be obtained with the lowess() function with two values for
the smoothing parameter £. The corresponding code is as follows:

plot(xx, yy, col = "grey", type = "b", ylim = c(-10, 10),

las = 1, xaxt = "n", main = expression(paste("GC skew in ",
italic(Escherichia ~ “coli))), xlab = "position (Kbp)",

ylab = "(C-G)/(C+G) %")

axis(1, at = seq(0, 1600, by = 200))

lines(smooth <- lowess(xx, yy, £ = 0.05), lwd = 1)

polycurve <- function(x, y, base.y = min(y), ...) polygon(x = c(min(x),
x, max(x)), y = c(base.y, y, base.y),)

up <- smooth$y > 0

polycurve(smooth$x [up], smooth$y[up], base.y = 0, col = rgb(0,
0, 1, 0.5))

lines(lowess(xx, yy, £ = 0.2), lwd = 2, col = "red")

legend("topright", inset = 0.01, legend = c("f = 0.05", "f = 0.20"),
lwd = c(1, 2), col = c("black", "red"))

abline(h = 0)

arrows(860, 5.5, 720, 0.5, length = 0.1, 1lwd = 2)

text (860, 5.5, "origin of replication", pos = 4)

"
>

160 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

GC skew in Escherichia coli

10
— f=0.05
— f=0.20
5 - origin of replication
X z/////
o
o
2 0
?
e
-5 -
~10 4

0 200 400 600 800 1000 1200 1400 1600

position (Kbp)

Figure 12.3: Playing with the smoothing parameter £ of the lowess () function.

12.2 How can I extract just a fragment from my
sequence?

Use the generic function getFrag() :

choosebank ("emb1TP")

query("mylist", "AC=A00001")
getFrag(mylist$req[[1]], begin = 10, end = 20)
[1] "gatggagaatt"

attr(,"seqMother")

[1] "AOOOO1"
attr(,"begin")
[1] 10

attr(,"class")
[1] "SegFrag"
closebank ()

12.3 How do I compute a score on my sequences?

In the example below we want to compute the G4+C content in third codon
positions for complete ribosomal CDS from FEscherichia coli:

choosebank ("emblTP")

query("ecribo", "sp=escherichia coli ET t=cds ET k=ribosom@ ET NO k=partial")
myseqs <- sapply(ecribo$req, getSequence)

(gc3 <- sapply(mysegs, GC3))

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066

[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[567] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

12.4. WHY DOIHAVE NOT EXACTLY THE SAME G+C CONTENT AS IN CODONW?161

At the amino-acid level, we may get an estimate of the isoelectric point of
the proteins this way:

sapply (sapply(myseqs, getTrans), computePI)

[1] 6.624309 7.801329 10.864793 5.931989 7.830476 6.624309 7.801329
[8] 9.203410 9.826485 5.674672 7.154423 6.060457 6.313741 5.571446
[156] 9.435422 4.310745 6.145496 4.876054 11.006424 10.876041 6.624309
[22] 7.801329 10.864793 9.346289 9.203410 5.877050 5.931989 9.934988
[29] 5.920490 6.612505 6.624309 6.624309 7.801329 10.864793 5.931989
[36] 11.182499 9.598944 6.624309 10.864793 9.203410 11.031938 5.858421
[43] 5.858421 11.777516 11.777516 10.619175 11.365738 9.460987 10.864793
[50] 13.002381 9.845859 10.584862 11.421252 10.248325 11.031938 10.402075
[67] 4.863862 6.612505 9.681066 11.150304 11.182505 11.043602 6.624309
[64] 6.612505 6.624309 4.310745

Note that some pre-defined vectors to compute linear forms on sequences are
available in the EXP data.

As a matter of convenience, you may encapsulate the computation of your
favorite score within a function this way:

GC3m <- function(list, ind = 1:list$nelem) sapply(sapply(list$reqlind],
getSequence), GC3)

GC3m(ecribo)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

GC3m(ecribo, 1:10)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324

12.4 Why do I have not exactly the same G+C
content as in codonW?

This question was raised (and solved) by Oliver Clay in an e-mail (23-AUG-
2006). The program codonW was written in C as part of John Peden’s PhD
thesis on Codon Usage [70] and is available at http://codonw.sourceforge.
net/. The reason for the small differences in G+C content between the two
programs is that the default behavior in codonW is to remove the stop codon
before computations. Here is one way of removing the stop codon under @®:

gc3nos <- sapply(myseqgs, function(s) GC3(s[1:(length(s) -
31N

As compared with the previous result, the difference is small but visible:

plot(x = gc3, y = gc3nos, las = 1, main = "Stop codon removal effect on G+C content\nin third codon positions",
xlab = "With stop codon", ylab = "Stop codons removed")
abline(c(0, 1))

http://codonw.sourceforge.net/
http://codonw.sourceforge.net/

162 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

Stop codon removal effect on G+C content
in third codon positions

0.65

0.60 —

o

&)

a
|

Stop codons removed
o o
N (o)
(6} o
| |

0.40

0.35

T T T T T T
0.35 0.40 0.45 0.50 0.55 0.60

With stop codon

CodonW was released with a test file called input.dat, here are the first 10
lines of the file copied from CodonWSourceCode_1_4_4:

inputdatfile <- system.file("sequences/input.dat", package = "seqinr")
cat (readLines(inputdatfile, n = 10), sep = "\n")

>YCG9 Probable 1377 residues Pha 0 Code O

ATGAATATGCTCATTGTCGGTAGAGTTGTTGCTAGTGTTGGGGGAAGCGGACTTCAAACG
CTTTGCTTTGTTATTGGTTGTACGATGGTTGGTGAAAGGTCACGTCCATTGGTGATTTCC
ATCCTAAGTTGTGCATTTGCTGTAGCTGCTATCGTTGGTCCTATAATCGGAGGTGCCTTT
ACAACCCATGTTACCTGGAGGTGGTGCTTCTATATCAATCTTCCTATCGGTGGTCTTGCC
ATTATTATGTTTTTACTCACATATAAGGCCGAGAATAAGGGTATACTTCAACAAATTAAA
GATGCTATAGGAACAATCTCGAGCTTTACTTTTAGTAAGTTCAGACACCAAGTTAATTTT
AAAAGACTTATGAATGGCATAATCTTCAAGTTTGACTTCTTTGGTTTTGCCCTCTGCTCT
GCAGGGCTGGTCCTTTTCCTACTGGGGCTAACCTTTGGTGGTAATAAATATAGTTGGAAC
TCTGGCCAAGTCATCGCATATTTGGTTTTGGGTGTCTTACTTTTTATTTTTTCATTGGTG

This is a FASTA file that we import under @ with:

input <- read.fasta(file = inputdatfile)
names (input)

[1] "YCG9" "YCG8" "ALPHA2" "ALPHA1" "CHA1" "KRR1"
[7] "PRD1" "KAR4" "PBN1" "LRE1" "APA1" "YCE9"
[13] "YCE8" "YCET" "YCE5" "YCE6" "YCE4" "PDI1"
[19] "GLK1" "YCD8" "SRO9" "YCD6" "YCD5" "YCD3"
[25] "STE50" "HIS4" "BIK1" "FUS1" "Ycosg" "AGP1"
[31] "LEU2" "NFS1" "BUD3" "GBP2" "ILVE" "CWH36"
[37] "PEL1" "RER1" "CDC10" "MRPL32" "YCP4" "CIT2"
[43] "YCP7" "SAT4" "RVS161" "YCQO" "ADP1" "PGK1"
[49] "POL4" "ycQr" "SRD1" "MAK32" "PET18" "MAK31"
[65] "HSP30" "YCR3" "SYN" "YCR6" "GNS1" "FEN2"
[61] "RIM1" "CRY1" "ycs2" "YCS3" "GNS1" "RBK1"
[67] "PHO87" "BUD5" "MATALPHA2" "MATALPHA1" "TSM1" "YCT5"
[73] "PETCR46" "YCT7" "YCTO" "ARE1" "RSC6" "THR4"
[79] "CTR86" "PWP2" "YCU9" "YCvi" "G10" "HCM1"
[85] "RAD18" "CYPR" "YCw1i" "YCW2" "SSK22" "SOL2"
[91] "ERS1" "PAT1" "SRB8" "YCX3" "TUP1" "YC1ie"
[97] "ABP1" "KIN82" "MSH3" "CDC39" "YCcy4" "A2"
[103] "GIT1" "YCz0" "YCz1" "ycza" "YCz3" "PAU3"
[109] "yCZ5" "YCz6" "Yczr"

12.4. WHY DOIHAVE NOT EXACTLY THE SAME G+C CONTENT AS IN CODONW?163

The file input.out contains the values obtained with codonW for the GC
content and GC3s content:

inputoutfile <- system.file("sequences/input.out", package = "seqinr")

cat(readLines (inputoutfile, n = 10), sep = "\n")
title GC3s GC
YCG9_Probable__________ 13 0.335 0.39%4
YCG8________ 573 _residues_ 0.439 0.446
ALPHA2_ _______ 633_residue 0.328 0.351
ALPHAL1 ________ 528_residue 0.345 0.379
CHAl_________ 1083_residue 0.328 0.39%4
KRR1__________ 951_residue 0.364 0.384
PRDY_________ 2139_residue 0.430 0.397
KAR4_________ 1008_residue 0.354 0.383
PBN1 1251 _residue 0.330 0.386

input.res <- read.table(inputoutfile, header = TRUE)
head (input.res)

title GC3s GC

1 YCG9_Probable__________ 13 0.335 0.394
2 YCG8________ 573_residues_ 0.439 0.446
3 ALPHA2_ _______ 633_residue 0.328 0.351
4 ALPHA1________ 528_residue 0.345 0.379
5 CHAl_________ 1083_residue 0.328 0.394
6 KRR1 951_residue 0.364 0.384

Let’s try to reproduce the results for the G4C content, we know that we
have to remove the last stop codon:

input.gc <- sapply(input, function(s) GC(s[1:(length(s) -
31N
max (abs (input.gc - input.res$GC))

[1] 0.0004946237

plot(x = input.gc, y = input.res$GC, las = 1, xlab = "Results with GC()",
ylab = "Results from codonW", main = "Comparison of G+C content results")
abline(c(0, 1))

Comparison of G+C content results

0.55

0.50

0.45

Results from codonW

0.40 —

0.35

T T T T T
0.35 0.40 0.45 0.50 0.55

Results with GC()

164 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

The results are consistent if we consider that we have 3 significant digits in
the file input.out. Now, let’s try to reproduce the results for G4C in third
codon positions:

input.gc3 <- sapply(input, function(s) GC3(s[1:(length(s) -

3)1)
max (abs (input.gc3 - input.res$GC3s))
[1] 0.054
plot(x = input.gc3, y = input.res$GC3s, las = 1, xlab = "Results with GC3()",
ylab = "Results from codonW", main = "Comparison of G+C content in third codon positions results")

abline(c(0, 1))

Comparison of G+C content in third codon positions results

Results from codonW

T T T T T
0.3 0.4 0.5 0.6 0.7

Results with GC3()

There is clearly a problem here. Looking into the documentation of codonW,
GC3s is the G4-C content in third codon position after removing non-synonymous
and stop codons (those corresponding to Met, Trp, Stp). Let’s remove these
codons:

codons <- words()
names (codons) <- sapply(codons, function(c) aaa(translate(s2c(c),

numcode = 1)))
okcodons <- codons[!names(codons) %in% c("Met", "Trp", "Stp")]

ge3s <- function(s) {
tmp <- splitseq(s)
tmp <- tmp[tmp %in’ okcodons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3(tmp)

input.gc3s <- sapply(input, gc3s)
max (abs (input.gc3s - input.res$GC3s))
[1] 0.0004980843

plot(x = input.gc3s, y = input.res$GC3s, las = 1, xlab = "Results with GC3()",
ylab = "Results from codonW", main = "Comparison of G+C content in third codon positions results\n(M
abline(c(0, 1))

12.4. WHY DOIHAVE NOT EXACTLY THE SAME G+C CONTENT AS IN CODONW?165

Comparison of G+C content in third codon positions results
(Met, Trp and Stp codons excluded)

Results from codonW
o
[6)]
|

0.4

0.3

T T T T T
0.3 0.4 0.5 0.6 0.7

Results with GC3()

The results are now consistent. But thinking more about it there is still a
problem with the codons for Ile:

codons [names (codons) == "Ile"]

Ile Ile Ile
nata" "atc" "att"

There are three codons for Ile. If the distribution of the four bases was
uniform and selectively neutral in third codon position of synonymous codons,
then we would expect to get a G+C of 50% in quartet and duet codons at third
codons positions because they all have the same number of W (A or T)and S
(C or G) bases in third position. But for Ile we have two codons ending in W
versus only one in S so that we would get a G+C of % instead of % This point
was clearly stated [90] by Sueoka in 1988:

G + C Content of the Three Codons Positions. In the present
analysis, observed G + C contents of the first, second, and third
codon positions (P;, P2, and Ps, respectively) are corrected average
G + C contents of the three codon positions that are calculated from
56 triplets out of 64. Because of the inequality of o and v at the
third codon position, the three stop codons (TAA, TAG, and TGA)
and the three codons for isoleucine (ATT, ATC, and ATA) were
excluded in calculation of Ps, and two single codons for methionine
(ATG) and tryptophan (TGG) were excluded in all three (Py, P,
and Pg)

Let’s compute P3 and compare it with GC3s:

166 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

P3codons <- codons[!names(codons) %in’% c("Met", "Trp", "Ile",
"Stp")]
P3 <- function(s) {
tmp <- splitseq(s)
tmp <- tmp[tmp %in¥ P3codons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3 (tmp)

¥
input.P3 <- sapply(input, P3)
max (abs (input.P3 - input.res$GC3s))

[1] 0.02821505

plot(x = input.P3, y = input.res$GC3s, las = 1, xlab = "Results with P3",
ylab = "Results from codonW GC3s", main = "Comparison of P3 and GC3s")
abline(c(0, 1))

Comparison of P3 and GC3s

Results from codonW GC3s

T T T T T
0.3 0.4 0.5 0.6 0.7

Results with P3

This is not exactly the same, the maximum observed difference here is about
3%. In practice, P53, GC3, and GC3s are only slightly different [91].

12.5 How do I get a sequence from its name?

This question is adapted from an e-mail (22 Jun 2006) by Gang Xu. I know

that the UniProt (SwissProt) entry of my protein is P08758, if I know its name?,

how can I get the sequence?

choosebank ("swissprot")
query ("myprot", "AC=P08758")
getSequence (myprot$req[[1]1])

4 More exactly, this is the accession number. Sequence names are not stable over time, it’s
always better to use the accession numbers.

12.5. HOW DO I GET A SEQUENCE FROM ITS NAME?

[1]
[19]

M
Ll
ngn
Lyl
ngn
nyn
nyn
nan
nwn
npn
nqn
el
ngn
ngn
ng"
ng"
npn

npn
npn
ngn
npn
nn
npn
nyn
nyn
ngn
npn
npn
nn
ngn
nyn
nn
nyn
ngn
nyn

nan
Ll
ngn
nEn
ngn
nAn
nwn
nyn
ng
Ll
ng
ng"
nEn
ngn
ngn
M
ny
ngn

nyn
nEn
nn
ngn
ngn
nyn
nEn
ngn
nyn
ngn
ngn
ngn
nan
nyn
nyn
nyn
ngn
ngn

ngn
nwn
ngn
nwn
nEn
nEn
nyn
ngn
nyn
nyn
ngn
nyn
ngn
npn
nyn
ngn
npn
nAn

ngn
ngn
nyn
nyn
ngn
nyn
nyn
ngn
nan
ugu
ngn
ngn
ngn
nyn
npn
ngn
nn
nyn

el
ngn
nn
nEn
ngn
ngn
npn
nyn
ngn
ngn
"
nyn
ngn
nyn
M
ngn
ngn
ngn

nn
ngn
ngn
ngn
nyn
nygn
ngn
ngn
nmn
npn
ngn
nyn
nn
'dl
ngn
ngn
nyn
ngn

Session Informations

This

part was compiled under the following @ environment:

nyn
nAn
ngn
ng
ngn
npn
ngn
ngn
nypn
nan
nTn
ngn
ngn
ngn
ngn
ngn
nyn
ngn

nn
nmn
ngn
npn
nyn
ngn
nwn
ngn
nyn
nyn
npn
ngn
npn
nyn
npn
npn
ngn
non

npn
ngn
nyn
ngn
npn
ngn
npn
ngn
nyn
ngn
ngn
nyn
ngn
"R
ngn
ngn
nyn
ngn

ngn
el
Lyl
ngn
nyn
ngn
nEn
ngn
ngn
nan
||§n
ngn
ngn
ngn
nn
nEn
nyn
ngn

npn
ngn
nan
npn
vl
npn
ngn
npn
ngn
npn
ngn
npn
nn
nyn
npn
U\l
ngn
npn

ngn
ngn
ngn
npn
ngn
el
ngn
npn
nn
ugn
nEn
ngn
ngn
npn
npn
nyn
ngn
npn

npn
nwn
nan
ngn
npn
nn
"R
nyn
nan
nan
ngn
nyn
ngn
npn
nygn
ngn
npn

R version 2.8.0 (2008-10-20), i386-apple-darwin8.8.2

Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

npn
npn
ngn
ngn
ngn
ny
npn
nyn
ny"
Ll
nn
M
nyn
nyn
nn
ngn
nwn

ngn
ngn
ngn
ngn
ngn
ngn
nyn
ngn
ngn
nyn
ngn
nn
ngn
nyn
nyn
ngn
ngn

ng"
ngn
ngn
ngn
ngn
ngn
ngn
npn
npn
ngn
nEn
nyn
ngn
npn
nyn
nEn
el

167

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15

There were two compilation steps:

e @ compilation time was: Sun Oct 26 18:36:48 2008

o INTEX compilation time was: December 12, 2008

168 CHAPTER 12. FAQ: FREQUENTLY ASKED QUESTIONS

CHAPTER 13

GNU Free Documentation License

Version 1.2, November 2002
Copyright (©)2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

13.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the

169

170 CHAPTER 13. GNU FREE DOCUMENTATION LICENSE

terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein.
The "Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as ”you”. You accept the license if
you copy, modify or distribute the work in a way requiring permission under
copyright law.

A ”"Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not "Transparent” is
called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title

13.2. VERBATIM COPYING 171

page as such, "Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”En-
dorsements”, or "History”.) To ”Preserve the Title” of such a section when
you modify the Document means that it remains a section "Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

13.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

13.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy

172 CHAPTER 13. GNU FREE DOCUMENTATION LICENSE

of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

13.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
"History” in the Document, create one stating the title, year, authors, and

13.4. MODIFICATIONS 173

publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the "History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements” or "Dedications”; Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled "Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

174 CHAPTER 13. GNU FREE DOCUMENTATION LICENSE

13.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History” in
the various original documents, forming one section Entitled "History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
"Dedications”. You must delete all sections Entitled "Endorsements”.

13.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

13.7 AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

13.8. TRANSLATION 175

13.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, "Dedications”,
or "History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

13.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

13.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License "or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

176 CHAPTER 13. GNU FREE DOCUMENTATION LICENSE

CHAPTER 14

(zenetic codes

Lobry, J.R.

14.1 Standard genetic code

The standard genetic code given in table 14.1 was produced with the follow-
ing @ code and inserted with \input{../tables/stdcode.tex} within this
ETEX document and referenced as \ref{stdcode} in the text.

tablecode(latexfile = "../tables/stdcode.tex", label = "stdcode",
size = "small")

14.2 Available genetic code numbers

The genetic code numbers are those from the NCBI' (http://130.14.29.110/
Taxonomy/Utils/wprintgc.cgi?mode=c). This compilation from Andrzej (An-
jay) Elzanowski, Jim Ostell, Detlef Leipe, and Vladimir Soussov is based pri-
marily on two previous reviews [63, 38].

codes <- SEQINR.UTIL$CODES.NCBI

availablecodes <- which(codes$CODES != "deleted")
codes[availablecodes, "ORGANISMES", drop = FALSE]
ORGANISMES

1 standard
2 vertebrate.mitochondrial
3 yeast.mitochondrial
4 protozoan.mitochondrial+mycoplasma
5 invertebrate.mitochondrial
6 ciliate+dasycladacean
9 echinoderm+flatworm.mitochondrial

10 euplotid
11 bacterial+plantplastid
12 alternativeyeast
13 ascidian.mitochondrial
14 alternativeflatworm.mitochondrial
15 blepharism
16 chlorophycean.mitochondrial
21 trematode.mitochondrial

1 National Center for Biotechnology Information, Bethesda, Maryland, U.S.A.

177

http://130.14.29.110/Taxonomy/Utils/wprintgc.cgi?mode=c
http://130.14.29.110/Taxonomy/Utils/wprintgc.cgi?mode=c

178 CHAPTER 14. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Tle ACT Thr AAT Asn AGT Ser

ATC e ACC Thr AAC Asn AGC Ser

ATA Tle ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.1: Genetic code number 1: standard.

22 scenedesmus.mitochondrial
23 hraustochytrium.mitochondria

The tables of variant genetic codes outlining the differences were produced
with the following @ code:

cdorder <- paste(paste(rep(s2c("tcag"), each = 16), s2c("tcag"),
sep = ""), rep(s2c("tcag"), each = 4), sep = "")
stdcode <- sapply(lapply(cdorder, s2c), translate, numcode = 1)

for (cd in availablecodes[-1]) {
Tfile <- paste("../tables/codnum", cd, ".tex", sep = "")

preemph <- "\\textcolor{red}{\\textbf{"

postemph <- "}}"

stcodon <- (stdcode == sapply(lapply(cdorder, s2c), translate,
numcode = cd))

pre <- ifelse(stcodon, "", preemph)

post <- ifelse(stcodon, "", postemph)

tablecode (numcode = cd, latexfile = Tfile, size = "small",
preaa = pre, postaa = post)

cat(paste("\\input{", Tfile, "}", sep = ""), sep = "\n")

Session Informations

This part was compiled under the following @ environment:
e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2
e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

14.2. AVAILABLE GENETIC CODE NUMBERS

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Met
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
CcCG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Trp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Stp
Stp

Gly
Gly
Gly
Gly

Table 14.2: Genetic code number 2:

vertebrate.mitochondrial.

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Thr
Thr
Thr
Thr

Ile
Ile
Met
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
CCG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Trp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Arg
Arg

Gly
Gly
Gly
Gly

Table 14.3: Genetic code number 3: yeast.mitochondrial.

179

180 CHAPTER 14. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG GIn CGG Arg

ATT le ACT Thr AAT Asn AGT Ser
ATC 1le ACC Thr AAC Asn AGC Ser
ATA e ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.4: Genetic code number 4: protozoan.mitochondrial+mycoplasma.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG GIn CGG Arg
ATT Tle ACT Thr AAT Asn AGT Ser

ATC 1le ACC Thr AAC Asn AGC Ser

ATA Met ACA Thr AAA Lys AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser
GTT Val GCT Ala GAT Asp GGT Gly

GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.5: Genetic code number 5: invertebrate.mitochondrial.

14.2. AVAILABLE GENETIC CODE NUMBERS

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Ile
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
cCaG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Gln
Gln

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Stp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Arg
Arg

Gly
Gly
Gly
Gly

Table 14.6: Genetic code number 6:

ciliate+dasycladacean.

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Ile
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CcCC
CCA
CcCG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Asn
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Trp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Ser
Ser

Gly
Gly
Gly
Gly

181

Table 14.7: Genetic code number 9: echinoderm-+flatworm.mitochondrial.

182 CHAPTER 14. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Cys
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT le ACT Thr AAT Asn AGT Ser

ATC 1le ACC Thr AAC Asn AGC Ser

ATA e ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.8: Genetic code number 10: euplotid.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT e ACT Thr AAT Asn AGT Ser

ATC e ACC Thr AAC Asn AGC Ser

ATA Tle ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.9: Genetic code number 11: bacterial+plantplastid.

14.2. AVAILABLE GENETIC CODE NUMBERS

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Ser

Ile
Ile
Ile
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
cCaG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Stp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Arg
Arg

Gly
Gly
Gly
Gly

Table 14.10: Genetic code number

12: alternativeyeast.

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Met
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
cCcC
CCA
CCG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Trp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Gly
Gly

Gly
Gly
Gly
Gly

Table 14.11: Genetic code number 13: ascidian.mitochondrial.

183

184 CHAPTER 14. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Tyr TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA GiIn CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT 1le ACT Thr AAT Asn AGT Ser

ATC 1Ile ACC Thr AAC Asn AGC Ser

ATA e ACA Thr AAA Asn AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.12: Genetic code number 14: alternativeflatworm.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG GlIn TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT Tle ACT Thr AAT Asn AGT Ser

ATC e ACC Thr AAC Asn AGC Ser

ATA Tle ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.13: Genetic code number 15: blepharism.

14.2. AVAILABLE GENETIC CODE NUMBERS

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Ile
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
cCaG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr

Stp
Leu

His
His
Gln
Gln

Asn
Asn
Lys
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Stp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Arg
Arg

Gly
Gly
Gly
Gly

Table 14.14: Genetic code number 16: chlorophycean.mitochondrial.

185

TTT
TTC
TTA
TTG

CTT
CTC
CTA
CTG

ATT
ATC
ATA
ATG

GTT
GTC
GTA
GTG

Phe
Phe
Leu
Leu

Leu
Leu
Leu
Leu

Ile
Ile
Met
Met

Val
Val
Val
Val

TCT
TCC
TCA
TCG

CCT
CCC
CCA
CCG

ACT
ACC
ACA
ACG

GCT
GCC
GCA
GCG

Ser
Ser
Ser
Ser

Pro
Pro
Pro
Pro

Thr
Thr
Thr
Thr

Ala
Ala
Ala
Ala

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

Tyr
Tyr
Stp
Stp

His
His
Gln
Gln

Asn
Asn
Asn
Lys

Asp
Asp
Glu
Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

Cys
Cys
Trp
Trp

Arg
Arg
Arg
Arg

Ser
Ser
Ser
Ser

Gly
Gly
Gly
Gly

Table 14.15: Genetic code number 21: trematode.mitochondrial.

186 CHAPTER 14. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Stp TAA Stp TGA Stp
TTG Leu TCG Ser TAG Leu TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT Tle ACT Thr AAT Asn AGT Ser

ATC 1Ile ACC Thr AAC Asn AGC Ser

ATA e ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.16: Genetic code number 22: scenedesmus.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Stp TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg

CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser

ATC Ile ACC Thr AAC Asn AGC Ser

ATA e ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 14.17: Genetic code number 23: hraustochytrium.mitochondria.

14.2. AVAILABLE GENETIC CODE NUMBERS 187

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15
There were two compilation steps:

e @ compilation time was: Sun Oct 26 18:37:37 2008

e IANTEX compilation time was: December 12, 2008

188 CHAPTER 14. GENETIC CODES

CHAPTER 15

Release notes

Lobry, J.R. Necsulea, A. Palmeira, L. Penel, S.

Introduction

The release notes are listed in reverse chronological order: most recent on top.

2.0 series

release 2.0-1

e The useless itemize in the argument section of documentation file stresc.Rd
is now deleted.

o In function words.pos() the default value for parameter extended was
changed from FALSE to TRUE to avoid warnings.

e New experimental function read.abif () to import files in ABIF format
(*.fsa, (*.abl).

release 2.0-0

e New draft chapter about making RISA in silico added.

e Objects from class qaw created after a call to the query() function have
gained a new generic print method to focus on the most important infor-
mation: number of sequences in the list, list type and the corresponding
request.

e Function query () now allows a missing listname argument. In this case,
listl is used to store the result.

189

190 CHAPTER 15. RELEASE NOTES

e Function autosocket() has been changed to behave more friendly with
outdated R versions. This is essentially a backward compatibility issue
that will not be maintained in the future. The function autosocket ()
works hard to check that everything is OK with the last opened database,
especially with the socket infos available in banknameSocket$socket thru
its summary() generic. In old R versions (e.g. 2.6.2) this was returning
socket instead of sockconn for the class, yielding an error in seqinR, 1.1-7.
The old result is now allowed but a warning is issued.

The 2.0 series started in summer 2008 along with the moving of the seqinr
sources on R-forge.

1.1 series

release 1.1-7

e As suggested by Kurt Hornik two extra cr in the documentation file for
ec999 were deleted.

e Function read.fasta() has gained four new arguments (viz. bfa, sizeof .longlong,
endian, apply.mask) to read DNA binary fasta files in MAQ format.
There is a new ct.bfa file in the sequences folder to check for the MAQ
format reading.

e New dataset pK for the values for the side chain of charged amino acids
from various sources compiled by Joanna Kiraga [44].

e Function words.pos () has gained new arguments that are passed to regexpr ()
including the dot-dot-dot argument in case of need in the future. The
documentation has been modified to better explain the difference with the
standard gregexpr () function.

e As pointed by e-mail on 28 May 2008 by Kim Milferstedt a function to
compute the consensus for a set of aligned sequences would be helpful.
There is now a function consensus() aliased to con() for this. The
input is either an object from class alignment or a matrix of characters.
The output is either a consensus sequence (using the majority rule, the
majority rule with a threshold, or IUPAC symbols for RNA and DNA
sequences) or a profile, that is a matrix with the count of each possible
character at each position in the alignment.

o In the documentation of the read.alignment () function a link was added
to the read.nexus() function from the ComPairWise package [77].

e New function bma () to find the IUPAC symbol corresponding to a nucleic
sequence.

e New function as.matrix.alignment() to convert an alignment into a
object of class matrix.

e The encoding of line ends in the example file test .mase is now an unix-like
one.

191

e As pointed by e-mail on 31 May 2008 by Marie Sémon there was no con-
venient function to compute the Codon Adaptation Index [85]. A new
function cai() was introduced with the aim of reproducing exactly the
results from the program codonW that was written by John Peden during
his PhD thesis [70] under the supervision of P.M. Sharp (the most au-
thorative source for CAI computation). A new dataset caitab that was
hard-encoded in codonW for the w values for some species (viz Escherichia
coli, Bacillus subtilis, Saccharomyces cerevisiae) was added. Care was
taken to credit original sources. The E. coli data that was uncredited is
from [85]. The B. subtilis data that was uncredited is from [86] (see the
note of caution in ?caitab before using this one directly to compute CAI
in B. subtilis). The S. cerevisiae data that was credited to [84] dates back
from [85]. A new text file scuco.txt produced by codonW was added in
the sequences folder to check that the CAI results from cai() are consis-
tents with thoses from codonW version 1.4.4 (03-MAR-2005). This legacy
file is used in the example section of the cai() function.

release 1.1-6

e The construct get (getOption("device")) (width = 18, height = 11)
that was used in the example section for data(prochlo) is no more valid
since @ 2.8.0 (fall 2008). The example has been restricted to work only
with X11, windows and quartz devices.

e As pointed by e-mail on 12 May 2008 by Indranuj Mukherjee there was a
bug in the function oriloc(): when called with a gbk = NULL argument
the function was trying to remove non-existent files, yielding an error. The
bug has been fixed and the documentation of the function oriloc() has
been extended to better explain how to use the arguments seq.fasta and
gbk.

e A reference to [23] was missing in the documentation of function zscore ()
for the codon model.

e As suggested by e-mail on 11 Mar 2008 by Christian Gautier, the function
count () has gained a new argument by to control the window step, allow-
ing for instant to count dinucleotides in codon position III-I in a coding
sequence. The example section of the function documentation has been
extended to give an example of counting dinucleotides in position ITI-I.

alldinuclIIIpI <- s2c("NNaaNatNttNtgNgtNtcNctNtaNagNggNgcNcgNgaNacNccNcaNN")
(resIIIpI <- count(alldinuclIIIpI, word = 2, start = 2, by = 3))

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
t+ 111111 111111111

stopifnot(all(resIIIpl == 1))

e Function reverse.align() has gained two arguments forceDNAtolower
= TRUE and forceAAtolower = FALSE that are passed to the functions
used to read the sequences. There is now a new dataset revaligntest
used to check the result in the example section of reverse.align().

192 CHAPTER 15. RELEASE NOTES

e As pointed by e-mail on 21 Feb 2008 by Oliver Keatinge Clay function
modifylist () failed to scan in GenBank FEATURES annotation lines.
There is now a new function called prepgetannots(), aliased to pga(),
that allows to set up the annotation lines to be scanned. Called with
default arguments, this function turns on all annotation lines for scan.
This function can also be used to set up partly the annotation lines to be
returned by getAnnot ().

e Function choosebank() has gained four arguments (server, blocking,
open, encoding) that are passed to socketConnection(). The value of
the argument verbose is now passed to clientid() which knows now
how to handle it. The encoding argument was introduced to fix a lo-
calization bug on Mac OS X which symptom was a cryptic error mes-
sage in if (res[1] !'= "0") { after a call to choosebank(). The cul-
prit was an option(encoding = "latinl") that was set up before the
call to choosebank() who called socketConnection() with its default
encoding = getOption("encoding"), preventing readLines() to read
from the socket. The bug was fixed by opening the socket with the native
encoding, which is the current default.

e As pointed by e-mail on 15 Jan 2008 by Stefanie Hartmann, the argument
frame in function count () was misleading for someone with a molecular
biology background. The argument has been replaced by start. The
old argument name is maintained as an alias for backward compatibil-
ity. The example section has been extended to give an example with
the complete human mitochondrion sequence, the corresponding fasta file
(humanMito.fasta) has been added in the sequences directory.

release 1.1-5

Minor release to fix mainly problems in the documentation.

e The argument section was empty in autosocket.Rd.
e The details section was empty in countfreelists.Rd and draw.oriloc.Rd.

e The value section was empty in gbk2g2.Rd. The corresponding function
was changed to use a local file for the demo.

e The description section was missing in getFrag.Rd, getLength.Rd, getName.Rd,
getSequence.Rd.

e Documentation of the function dia.bactgensize() to plot the distribu-
tion of bacterial genome size from GOLD data has been ammended to
credit sources [45, 3, 51, 50]. It has gained a new argument maxgensize
defaulting to 20000 to remove outliers. It has also gained a new argument
source for the file to look for raw data, defaulting to an (outdated) local
copy so that the function can be called even when there is no internet
connection.

193

release 1.1-4 (10-Dec-2007)

Minor release to fix problems found by Kurt Hornik.

e In the DESCRIPTION file License: GPL (>= 2) instead of License: GPL
version 2 or newer.

e The files inst/doc/src/mainmatter/acnuc_sockets.rnw .tex with non-
portable file names were changed to acnucsocket .rnw and acnucsocket . tex.

release 1.1-3

e There is a new chapter to explain how to set up a local ACNUC server on
Unix-like platforms.

e New dataset m16j to make a GC skew plot as in [53].

e New dataset waterabs giving the absorption of light by water. This
dataset was compiled by Palmeira [65] from [52, 73].

o Generic functions getAnnot (), getFrag(), getKeyword(), getLength(),
getLocation(), getName (), getSequence () and getTrans () have gained
methods to handle objects from class 1ist and qaw.

e Functions getAttributsocket() and getNumber.socket () are now dep-
recated, a warning is issued.

e There is a new appendix in which all the examples protected by a dontrun
statment are forced to be executed.

e Function read.fasta() now supports comment lines starting by a semi-
colon character in FASTA files. An example of such a file is provided
in sequences/legacy.fasta. The argument File is now deprecated.
There is a new argument seqonly to import just the sequences with-
out names, annotations and coercion attempts. There is a new argument
strip.desc to remove the leading '>’ character in annotations (as in
function readFASTA from the Biostrings package [64]). The FASTA file
example someORF.fsa from Biostrings is also added for comparisons.

e Function GC() has gained a new argument NA.GC defaulting to NA to say
what should be returned when the GC content cannot be computed from
data (for instance with a sequence like NNNNNNNNNNNN). The argu-
ment 01dGC is now deprecated and a warning is issued. Functions GC1(),
GC2(), GC3() are now simple wrappers for the more general GCpos () func-
tion. The new argument frame allows to take the frame into account for
CDS.

e Function read.alignment() has gained a new argument forceToLower
defaulting to TRUE to force lower case in the character of the sequence
(this is for a smoother interaction with the package ape). The argument
File is now deprecated and a warning is issued when used instead of
file. The example in the function kaks() has been corrected to avoid
this warning when reading the example files.

194 CHAPTER 15. RELEASE NOTES

o New low level utility function acnucclose() and quitacnuc() to close
an ACNUC server. These functions are called by closebank() so that a
simple call to it should be enough.

e New low level utility function clientid() to send the client ID to an
ACNUC server.

e New low level utility function countfreelists() to get the number of
free lists available in an ACNUC server.

e New low level utility function knowndbs () and its shortcut kdb() to get
a description of databases known by an ACNUC server.

e New low level utility function autosocket () to get the socket connection
to the last opened ACNUC database.

e New function countsubseqs() to get the number of subsequences in an
ACNUC list.

e New function savelist() to save sequence names or accession numbers
from an ACNUC list into a local file.

e New function ghelp() to get help from an ACNUC server.

e New function modifylist() to modify a previously existing ACNUC list
by selecting sequences either by length, either by date, either for the pres-
ence of a given string in annotations.

o New low level function getlistate() to ask for information about an
ACNUC list.

o New low level function setlistname() to set the name of a list from an
ACNUC server.

o New function residuecount () to count the total number of residues (nu-
cleotides or aminoacids) in all sequences of an ACNUC list of specified
rank.

e New function isenum() and its shortcut isn() to get the ACNUC number
of a sequence from its name or accession number.

e New function prettyseq() to get a text representation of a sequence from
an ACNUC server.

e New function gfrag() to extract sequence identified by name or by num-
ber from an ACNUC server.

e The details of the socket connection are no more stored in the slot socket
for objects of class seqAcnucWeb: this slot is now deleted. As a conse-
quence, the argument socket in function as.SeqAcnucWeb() has been
removed and there is now a new argument socket = "auto" in functions
getAnnot (), getFrag(), geyKeyword (), getLocation(), and getSequence ().
The default value "auto" means that the details of the socket connection
are taken automatically when necessary from the last opened bank. The
size of local lists of sequences is reduced by about a third now as compared
to the previous version.

195

e New function print.seqgAcnucWeb () to print objects from class seqAcnucWeb.

e Internal function parser.socket () has been optimized and is about four
times faster now. This decreases the time needed by the query () function.

release 1.1-2

e New function trimSpace () to remove leading and trailing spaces in string
vectors.

e Function splitseq() is no more based on substring(), it is now more
efficient for long sequences.

e A sanity check test was added in the documentation file for the function
syncodons ().

e The way this manual is produced is now documented in the doc/src/template/
folder.

e A bug in function oriloc() was reported on 23 Jul 2007 by Michael
Kube: using directly genBank files was no more possible. The culprit
was gbk2g2() that turns genBank files into glimmer files version 2 when
oriloc() default is to use version 3 files. The glimmer.version argument
is now forced to 2 when working with genBank files to fix this problem.

e Function zscore () has now a new argument exact (which is only effective
for the option model = base). This argument, when set to TRUE allows for
the exact analytical computation of the zscore under this model, instead
of the approximation for large sequences. It is set to FALSE by default for
backward compatibility.

release 1.1-1

e A bug was reported by Sylvain Mousset on 14 Jul 2007 in function dist.alignment ():
when called with sequences in lower case letters, some sequences were mod-
ified. This should no more be the case:
ali <- list(nb = 4, nam = c("speciesA", "speciesB", "speciesC",
"speciesD"), seq = c("ACGT", "acgt", "ACGT", "ACGT"))

class(ali) <- "alignment"
print(ali$seq)

[1] "ACGT" "acgt" "ACGT" "ACGT"
print(dist.alignment(ali))

speciesA speciesB speciesC
0

speciesB

speciesC 0 0

speciesD 0 0 0
print(ali$seq)

[1] "ACGT" "acgt" "ACGT" "ACGT"

e The CITATION file has been updated so that now citation("seqinr")
returns the full complete reference for the package seqinR.

196 CHAPTER 15. RELEASE NOTES

e Non ASCII characters in documentation (*.Rd) files have been removed.
Declaration of the encoding as latinl when necessary is now present. The
updated documentation files are: ~ dinucl.Rd, gb2fasta.Rd, get.ncbi.Rd,
lseqinr.Rd, n2s.Rd, prochlo.Rd, s2c.Rd, SegAcnucWeb.Rd, SeqFrag.Rd,
toyaa.Rd, words.pos.Rd, words.Rd, zscore.Rd.

e Function GC() and by propagation functions GC1 (), GC2() and GC3() have
gained a new argument 01dGC allowing to compute the G+C content as
in releases up to 1.0-6 included. The code has been also modified to avoid
divisions by zero with very small sequences.

e New function rot13() that returns the ROT-13 encoding of a string of
characters.

1.0 series

release 1.0-7

o A new experimental function extractseqs() to download sequences thru
zlib compressed sockets from an ACNUC server is released. Preliminary
tests suggest that working with about 100,000 CDS is possible with a home
ADSL connection. See the manual for some system.time() examples.

e As pointed by e-mail on 16 Nov 2006 by Emmanuel Prestat the URL used
in dia.bactgensize() was no more available, this has been fixed in the
current version.

e As pointed by e-mail on 16 Nov 2006 by Guy Perriere, the function
oriloc() was no more compatible with glimmer® 3.0 outputs. The func-
tion has gained a new argument glimmer.version defaulting to 3, but
the value 2 is still functional for backward compatibility with old glimmer
outputs.

e As pointed by e-mail on 24 Oct 2006 by Lionel Guy (http://pbil.
univ-lyonl.fr/seqinr/seqinrhtmlannuel/03/0089.html) there was no
default value for the as. string argument in the getSequence.SeqFastadna().
A default FALSE value is now present for backward compatibility with older
code.

e New utility vectorized function stresc() to escape KTEX special charac-
ters present in a string.

o New low level function readsmj () available.

e A new function readfirstrec() to get the record count of the specified
ACNUC index file is now available.

e Function getType() called without arguments will now use the default
ACNUC database to return available subsequence types.

e Function read.alignment () now also accepts file in addition to File
as argument.

1 Glimmer is a program to predict coding sequences in microbial genomes [81, 13].

http://pbil.univ-lyon1.fr/seqinr/seqinrhtmlannuel/03/0089.html
http://pbil.univ-lyon1.fr/seqinr/seqinrhtmlannuel/03/0089.html

197

A new function rearranged.oriloc() is available. This method, based
on oriloc(), can be used to detect the effect of the replication mechanism
on DNA base composition asymmetry, in prokaryotic chromosomes.

New function extract.breakpoints(), used to extract breakpoints in
rearranged nucleotide skews. This function uses the segmented package
to define the position of the breakpoints.

New function draw.rearranged.oriloc() available, to plot nucleotide
skews on artificially rearranged prokaryotic chromosomes.

New function gbk2g2.euk() available. Similarly to gbk2g2(), this func-
tion extracts the coding sequence annotations from a GenBank format file.
This function is specifically designed for eukaryotic sequences, i.e. with
introns. The output file will contain the coordinates of the exons, along
with the name of the CDS to which they belong.

After an e-mail by Marcelo Bertalan on 26 Mar 2007, a bug in oriloc ()
when the gbk argument was NULL was found and fixed by Anamaria
Necsgulea.

Functions translate() and getTrans() have gained a new argument
NAstring to represent untranslatable amino- acids, defaulting to character
”X”.

There was a typo for the total number of printed bases in the ACNUC
books [21, 22] : 474,439 should be 526,506.

Function invers() has been deleted.

Functions translate(), getTrans() and comp() have gained a new ar-
gument ambiguous defaulting to FALSE allowing to handle ambiguous
bases. If TRUE, ambiguous bases are taken into account so that for in-
stance GGN is translated to Gly in the standard genetic code.

New function amb() to return the list of nucleotide matching a given IU-
PAC nucleotide symbol.

Function count () has gained a new argument alphabet so that oligopep-
tides counts are now possible. Thanks to Gabriel Valiente for this sugges-
tion. The functions zscore(), rho() and summary.SeqFastadna() have
also an argument alphabet which is forwarded to count ().

release 1.0-6

Release 1.0-6 is a minor release to fix a problem found and solved by Kurt
Hornik (namely a change from SET_ELEMENT to SET_STRING_ELT in C code for
s2¢() in file util.c). The few changes are as follows.

More typographical option for the output IXTEX table of tablecode()
are now available to outline deviations from the standard genetic code
(see example in the appendix "genetic codes” of the manual).

198

CHAPTER 15. RELEASE NOTES

A new dataset aaindex extracted from the aaindex database [41, 92, 62]
is now available. It contains a list of 544 physicochemical and biological
properties for the 20 amino-acids

The default value for argument dia is now FALSE in function tablecode().

The example code for data(chargaff) has been changed.

release 1.0-5

A new function dotPlot () is now available.

A new function crelistfromclientdata() is now available to create a
list on the server from a local file of sequence names, sequence accession
numbers, species names, or keywords names.

A new function pmw() to compute the molecular weight of a protein is
now available.

A new function reverse.align() contributed by Anamaria Necsulea is
now available to align CDS at the protein level and then reverse translate
this at the nucleic acid level from a clustalw output. This can be done
on the fly if clustalw is available on your platform.

An undocumented behavior was reported by Guy Perriere for uco() when
computing RSCU on sequences where an amino-acid is missing. There is
now a new argument NA.rscu that allows the user to force the missing
values to his favorite magic value.

There was a bug in read.fasta(): some sequence names were truncated,
this is now fixed (thanks to Marcus G. Daniels for pointing this). In
order to be more consistent with standard functions such as read.table()
or scan(), the file argument starts now with a lower case letter (file)
in function read.fasta(), but the old-style File is still functional for
forward-compatibility. There is a new logical argument in read.fasta()
named as.string to allow sequences to be returned as strings instead of
vector of single characters. The automatic conversion of DNA sequences
into lower case letters can now be disabled with the new logical argument
forceDNAtolower. It is also possible to disable the automatic attributes
settings with the new logical argument set.attributes.

A new function write.fasta() is now available.

The function kaks () now forces character in sequences to upper case. This
default behavior can be neutralized in order to save time by setting the
argument forceUpperCase to FALSE.

release 1.0-4

The scaling factor ne, was missing in equation 9.3.

The files louse.fasta, louse.names, gopher.fasta, gopher.names and
ortho.fasta that were used for examples in the previous version of this
document are no more downloaded from the internet since they are now
distributed in the sequences/ folder of the package.

199

e An example of synonymous and non synonymous codon usage analysis was
added to the vignette along with two toy data sets (toyaa and toycodon).

e A FAQ section was added to the vignette.
e A bug in getAnnot () when the number of lines was zero is now fixed.

e There is now a new argument, latexfile, in tablecode() to export
genetic codes tables in a INTEX document, for instance table 2.2 and table
2.3 here.

e There is now a new argument, freq, in count () to compute word frequen-
cies instead of counts.

e Function splitseq() has been entirely rewritten to improve speed.

e Functions computing the G+C content: GC(), GC1(), GC2(), GC3(O)
were rewritten to improve speed, and their document files were merged
to facilitate usage.

e The following new functions have been added:

— syncodons () returns all synonymous codons for a given codon. Ar-
gument numcode specifies the desired genetic code.

— ucoweight () returns codon usage bias on a sequence as the number
of synonymous codons present in the sequence for each amino acid.

— synsequence() generates a random coding sequence which is syn-
onymous to a given sequence and has a chosen codon usage bias.

— permutation() generates a new sequence from a given sequence,
while maintaining some constraints from the given sequence such as
nucleotide frequency, codon usage bias, ...

— rho() computes the rho statistic on dinucleotides as defined in [40].

— zscore() computes the zscore statistic on dinucleotides as defined in
[66].

e Two datasets (dinucl and prochlo) were added to illustrate these new
functions.

release 1.0-3

e The new package maintainer is Dr. Simon Penel, PhD, who has now a fixed
position in the laboratory that issued seqinR (penel@biomserv.univ-lyonl.fr).
Delphine Charif was successful too to get a fixed position in the same lab,
with now a different research task (but who knows?). Thanks to the close
vicinity of our pioneering maintainers the transition was sweet. The DE-
SCRIPTION file of the seqinR package has been updated to take this
into account.

e The reference paper for the package is now in press. We do not have the
full reference for now, you may use citation("seqinr") to check if it is
complete now:

200 CHAPTER 15. RELEASE NOTES

citation("seqinr")
To cite seqinR in publications use:
Charif, D. and Lobry, J.R. (2007)
A BibTeX entry for LaTeX users is

@incollectiond{,
author = {D. Charif and J.R. Lobry},
title = {Seqin{R} 1.0-2: a contributed package to the {R} project for statistical computing dev
booktitle = {Structural approaches to sequence evolution: Molecules, networks, populations},
year = {2007},
editor = {U. Bastolla, M. Porto, H.E. Roman and M. Vendruscolo},
series {Biological and Medical Physics, Biomedical Engineering},
pages = {207-232},
address = {New York},
publisher = {Springer Verlag},
) note = {{ISBN :} 978-3-540-35305-8},

Note that the orginal article updated is available in the
/Users/lobry/seqinr/pkg.Rcheck/seqinr/doc/ folder in PDF format

e There was a bug when sending a gfrag request to the server for long
(Mb range) sequences. The length argument was converted to scientific
notations that are not understand by the server. This is now corrected
and should work up the the Gb scale.

e The query() function has been improved by de-looping list element info
request, there are now download at once which is much more efficient. For
example, a query from a researcher-home ADSL connection with a list
with about 1000 elements was 60 seconds and is now only 4 seconds (i.e.
15 times faster now).

e A new parameter virtual has been added to query() so that long lists
can stay on the server without trying to download them automatically.
A query like query(s$socket,"allcds","t=cds", virtual = TRUE) is
now possible.

e Relevant genetic codes and frames are now automatically propagated.
e SeqinR sends now its name and version number to the server.
e Strict control on ambiguous DNA base alphabet has been relaxed.

e Default value for parameter invisible of function query() is now TRUE.

Session Informations
This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), 1386-apple-darwin8.8.2
e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C
e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-1, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

201

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15
There were two compilation steps:

e @ compilation time was: Fri Dec 12 14:58:15 2008

o IATEX compilation time was: December 12, 2008

202 CHAPTER 15. RELEASE NOTES

CHAPTER 16

Test suite: run the don’t run

Lobry, J.R.

16.1 Introduction

Many seqinR functions use socket connections to retrieve information from
the internet. As a consequence, most of examples should be protected by a
\dontrun{} to pass the R CMD CHECK. In this section we want to run automat-
ically all these examples to check that everything is OK.

16.2 Stop list

This is the list of function that don’t run for now and need to be fixed.

stoplist <- c("reverse.align", "extractsegs", "acnucopen",
"modifylist", "plot.SegAcnucWeb", "draw.rearranged.oriloc")

Known problems are:
reverse.align need clustalw on line, see later
extractseqs strange behaviour when in Sweave document???
acnucopen SUBINLNG was 60 and now 504
modifylist Error : mylist$nelem == 33 is not TRUE
plot.SeqAcnucWeb Database with name —>hovernucl<- is not known by server

draw.rearranged.oriloc Very long (infinite loop?)

16.3 Figure list

This is the list of functions that generates a graphical output.

figlist <- c("draw.rearranged.oriloc", "oriloc", "dia.bactgensize",
"GC", "plot.SeqAcnucWeb")

203

204 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

16.4 Don’t run generator

This code chunk generates the dontrun.rnw file that is included there after.
This file should be pre-existent, and two Sweave () passes are necessary.

outfile <- file(paste(pwd, "dontrun.rnw", sep = "/"), open = "w")
fex <- dir()
for (f in fex) {

fctname <- substr(x = f, start = 1, stop = nchar(f) -

2)

if (fctname %in)% stoplist)
next

withfig <- "F"

if (fctname %in% figlist)
withfig <- "T"

lines <- readLines(f)

dontrun <- lines[which(substring(lines, 1, 3) == "##D")]
if (length(dontrun) == 0)
next

dontrun <- sapply(dontrun, function(x) substr(x, 5, nchar(x)))

writeLines(paste("\\subsection{\\texttt{", fctname, "(O}}",
sep = ""), outfile)

fctnamewithoutdots <- gsub("\\.", "", fctname)

writeLines(paste("<<", fctnamewithoutdots, ",fig=", withfig,
",keep.source=T>>=", sep = ""), outfile)

writeLines(dontrun, outfile)
writeLines("@", outfile)

close(outfile)

setwd (pwd)

16.4.1 GCQ)

Too long for routine check
This is a benchmark to compare the effect of various parameter
setting on computation time
n <- 10
from <-10"4
to <- 1075
size <- seq(from = from, to = to, length = n)
res <- data.frame(matrix(NA, nrow = n, ncol = 5))
colnames(res) <- c("size", "FF", "FT", "TF", "TT")
res[, "size"] <- size
for(i in seq_len(n)){
myseq <- sample(x = s2c("acgtws"), size = size[i], replace = TRUE)
res[i, "FF"] <- system.time(GC(myseq, forceToLower = FALSE, exact = FALSE)) [3]
res[i, "FT"] <- system.time(GC(myseq, forceToLower = FALSE, exact = TRUE)) [3]
res[i, "TF"] <- system.time(GC(myseq, forceToLower = TRUE, exact = FALSE)) [3]
res[i, "TT"] <- system.time(GC(myseq, forceToLower = TRUE, exact = TRUE)) [3]

¥

par(oma = ¢(0,0,2.5,0), mar = c(4,5,0,2) + 0.1, mfrow = c(2, 1))

plot(res$size, res$TT, las = 1,

xlab = "Sequence size [bpl]",

ylim = c(0, max(res$TT)), xlim = c(0, max(res$size)), ylab = "")

title(ylab = "Observed time [s]", line = 4)

abline(1lm(res$TT res$size))

points(res$size, res$FT, col = "red")

abline(lm(res$FT res$size), col = "red", 1ty = 3)

points(res$size, res$TF, pch = 2)

abline(Im(res$TF res$size))

points(res$size, res$FF, pch = 2, col = "red")

abline(Im(res$FF res$size), 1ty = 3, col = "red")

legend("topleft", inset = 0.01, legend = c("forceToLower = TRUE", "forceToLower = FALSE"), col = c("blac
legend("bottomright", inset = 0.01, legend = c("exact = TRUE", "exact = FALSE"),
pch = c(1,2))

mincpu <- lm(res$FF res$size)$coef [2]

barplot(

c(Im(res$FF res$size) $coef [2] /mincpu,

16.4. DON’T RUN GENERATOR 205

Im(res$TF "res$size)$coef [2] /mincpu,
Im(res$FT res$size) $coef [2] /mincpu,
Im(res$TT res$size)$coef [2] /mincpu),
horiz = TRUE, xlab = "Increase of CPU time",
col = c("red", "black", "red", "black"),
names.arg = c("(F,F)", "(T,F)", "(F,T)", "(T,T)"), las = 1)
title(ylab = "forceToLower,exact", line = 4)
mtext ("CPU time as function of options", outer = TRUE, line = 1, cex = 1.5)

CPU time as function of options

. 015 | — forceToLower = TRUE

£, forceToLower = FALSE

<] o

£ o010- e

e

(4]) o

E o -3

® 0.05 e

8 H‘HH" N 9 exact = ARUEA |
SN SETEEY SRR b exact = FALSE

0.00 —

I T T T I I
0e+00 2e+04 4e+04 6e+04 8e+04 le+05

Sequence size [bp]

forceToLower,exact

Increase of CPU time

16.4.2 SeqAcnucWeb()

Need internet connection
choosebank ("emblTP")

query("mylist", "sp=felis catus et t=cds et o=mitochondrion")
stopifnot(is.SeqAcnucWeb(mylist$req[[1]1]))
closebank ()

16.4.3 alllistranks()

Need internet connection
choosebank ("emblTP")

query("tmpl", "sp=Borrelia burgdorferi", virtual = TRUE)
query ("tmp2", "sp=Borrelia burgdorferi", virtual = TRUE)
query("tmp3", "sp=Borrelia burgdorferi", virtual = TRUE)
(result <- alllistranks())

$count

[11 3

$ranks

[11 23 4

206 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

stopifnot(result$count == 3) # Three ACNUC lists
stopifnot (result$ranks == 2:4) # Starting at rank 2
#

Summay of current lists defined on the ACNUC server:
#
sapply(result$ranks, getliststate)

[,1] [,2] [,3]
type "SQ" nsqn "SQ"
name "TMP1" "TMP2" "TMP3"
count 1682 1682 1682
locus TRUE TRUE TRUE

closebank()

16.4.4 autosocket()

#Need internet connection
choosebank ("emblTP")
autosocket ()

description class
"->pbil.univ-lyonl.fr:5558" "sockconn"
mode text
lla+ll |Itextll
opened can read
llopenedll Ilyesll

can write

llyes n

closebank()

16.4.5 choosebank()

Need internet connection
Show available databases:

choosebank ()

[1] "genbank" "embl" "emblwgs" "swissprot" "ensembl"

[6] "refseq" "nrsub" "hobacnucl" "hobacprot" "hovergendna"
[11] "hovergen" "hogenom" "hogenomdna" "hogennucl" "hogenprot"
[16] "hoverclnu" "hoverclpr" "homolens" "homolensdna" "greview"
[21] "polymorphix" "emglib" "HAMAPnucl" "HAMAPprot" "hoppsigen"
[26] "nurebnucl" "nurebprot" "taxobacgen"

Show frozen databases:
choosebank(tag = "TP")
[1] "emblTP" "swissprotTP" "hoverprotTP" "hovernuclTP" "trypano"

Select a database:

choosebank ("emblTP", tag = "TP")

Do something with the database:

myseq <- gfrag("LMFLCHR36", start = 1, length = 30)
stopifnot(myseq == "cgcgtgctggeggeaatgaagegttcgatg")
Close the database:

closebank()

16.4.6 closebank()

Need internet connection
choosebank ("emblTP")
closebank()

16.4. DON’T RUN GENERATOR

16.4.7 countfreelists()

Need internet connection
choosebank ("embl1TP")
(rescountfreelists <- countfreelists())

$free
[1] 48

$annotlines

[1] IIALL“ "AC" ||PR|| ||DT|| ||lel IIDS" "DC" ||OG|| ||RN|| ||RC|| IIRP"
[13] IIRG" "RA" ||RTII IIRLII IIDRII "CC" "AH" ||As|l IIFHII IIFTII IICD"
[25] HSEQ"

stopifnot(all(rescountfreelists$annotlines ==
C("ALLII) ”AC” . ||PRII 5 "DT" N llell 5 "DS" IIDCII

||0G||’ "RN"’ ||RC|I’ ||RP||’ IIRXII’ "RGII, |’|RA||’ I’IRT"’ |IRLII’ ||DR||’
IICCII’ IIAHH’ IIASII, ||FH||’ IIFTII, ||CUII’ IISQ", IISEQII)))
closebank ()

16.4.8 countsubseqgs()

Need internet connection
choosebank ("emblTP")

query("mylist", "N=@", virtual = TRUE) # select all (segs + subsegs)

mylist$nelem # 14138094 seqs + subsegs
[1] 14138094

stopifnot (mylist$nelem == 14138094)
css(glr("mylist")) # 1604500 subsequences only

[1] 1604500

stopifnot(css(glr("mylist")) == 1604500)
closebank ()

16.4.9 crelistfromclientdata()

Need internet connection
choosebank ("emblTP")
#

Example with a file that contains sequence names:

fileSQ <- system.file("sequences/bb.mne", package = "seqinr")
crelistfromclientdata("listSQ", file = fileSQ, type = "SQ")
sapply(1istSQ$req, getName)

[1] "A04009.0SPA" "A04009.0SPB" "A22442" "A24006"

[5] "A24008" "A24010" "A24012" "A24014"

[9] "A24016" "A33362" "A67759.PE1" "AB011063"

[13] "AB011064" "AB011065" "AB011066" "AB011067"

[17] "AB035616" "ABO35617" "AB035618" "AB041949.VLSE"
#

Example with a file that contains sequence accession numbers:
#

fileAC <- system.file("sequences/bb.acc", package = "seqinr")
crelistfromclientdata("listAC", file = fileAC, type = "AC")
sapply(1listAC$req, getName)

[1] "AY382159" "AY382160" "AY491412" "AY498719" "AY498720" "AY498721"
[7] "AY498722" "AY498723" "AY498724" "AY498725" "AY498726" "AY498727"
[13] "AY498728" "AY498729" "AY499181" "AY500379" "AY500380" "AY500381"

[19] "AY500382" "AY500383"

#
Example with a file that contains species names:
#

fileSP <- system.file("sequences/bb.sp", package = "seqinr")
crelistfromclientdata("listSP", file = fileSP, type = "SP")
sapply(listSP$req, getName)

"RX"
nsqn

207

208 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

[1] "BORRELIA ANSERINA" "BORRELIA CORIACEAE" "BORRELIA PARKERI"

[4] "BORRELIA TURICATAE" "BORRELIA HERMSII" "BORRELIA CROCIDURAE"
[7] "BORRELIA LONESTARI" "BORRELIA HISPANICA" "BORRELIA BARBOURI"
[10] "BORRELIA THEILERI" "BORRELIA DUTTONII" "BORRELIA MIYAMOTOI"
[13] "BORRELIA PERSICA" "BORRELIA RECURRENTIS" "BORRELIA BURGDORFERI"
[16] "BORRELIA AFZELII" "BORRELIA GARINII" "BORRELIA ANDERSONII"
[19] "BORRELIA VALAISIANA" "BORRELIA JAPONICA"

#

Example with a file that contains keywords:
#

fileKW <- system.file("sequences/bb.kwd", package = "seqinr")
crelistfromclientdata("1listKW", file = fileKW, type = "KW")
sapply(listKW$req, getName)

[1] "PLASMID" "CIRCULAR" "PARTIAL" "5'-PARTIAL"
[6] "3'-PARTIAL" "MOTA GENE" "MOTB GENE" "DIVISION PRO"
[9] "GYRB GENE" "JOINING REGION" "FTSA GENE" "RPOB GENE"

[13] "RPOC GENE" "FLA GENE" "DNAJ GENE" "TUF GENE"

[17] "PGK GENE" "RUVA GENE" "RUVB GENE" "PROMOTER REGION"
#

Summary of ACNUC lists:

#
sapply(alr()$rank, getliststate)
[,1] [,2] [,3] [,4]

type ||SQ|| IISQ" "SP" ||Kw|l

name "LISTSQ" "LISTAC" "LISTSP" "LISTKW"

count 20 20 20 20

locus FALSE TRUE TRUE TRUE
closebank ()

16.4.10 dia.bactgensize()

Need internet connection
dia.bactgensize(source = "http://www.genomesonline.org/DBs/goldtable.txt")

Genome size distribution for 1658 bacterial genomes
Sogrce of data: GOLD (Genomes OnLine Database) Sun Oct 26 18:40:26 20(

S 7 Maximum likelihood estimatgs:
R1=0.296 |1, =1956.2 q:
o p,=0.704 |, =4423.1 0y:
S -
2 4
N) —— Gaussian kernel density
E
g &1
£
s B4
(0]
o
8
—
9 |
Yo}
o A

[T T T T T 1
0 2000 4000 6000 8000 10000 12000

Genome size [Kb]

16.4. DON’T RUN GENERATOR 209

16.4.11 extract.breakpoints()

r.ori <- rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta",package = "seqinr"),
g2.coord = system.file("sequences/ct.coord",package = "seqinr"))

16.4.12 getAnnot()

Need internet connection

choosebank ("emblTP")

query("fc", "sp=felis catus et t=cds et O=mitochondrion et Y>2001 et no k=partial")
get the first 5 lines annotating the first sequence:

annots <- getAnnot(fc$reql[[1]], nbl = 5)

cat (annots, sep = "\n")
FT CDS 100..303
FT /db_xref="GOA:Q94NW9"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"

or use the list method to get them all at once:
annots <- getAnnot(fc$req, nbl = 5)

cat (annots, sep = "\n")
FT CDS 100..303
FT /db_xref="GOA:Q94NW9"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NW9"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NWO"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NWO"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NWO"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NWO"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
FT CDS 100..303
FT /db_xref="GOA:Q94NWO"
FT /db_xref="TrEMBL:Q94NW9"
FT /transl_table=2
FT /gene="ATPase8"
closebank()

16.4.13 getKeyword()

Need internet connection
choosebank ("emblTP")

query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getKeyword (fc$req[[1]1])
[1] "DIVISION ORG" "RELEASE 62" "CYTOCHROME B" "SOURCE"
[5] "cps"
Should be:
[1] "DIVISION ORG" "RELEASE 62" "CYTOCHROME B" "SOURCE" "CDs"

closebank ()

210 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

16.4.14 getLength()

Need internet connection

choosebank ("emblTP")

query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getLength(fc)

[1] 1140 1140 300 402 402 27 204 95 27 204 95 27 204 95
[15] 27 204 95 27 204 95 27 204 95 27 204 95 316 402
[29] 957 1042 1545 684 204 681 784 347 297 1378 1821 528 1140 1140
[43] 345 319 237 250 345 237 249

closebank ()

16.4.15 getLocation()

Need internet connection

choosebank ("emblTP")

query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getLocation(fc$req[[5]])

[1] 27 428
closebank()

16.4.16 getName()

Need internet connection
choosebank ("emblTP")
query("fc", "sp=felis catus et t=cds et o=mitochondrion")

getName (fc)
[1; "AB004237" "AB004238" "AF172359" "FCA300702"
[6] "FCA441328.CYTB" "FSI409128.COII" "FSI409128.PE2" "FSI409128.PE3"
[9; "FSI409129.COII" "FSI409129.PE2" "FSI409129.PE3" "FSI409130.COII"
[13: "FSI409130.PE2" "FSI409130.PE3" "FSI409131.COII" "FSI409131.PE2"
[17] "FSI409131.PE3" "FSI409132.COII" "FSI409132.PE2" "FSI409132.PE3"
[21; "FSI409133.COII" "FSI409133.PE2" "FSI409133.PE3" "FSI409134.COII"
[25: "FSI409134.PE2" "FSI409134.PE3" "MI1290634.PE1" "MIFCCBD"
[29: "MIFCCU207.ND1" "MIFCCU207.ND2" "MIFCCU207.COI" "MIFCCU207.COII"
[33: "MIFCCU207.PE5S" "MIFCCU207 .PE6" "MIFCCU207.COIII" "MIFCCU207.ND3"
[37: "MIFCCU207.ND4L" "MIFCCU207.ND4" "MIFCCU207.ND5" "MIFCCU207.ND6"
[41: "MIFCCU207.CYTB" "MIFDCYTB" "S75096" "S75098"
[45] "S75099.COI" "S75101" "S75328" "S75331.COII"
[49] "S75332.COI"

closebank ()

16.4.17 getSequence()

Need internet connection
choosebank ("emblTP")
query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getSequence (fc$req[[1]1]1)

[l nongnon

[1] ngn ngn llgll ngm o nen nen a a c ng ngn o ngn o nen llgll ngn g a
[18] Mgl g ot g o g o o el ol Bl i et g i e e g
[35] Mgt Mgt Mgl W N g Bl gl g el g el e el g
[52] HEN LI ol gl i o G g o oI N g et e i ngu nen
[69] WG MG Mol Mg i o W gl gl ol g I i el i e g ||gn
[86] nem o mgn o ngn "g" ngn o ngn ugu Mgt Mgl Ngh Mo mEn e e g g nen
[103] "t" "c" ngh Men omgn o omgn onen nmpn ongn ngn llgu ngn "g" ngnomen ngn ||gn
[120] WEl Wit gl Mgt Mgt il el e il gl el Mgt gl gl et e e
[137] nEnomem o mgn o men nen ugn ngu Ml Ml e I i i i i e ugn
[154] llgll WM MGt Mgl MEl Mgl el NGl e T gl et gl e g e e
[171] ngn ugn Hgl Mol Ngh Mo g g ol g Mg e nen ngu nenw o men ngn
[188] HEN MEN M o g e g "g" MEM o MEn Mgno men e e agn wen
[205] ngm o mgn o men nen ngu nen o omen o ngn onen ngn ngn nen ugn mgn o ongn omgn o ongn
[222] "t" mgn ngn ngn Ilgll ngn nen o ngn "g" gt Mgl omEn o men g nmen wen wen

16.4. DON’T RUN GENERATOR 211

[239] ||gll "a" llt" "a" llt" "tll llt" all c" ||a|| C" I|g|l "C" llcll "a" ||all "C"
[256] IIg!I "gll ngt llgll WM MEN NN Ml Nl g N g i e e e
[273] Iltll "a" lltll "C" llt" "gll c" ||cll llt" ||gll llt" ||all "c" Ilall "t" Ilall "C"
[290] ||a|| "t" ||g|| "t" ||aV| "g" ||g" "a" c" "g" n n "g" Y|g" ||a|| "a" ||t|| "a"
[307] Ilt|| "a llc|| "tll lla" "CII |Ig" llgll c" Iltll C" Ilcll "t" a|l "CII Ila|| "CII
[324] ||C|| "t" ||t|l "C" ||t|| "C" ||a" ”g" |l a" "g" a" "C" a" ||t|| "g” ||a|| "a"
[341] Ila|l "cll Ila|| lltll "t" llgll llgll llall ||all Iltll C" Ilall "t" Ila|l IICII Ilt|| llall
[358] ||tll "t" lla" "tli llt" "tll lla" "C" lla" ||g|l "t" "C" a" lltll "a" n n "C"
Wt Mgl Gl Mgt Mg Wi N e el N Mo e N Mo o Ha t
[375] "c" "a" "c" "a R e A A - R g" "g" "a" "t
[392] Ilall "C" llgll "tli llc" "cll llt" ||all llc" cll lla" ||tll n n Ilall "g" Ilgll "C"
n n
[409] "c" "a" "a" "a" "t" "g" "t" "c" " "M "' Uc" "t" "g" "a" "g" "g
n n n n n n n n n n n n " n n n n n n n n n n n n " n n n n n
[426] "a" "g" "c" "a" "a" "c" "c" "g" "t" "a" "a" "t" "c" "a" "c" "t" "a
[443] ||a|| "C" "C“ "t" "C" "C" ||t" ”g" ||t" "C" ||a" n n "C" ||a|| "a” ||t|| "t"
[460] Ilc|| "cll Ila" "tll llaH "CII Ilall lltll "C" Ilgll ||g" n n ||al| “C" lltll Ilg" "all
[477] ||all "C" ||t|l "a" llg" "tll lla" "g" lla" ||a|| "t" n n "a" llall "t" "C" "t"
[494] Ilg" "all Ilg" "gll llgH llgll Ilg" ”C" |It" Iltll "C" Iltll "C" Ilall " n Il.t|| "a
n n
[611] "g" "a" "c" "a" "a" "a c" "' "a" "c" Mc" "c" "g" "a" "a" "c
n n
[628] "a" "c" "g" "a" "t" "g" “c" "t "t" "t c" "gh "gh mgt et e
[545] Ila" "C" llt" "tll llc" "all |It" ”tll "C" Iltll l|t" Ilcll "c" a|l "tll Ilt|| "CII
n n
[662] "a" "t" "t" "a" "g" "c" "t " M"a" "g" "c" "c" "t " "a" '"g" 'c
[579] Ila|| "gll Ilc|| "all llgH lltll Ilall ”C" ||a" "C" "C" Iltll C" Ilt|l lltll Ila|| "tll
[596] ||tll "C" C" "tli llt" "cll a" "t" llg" ||a|| "a" liall "C" ||al| n n ||gll "a"
[613] Il.t|l "C" Il.t|| "all lIaH <:II lall a‘II "C" IICII "C" IICII "t" Cll "all "g" "gll
[630] Ilall "a" lltll "tli lla" "cll lla" ||tll llc" ||cll llg" ||al| "t" Iltll "c" Ilall "g"
[647] ||a|| "C" a|| "a ||aV| la" ||t" "C" ||c" "C" ||a" "t" Y|t" C" "C ||a|| "C"
[664] Ilc" "C" a" "tll lla" 'CII |It" ”all ||t" Ilall l|c" Ilall "a" Ilt" "C Ila" "all
[681] ||a|| "g" ||a|| "C" ||a|| "t" c" ”C" ||t" "a" n n n n "t" C" "t” ||t|| "C"
[698] Ilt|| "all Ilg" "tll llaH "CII Iltll llall ||g" Iltll ||t" Iltll l|tl| a.|l llall Ilc|| "all
[715] "C" "t" "C" "a llt" "all C" "t" lla" "C" "t" "C" "g" ||tl| "C "C" "t"
Mgl MEM MU WEE WER MW NgW WEn MCw Mgu gl manomCw W wpw mgn wcw
[749] Iltll "a" llgll n n lla" "gll a" ||c llc" ||cll lla" I|gll "a" "C" "a" Ilall "C"
[766] ||-t|| "a" "C" "a" ||tV| "C" "C" "C" ||a" "g" ||c" "C" Y|a" ||a|| "C" "C“ "C"
[783] Ilt|| "tll llt" "all lla" "all |It" ”all "C" Ilcll "C" Ilcll "t" Ilc|l "C” Ilc" "CII
n n
[800] "a" "t" M"a" "t" "t" "a" "a" "a" "c" "c" "t" "g" "a" "a" "t" "g" "a
[817] Ilt|| "all Ilc|| "tll llt" "CII IICII lltll ||a" Iltll ||t" “C" l|gl| Ilc|l llall Ilt|| "all
[834] "C" "g" "C" "ali lla" "tll llt" "C" llt" "C" "C" ligll "a" ||tl| "C" "C" "a"
[851] "t" "C" "C" "CII "C" llall llall IICII |lall Ilall ||all IICII "t" Ilall "gll "g" "gll
[868] Ilgll "g" llall "g" llt" "C" llc" ||tll lla" ||gll llc" ||cl| "c" Iltll "a" Ilgll "tli
[885] g Mt NN el Nl e e g e el e el g 1 Ilgll ngn o ngn o nen
[902] Ilt|| "all llgll "CII lla" "all |It" ||cll a" Iltll llt" Ilcll "c" Ila" "all Ilt" "C"
[919] ||C|| "t" ||C|| "C" ||a|| "C" ||a" "C" ||C" "t" ||c" "C" "a" ||a|| "a" ||C|| "a"
[936] Ila|| "cll Ilg" "all llgH llgll Ilall llall ||t" aII ||a" Iltll l|gl| Ilt|l lltll Ilt|| "cll
[953] ||gll "a" "C" "C" lla" "cll llt" "a" a" n n "C" C" "a" ||a "t" ||gll "t"
[970] "C" "t" Ila" "t" "t" "C" lltll llgll a" CII "t" ClI "C" Iltll Ila "g" "t"
[987] Ilall "g" llcll "g" llg" "all llt" ||c|| llt" cll llc" ||tl| "a" all "C IIC" "C"
[1004] WEN o nmgn o Nghonmen Mg mgen g ngn a" "g" "en Ilgll V|gll ngn o ngn IIg!I nen
[1021] Ilc" "all llall "CII llc" "tll n " ||tll l|a" Ilgll lla" Ilall "c" Iall "t" Ilc|| "C”
[1038] ||a|| "t" ||t|| "C" ||a|| "t" "C" "a" ||C" "C" ||a" ||t|| "C" n n n n ||C|| "C"
[1055] Ila|| "all Ilc|| "tll lIaH "gll |IC|| ”C" ||t" "C" "C" Ilall l|t" Ilcll llcll Ilt|l "all
[1072] ||tll "a" ||t|l "tll ||t|| "C" llt" "C" lla" lia" "C" "C" "C" ||t|| "C" ||Cl| "t"
[1089] Ila" "all Il.t|| "CII "C" lltll llall llall ||tll Ilall "C" IICII "C" a.ll "tll "C" "t"
[1106] IIC" "a" Ilg" "g" llc" "all llt" ||tll lla" ||t|l "t" I|gl| "a" llall "a" Ilall "C"
[1123] nen "gll WGl M NN gl el el el gl g g e Ilgll ngn ngn llgll

[1140] "a"
getSequence (fc$req[[1]], as.string = TRUE)
[1] "atgaccaacattcgaaaatcacacccccttaccaaaattattaatcactcattcatcgacctacctgecccatctaacatctcageatgatgaaactteggeteccttctag

closebank ()

16.4.18 getTrans()

Need internet connection.

Translation of the following EMBL entry:

#

FT CDS join(complement (153944 . .154157) ,complement (153727..153866) ,
FT complement (152185..153037) ,138523..138735,138795. .138955)
FT /codon_start=1

choosebank ("emblTP")
query("trans", "N=AE003734.PE35")

getTrans (trans$req[[1]])

212 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

[1_ IIMII "All IID" IIDII llEll IIQII llFll IISII IIL" IICII ||w" IINlI "Nll llFll "Nll I|T|l "Nll IIL"
[19= WG MAN NG HEN WHn WEN wGH N0 uGH WRN NG NN WLW WyH MDu wyn wgn npn
[37: IIAII "AII IIEII "GII llQll IIIII llvll IIKII IIA" IIHII ||R" IILll "Vll IILll "SII Ilv|l "CII IIS"
[55: IIP|| "Fll IIFH llRll IIK" IIMII ||F|l IITII ||Qll IIMII V|Pll IISII "Nll IIT|| "Hll IIA|| "III llv"
[73: IIFH "LII IIN" "NII |IV|| IISII ||H|l IISII ||A" IILII ||Kll IID|I "Lll III|| "QII IIFH "MII IIY"
[91: IICH "Gll IIE" "V" ||N|l "V" I|Kll IIQII |ID|| IIAII ||Lll IIP|| "All IIFU "Ill IISH "Tll IIA"

:109: IIEH llsll IILH HQII |II|| IIKII ||G|| IILII ||T|| IIDII IINH IIDII npll IIAH nPll IIQH "Pll IIPII
:127: IIQH "Ell IIS" IISII llpll IIPII llpll IIAII |IA|| IIPII ||Hll Ilv‘ll "Qll IIQll "QII IIQH "III IIP"
-145- IIA|| "Qll IIR" "vll IIQ" IIRII |IQ" IIQII ||P" IIRII ||Al| IISII "All IIRH "Yll IIK" "Ill IIE"
:163: IITII "VII IID" "DII |IG|| IILII llGll IIDII |IE" IIKII ||Q" IIS|I "Tll IITll "QII III|I "VII III"
:181: IIQH "Tll IIT" llAll IIA" IIPII ||Q|l IIAII ||T|l IIIII ||Vll IIQII "Qll IIQ“ "Qll IIP|| "Qll IIQ"
:199: IIAH "AII IIQ" "QII |II|| IIQII ||Sll IIQII ||Q" IILII ||Qll IITII IIGII IIT|| "Tll IIT" "TII IIA"
:217: ||T|l "Lll Ilv" IISII |IT|| IINII llKll IIRII |IS|| IIAII ||Qll IIRH "Sll llsll "Lll ||T|l "Pll IIA"
:235: Ils|| "SII IISH HAII IIG" IIVII ||K|| IIRII ||Sl| IIKII IITH IISII "Tll IISH "All IINH "vll IIMII
:253: IID|I "PII IIL" "DII llSll IITII llTll IIEII |IT|| IIGII ||A" IITll "Tll IITll "All IIQH "LII llv"
_271- IIP|| "Qll IIQH llIll IIT" llvll |IQ" II'I'II ||s" llvll V|Vll IISII "All IIA|| "Ell IIA" "Kll IIL"
:289: IIHII "QII IIQ" "SII |IP|| IIQII I|Qll IIVII IIR" IIQII ||E" IIEII "All IIE" "Yll III|I "DII IIL"
:307: IIP|| "Mll IIE" IILII IIP" IITII ||K|l IISII ||E|l IIPII ||Dll IIYII "Sll IIE“ "Dll IIH“ "Gll IID"
:325: IIAH "AII IIGH llDII |IA|| IIEII ||G" IITII ||Yll IIVII ||Ell IIDII IIDII IIT|| "Yll IIGH "DII IIMII
f343f IIRH "YII IID" IIDII llSll IIYII llFll IITII |IE|I IINII ||Ell IIDlI "All llGll "Nll IIQH "Tll IIA"
:361: IIAH "NII IITH llsll IIG" IIGII ||G|| Ilvll ||T|| IIAII IITH IITII "Sll IIKH "All IIVH "vll IIKII
:379: IIQH "QII IIS" "QII llNll IIYII llSll IIEII |IS|| IISII ||F" Ilvll "Dll IITll "SII IIGH "DII IIQ"
_397- IIG|| "Nll IITH llEll IIA" IIQII ||Vll IITII ||Q" IIHII V|Vll IIRII "Nll IIC|| "Gll IIP|| "Qll IIM"
:415: IIFH "LII III" IISII |IR|| IIKII ||G|l IIGII ||T" IILII ||L" IITII "Ill IINH "Nll IIF|| "VII IIY"
f433f IIRH "Sll IIN" IILII IIK" IIFII ||F|l IIGII |IK|I IISII ||Nll IINII "Ill IILU "Yll llw|l "Ell IIC"
:451: |Iv|| "Qll IINH HRII |IS|| IIVII ||K|| IICII ||Rll llsll ||Rll IILII IIKH |IT|| llIll "G" "Dll lan
-469- ||L|l "YII llv" IITII llNll IIDII llVll IIHII |IN|| IIHII ||Mll IIGlI "Dll llNll "Kll IIRH "III IIE"
:487= IIA" "All IIK" "All IIA" IIGII ||M" IILII ||I" IIHII "K" IIKII "L” lls|| "Sll IIL" "Tll IIA"
:505: IIAH "DII IIK" "III llQll IIGII llSll Ilwll |IK" IIMII ||D" IITlI "Ell IIGll "Nll IIPH "DII IIH"
f523f ||L|| "PII IIKH llMll ll*"

16.4.19 getType()

Need internet connection
choosebank ("emblTP")

getType ()

sname libel
2661 CDS .PE protein coding region
2662 ID Locus entry
2663 MISC_RNA .RN other structural RNA coding region
2664 RRNA .RR Ribosomal RNA coding gene
2665 SCRNA .SC small cytoplasmic RNA
2666 SNRNA .SN small nuclear RNA
2667 TRNA .TR Transfer RNA coding gene

16.4.20 getlistrank()

Need internet connection

choosebank ("emblTP")

query("MyListName", "sp=Borrelia burgdorferi", virtual = TRUE)
(result <- getlistrank("MyListName"))

[11 2

stopifnot(result == 2)
closebank ()

16.4.21 getliststate()

Need internet connection

choosebank ("emblTP")

query("mylist", "sp=felis catus et t=cds", virtual=TRUE)
getliststate(glr("mylist")) # SQ, MYLIST, 603, FALSE

$type
[1] IISQH

$name
[1] "MYLIST"

16.4. DON’T RUN GENERATOR 213

$count
[1] 603

$locus
[1] FALSE

gln(glr("mylist")) # MYLIST (upper case letters on server)
[1] "MYLIST"
closebank ()

16.4.22 gfrag()

Need internet connection
choosebank ("emblTP")
gfrag("LMFLCHR36", start = 1, length = 3529852) -> myseq
stopifnot (nchar(myseq) == 3529852)
closebank()

16.4.23 ghelp()

Need internet connection
choosebank ("emblTP")
ghelp()

---- General Information on ACNUC nucleic acid data base ----
HELP:

A detailed explanation of purpose and usage of each command is obtained
by typing the command name and requesting help when the dialog suggests it.
SEQUENCES AND SUBSEQUENCES:

In addition to sequences as published in research articles, ACNUC contains
subsequences which are sequence segments with specific coding function (e.g.
protein, tRNA, rRNA genes...). Sequence type distinguishes parent from sub-
sequences: parent sequences have ID type, subsequences have a type that
indicates their function (CDS, TRNA, RRNA,...). Most subsequence names derive
from the parent sequence's name by addition of suffixes .PEn, .TRn, .RRn, .SNn
.RNn for CDS, TRNA, RRNA, snRNA or misc_RNA-typed subsequences, respectively.
When the gene name is known, it is used as a suffix in the corresponding
subsequence name.

SEQUENCE LISTS:

This program deals with sequence lists which group sequences selected from
the data base using one or more selection criteria (see SELECT help). Many
sequence lists can be handled simultaneously by the program and previous lists
can be used to define new ones.

Typical use of program is:

- SPECIES command to know which species names are to be used in selection.
- KEYWORDS command to know which keywords are to be used in selection.
- SELECT command to select sequences from data base combining various
criteria. This command produces the list of sequences that fit the criteria.
- SHORT command to obtain a brief description of selected sequences
or - INFO command to get more detailed information.
- EXTRACT command to copy selected sequences to a user file.

LIST NAMES:
Lists are created by commands SELECT or FIND. They are given automatically a
name (LIST1, LIST2,...) by the program, unless the user enters his own list

name by appending /l=my_list_name to the command name at the "Command?" prompt.
Most commands operate either on a sequence list or on an individual sequence.
Reply to question "List, sequence, or accession #7 [default=...]" with
<RETURN> to access the default (list of) sequence(s) or with any list name,
sequence name, or accession number.
FILE OUTPUT:
If /lpt is appended to command name at the "Command?" prompt, the output of
commands SPECIES, KEYWORDS, INFO, SHORT, NAMES, CODES, BASES goes to a file
named ~query.out'.
CODED NAMES:

Coded names are to be used when specifying species, keywords, journals,
sequence types, organelles, molecules. Specific commands
(SPECIES, KEYWORDS, CODES) allow you to find these names easily.
REFERENCES :

To find a sequence from a bibliographical reference use the selection
criterion "R=reference-code" of SELECT command. Build the reference code as
follows (journal names are given by CODES command) :

journal_name/volume/first_page for journal articles

214 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

book/year/name_of _1st_author for books
thesis/year/name_of_1st_author for thesis
patent/patent_number for patented sequences
unpubl/year/name_of_1st_author for unpublished sequences

Example: nar/8/2173 stands for Nucleic Acids Research 8:2173-2192 (1980).
ghelp ("SELECT")

In addition to functions described in the help for the simple usage of
command SELECT, other selection criteria and operations between lists exist.
Specifically, it is also possible to build lists of species and lists of
keywords for further retrieval capabilities.

Criteria Resulting selection

FK=file name List of keywords taken from a file (which may have been created
by a SAVE command) .

FS=file name List of species taken from a file (which may have been created
by a SAVE command) .

Operation Result
ME list Replaces subsequences in list by sequences from which they
are extracted (equivalent to option 4 of command MODIFY).
FI list Sequences in list plus all of their subsequences (equivalent to
option 5 of command MODIFY).
PS list Produces the list of species names attached to sequences in list.
PK list Produces the list of keyword names attached to sequences in list.
UN list If applied to a species list, produces the list of sequences from

species in the list; if applied to a keyword list, produces the
list of sequences attached to keywords in list.

SD spec-list Applied to a list of species, produces the list of all descendants
from them in the species tree. The list itself can easily be
created by command FIND.

KD keyw-list Applied to a list of keywords, produces the list of all
descendants from them in the keywords tree. The list itself can
easily be created by command FIND.

Operators PS, PK, and UN allow to solve the problem "find all genes
simultaneously sequenced in a given series of species".

First, build the lists of sequences from each of these species. Next project
each of these lists to attached keywords by applying operator PK. Then compute
the list of keywords in common by combining the keyword lists with operator ET.
Then, remove from this list of common keywords, those which are
uncharacteristic (e.g. partial) by employing command MODIFY. Finally, produce
the lists of sequences attached to common keywords from each species by
applying operator UN combined with initial species-based sequence lists.
Species and keyword lists can be listed with command NAMES and saved with SAVE.

To get info about current database:
ghelp("CONT")
Hkokok ACNUC Data Base Content Hkokok
EMBL Library Release 78 WITHOUT ESTs (March 2004)

27,571,397,913 bases; 12,533,594 sequences; 1,604,500 subseqs; 339,186 refers.
Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite Lyon I

16.4.24 isenum()

Need internet connection
choosebank ("emblTP")
isenum("LMFLCHR36")

$number
[1] 13682678

$length
[1] 3529852

$frame
[1] ©

$gencode
[11 o

$ncbigc
[1] 1

$otheraccessmatches
[1] FALSE

16.4. DON’T RUN GENERATOR 215

isn("LMFLCHR36")
[1] 13682678

stopifnot (isn("LMFLCHR36") == 13682678)
Example with CDS:
isenum("AB004237")

$number
[1] 66351

$length
[1] 1140

$frame
[1] ©

$gencode
[1] 2

$ncbigc
[1] 2

$otheraccessmatches
[1] FALSE

16.4.25 knowndbs()

Need internet connection
choosebank ("emblTP")

kdb ()
bank status
1 genbank on
2 embl on
3 emblwgs on
4 swissprot on
5 ensembl on
6 refseq on
7 nrsub on
8 hobacnucl on
9 hobacprot on
10 hovergendna on
11 hovergen on
12 hogenom on
13 hogenomdna on
14 hogennucl on
15 hogenprot on
16 hoverclnu on
17 hoverclpr on
18 homolens on
19 homolensdna on
20 greview on
21 polymorphix on
22 emglib on
23 HAMAPnucl on
24 HAMAPprot on
25 hoppsigen on
26 nurebnucl on
27 nurebprot on
28 taxobacgen on
info
1 GenBank Rel. 167 (15 August 2008) Last Updated: Oct 26, 2008
2 EMBL Library Release 96 (September 2008) Last Updated: Oct 25, 2008
3 EMBL Whole Genome Shotgun sequences Release 96 (September 2008)
4 UniProt Rel. 14 (SWISS-PROT 56 + TrEMBL 39): Last Updated: Aug 28, 2008
5 Ensembl Release 49\t \t\t Last Updated: Apr 23, 2008
6 RefSeq 15.0 (1 January 2006) Last Updated: Jan 23, 2006
7 NRSub database release 10.1 (December 1997)
8 HOBACGEN - genomic data - Release 10 (February 12 2002)
9 HOBACGEN - protein data - Release 10 (February 12 2002)

10 HOVERGEN - genomic data - Release 48 (May 24 2007) Last Updated: May 24, 2007
11 HOVERGEN - protein data - Release 48 (May 24 2007) Last Updated: May 24, 2007
12 HOGENOM - protein data - Release 04 (Sept 18,2007) Last Updated: Feb 27, 2008
13 HOGENOM - genomic data - Release 04 (Sept 18,2007) Last Updated: Feb 21, 2008
14 HOGENOM - genomic data - Release 03 (Oct 14 2005) Last Updated: Nov 7, 2005
15 HOGENOM - protein data - Release 03 (Oct 14 2005) Last Updated: Mar 10, 2006
16 HOVERGEN CLEAN - genomic data - Release 46 (Jun 10 2004)

216 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN
17 HOVERGEN CLEAN - protein data - Release 46 (Jun 10 2004)
18 HOMOLENS 4 - Homologous genes from Ensembl(49)\t Last Updated: Jul 4, 2008
19 HOMOLENS 4 - Homologous genes from Ensembl(49)\tLast Updated: Jul 4, 2008
20 EBI Genome Reviews. Acnuc Release 2. Last Updated: June 19, 2005
21 POLYBASE - Release 1 (June 20, 2003)
22 EMGLib Release 5 (December 9, 2003)
23 HAMAP nucl.
24 HAMAP prot.
25 Hoppsigen
26 Nurebase 4.0 (26 September 2003) Last Updated: NOV 27, 2003
27 Nurebase 4.0 (26 September 2003) Last Updated: NOV 27, 2003
28 TaxoBacGen Rel. 7 (September 2005)
closebank()

16.4.26 oriloc()

#

A little bit too long for routine checks because oriloc() is already
called in draw.oriloc.Rd documentation file. Try example(draw.oriloc)
instead, or copy/paste the following code:

#

out <- oriloc()
plot(outst, outsk, type = "1", xlab = "Map position in Kb",

#

ylab = "Cumulated composite skew",
main = expression(italic(Chlamydia”~trachomatis)”~complete”~genome))

Example with a single GenBank file:
#

out2 <- oriloc(gbk=system.file("sequences/ct.gbk", package = "seqinr"))
draw.oriloc(out2)

Cumulated composite skew

Chlamydia trachomatis complete genome

2000 4000 6000 8000

0
|

—-4000
|

T T T T T T
0 200 400 600 800 1000

Map position in Kb

16.4.27 prepgatannots()

16.4. DON’T RUN GENERATOR 217

Need internet connection
choosebank ("genbank")
query("mylist","n=AQF16SRRN")
pga() # We want to scan all annotations, including FEATURES

modifylist("mylist", operation = "strain", type = "scan")
mylist$nelem # should be 1
[11 1

16.4.28 prettyseq()

Need internet connection
choosebank ("emblTP")
prettyseq(111)

Name: A00165 Length:108
Genetic code used: NUG=AUN=M when initiation codon

10 20 30 40 50 60
Q y¢ G NL S TCM L GT Y TQD F N K
cagtactgcg gtaatctgag tacttgcatg ctgggcacat acacgcagga cttcaacaag
>A00165

70 80 90 100 110
FHT FPQT A I G V GA P G *
tttcacacgt tcccccaaac tgcaattggg gttggagcac ctggttga
A00165<

16.4.29 print.SeqgAcnucWeb()

Need internet connection
choosebank ("emblTP")

query("mylist", "sp=felis catus")

mylist$req[[1]]

name length frame ncbicg
"A06937|I ||34" IIO" I|1ll

16.4.30 print.qaw()

Need internet connection
choosebank ("emblTP")
query("sp=felis catus")
listl

4732 SQ for sp=felis catus

16.4.31 query()

Need internmet comnnection

choosebank ("genbank")

query("bb", "sp=Borrelia burgdorferi')

To get the names of the 4 first sequences:
sapply (bb$req[1:4], getName)

[1] "A04009" "A22442" "A24006" "A24008"

To get the 4 first sequences:
sapply(bb$req[1:4], getSequence, as.string = TRUE)

[1] "aagcttaattagaaccaaacttaattaaaaccaaacttaattgaagttattatcattttattttttttcaattttctatttgttatttgttaatcttataatataattatac
[2] "atgaaaaaatatttattgggaataggtctaatattagccttaatagcatgtaagcaaaatgttagecagecttgacgagaaaaacagegtttcagtagatttgectggtgaaa
[3] "atgaaaaaatatttattgggaataggtctaatattagccttaatagcatgtaagcaaaatgttagecagecttgatgaaaaaaatagegtttcagtagatttacctggtggaa
[4] "atgaaaaaatatttattgggaataggtctaatattagccttaatagecatgtaagcaaaatgttagecagecttgacgagaaaaacagegtttcagtagatgtacctggtggaa

218 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

16.4.32 readfirstrec()

Need internet connection
choosebank ("genbank")

allowedtype <- readfirstrec()
sapply(allowedtype, function(x) readfirstrec(type = x))

AUT BIB ACC SMJ SUB LOC KEY
174467 525954 96474557 5351 102053262 99964643 9391212

SPEC SHRT LNG EXT TXT
598454 894561842 28901625 8301690 477859

16.4.33 rearranged.oriloc()

r.ori <- rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta",package = "seqinr"),
g2.coord = system.file("sequences/ct.coord",package = "seqinr"))

16.4.34 residuecount()

Need internet connection

choosebank ("emblTP")

query("mylist", "t=CDS", virtual = TRUE)
stopifnot(residuecount (glr ("mylist")) == 1611439240)
stopifnot(is.na(residuecount (glr("unknowlist")))) # A warning is issued

16.4.35 savelist()

Need internet connection

choosebank ("emblTP")

query("mylist", "sp=felis catus et t=cds", virtual=TRUE)
savelist(glr("mylist"))

603 sequence mnemonics written into file: MYLIST.mne

603 sequence mnemonics written into file: MYLIST.mne
savelist (glr("mylist"), type = "A")

603 sequence accession numbers written into file: MYLIST.acc

16.4.36 setlistname()

Need internet connection

choosebank ("emblTP")

query("mylist", "sp=felis catus et t=CDS", virtual = TRUE)

Change list name on server:

setlistname(lrank = glr("mylist"), name = "feliscatus") # 0, OK.

[11 o

glr("mylist") # 0, list doesn't exist no more.
[11 o

glr("feliscatus") # 2, this list exists.

[1] 2

16.4. DON’T RUN GENERATOR 219

16.4.37 translate()

Need internet connection.
Translation of the following EMBL entry:

FT
FT

FT
FT

CDS

choosebank ("emblTP")
query("trans", "N=AE003734.PE35")

getTrans (trans$req[[1]1])

[1]
[19]
[37]

M
ngn
npn
npn
nEn
ngn
ngn
nan
nAn
nwn
nan
nAn
nn
ngn
npn
npn
il
npn
nAn
ng"
Lyl
nan
Ledl
ngn
ng"
nyn
nyn
nAn
npn
ngn

npn
npn
npn
npn
ngn
ngn
ngn
ngn
"
nyn
nn
npn
npn
ngn
npn
"
il
npn
nyn
nyn
nan
"Il\JI"
nyn
ngn
nan
nyn
npn
npn
npn

npn
ngn
ngn
nEn
ny
ngn
ngn
ngn
ng"
npn
nn
nn
nyn
ngn
ngn
nn
nan

ngn
ng
npn
nn
ngn
nn
nyn
nyn
ny
nyn
ngn
ngn
ngn

npn
npn
ngn
ngn
"
nyn
nan
ugu
nyn
npn
npn
nan
ngn
npn
npn
nyn
ngn
ngn
npn
npn
ngn
nan
llgu
ngn
nyn
ngn
nn
npn
nyn
e

ngn
:dl
nan
ngn
nyn
ny
nyn
npn
non
ngn
Ll
nyn
nn
ngn
ngn
nn
npn
npn
nAn
ngn
ng
ny
Ll
npn
ngn
ngn
nyn
nAn
nan

Mygn

join(complement (1563944 . .154157) ,complement (153727..1563866) ,
complement (1562185..153037),138523..138735,138795. .138955)
/codon_start=1

/db_xref="FLYBASE:FBgn0002781"

/db_xref="GOA:Q86B86"

/db_xref="TrEMBL:(Q86B86"

/note="mod (mdg4) gene product from transcript CG32491-RZ;
trans splicing"

/gene="mod (mdg4) "

/product="CG32491-PZ"

/locus_tag="CG32491"

/protein_id="AA041581.1"
/translation="MADDEQFSLCWNNFNTNLSAGFHESLCRGDLVDVSLAAEGQIVKA
HRLVLSVCSPFFRKMFTOMPSNTHAIVFLNNVSHSALKDLIQFMYCGEVNVKQDALPAF
ISTAESLQIKGLTDNDPAPQPPQESSPPPAAPHVQQQQIPAQRVQRQQPRASARYKIET
VDDGLGDEKQSTTQIVIQTTAAPQATIVQQQQPQQAAQQIQSQQLQTGTTTTATLVSTN
KRSAQRSSLTPASSSAGVKRSKTSTSANVMDPLDSTTETGATTTAQLVPQQITVQTSVV
SAAEAKLHQQSPQQVRQEEAEYIDLPMELPTKSEPDYSEDHGDAAGDAEGTYVEDDTYG
DMRYDDSYFTENEDAGNQTAANTSGGGVTATTSKAVVKQQSQNYSESSFVDTSGDQGNT
EAQVTQHVRNCGPQMFLISRKGGTLLTINNFVYRSNLKFFGKSNNILYWECVQNRSVKC
RSRLKTIGDDLYVTNDVHNHMGDNKRIEAAKAAGMLIHKKLSSLTAADKIQGSWKMDTE
GNPDHLPKM"

uQu L LR XU (NI TYo TURNRA X STRRTE \ ATRTD \ ST ~STND N SUSSCCE, JSID (TR Y]
L3 SUURRIE S TUTS SN o AURNTD ~R U TR UNNLD » SUNSLLD SUUNSUA TATNNRLS) LUIRIA v AUBNRIY S XIS oI
LU0 LA ¥ AR " U N * SN ~S UL SRR AT SRTIES SIIA VAT Yo N F 1]
L VALY S LT o LU LY LU LD A (L - LY I (U T
RSN - LS LY WD SO G KILD PN U S LD ' U 4
nyn ngn uQu npM o MAM MM upH o MAN WEW HTH wGH W wAN
L T L SUL WU LY ALY KD ~TLLY U "L n L) ~TUN) -1
HpH o upm o mpw o mpAw wpno wpgn wyn nQu nQn nQu nQn ngn upn
URNMOMQM mQM PN MRM MAM MM MANM WRM o myM MK wTu wpn
UM MGM wpn MEM MKM MQM wGM MTM wTw o uwQn o wpw myn e
UPHOMQU WAN WTH WTH o MyHowQuomQuo uQu o nQu HpronQu wQn
"Q" o "s™ omeQM Q" L™ "Q" “T" "G" "T" "T" MT" NT" MAM
nupNm o ngm o wRn onmgn o mpn nQu WRM ngm uwgm mpm wTw npn o wpn
L 7AUIIS * UL ~ UK SURTD " UL W UNE SUNSUL, (LU SUNN LY TS CCOA /LR ¥ O
WTHOWTH NEN WTH NGH WAN W W W upAN nQn npnonyn
RRTALNY n L LT LA AL AU S LY WY U oL UL G
nQ" omQ" “"y" "R" eQ" "E" "E" WAM O WEW nmyw o ww wpn o wpm
WTH NKN o ngn mEN npn onpnowyn o ngn o wgn upn nge ngn upn
L3 SLUIY e UL WA ATINR TATIND - UNNLD » EUNNLLD) UL LU ‘AT LY e LU) LU ¥ U
R"AUITS XU WU - N SURTD - UND » YR U Yo XU] uQn nwTn o mpn
WG ONGN MyN NTN MAN WU TR NG NN WA N e g
nyn ongm o wgm o mgm o mgu o wpn o uyn wpn o wTn o nwgn o ugn upn nQn
Lo A TN LT o LD - A TAUNILS KD | AT oL LS LR o L T
L2 e Ko XURNE: LTI ST ST, U UOD AUTD VALY ~SNA VAT 4]
L5 LU TN o XU TRTE S SURTD N UL N EUNSU (TS TR AT TS # TS XTI TN o]
L vATINS UYL U ~ S UK UL ~RUNNLD SRUNNLD LS, LU U IY e XU) LU p L
L0 > LA VAT < CURRTS N AT * USSRV AU T SUNNLD » RUNSS | ALNS TS ~ KT (XU -4
LYo LU " LTS SR SURTD * AUNLD "G UNLD GUNNULD SUUNSUE < SUNN Y X UIRTS LU L WUy
LRI URL # TUD "L VLN s YURNTS) WD U e ATTD NSNS SN) YUNNS < £

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2

e Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/C/C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

220 CHAPTER 16. TEST SUITE: RUN THE DON’T RUN

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15
There were two compilation steps:

e @ compilation time was: Sun Oct 26 18:44:17 2008

o IATEX compilation time was: December 12, 2008

CHAPTER 17

Informations about databases
available at pbil

Lobry, J.R.

17.1 Introduction

This section was compiled on December 12, 2008. The list of available database
at pbil (http://pbil.univ-1lyonl.fr/) was:

bankDefault <- choosebank()

bankTP <- choosebank(tagbank = "TP")

bankDEV <- choosebank(tagbank = "DEV")
(banknames <- c(bankDefault, bankTP, bankDEV))

[1] "genbank" "embl" "emblwgs" "swissprot"

[6] "ensembl" "refseq" "nrsub" "hobacnucl"

[9] "hobacprot" "hovergendna" "hovergen" "hogenom"
[13] "hogenomdna" "hogennucl" "hogenprot" "hoverclnu"
[17] "hoverclpr" "homolens" "homolensdna" 'greview"
[21] "polymorphix" "emglib" "HAMAPnucl" "HAMAPprot"
[25] "hoppsigen" "nurebnucl" "nurebprot" "taxobacgen"
[29] "emblTP" "swissprotTP" "hoverprotTP" "hovernuclTP"
[33] "trypano" "ensembl24" "ensembl34" "ensembl4l"
[37] "ensembl4d7" "ensembl149" "macaca4b5" "dog45b"
[41] "dogaT7" "equus49" "pongo49" "rattus49"
[45] "mouse38" "homolens4" "homolens4dna" "hogendnucl"
[49] "hogendprot" "genomicrol" "genomicro2" "genomicro3"

[63] "genomicro4"

This KTEX file was automatically generated by the following @ code:

for (b in banknames) {
cat (paste("\\section{", b, "}"), sep = "\n")
openTry <- try(choosebank(b))
if (inherits(openTry, "try-error")) {

cat("There was a problem while trying to open this bank.\n")
next

}
bankdetails <- sapply(banknameSocket$details, stresc,

USE.NAMES = FALSE)
cat ("\\textbf{Bank details}", sep = "\n")

221

http://pbil.univ-lyon1.fr/

222CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

cat(bankdetails, sep = "\\\\\n")
cat (Il\nll)
cat ("\\textbf{Type names}", sep = "\n")
types <- getType()
if (is.null(nrow(types))) {
cat("There are no subsequence type in this database",
sep = "\n")

}
else {
cat ("\\noindent\\begin{tabular}{1llr}", sep = "\n")
cat("\\hline \\hline", sep = "\n")
cat("name & description & count \\\\", sep = "\n")
cat("\\hline", sep = "\n")
sumnelem <- 0O
for (i in 1:nrow(types)) {
querytry <- try(query("mylist", paste("T=
"sname"]), virtual = TRUE))
if (inherits(querytry, "try-error")) {
nelem <- 0

n

, typesl[i,

else {
nelem <- mylist$nelem
}

sumnelem <- sumnelem + nelem

cat(paste(stresc(types[i, "sname"]), " & ", stresc(typesl[i,
"libel"]), " & ", formatC(nelem, big.mark = ",",
format = "d"), "\\\\"), sep = "\n")

}

cat("\\hline", sep = "\n")

cat(paste(" & Total: &", formatC(sumnelem, big.mark =
format = "d"), u\\\\u)’ sep = "\n")

cat("\\hline \\hline", sep = "\n")

cat ("\\end{tabular}", sep = "\n")

cat("\n")

non
)

}
closebank ()

17.2 genbank

Bank details **** ACNUC Data Base Content ****

GenBank Rel. 167 (15 August 2008) Last Updated: Oct 26, 2008
97,378,213,581 bases; 96,406,734 sequences; 5,646,527 subseqs; 525,953 refers.
Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I

name description count

CDS .PE protein coding region 6,067,613

LOCUS sequenced DNA fragment 93,511,529

MISC_RNA .RN other structural RNA coding region 583,588

Type names RRNA .RR mature ribosomal RNA 1,499,635
SCRNA .SC small cytoplasmic RNA 146

SNRNA .SN small nuclear RNA 418

TMRNA .TM transfer messenger RNA 306

TRNA TR mature transfer RNA 390,026

Total: 102,053,261

17.3 embl

Bank details **** ACNUC Data Base Content ****

EMBL Library Release 96 (September 2008) Last Updated: Oct 25, 2008
118,652,592,128 bases; 99,263,575 sequences; 12,793,590 subseqs; 513,868 refers.
Software by M. Gouy, Laboratoire de biometrie, Universite Lyon I

17.4. EMBLWGS 223

name description count
CDS .PE protein coding region 13,234,878
1D Locus entry 96,277,087
MISC_RNA RN other structural RNA coding region 581,809
NCRNA .NC non protein-coding RNA 58,752
Type names RRNA .RR Ribosomal RNA coding gene 1,500,663
SCRNA .SC small cytoplasmic RNA 0
SNRNA .SN small nuclear RNA 0
TMRNA .TM transfer messenger RNA 134
TRNA .TR Transfer RNA coding gene 403,842
Total: 112,057,165

17.4 emblwgs

Bank details **** ACNUC Data Base Content ****

EMBL Whole Genome Shotgun sequences Release 96 (September 2008)
118,606,277,503 bases; 40,248,013 sequences; 1,474,573 subseqs; 523 refers.
Retrieval software by M. Gouy, Biometrie et Biologie Evolutive, Univ Lyon I.

name description count

CDS .PE protein coding region 1,449,786

1D EMBL sequence data library entry 40,247,551

MISC_RNA RN other structural RNA coding region 1,365

Type names RRNA .RR ribosomal RNA coding region 3,253
SCRNA .SC small cytoplasmic RNA coding region 0

SNRNA .SN small nuclear RNA coding region 0

TRNA .TR transfer RNA coding region 20,631

Total: 41,722,586

17.5 swissprot

Bank details **** ACNUC Data Base Content ****

UniProt Rel. 14 (SWISS-PROT 56 + TrEMBL 39): Last Updated: Aug 28,

2008

2,097,290,313 amino acids; 6,462,751 sequences; 297,653 references.

Non-redundant compilation of SWISS-PROT + TrEMBL

Software by M. Gouy & L. Duret, Laboratoire de biometrie, Universite Lyon I.
Type names There are no subsequence type in this database

17.6 ensembl

Bank details **** ACNUC Data Base Content ****
Ensembl Release 49 Last Updated: Apr 23, 2008
90,338,630,754 bases; 3,499,715 sequences; 9,289,073 subseqs; 0 refers.

Aedes aegypti - Release 49_1b
Anopheles gambiae - Release 49_3j
Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f

224CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Caenorhabditis elegans - Release 49_180a
Canis familiaris - Release 49_2¢g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i

Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_1e

Equus caballus - Release 49_2

Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2¢g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1
Monodelphis domestica - Release 49_5d
Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f
Oryzias latipes - Release 49_le

Otolemur garnettii - Release 49_1e

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c
Spermophilus tridecemlineatus - Release 49_1e
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

17.7. REFSEQ 225
name description count
3JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 307,441
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 800,830
CDS .PE protein coding region 892,572
Type names 1D EMBL sequence data library entry 3,499,715
INT_INT IN internal intron 7,157,683
MISC_RNA RN other structural RNA coding region 130,547
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 12,788,788
17.7 refseq
Bank details **** ACNUC Data Base Content ****
RefSeq 15.0 (1 January 2006) Last Updated: Jan 23, 2006
1,055,245,496 bases; 625,928 sequences; 254,162 subseqs; 205,831 refers.
Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I
name description count
3 INT .31 3’intron 0
3’NCR .3F 3’-non coding region 0
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 0
CDS .PE protein coding region 624,776
Type names INT_INT IN internal intron 0
LOCUS sequenced DNA fragment 255,273
MISC_RNA RN other structural RNA coding region 8
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 2
SNRNA .SN small nuclear RNA coding region 22
TRNA .TR transfer RNA coding region 9
Total: 880,090
17.8 nrsub

Bank details **** ACNUC Data Base Content ****
NRSub database release 10.1 (December 1997)

Bacillus subtilis complete genome

Sequence data taken from the SubtiList database

Institut Pasteur - Unite de Regulation de I’Expression Genetique
Extra annotations provided by G. Perriere

Laboratoire BGBP - Universite Claude Bernard, Lyon 1

226CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

name description count
CDS .PE protein coding region 4,100
1D EMBL sequence data library entry 1
MISC_RNA .RN other structural RNA coding region 0
Type names RRNA .RR ribosomal RNA coding region 30
SCRNA .SC small cytoplasmic RNA coding region 2
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 88
Total: 4,221
17.9 hobacnucl
Bank details **** ACNUC Data Base Content ****
HOBACGEN - genomic data - Release 10 (February 12 2002)
432,023,804 bases; 168,814 sequences; 293,669 subseqs; 52,735 references.
Bacteria + Archaea + Saccharomyces cerevisiae
Genomic data from EMBL Release 69 (December 2001)
name description count
CDS .PE protein coding region 306,455
1D EMBL sequence data library entry 94,694
MISC_RNA .RN other structural RNA coding region 2,299
Type names RRNA .RR ribosomal RNA coding region 51,562
SCRNA .SC small cytoplasmic RNA coding region 41
SNRNA .SN small nuclear RNA coding region 193
TRNA TR transfer RNA coding region 7,239
Total: 462,483

17.10 hobacprot

Bank details **** ACNUC Data Base Content ****
HOBACGEN - protein data - Release 10 (February 12 2002)
79,755,852 amino acids; 260,025 sequences; 37,383 references.

Bacteria + Archaea + Saccharomyces cerevisiae

Protein data from SWISS-PROT 40 + TrEMBL 19 + TrEMBL_NEW: January

25, 2002

Software: M. Gouy & M. Jacobzone
Data maintenance: L. Duret & G. Perriere

Laboratoire de Biometrie et Biologie Evolutive

UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.11. HOVERGENDNA 227
17.11 hovergendna

Bank details **** ACNUC Data Base Content ****

HOVERGEN - genomic data - Release 48 (May 24 2007) Last Updated: May
24, 2007

2,500,248,516 bases; 541,405 sequences; 1,005,089 subseqs; 117,556 refers.

Vertebrate (chordata)
Genomic data from EMBL Library Release 90 (March 2007)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 129,921
5INT .51 5’intron 0
5'NCR .BF 5’-non coding region 120,642
CDS .PE protein coding region 613,473
Type names 1D EMBL sequence data library entry 371,759
INT_INT IN internal intron 172,068
MISC_RNA RN other structural RNA coding region 249
RRNA .RR ribosomal RNA coding region 9,873
SCRNA .SC small cytoplasmic RNA coding region 24
SNRNA .SN small nuclear RNA coding region 55
TRNA .TR transfer RNA coding region 128,430
Total: 1,546,494

17.12 hovergen

Bank details **** ACNUC Data Base Content ****

HOVERGEN - protein data - Release 48 (May 24 2007) Last Updated: May 24,
2007

142,891,140 amino acids; 415,383 sequences; 114,560 references.

Vertebrate (chordata)
Protein data from UniProt Rel. 10 (SWISS-PROT 52 + TrEMBL 35) May 2007

Software: M. Gouy & M. Jacobzone
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive

UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

228CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

17.13 hogenom

Bank details **** ACNUC Data Base Content ****

HOGENOM - protein data - Release 04 (Sept 18,2007) Last Updated: Feb 27,
2008

755,031,736 amino acids; 2,142,639 sequences; 0 references.

Fully Sequenced Organisms
Protein data
511 fully sequenced organisms (eukarya, bacteria, archaea)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.14 hogenomdna

Bank details **** ACNUC Data Base Content ****

HOGENOM - genomic data - Release 04 (Sept 18,2007) Last Updated: Feb 21,
2008

14,692,834,718 bases; 134,844 sequences; 7,862,206 subseqs; 512 refers.

Fully Sequenced Organisms
Genomes
511 fully sequenced organisms (eukarya, bacteria, archaea)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

17.15. HOGENNUCL

Type names

17.15 hogennucl

2005

Fully Sequenced Organisms

and EMBL (June 2005)
(263 fully sequenced organisms)

Data maintenance: L. Duret & S. Penel

Type names

229
name description count
3JINT .31 3’intron 0
3’NCR .3F 3’-non coding region 1,476,296
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 1,720,484
CDS .PE protein coding region 2,125,031
1D EMBL sequence data library entry 54,323
INT_INT IN internal intron 2,560,918
MISC_RNA RN other structural RNA coding region 22,520
RRNA .RR ribosomal RNA coding region 6,378
SCRNA .SC small cytoplasmic RNA coding region 11
SNRNA .SN small nuclear RNA coding region 231
TRNA .TR transfer RNA coding region 30,858
Total: 7,997,050
Bank details **** ACNUC Data Base Content ****
HOGENOM - genomic data - Release 03 (Oct 14 2005) Last Updated: Nov 7,
2,538,433,251 bases; 227,950 sequences; 4,136,134 subseqs; 82,281 refers.
Protein data from http://www.ebi.ac.uk/proteome/ (August, 2005)
Genomic data from GenomeReview (June 2005)
Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex
name description count
1D EMBL sequence data library entry 204,502
CDS .PE protein coding region 1,060,241
TRNA .TR transfer RNA coding region 49,216
RRNA .RR ribosomal RNA coding region 5,813
MISC_RNA RN other structural RNA coding region 861
SCRNA .SC small cytoplasmic RNA coding region 29
SNRNA .SN small nuclear RNA coding region 459
3'INT .31 3’intron 309
3'NCR .3F 3’-non coding region 1,247,297
5INT .51 5’intron 1,263
5NCR .5F 5’-non coding region 1,158,238
INT_INT IN internal intron 635,856
Total: 4,364,084

230CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

17.16 hogenprot

Bank details **** ACNUC Data Base Content ****
HOGENOM - protein data - Release 03 (Oct 14 2005) Last Updated: Mar 10,

2006

339,891,443 amino acids; 950,216 sequences; 92,805 references.

Fully Sequenced Organisms
Protein data from http://www.ebi.ac.uk/proteome/ (August 2005)

(263 fully sequenced organisms)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.17 hoverclnu

Bank details **** ACNUC Data Base Content ****
HOVERGEN CLEAN - genomic data - Release 46 (Jun 10 2004)
894,369,756 bases; 312,987 sequences; 796,415 subseqs; 99,342 refers.

Vertebrate (chordata)
Genomic data from EMBL Release 78 (March 2004)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

Type names

name description count
3JINT .31 3’intron 514
3'NCR .3F 3’-non coding region 178,356
5INT .51 5’intron 1,377
5'NCR .5F 5’-non coding region 166,924
CDS .PE protein coding region 289,107
1D EMBL sequence data library entry 218,165
INT_INT IN internal intron 133,109
MISC_RNA RN other structural RNA coding region 169
RRNA .RR ribosomal RNA coding region 3,064
SCRNA .SC small cytoplasmic RNA coding region 15
SNRNA .SN small nuclear RNA coding region 50
TRNA TR transfer RNA coding region 43,253

Total:

1,034,103

17.18. HOVERCLPR

17.18 hoverclpr

Bank details **** ACNUC Data Base Content ****
HOVERGEN CLEAN - protein data - Release 46 (Jun 10 2004)
75,885,664 amino acids; 219,552 sequences; 89,885 references.

Vertebrate (chordata)

231

Protein data from SWISS-PROT Rel. 43 + TTEMBL Rel. 26 + TTEMBL_NEW:

May 17, 2004

Software: M. Gouy & M. Jacobzone
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.19 homolens

Bank details **** ACNUC Data Base Content ****

HOMOLENS 4 - Homologous genes from Ensembl(49) Last Updated:

2008
247,930,199 bases; 529 sequences; 64,224 subseqs; 206 refers.

Aedes aegypti - Release 49_1b
Anopheles gambiae - Release 49_3j
Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f
Caenorhabditis elegans - Release 49_180a
Canis familiaris - Release 49_2¢g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i

Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_le

Equus caballus - Release 49_2
Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1
Monodelphis domestica - Release 49_5d

Jul 4,

232CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f
Oryzias latipes - Release 49_le

Otolemur garnettii - Release 49_le

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c¢
Spermophilus tridecemlineatus - Release 49_1e
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

Type names There are no subsequence type in this database

17.20 homolensdna

Bank details **** ACNUC Data Base Content ****

HOMOLENS 4 - Homologous genes from Ensembl(49) Last Updated: Jul 4,
2008

55,129,547,735 bases; 178,069 sequences; 9,247,193 subseqs; 0 refers.

Aedes aegypti - Release 49_1b
Anopheles gambiae - Release 49_3]
Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f
Caenorhabditis elegans - Release 49_180a
Canis familiaris - Release 49_2¢g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i
Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_1e
Equus caballus - Release 49_2
Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2¢g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1

17.21. GREVIEW 233

Monodelphis domestica - Release 49_5d
Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f
Oryzias latipes - Release 49_1e

Otolemur garnettii - Release 49_le

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c
Spermophilus tridecemlineatus - Release 49_1le
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 307,441
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 800,830
CDS .PE protein coding region 892,572
Type names 1D EMBL sequence data library entry 178,069
INT_INT IN internal intron 7,157,683
MISC_RNA RN other structural RNA coding region 88,667
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 9,425,262

17.21 greview

Bank details **** ACNUC Data Base Content ****

EBI Genome Reviews. Acnuc Release 2. Last Updated: June 19, 2005
719,075,744 bases; 385 sequences; 1,611,759 subseqs; 227 refers.

225 organisms

Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite

Lyon I

234CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

name description count
JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 513,862
5INT .51 5’intron 0
5’NCR .5F 5’-non coding region 418,539
CDS .PE protein coding region 663,801
Type names 1D EMBL sequence data library entry 385
INT_INT N internal intron 160
MISC_RNA .RN other structural RNA coding region 0
RRNA .RR ribosomal RNA coding region 2,553
SCRNA .SC small cytoplasmic RNA coding region 11
SNRNA .SN small nuclear RNA coding region 46
TRNA TR transfer RNA coding region 12,787
Total: 1,612,144
17.22 polymorphix
Bank details **** ACNUC Data Base Content ****
POLYBASE - Release 1 (June 20, 2003)
326,666,616 bases; 261,669 sequences; 489,209 subseqs; 21,100 refers.
Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I
name description count
JINT .31 3’intron 0
3’NCR .3F 3’-non coding region 0
5INT .51 5’intron 0
5’NCR .BF 5’-non coding region 0
CDS .PE protein coding region 149,266
1D EMBL sequence data library entry 168,502
Type names INT_INT IN internal intron 0
MISC_RNA .RN other structural RNA coding region 37,077
RRNA .RR ribosomal RNA coding region 66,154
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 45
TRNA TR transfer RNA coding region 44,158
VARIATION .VA allelic variant 285,676
Total: 750,878

17.23 emglib

Bank details **** ACNUC Database Content ****
EMGLib Release 5 (December 9, 2003)

434,648,385 bases; 174 sequences; 413,521 subseqs; 169 refers.
Data compiled from various sources by Guy Perriere

17.24. HAMAPNUCL

Type names

235

name description count
CDS .PE protein coding region 404,721
LOCUS sequenced DNA fragment 174
MISC_RNA RN other structural RNA coding region 239
RRNA .RR ribosomal RNA coding region 1,409
SCRNA .SC small cytoplasmic RNA coding region
SNRNA .SN small nuclear RNA coding region
TRNA .TR transfer RNA coding region 7,138

Total: 413,695

17.24 HAMAPnucl

There was a problem while trying to open this bank.

17.25 HAMAPprot

There was a problem while trying to open this bank.

17.26 hoppsigen

Bank details NA

Type names

name description count
1D EMBL sequence data library entry 9,757
CDS .PE protein coding region 3,814
TRNA TR transfer RNA coding region 0
RRNA .RR ribosomal RNA coding region 0
MISC_RNA RN other structural RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
CDE .PS 9,757
PPGENE PP 9,757
3'FL 3F 3,656
5FL .5F 730
DIRECT_REPEAT DR 15,592
REPEAT_REGION .RR 133,215
POLYA_REGION .PA 1,694
FL_REPEAT FR 0

Total: 187,972

17.27 nurebnucl

Bank details **** ACNUC Data Base Content ****

Nurebase 4.0 (26 September 2003) Last Updated: NOV 27, 2003

2,356,663 bases; 664 sequences; 518 subseqs; 787 refers.

Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite

Lyon I

236 CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

name description count

CDS .PE protein coding region 767

1D EMBL sequence data library entry 415

MISC_RNA .RN other structural RNA coding region 0

Type names RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0

SNRNA .SN small nuclear RNA coding region 0

TRNA TR transfer RNA coding region 0

Total: 1,182

17.28 nurebprot

Bank details **** ACNUC Data Base Content ****

Nurebase 4.0 (26 September 2003) Last Updated: NOV 27, 2003

277,024 amino acids; 525 sequences; 634 references.

Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I

Type names There are no subsequence type in this database

17.29 taxobacgen

Bank details **** ACNUC Data Base Content ****

TaxoBacGen Rel. 7 (September 2005)

1,151,149,763 bases; 254,335 sequences; 847,767 subseqs; 63,879 refers.
Data compiled from GenBank by Gregory Devulder

Laboratoire de Biometrie & Biologie Evolutive, Univ Lyon I

This database is a taxonomic genomic database.
It results from an expertise crossing the data nomenclature database DSMZ

http = / Jwww.dsmz.de/species [bacteria.htmDeutscheSammlungvonMikroorganismenundZellkultu

and GenBank.

- Only contains sequences described under species present in

Bacterial Nomenclature Up-to-date.

- Names of species and genus validly published according to the
Bacteriological Code (names with standing in nomenclature) is

added in field "DEFINITION”.

- A keyword "type strain” is added in field "FEATURES /source/strain” in
GenBank format definition to easyly identify Type Strain.

Taxobacgen is a genomic database designed for studies based on a strict
respect of up-to-date nomenclature and taxonomy.

17.30. EMBLTP 237

name description
CDS .PE protein coding region
LOCUS sequenced DNA fragment
MISC_RNA RN other structural RNA coding region
Type names RRNA .RR ribosomal RNA coding region
SCRNA .SC small cytoplasmic RNA coding region
SNRNA .SN small nuclear RNA coding region
TRNA .TR transfer RNA coding region
Total: 1,102,102

17.30 emblTP

Bank details **** ACNUC Data Base Content ****

EMBL Library Release 78 WITHOUT ESTs (March 2004)

27,571,397,913 bases; 12,533,594 sequences; 1,604,500 subseqgs; 339,186 refers.
Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I

name description
CDS .PE protein coding region 1,746,728
1D Locus entry 11,856,048

MISC_RNA RN other structural RNA coding region

Type names RRNA .RR Ribosomal RNA coding gene
SCRNA .SC small cytoplasmic RNA
SNRNA .SN small nuclear RNA
TRNA TR Transfer RNA coding gene
Total: 14,138,094

17.31 swissprotTP

Bank details **** ACNUC Data Base Content ****

UniProt Rel. 1 (SWISS-PROT 43 + TrEMBL 26 + NEW): Last Updated: May

3, 2004

459,974,342 amino acids; 1,451,384 sequences; 200,578 references.

Non-redundant compilation of SWISS-PROT + TrEMBL (minus data

integrated into SWISS-PROT)

Software by M. Gouy & L. Duret, Laboratoire de biometrie, Universite Lyon I.
Type names There are no subsequence type in this database

17.32 hoverprotTP

Bank details **** ACNUC Data Base Content ****
HOVERGEN - Release 45 (Jan 22 2004) Last Updated: Jan 22, 2004
77,617,436 amino acids; 227,047 sequences; 85,918 references.

Vertebrate (chordata)
Protein data from SWISS-PROT Rel. 42 + TrEMBL Rel. 25 + TTEMBL_NEW:
Dec 1, 2003

238CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Software: M. Gouy & M. Jacobzone
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive

UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.33 hovernuclTP

Bank details **** ACNUC Data Base Content ****
HOVERGEN - Release 45 (Jan 22 2004) Last Updated: Jan 22, 2004
844,876,418 bases; 300,108 sequences; 757,209 subseqs; 97,608 refers.

Vertebrate (chordata)
Genomic data from EMBL Release 77 (December 2003)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.

name description count
3'INT .31 3’intron 535
3'NCR .3F 3’-non coding region 170,566
5INT .51 5’intron 1,381
5'NCR .5F 5’-non coding region 159,238
CDS .PE protein coding region 274,599
Type names j1D) EMBL sequence data library entry 210,301
INT_INT IN internal intron 132,033
MISC_RNA RN other structural RNA coding region 164
RRNA .RR ribosomal RNA coding region 2,426
SCRNA .SC small cytoplasmic RNA coding region 9
SNRNA .SN small nuclear RNA coding region 41
TRNA TR transfer RNA coding region 35,309
Total: 986,602

17.34 trypano

Bank details **** ACNUC Data Base Content ****

trypano Rel. 1 (27 Janvier 2004) Last Updated: Jan 27, 2004

117,177,046 bases; 158,838 sequences; 4,744 subseqs; 2,114 refers.

Genomic data from GenBank Rel. 139 (15 December 2003)

Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I

17.35. ENSEMBL24 239

name description count
LOCUS sequenced DNA fragment 157,983
CDS .PE protein coding region 5,137
TRNA .TR transfer RNA coding region 38
Type names RRNA .RR ribosomal RNA coding region 206
MISC_RNA RN other structural RNA coding region 192
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 26
Total: 163,582
17.35 ensembl24
Bank details **** ACNUC Data Base Content ****
Ensembl databases rel 24
Ensembl bee Genome rel 24 - Arnell.1 (Oct 2004)
Ensembl cbriggsae Genome rel 24 - cb25.agp8 (Oct 2004)
Ensembl celegans Genome rel 24 - WS 116 (Oct 2004)
Ensembl chicken Genome rel 24 - WASHUC1 (Oct 2004)
Ensembl fruitfly Genome rel 24 - DBGP3.1 (Oct 2004)
Ensembl fugu Genome rel 24 - Fugu v2.0 (Oct 2004)
Ensembl human Genome rel 24 - NCBI34 (Oct 2004)
Ensembl mosquito Genome rel 24 - MOZ 2 (Oct 2004)
Ensembl mouse Genome rel 24 - NCBI m33 (Oct 2004)
Ensembl rat Genome rel 24 - RGSC 3.1 (Oct 2004)
Ensembl tetraodon Genome rel 24 - TETRAODONT7 (Oct 2004)
Ensembl zebrafish Genome rel 24 - WTSI Zv4 (Oct 2004)
Ensembl chimp Genome rel 24 - CHIMP1 (Oct 2004)
Ensembl dog Genome rel 27 - BROADD1 (Dec 2004)
warning : cds located on contigs were removed
19,025,147,322 bases; 70,063 sequences; 3,329,559 subseqs; 0 refers.
name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 103,418
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 185,154
CDS .PE protein coding region 345,875
1D EMBL sequence data library entry 70,063
Type names INT_INT IN internal intron 2,328,941
MISC_RNA RN other structural RNA coding region 20,425
MRNA RN mRNA 345,746
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 3,399,622

240CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

17.36 ensembl34

Bank details **** ACNUC Data Base Content ****

Ensembl databases release 34

Espece #CDS(1)/STOP(2)/N(3)/miss(4)

Apis mellifera 27736,/1/269 (0% /0%/0%)

Caenorhabditis briggsae 14712/0/23 (0%/0%/0%)

Caenorhabditis elegans 25797/1/0 (0%/0%/0%)

Gallus gallus 28392/20/298 (0%/1%/0%)

Pan troglodytes 39538,/6129/770 (15%/1%/0%)

Ciona intestinalis 21574/0/58 (0%/0%/0%)

Bos taurus 32647/7/617 (0%/1%/0%)

Canis familiaris 29998/0/0 (0%/0%/1%)

Drosophila melanogaser 19350/18/1 (0%/0%/0%)

Fugu rubripes 22099/0/283 (0%/1%/0%)

Homo sapiens 36919/48/24 (0%/0%/2%)

Macaca mulatta 31370/94/8360 (0%/26%/0%)

Anopheles gambiae 15799/0/19 (0%/0%/0%)

Mus musculus 35075/36/60 (0%/0%/1%)

Monodelphis domestica 13249/0/59 (0%/0%/0%)

Rattus norvegicus 32241/25/607 (0%/1%/2%)

Tetraodon nigroviridis 16275/1/233 (0%/1%/0%)

Xenopus tropicalis 52684/1/906 (0%/1%/0%)

Saccharomyces cerevisiae 6680/22/0 (0%/0%/0%)

Danio rerio 32109/0/281 (0%/0%/0%)

1:# of CDS;2:CDS with internal stop;3:CDS with undetermined codon;4:missing
CDS

warning : cds located on contigs were removed

29,605,509,937 bases; 368,619 sequences; 5,302,323 subseqs; 0 refers.
Software by M. Gouy & M. Jacobzone, Laboratoire de biometrie, Universite
Lyon I

name description count

3 INT .31 3’intron
3'NCR .3F 3’-non coding region 156,270

5INT .51 5’intron
5'NCR .5F 5’-non coding region 280,705
CDS .PE protein coding region 534,246
1D EMBL sequence data library entry 368,619
Type names INT_INT IN internal intron 3,763,554
MISC_RNA .RN other structural RNA coding region 33,511
MRNA RN mRNA 534,037
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 5,670,942

17.37. ENSEMBLA41 241

17.37 ensembl41

Bank details **** ACNUC Data Base Content ****
Ensembl databases release 41

Espece Release/#CDS(1)/STOP(2)/N(3)/miss(4)

Aedes aegypti 41_1a 11360/0/2/0 (0%/0%/0%)

Anopheles gambiae 41_3d 13510/0/31/0 (0%/0%/0%)

Apis mellifera 38_2d 27755/1/269/0 (0%/0%/0%)

Bos taurus 412 32556/7/620/12 (0%/1%/0%)
Caenorhabditis elegans 41160 25218/1/0/0 (0%/0%/0%)
Canis familiaris 41_1j 29813/0/0/0 (0%/0%/0%)
Caenorhabditis briggsae 25 14712/0/23/1 (0%/0%/0%)
Ciona intestinalis 41_2¢ 20000/0/128/0 (0%/0%/0%)

Ciona savignyi 41_2b 20150/1/27/0 (0%/0%/0%)

Danio rerio 41_6b 36065/5/361/0 (0%/1%,/0%)

Dasypus novemcinctus 40_1 13567/12/8857/0 (0%/65%/0%)
Drosophila melanogaster 41_43 19577/33/1/0 (0%/0%/0%)
Echinops telfairi 40_1 14309/8/9348/0 (0%/65%/0%)
Gallus gallus 41_1p 20667/13/455/0 (0%/2%/0%)
Gasterosteus aculeatus 41_1a 27181/13/138/0 (0%/0%/0%)
Homo sapiens 41_36¢ 47004/41/6/0 (0%/0%/0%)
Loxodonta africana 40_1 14366,/10/9618/0 (0%/66%/0%)
Macaca mulatta 41_10a 36446/14/491/0 (0%/1%/0%)
Monodelphis domestica 41_3a 30358/0/80/0 (0%/0%/0%)
Mus musculus 41_36b 29026,/34/2/0 (0%/0%/0%)
Oryctolagus cuniculus 41_1a 13705/4/8615/0 (0%/62%/0%)
Oryzias latipes 41_1 25880/0,/546/0 (0% /2% /0%)

Pan troglodytes 41_21 32667/4/739/0 (0%/2%/0%)

Rattus norvegicus 41_34k 32996/34,/686/0 (0%/2%/0%)
Saccharomyces cerevisiae 41_1d 4767/2/0/0 (0%/0%/0%)

name description count
3'INT .31 3’intron 0
3’NCR .3F 3’-non coding region 188,480
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 485,916
CDS .PE protein coding region 659,922
1D EMBL sequence data library entry 742,978
Type names INT_INT IN internal intron 4,342,137
MISC_RNA RN other structural RNA coding region 54,036
MRNA RN mRNA 659,922
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 7,133,391

242CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

17.38 ensembl47

Bank details **** ACNUC Data Base Content ****
Ensembl Release 47 Last Updated: Dec 12, 2007
76,798,685,993 bases; 3,138,133 sequences; 8,132,077 subseqs; 0 refers.
Tetraodon nigroviridis - Release 47_1i

Oryzias latipes - Release 47_1c¢

Homo sapiens - Release 47_36i

Mus musculus - Release 47_37

Rattus norvegicus - Release 47_34q

Pan troglodytes - Release 47_21f

Macaca mulatta - Release 47_10f

Aedes aegypti - Release 47_1a

Anopheles gambiae - Release 47_3i

Bos taurus - Release 47_3d

Caenorhabditis elegans - Release 47_180

Canis familiaris - Release 47_2e

Cavia porcellus - Release 47_1b

Ciona intestinalis - Release 47_2g

Ciona savignyi - Release 47_2e

Dasypus novemcinctus - Release 47_1d
Drosophila melanogaster - Release 47_43b
Echinops telfairi - Release 47_1d

Erinaceus europaeus - Release 47_1b

Felis catus - Release 47_1b

Gallus gallus - Release 47_2e

Gasterosteus aculeatus - Release 47_1d
Loxodonta africana - Release 47_1c
Monodelphis domestica - Release 47_5b
Myotis lucifugus - Release 47_1c
Ornithorhynchus anatinus - Release 47_1d
Oryctolagus cuniculus - Release 47_1d
Otolemur garnettii - Release 47_1a
Saccharomyces cerevisiae - Release 47_1g
Sorex araneus - Release 47_la

Spermophilus tridecemlineatus - Release 47_1c
Takifugu rubripes - Release 47_4g

Tupaia belangeri - Release 47_1b

Xenopus tropicalis - Release 47_41g

17.39. ENSEMBL49 243

name description count
3JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 272,454
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 717,743
CDS .PE protein coding region 788,657
Type names 1D EMBL sequence data library entry 3,138,133
INT_INT IN internal intron 6,236,128
MISC_RNA RN other structural RNA coding region 117,095
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 11,270,210

17.39 ensembl49

Bank details **** ACNUC Data Base Content ****
Ensembl Release 49 Last Updated: Apr 23, 2008
90,338,630,754 bases; 3,499,715 sequences; 9,289,073 subseqs; 0 refers.

Aedes aegypti - Release 49_1b
Anopheles gambiae - Release 49_3]

Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f
Caenorhabditis elegans - Release 49_180a
Canis familiaris - Release 49_2g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i

Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_le

Equus caballus - Release 49_2

Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2¢g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1
Monodelphis domestica - Release 49_5d
Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f

244CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Oryzias latipes - Release 49_1e

Otolemur garnettii - Release 49_le

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c
Spermophilus tridecemlineatus - Release 49_1le
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 307,441
5'INT .51 H’intron 0
5'NCR .5F 5’-non coding region 800,830
CDS .PE protein coding region 892,572
Type names 1D EMBL sequence data library entry 3,499,715
INT_INT IN internal intron 7,157,683
MISC_RNA RN other structural RNA coding region 130,547
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 12,788,788
17.40 macaca45b
Bank details **** ACNUC Data Base Content ****
Ensembl - Macaca mulatta - Release 45_10e - (11 Sep 2007) Last Updated: Sep
11, 2007
3,053,326,321 bases; 94,529 sequences; 194,187 subseqs; 0 refers.
MENU Nber of lines= 21
name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 6,058
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 13,894
CDS .PE protein coding region 36,227
Type names 1D EMBL sequence data library entry 94,529
INT_INT IN internal intron 132,745
MISC_RNA RN other structural RNA coding region 5,263
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 288,716

17.41. DOG45

17.41 dog45

Type names

17.42 dog47

16, 2007

Type names

245

Bank details **** ACNUC Data Base Content ****

Ensembl Canis familiaris (Rel. 45_2c) Last Updated: Jul 4, 2007

2,531,673,731 bases; 2,585 sequences; 29,227 subseqs; 0 refers.

Software by M. Gouy, Laboratoire de biometrie, Universite Lyon I
name description count
3'INT .31 3’intron 0
3'NCR .3F 3’-non coding region 0
5'INT .51 H’intron 0
5'NCR .bF 5’-non coding region 0
CDS .PE protein coding region 25,559
1D EMBL sequence data library entry 2,585
INT_INT IN internal intron 0
MISC_RNA RN other structural RNA coding region 3,668
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0

Total: 31,812

Bank details **** ACNUC Data Base Content ****

Ensembl - Canis familiaris - Release 47_2e - (16 Nov 2007) Last Updated: Nov

2,531,672,953 bases; 2,585 sequences; 285,811 subseqs; 0 refers.
name description count
3JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 8,923
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 23,273
CDS .PE protein coding region 25,559
1D EMBL sequence data library entry 2,685
INT_INT IN internal intron 223,971
MISC_RNA RN other structural RNA coding region 4,085
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0

Total: 288,396

17.43 equus49

Bank details **** ACNUC Data Base Content ****
Ensembl - Equus caballus - Release 49_2 - (2 Apr 2008) Last Updated: Apr 2,

2008

2,500,873,361 bases; 12,078 sequences; 268,341 subseqs; 0 refers.

246CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

MENU Nber of lines= 21

name description count
JINT .31 3’intron 0
3’NCR .3F 3’-non coding region 8,479
5INT .51 5’intron 0
5’NCR .5F 5’-non coding region 22,102
CDS .PE protein coding region 22,749
Type names 1D EMBL sequence data library entry 12,078
INT_INT IN internal intron 210,568
MISC_RNA .RN other structural RNA coding region 4,443
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 280,419

17.44 pongo49

Bank details **** ACNUC Data Base Content ****

Ensembl - Pongo pygmaeus - Release 49_1 - (16 Apr 2008) Last Updated: Apr
16, 2008

3,441,147,290 bases; 3,547 sequences; 249,306 subseqs; 0 refers.

MENU Nber of lines= 21

name description count
3'INT .31 3’intron 0
3’NCR .3F 3’-non coding region 9,727
5'INT .51 H’intron 0
5'NCR .5F 5’-non coding region 22,150
CDS .PE protein coding region 23,303
Type names 1D EMBL sequence data library entry 3,547
INT_INT IN internal intron 191,652
MISC_RNA .RN other structural RNA coding region 2,474
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 252,853

17.45 rattus49

Bank details **** ACNUC Data Base Content ****

Ensembl - Rattus norvegicus - Release 49_34s - (16 Apr 2008) Last Updated:
Apr 16, 2008

2,718,897,321 bases; 2,793 sequences; 343,303 subseqs; 0 refers.

MENU Nber of lines= 21

17.46. MOUSE38

Type names

17.46 mouse38

Type names

247
name description count
3JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 12,122
5INT .51 5’intron 0
5'NCR .5F 5’-non coding region 29,343
CDS .PE protein coding region 32,948
1D EMBL sequence data library entry 2,793
INT_INT IN internal intron 264,210
MISC_RNA RN other structural RNA coding region 4,680
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 346,096

Bank details **** ACNUC Data Base Content ****

Ensembl Mus musculus (Rel.38_35) Last Updated: Jul 6, 2007

2,676,276,909 bases; 7,505 sequences; 35,002 subsegs; 0 refers.

Software by M. Gouy, Laboratoire de biometrie, Universite Lyon I
name description count
3 INT .31 3’intron 0
3'NCR .3F 3’-non coding region 0
5INT .51 5’intron 0
5'NCR .bF 5’-non coding region 0
CDS .PE protein coding region 31,984
1D EMBL sequence data library entry 7,505
INT_INT IN internal intron 0
MISC_RNA RN other structural RNA coding region 3,018
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0

Total: 42,507

17.47 homolens4

Bank details **** ACNUC Data Base Content ****
HOMOLENS 4 - Homologous genes from Ensembl(49) Last Updated: Jul 4,

2008

247,930,199 bases; 529 sequences; 64,224 subseqs; 206 refers.

Aedes aegypti - Release 49_1b

Anopheles gambiae - Release 49_3]

Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f
Caenorhabditis elegans - Release 49_180a

248CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Canis familiaris - Release 49_2¢g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i

Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_1e

Equus caballus - Release 49_2

Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2¢g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1
Monodelphis domestica - Release 49_5d
Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f
Oryzias latipes - Release 49_le
Otolemur garnettii - Release 49_1e

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c
Spermophilus tridecemlineatus - Release 49_1e
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

Type names There are no subsequence type in this database

17.48 homolens4dna

Bank details **** ACNUC Data Base Content ****

HOMOLENS 4 - Homologous genes from Ensembl(49) Last Updated: Jul 4,
2008

55,129,547,735 bases; 178,069 sequences; 9,247,193 subsegs; 0 refers.

Aedes aegypti - Release 49_1b
Anopheles gambiae - Release 49_3j
Apis mellifera - Release 38_2d

Bos taurus - Release 49_3f

17.48. HOMOLENS4DNA 249

Caenorhabditis elegans - Release 49_180a
Canis familiaris - Release 49_2g

Cavia porcellus - Release 49_1c

Ciona intestinalis - Release 49_2i

Ciona savignyi - Release 49_2f

Danio rerio - Release 49_7c

Dasypus novemcinctus - Release 49_1f
Drosophila melanogaster - Release 49_44
Echinops telfairi - Release 49_1le

Equus caballus - Release 49_2

Erinaceus europaeus - Release 49_1c
Felis catus - Release 49_1c

Gallus gallus - Release 49_2g
Gasterosteus aculeatus - Release 49_1f
Homo sapiens - Release 49_36k
Loxodonta africana - Release 49_1d
Macaca mulatta - Release 49_10h
Microcebus murinus - Release 49_1
Monodelphis domestica - Release 49_5d
Mus musculus - Release 49_37b

Myotis lucifugus - Release 49_1e
Ochotona princeps - Release 49_1
Ornithorhynchus anatinus - Release 49_1f
Oryctolagus cuniculus - Release 49_1f
Oryzias latipes - Release 49_1e

Otolemur garnettii - Release 49_le

Pan troglodytes - Release 49_21h

Pongo pygmaeus - Release 49_1

Rattus norvegicus - Release 49_34s
Saccharomyces cerevisiae - Release 49_1h
Sorex araneus - Release 49_1c
Spermophilus tridecemlineatus - Release 49_1e
Takifugu rubripes - Release 49_4i
Tetraodon nigroviridis - Release 49_1k
Tupaia belangeri - Release 49_1d
Xenopus tropicalis - Release 49_41i

250CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

Type names

17.49 hogendnucl

2005

Fully Sequenced Organisms

and EMBL (June 2005)

(263 fully sequenced organisms)

Data maintenance: L. Duret & S. Penel

Type names

name description count
JINT .31 3’intron 0
3'NCR .3F 3’-non coding region 307,441
5INT .51 5’intron 0
5’NCR .5F 5’-non coding region 800,830
CDS .PE protein coding region 892,572
1D EMBL sequence data library entry 178,069
INT_INT IN internal intron 7,157,683
MISC_RNA .RN other structural RNA coding region 88,667
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 9,425,262

Bank details **** ACNUC Data Base Content ****

HOGENOM - genomic data - Release 03 (Oct 14 2005) Last Updated: Nov 7,

2,538,433,251 bases; 227,950 sequences; 4,136,134 subseqs; 82,281 refers.

Protein data from http://www.ebi.ac.uk/proteome/ (August, 2005)

Genomic data from GenomeReview (June 2005)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.

Laboratoire de Biometrie et Biologie Evolutive

UMR CNRS 5558, Universite Claude Bernard - Lyon 1

43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex
name description count
1D EMBL sequence data library entry 204,502
CDS .PE protein coding region 1,060,241
TRNA TR transfer RNA coding region 49,216
RRNA .RR ribosomal RNA coding region 5,813
MISC_RNA .RN other structural RNA coding region 861
SCRNA .SC small cytoplasmic RNA coding region 29
SNRNA .SN small nuclear RNA coding region 459
3'INT .31 3’intron 309
3’NCR .3F 3’-non coding region 1,247,297
5INT .51 5’intron 1,263
5NCR .5F 5’-non coding region 1,158,238
INT_INT IN internal intron 635,856

Total:

4,364,084

17.50. HOGENDPROT 251

17.50 hogendprot

Bank details **** ACNUC Data Base Content ****

HOGENOM - protein data - Release 03 (Oct 14 2005) Last Updated: Mar 10,
2006

339,891,443 amino acids; 950,216 sequences; 92,805 references.

Fully Sequenced Organisms
Protein data from http://www.ebi.ac.uk/proteome/ (August 2005)
(263 fully sequenced organisms)

Retrieval software by M. Gouy & M. Jacobzone, Lab. de Biometrie, UCB Lyon.
Data maintenance: L. Duret & S. Penel

Laboratoire de Biometrie et Biologie Evolutive
UMR CNRS 5558, Universite Claude Bernard - Lyon 1
43, bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex

Type names There are no subsequence type in this database

17.51 genomicrol

Bank details **** ACNUC Data Base Content ****

Genomicrol (15 June 2006) Last Updated: Jul 6, 2006

10,758,321,631 bases; 203,021 sequences; 1,870,190 subseqs; 0 refers.

Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I

name description count
3'NCR .3F 3’-non coding region 34,406
5'NCR .BF 5’-non coding region 84,333
CDS .PE protein coding region 91,991
EXON .EX exon 545,221
GENE .GE gene 74,019
1D EMBL sequence data library entry 203,020
Type names INT_INT IN intg-rnal intron 531,587
MISC_FEATURE .MF misc feature 397,178
MISC_RNA RN other structural RNA coding region 19,549
MRNA .MA mrna 91,907
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA .TR transfer RNA coding region 0
Total: 2,073,211

17.52 genomicro2

Bank details **** ACNUC Data Base Content ****

Genomicro (15 June 2006) Last Updated: Jul 6, 2006

9,997,088,008 bases; 326 sequences; 3,190,175 subseqs; 37 refers.

Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I

252CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

name description count
3’NCR .3F 3’-non coding region 160,823
5'NCR .5F 5’-non coding region 224,530
CDS .PE protein coding region 263,070
EXON EX exon 818,981
GENE .GE gene 95,967
1D EMBL sequence data library entry 324
Type names INT_INT IN internal intron 1,022,519
MISC_FEATURE .MF misc feature 448,347
MISC_RNA RN other structural RNA coding region 17,954
MRNA .MA mrna 134,149
RRNA .RR ribosomal RNA coding region 756
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 3,081
Total: 3,190,501
17.53 genomicro3
Bank details **** ACNUC Data Base Content ****
Genomicro (15 June 2006) Last Updated: Jul 6, 2006
12,273,770,623 bases; 20,045 sequences; 2,850,395 subseqs; 0 refers.
Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I
name description count
3’'NCR .3F 3’-non coding region 58,936
5'NCR .5F 5’-non coding region 119,457
CDS .PE protein coding region 134,149
EXON .EX exon 818,981
GENE .GE gene 95,967
1D EMBL sequence data library entry 20,043
Type names INT_INT IN internal intron 1,022,457
MISC_FEATURE .MF misc feature 448,347
MISC_RNA RN other structural RNA coding region 17,954
MRNA .MA mrna 134,149
RRNA .RR ribosomal RNA coding region 0
SCRNA .SC small cytoplasmic RNA coding region 0
SNRNA .SN small nuclear RNA coding region 0
TRNA TR transfer RNA coding region 0
Total: 2,870,440

17.54 genomicro4

Bank details **** ACNUC Data Base Content ****

Genomicro (15 June 2006) Last Updated: Jul 6, 2006

1,545,295,735 bases; 54,529 sequences; 0 subseqgs; 0 refers.

Software by M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I

17.54. GENOMICRO4 253

name description count

3'NCR .3F 3’-non coding region 0

5'NCR .5F 5’-non coding region 0

CDS .PE protein coding region 0

EXON .EX exon 0

GENE .GE gene 0

1D EMBL sequence data library entry 54,529

Type names INT_INT IN internal intron 0
MISC_FEATURE .MF misc feature 0

MISC_RNA RN other structural RNA coding region 0

MRNA .MA mrna 0

RRNA .RR ribosomal RNA coding region 0

SCRNA .SC small cytoplasmic RNA coding region 0

SNRNA .SN small nuclear RNA coding region 0

TRNA .TR transfer RNA coding region 0

Total: 54,529

)

Session Informations

This part was compiled under the following @ environment:

e R version 2.8.0 (2008-10-20), i386-apple-darwing.8.2

e Locale: C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: MASS 7.2-44, ade4 1.4-9, ape 2.2-2, nlme 3.1-89, quad-
prog 1.4-11, seqinr 2.0-0, tseries 0.10-16, xtable 1.5-4, zoo 1.5-4

e Loaded via a namespace (and not attached): grid 2.8.0, lattice 0.17-15

There were two compilation steps:

e @ compilation time was: Sun Oct 26 19:31:10 2008

e IATEX compilation time was: December 12, 2008

254CHAPTER 17. INFORMATIONS ABOUT DATABASES AVAILABLE AT PBIL

2.1

2.2
2.3

4.1

7.1

9.1
9.2

9.3

9.4

10.1

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

LIST OF TABLES

The list of journals that were manually scanned for nucleic se-
quences that were included in the ACNUC books [21, 22]

Genetic code number 3: yeast.mitochondrial.
Genetic code number 4: protozoan.mitochondrial+mycoplasma. .

Available subsequences in genbank
Available methods for sequence classes.

Data to be loaded with data(toyaa).
Density, distribution function, quantile function and random gen-
eration for the predefined distributions under R
A very simple example of codon counts in three coding sequences
to be loaded with data(toycodon).
Aerobic cost of amino-acids in Escherichia coli and G+C classes
to be loaded with data(aacost).

Proportion of dimers formed in the DNA of three bacteria after
irradiation with 265 nm UV light. Table adapted from [83]. . . .

Genetic code number 1: standard.
Genetic code number 2: vertebrate.mitochondrial.
Genetic code number 3: yeast.mitochondrial.
Genetic code number 4: protozoan.mitochondrial+mycoplasma. .
Genetic code number 5: invertebrate.mitochondrial.
Genetic code number 6: ciliate+dasycladacean.
Genetic code number 9: echinoderm-+flatworm.mitochondrial. . .
Genetic code number 10: euplotid.
Genetic code number 11: bacterial+plantplastid.

14.10Genetic code number 12: alternativeyeast.
14.11Genetic code number 13: ascidian.mitochondrial.
14.12Genetic code number 14: alternativeflatworm.mitochondrial. . . .
14.13Genetic code number 15: blepharism..

255

134

178
179
179
180
180
181
181
182
182
183
183
184

256

14.14Genetic code number 16:
14.15Genetic code number 21:
14.16Genetic code number 22:
14.17Genetic code number 23:

LIST OF TABLES

chlorophycean.mitochondrial. 185
trematode.mitochondrial. 185
scenedesmus.mitochondrial. 186
hraustochytrium.mitochondria. 186

2.1

3.1

3.2

7.1
7.2

7.3

8.1

LIST OF FIGURES

The march of progress icon is very common in popular press.
This example is from page 46 of a 1984 summer issue of the
tchek edition of Playboy.o

Screenshot of figure 1 from [54]. The exponential growth of ge-
nomic sequence data mimics Moore’s law. The source of data
is the december 2003 release note (realnote.txt) from the EMBL
database available at http://www.ebi.ac.uk/. External lines
correspond to what would be expected with a doubling time of 18
months. The central line through points is the best least square
fit, corresponding to a doubling time of 16.9 months.

The file test.mase under SeaView. This is a graphical multi-
ple sequence alignment editor developped by Manolo Gouy [18].
SeaView is able to read and write various alignment formats
(NEXUS, MSF, CLUSTAL, FASTA, PHYLIP, MASE). It allows
to manually edit the alignment, and also to run DOT-PLOT or
CLUSTALW programs to locally improve the alignment.
Louse (left) and gopher (right). Images are from the wikipedia
(http://www.wikipedia.org/). The picture of the chewing louse
Damalinia limbata found on Angora goats was taken by Fiorella
Carnevali (ENEA, Italy). The gopher drawing is from Gustav
Miitzel, Brehms Tierleben, Small Edition 1927.

44

Visual representation of the base counts in a nucleic acid sequence. 83

Visual representation of dinucleotide counts in a nucleic acid se-
QUETICE. + v v v v e e e e e e e e e e
Visual representation of codon usage in a coding sequence with
the function dotchart.uco(). Codons are grouped by amino-
acid for a given genetic code. Black dots are the sums by syn-
onymous codons, that is the amino-acid count.

Screenshot of query_wino

http://www.ebi.ac.uk/
http://www.wikipedia.org/

258

9.1

10.1

10.2

10.3

10.4

10.5

10.6

LIST OF FIGURES

Screenshot of figure 5 from [56]. Each point represents a protein.
This was to show the correlation between the codon adaptation
index (CAI Score) with the second factor of correspondence anal-
ysis at the amino-acid level (F2 Score). Highly expressed genes
have a high CAl value.

Distribution of the p statistic computed on 500 random sequences
of length 6000. The vertical dotted line is centered on 1. The
curve draws the fitted normal distribution.
Three different non-parametric statistics (from left to right: p,
zscore with base model, zscore with codon model), computed
on the same sequence from Escherichia coli. In order to make the
figures easily comparable, we substracted 1 to the rho() results,
so that all 3 statistics are centered at 0.
Density of phototargets, weighted by their frequency in the Fs-
cherichia coli chromosome, and calculated for different G+C con-
tents and for three kinds of random genomes. The weights are
as follows: 0.59 % fyy +0.34 % (fie + for) +0.07 % foo (where fgy is
the frequency of dinucleotide zy in the specified genome). Three
models of random genomes are analyzed. In the worst case (solid
curve), the genome is the concatenation of a sequence of pyrim-
idines and a sequence of purines: all pyrimidines are involved
in a pyrimidine dinucleotide. In the best case (dotted curve),
the genome is an unbroken succession of pyrimidine-purine dinu-
cleotides: no pyrimidine is involved in a pyrimidine dinucleotide.
In the "random case” (dashed curve), the frequency of a pyrimi-
dine dinucleotide is the result of chance (fzy = fo X fy).
Density of phototargets, weighted by their frequency in the Mi-
crococcus lysodeikticus chromosome, and calculated for different
G+C contents and for three kinds of random genomes. The
weights are as follows: 0.19 * fyr + 0.55 % (fe + fet) + 0.26 * fec.
See figure 10.3 for more details.
Plot of the mean zscore statistics for intergenic sequences (x-
axis) and for coding sequences (y-axis), for each of the four
pyrimidine dinucleotides. On each plot, a dot corresponds to the
mean of these two statistics in a given prokaryote chromosome.
The null x and y axis (dotted lines), and the 5% limits of sig-
nificance for the standard normal distribution (dashed lines) are
plotted as benchmarks. It should be noted that the variability
within one chromosome is sometimes as great as that between
different chromosomes. oo
Each figure shows the distributions of the zscore in all coding se-
quences corresponding to each of the three strains of Prochloro-
coccus marinus. In each figure, the distribution for the MED4 (a
high-light adapted strain) is shown as a solid line; the distribution
for the SS120 (a low-light adapted strain) is shown as a dashed
line, and the distribution for the MIT 9313 (a low-light adapted
strain) is shown as a dotted line. The 5% limits of significance
for the standard normal distribution (dashed vertical lines) are
plotted as benchmarks.

LIST OF FIGURES 259

10.7 This figure is from figure 2.7 in [65], see also the example section

11.1

12.1

12.2
12.3

in data(prochlo). The left panel represents the absorbtion of
light by pure water in the visible spectrum (gradient in color)
and in the near UV (gradient in gray scale). Corresponding data
were compiled from [73] and [52]. For DNA, the biological rel-
evant wavelength is at 260 nm (red vertical line) corresponding
to its maximum for light absorbtion. The right panel shows the
distribution of the z-codon statistic for the four pyrimidine din-
ucleotides (viz CpC CpT TpC TpT) for the coding sequences of
three different ecotypes (5 m, 120 m, 135 m) of Prochlorococcus
marinus. The complete genome sequences accession numbers are
BX548175 (P. marinus MIT9313 [78] 5 m, high UV exposure),
AE017126 (P. marinus SS120 strain CCMP1375 [14] 120 m, low
UV exposure) and BX548174 (P. marinus MEDA4 [78] 135 m, low
UV eXPOSUIE). « v v v v v e i et e e e e e e 142

Screenshot of a part of figure 1 in [76] showing the observed range
of ribosomal intergenic space length in bacterial species (n = 428).148

Screenshot of a part of figure 1 from [53]. The GC-skew is com-
puted in non-overlapping windows of 10 Kb along a 1.6 Mb frag-
ment of the Escherichia coli chromosome. The sequence is avail-
able with data(m163j). 157
Re-creation of figure 12.1 from scratch. 159
Playing with the smoothing parameter £ of the lowess () function.160

260 LIST OF FIGURES

1]

BIBLIOGRAPHY

S.G. Andersson, A. Zomorodipour, J.O. Andersson, T. Sicheritz-Ponten,
U.C. Alsmark, R.M. Podowski, A.K. Naslund, A.S. Eriksson, H.H. Winkler,
and C.G. Kurland. The genome sequence of Rickettsia prowazekii and the
origin of mitochondria. Nature, 396:133-140, 1998. 64

A.L. Bak, J.F. Atkins, C.E. Singer, and B.N. Ames. Evolution of dna base
compositions in microorganisms. Science, 175:1391-1393, 1972. 129, 134

A. Bernal, U. Ear, and N. Kyrpides. Genomes online database (GOLD):
a monitor of genome projects world-wide. Nucleic Acids Research, 29:126—
127, 2001. 192

F.R. Blattner, V. Burland, G. Plunkett, H.J. Sofia, and D.L. Daniels. Anal-
ysis of the Escherichia coli genome. IV. DNA sequence of the region from
89.2 to 92.8 minutes. Nucleic Acids Research, 21:5408-5417, 1993. 158

F.R. Blattner, G. Plunkett ITI, C.A. Bloch, N.T. Perna, V. Burland, M. Ril-
ley, J. Collado-Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor,
N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J. Rose, B. Mau, and
Y. Shao. The complete genome sequence of Escherichia coli K-12. Sci-
ence, 277:1453-1462, 1997. 158

J. Buckheit and D. L. Donoho. Wauvelets and Statistics, chapter Wavelab
and reproducible research. Springer-Verlag, Berlin, New York, 1995. A.
Antoniadis editor. 19

V. Burland, G. Plunkett, D.L. Daniels, and F.R. Blattner. DNA sequence
and analysis of 136 kilobases of the FEscherichia coli genome: organizational
symmetry around the origin of replication. Genomics, 16:551-561, 1993.
158

D. Charif and J.R. Lobry. SeqinR 1.0-2: a contributed package to the R
project for statistical computing devoted to biological sequences retrieval
and analysis. In H.E. Roman U. Bastolla, M. Porto and M. Vendruscolo,
editors, Structural approaches to sequence evolution: Molecules, networks,

261

262

BIBLIOGRAPHY

populations, Biological and Medical Physics, Biomedical Engineering, pages
207-232. Springer Verlag, New York, USA, 2007. ISBN 978-3-540-35305-8.
17, 97

D. Charif, J. Thioulouse, J.R. Lobry, and G. Perriere. Online synonymous
codon usage analyses with the ade4 and seqinR packages. Bioinformatics,
21(4):545-7, 2005. 19

J.-L. Chassé. Modélisation statistique : statistique non paramétrique (fiches
de cours). Laboratoire de Biométrie et Biologie Evolutive, Lyon, France,
1988. 1988 for the publication year is an upper limit: could be earlier. 121

D.B Dahl and et al. ztable: Export tables to LaTeX or HTML, 2005. R
package version 1.3-0. 24

D.L. Daniels, G. Plunkett, V. Burland, and F.R. Blattner. Analysis of the
Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5
minutes. Science, 257:771-778, 1992. 158

A L. Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Improved
microbial gene identification with GLIMMER. Nucleic Acids Research,
27:4636-4641, 1999. 196

A. Dufresne, M. Salanoubat, F. Partensky, F. Artiguenave, .M. Axmann,
V. Barbe, S. Duprat, M.Y. Galperin, E.V. Koonin, F. Le Gall, K.S.
Makarova, M. Ostrowski, S. Oztas, C. Robert, I.B. Rogozin, D.J. Scan-
lan, N. Tandeau de Marsac, J. Weissenbach, P. Wincker, Y.I. Wolf, and
W.R. Hess. Genome sequence of the cyanobacterium Prochlorococcus mar-
inus ss120, a nearly minimal oxyphototrophic genome. Proceedings of the
National Academy of Sciences of the United States of America, 100:10020—
10025, 2003. 142, 259

Duncan Temple Lang (duncan@wald.ucdavis.edu). XML: Tools for parsing
and generating XML within R and S-Plus, 2006. R package version 0.99-8.
3

J. Felsenstein. PHYLIP-phylogeny inference package (version 3.2). Cladis-
tics, 5:164-166, 1989. 41

A.C. Frank and J.R. Lobry. Oriloc: prediction of replication boundaries in
unannotated bacterial chromosomes. Bioinformatics, 16(6):560-561, 2000.
29

N. Galtier, M. Gouy, and C. Gautier. SeaView and Phylo_win, two graphic
tools for sequence alignment and molecular phylogeny. Comput. Applic.
Biosci., 12:543-548, 1996. 39, 40, 257

A. Garay-Arroyo, J.M. Colmenero-Flores, A. Garciarrubio, and A.A. Co-
varrubias. Highly hydrophilic proteins in prokaryotes and eukaryotes are
common during conditions of water deficit. J. Biol. Chem., 275:5668-5674,
2000. 31

C. Gautier. Analyses statistiques et évolution des séquences d’acides nu-
cléiques. PhD thesis, Université Claude Bernard - Lyon I, 1987. 99

BIBLIOGRAPHY 263

[21]

22]

[28]

[29]

C. Gautier, M. Gouy, M. Jacobzone, and R. Grantham. Nucleic acid se-
quences handbook. Vol. 1. Praeger Publishers, London, UK, 1982. ISBN
0-275-90798-8. 15, 16, 49, 197, 255

C. Gautier, M. Gouy, M. Jacobzone, and R. Grantham. Nucleic acid se-
quences handbook. Vol. 2. Praeger Publishers, London, UK, 1982. ISBN
0-275-90799-6. 15, 16, 49, 197, 255

C. Gautier, M. Gouy, and S. Louail. Non-parametric statistics for nucleic
acid sequence study. Biochimie, 67:449-453, 1985. 132, 191

S.J. Gould. Wonderful life. Norton, New York, USA, 1989. 2

S.J. Gould. Ladders and cones: Constraining evolution by canonical icons.
In R.B. Silvers, editor, Hidden Histories of Science, pages 37-67, New York,
USA, 1995. New York Review of Books. 2

M. Gouy and S. Delmotte. Remote access to ACNUC nucleotide and pro-
tein sequence databases at PBIL. Biochimie, 90:555-562, 2008. 61, 97

M. Gouy, C. Gautier, M. Attimonelli, C. Lanave, and G. di Paola. ACNUC-
a portable retrieval system for nucleic acid sequence databases: logical and
physical designs and usage. Computer Applications in the Biosciences,
1:167-172, 1985. 49, 61, 97

M. Gouy, C. Gautier, and F. Milleret. System analysis and nucleic acid
sequence banks. Biochimie, 67:433-436, 1985. 49, 61

M. Gouy, F. Milleret, C. Mugnier, M. Jacobzone, and C. Gautier. ACNUC:
a nucleic acid sequence data base and analysis system. Nucleic Acids Res.,
12:121-127, 1984. 3, 49, 61, 121

R. Grantham. Amino acid difference formula to help explain protein evo-
lution. Science, 185:862-864, 1974. 3

M.A. Hannah, A.G. Heyer, and D.K. Hincha. A global survey of gene
regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet.,
1:e26, 2005. 30, 35, 37, 39

K. Hayashi, N. Morooka, Y. Yamamoto, K. Fujita, K. Isono, S. Choi,
E. Ohtsubo, T. Baba, B.L. Wanner, H. Mori, and T. Horiuchi. Highly
accurate genome sequences of Fscherichia coli K-12 strains MG1655 and
W3110. Molecular Systems Biology, 2:2006.0007, 2006. 158

D. G. Higgins and P. M. Sharp. CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene, 73:237-244, 1988.
40

K. Hornik. The R FAQ: Frequently Asked Questions on R (version
2.8.2006-07-13), 2006. ISBN 3-900051-08-9 http://CRAN.R-project.org/
doc/FAQ/. 18

L.D. Hurst. The Ka/Ks ratio: diagnosing the form of sequence evolution.
Trends Genet., 18:486-487, 2002. 109

http://CRAN.R-project.org/doc/FAQ/
http://CRAN.R-project.org/doc/FAQ/

264
[36]

[37]

[51]

BIBLIOGRAPHY

R. Thaka and R. Gentleman. R: A language for data analysis and graphics.
J. Comp. Graph. Stat., 3:299-314, 1996. 16, 17

M. Jacobzone and C. Gautier. ANALSEQ Manuel d’utilisation. UMR
CNRS 5558, Biométrie, Génétique et Biologie des Populations, 1989. 3,
121

T. H. Jukes and S. Osawa. Evolutionary changes in the genetic code. Comp.
Biochem. Physiol. B., 106:489-494, 1993. 177

T.H. Jukes and C.R. Cantor. Evolution of protein molecules. In H.N.
Munro, editor, Mammalian Protein Metabolism, pages 21-132, New York,
1969. Academic Press. 45, 46

S. Karlin and V. Brendel. Chance and statistical significance in protein
and dna sequence analysis. Science, 257:39-49, 1992. 129, 199

S. Kawashima and M. Kanehisa. AAindex: amino acid index database.
Nucleic Acids Res., 28:374-374, 2000. 3, 198

J. Keogh. Circular transportation facilitation device, 2001. 18

M. Kimura. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J. Mol.
Evol., 16:111-120, 1980. 46

J. Kiraga. Analysis and computer simulations of variability of isoelectric
point of proteins in the proteomes. PhD thesis, University of Wroctaw,
2008. 190

N.C. Kyrpides. Genomes online database (GOLD 1.0): a monitor of com-
plete and ongoing genome projects world-wide. Bioinformatics, 15:773-774,
1999. 192

J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157:105-132, 1982.
34, 105

P. Legendre, Y. Desdevises, and E. Bazin. A statistical test for host-parasite
coevolution. Syst. Biol., 51:217-234, 2002. 44

F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. Proceedings in Computational Statistics, Compstat 2002:575—
580, 2002. 17, 24

W.-H. Li. Unbiased estimation of the rates of synonymous and nonsynony-
mous substitution. J. Mol. Evol., 36:96-99, 1993. 109

K. Liolios, K. Mavrommatis, N. Tavernarakis, and N.C. Kyrpides. The
genomes on line database (GOLD) in 2007: status of genomic and metage-
nomic projects and their associated metadata. Nucleic Acids Research, in
press:D000-D000, 2008. 192

K. Liolios, N. Tavernarakis, P. Hugenholtz, and N.C. Kyrpides. The
genomes on line database (GOLD) v.2: a monitor of genome projects world-
wide. Nucleic Acids Research, 34:D332-D334, 2006. 192

BIBLIOGRAPHY 265

[52]

[53]

[54]

[63]

[64]

R.A. Litjens, T.I. Quickenden, and C.G. Freeman. Visible and near-
ultraviolet absorption spectrum of liquid water. Applied Optics, 38:1216—
1223, 1999. 142, 193, 259

J.R. Lobry. Asymmetric substitution patterns in the two DNA strands of
bacteria. Molecular Biology and Evolution, 13:660-665, 1996. 157, 158,
193, 259

J.R. Lobry. Life history traits and genome structure: aerobiosis and G+C
content in bacteria. Lecture Notes in Computer Sciences, 3039:679-686,
2004. 21, 23, 257

J.R. Lobry and D. Chessel. Internal correspondence analysis of codon and
amino-acid usage in thermophilic bacteria. Journal of Applied Genetics,
44:235-261, 2003. 110

J.R. Lobry and C. Gautier. Hydrophobicity, expressivity and aromatic-
ity are the major trends of amino-acid usage in 999 FEscherichia coli
chromosome-encoded genes. Nucleic Acids Res, 22:3174-80, 1994. 103,
114, 115, 116, 258

J.R. Lobry and N. Sueoka. Asymmetric directional mutation pressures in
bacteria. Genome Biology, 3(10):research0058.1-research0058.14, 2002. 19

A.O. Lovejoy. The Great Chain of Being: A Study of the History of an
Idea. Harvard University Press, Cambridge, Massachusetts, USA, 1936. 2

P. Mackiewicz, J. Zakrzewska-Czerwinska, A. Zawilak, M.R. Dudek, and
S. Cebrat. Where does bacterial replication start? rules for predicting the
oriC region. Nucleic Acids Research, 32:3781-3791, 2004. 30

P. Murrell. R Graphics. Computer Science & Data Analysis. Chapman
& Hall/CRC, New York, 2005. ISBN: 9781584884866 http://www.stat.
auckland.ac.nz/"paul/RGraphics/rgraphics.html. 158

Paul Murrell and Richard Walton. grlmport: Importing Vector Graphics,
2006. R package version 0.2. 3

K. Nakai, A. Kidera, and M. Kanehisa. Cluster analysis of amino acid
indices for prediction of protein structure and function. Protein Eng., 2:93—
100, 1988. 3, 198

S. Osawa, T. H. Jukes, K. Watanabe, and A. Muto. Recent evidence for
evolution of the genetic code. Microbiol. Rev., 56:229-264, 1992. 177

H. Pages, R. Gentleman, and S. DebRoy. Biostrings: String objects rep-
resenting biological sequences, and matching algorithms, 2007. R package
version 2.6.4. 193

L. Palmeira. Analyse et modélisation des dépendances entre sites voisins
dans [’évolution des séquences d’ADN. PhD thesis, Université Claude
Bernard - Lyon I, 2007. 142, 193, 259

http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

266

[66]

[74]

[75]

BIBLIOGRAPHY

L. Palmeira, L. Guéguen, and J.R. Lobry. UV-targeted dinucleotides are
not depleted in light-exposed prokaryotic genomes. Molecular Biology and
Evolution, 23:2214-2219, 2006. 129, 130, 134, 140, 199

E. Paradis, J. Claude, and K. Strimmer. Ape: analyses of phylogenetics
and evolution in R language. Bioinformatics, 20:289-290, 2004. 45

J. Paces, R. Zika, V. Paces, A. Pavlicek, O. Clay, and G. Bernardi. Rep-
resenting GC variation along eukaryotic chromosomes. Gene, 333:135-141,
2004. 122

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences of the United
States of America, 85:2444-2448, 1988. 25

J.F. Peden. Analysis of codon usage. PhD thesis, University of Nottingham,
1999. 161, 191

G. Perriere and J. Thioulouse. Use and misuse of correspondence analysis
in codon usage studies. Nucleic Acids Res., 30:4548-4555, 2002. 99, 110

G. Plunkett, V. Burland, D.L. Daniels, and F.R. Blattner. Analysis of the
Escherichia coli genome. I11. DNA sequence of the region from 87.2 to 89.2
minutes. Nucleic Acids Research, 21:3391-3398, 1993. 158

T.I. Quickenden and J.A. Irvin. The ultraviolet absorption spectrum of
liquid water. The Journal of Chemical Physics, 72:4416-4428, 1980. 142,
193, 259

R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2006. ISBN 3-900051-07-0. 3

R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2007. ISBN 3-900051-07-0. 16, 17, 97

L. Ranjard, E. Brothier, and S. Nazaret. Sequencing bands of ribosomal
intergenic spacer analysis fingerprints for characterization and microscale
distribution of soil bacterium populations responding to mercury spiking.
Applied and Environmental Microbiology, 66:5334-5339, 2000. 145, 148,
259

Trina E. Roberts. ComPairWise: Compare phylogenetic or population ge-
netic data alignments, 2007. R package version 1.01. 190

G. Rocap, F.W. Larimer, J. Lamerdin, S. Malfatti, P. Chain, N.A. Ahlgren,
A. Arellano, M. Coleman, L. Hauser, W.R. Hess, Z.I. Johnson, M. Land,
D. Lindell, A.F. Post, W. Regala, M. Shah, S.L. Shaw, C. Steglich,
M.B. Sullivan, C.S. Ting, A. Tolonen, E.A. Webb, E.R. Zinser, and S.W.
Chisholm. Genome divergence in two Prochlorococcus ecotypes reflects
oceanic niche differentiation. Nature, 424:1042—-1047, 2003. 142, 259

BIBLIOGRAPHY 267

[79]

[82]

[83]

[84]

[91]

[92]

R. Rudner, J.D. Karkas, and E. Chargaff. Separation of microbial deoxyri-
bonucleic acids into complementary strands. Proceedings of the National
Academy of Sciences of the United States of America, 63:152—-159, 1969. 19

N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406—
425, 1984. 45

S.L. Salzberg, A.L. Delcher, S. Kasif, and O. White. Microbial gene identi-
fication using interpolated Markov models. Nucleic Acids Research, 26:544—
548, 1998. 196

Sophie Schbath. Etude asymptotique du nombre d’occurrences d’un mot
dans une chaine de Markov et application da la recherche de mots de
fréquence exceptionnelle dans les séquences d’ADN. PhD thesis, Univer-
sité René Descartes, Paris V, 1995. 132

R. B. Setlow. Cyclobutane-type pyrimidine dimers in polynucleotides. Sci-
ence, 153:379-386, 1966. 134, 255

P.M. Sharp and E. Cowe. Synonymous codon usage in Saccharomyces cere-
visiae. Yeast, 7:657-678, 1991. 191

P.M. Sharp and W.-H. Li. The codon adaptation index - a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Research, 15:1281-1295, 1987. 115, 191

D.C. Shields and P.M. Sharp. Synonymous codon usage in Bacillus subtilis
reflects both translational selection and mutational biases. Nucleic Acids
Research, 15:8023-8040, 1987. 191

C.E. Singer and B.N. Ames. Sunlight ultraviolet and bacterial DNA base
ratios. Science, 170:822-826, 1970. 129, 134, 140

H.J. Sofia, V. Burland, D.L. Daniels, G. Plunkett, and F.R. Blattner. Anal-
ysis of the Escherichia coli genome. V. DNA sequence of the region from
76.0 to 81.5 minutes. Nucleic Acids Research, 22:2576-2586, 1994. 158

R. Staden. Graphic methods to determine the function of nucleic acid
sequences. Nucleic Acids Res., 12:521-538, 1984. 3

N. Sueoka. Directional mutation pressure and neutral molecular evolution.
Proceedings of the National Academy of Sciences of the United States of
America, 85:2653 —2657, 1988. 165

N. Sueoka. Two aspects of DNA base composition: G+C content and
translation-coupled deviation from intra-strand rule of A = T and G = C.
J. Mol. Evol., 49:49-62, 1999. 166

K. Tomii and M. Kanehisa. Analysis of amino acid indices and mutation
matrices for sequence comparison and structure prediction of proteins. Pro-
tein Eng., 9:27-36, 1996. 3, 198

Adrian Trapletti and Kurt Hornik. tseries: Time Series Analysis and Com-
putational Finance, 2007. R package version 0.10-11. 128

268 BIBLIOGRAPHY

[94] I.M. Wallace, G. Blackshields, and D.G. Higgins. Multiple sequence align-
ments. Curr. Opin. Struct. Biol., 15:261-266, 2005. 40

[95] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1:80-83, 1945. 124

[96] T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono,
K. Mizobuchi, and A. Nakata. Systematic sequencing of the FEscherichia
coli genome: analysis of the 0-2.4 min region. Nucleic Acids Research,
20:3305-3308, 1992. 158

	I Frontmatter
	Licence of this document

	II Mainmatter
	Introduction
	About ACNUC
	About R and CRAN
	About this document
	About sequin and seqinR
	About getting started
	About running R in batch mode
	About the learning curve
	Wheel (the)
	Hotline
	Automation
	Reproducibility
	Fine tuning
	Data as fast moving targets
	Sweave() and xtable()

	Importing sequences from flat files
	Importing raw sequence data from FASTA files
	FASTA files examples
	The function read.fasta()
	The function write.fasta()
	Big room examples

	Importing aligned sequence data
	Aligned sequences files examples
	The function read.alignment()
	A simple example with the louse-gopher data

	Importing sequences from ACNUC databases
	Choose a bank
	Make your query
	Extract sequences of interest
	Introduction
	Extacting sequences with getSequence()
	Extracting sequences with trans-splicing
	Extracting sequences from many entries

	The query language
	Where to find information
	Case sensitivity and ambiguities resolution
	Selection criteria
	Introduction
	SP=taxon
	TID=id
	K=keyword
	T=type
	J=journal_name
	R=refcode
	AU=name
	AC=accession_no
	N=seq_name
	Y=year or Y>year or Y<year
	O=organelle
	M=molecule
	ST=status
	F=file_name
	FA=file_name
	FK=file_name
	FS=file_name
	list_name

	Operators
	AND
	OR
	NOT
	PAR
	SUB
	PS
	PK
	UN
	SD
	KD

	Importing zlib-compressed sequences
	Introduction
	Extacting 78,573 complete human nuclear CDS
	Extacting 78,573 complete human nuclear Proteins
	Sanity check

	How to deal with sequences
	Sequence classes
	Generic methods for sequences
	From classes to methods
	From methods to classes

	Internal representation of sequences
	Sequences as vectors of characters
	Sequences as strings

	Installation of a local ACNUC socket server and of a local ACNUC database on your machine.
	Introduction
	System requirement
	Setting a local ACNUC database to be queried by the server
	Build the ACNUC sockets server from the sources.
	Download the sources.
	Build the ACNUC sockets server.
	Setting the ACNUC sockets server.
	Using seqinR to query your local socket server.

	Building your own ACNUC database.
	Database flatfiles formats.
	Download the ACNUC dababase management tools.
	Install the ACNUC dababase management tools.
	Database building : index generation

	Misc
	Other tools for acnuc

	Technical description of the racnucd daemon
	ACNUC remote access protocol
	Citation

	Multivariate analyses
	Correspondence analysis
	Synonymous and non-synonymous analyses

	Nonparametric statistics
	Introduction
	Elementary nonparametric statistics
	Introduction
	Rank sum
	Rank variance
	Clustering around the observed centre
	Number of runs
	Multiple clusters

	Dinucleotides over- and under-representation
	Introduction
	The rho statistic
	The z-score statistic
	Comparing statistics on a sequence

	UV exposure and dinucleotide content
	The expected impact of UV light on genomic content
	The measured impact of UV light on genomic content

	RISA in silico with seqinR
	Introduction
	The primers
	Finding a primer location
	Compute the length of the intergenic space
	Compute IGS for a sequence fragment
	Compute IGS for a species
	Loop over many species
	Preprocessing: select interesting species
	Loop over our specie list

	Playing with results

	III Appendix
	FAQ: Frequently Asked Questions
	How can I compute a score over a moving window?
	How can I extract just a fragment from my sequence?
	How do I compute a score on my sequences?
	Why do I have not exactly the same G+C content as in codonW?
	How do I get a sequence from its name?

	GNU Free Documentation License
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	 COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE

	Genetic codes
	Standard genetic code
	Available genetic code numbers

	Release notes
	Test suite: run the don't run
	Introduction
	Stop list
	Figure list
	Don't run generator
	GC()
	SeqAcnucWeb()
	alllistranks()
	autosocket()
	choosebank()
	closebank()
	countfreelists()
	countsubseqs()
	crelistfromclientdata()
	dia.bactgensize()
	extract.breakpoints()
	getAnnot()
	getKeyword()
	getLength()
	getLocation()
	getName()
	getSequence()
	getTrans()
	getType()
	getlistrank()
	getliststate()
	gfrag()
	ghelp()
	isenum()
	knowndbs()
	oriloc()
	prepgatannots()
	prettyseq()
	print.SeqAcnucWeb()
	print.qaw()
	query()
	readfirstrec()
	rearranged.oriloc()
	residuecount()
	savelist()
	setlistname()
	translate()

	Informations about databases available at pbil
	Introduction
	 genbank
	 embl
	 emblwgs
	 swissprot
	 ensembl
	 refseq
	 nrsub
	 hobacnucl
	 hobacprot
	 hovergendna
	 hovergen
	 hogenom
	 hogenomdna
	 hogennucl
	 hogenprot
	 hoverclnu
	 hoverclpr
	 homolens
	 homolensdna
	 greview
	 polymorphix
	 emglib
	 HAMAPnucl
	 HAMAPprot
	 hoppsigen
	 nurebnucl
	 nurebprot
	 taxobacgen
	 emblTP
	 swissprotTP
	 hoverprotTP
	 hovernuclTP
	 trypano
	 ensembl24
	 ensembl34
	 ensembl41
	 ensembl47
	 ensembl49
	 macaca45
	 dog45
	 dog47
	 equus49
	 pongo49
	 rattus49
	 mouse38
	 homolens4
	 homolens4dna
	 hogendnucl
	 hogendprot
	 genomicro1
	 genomicro2
	 genomicro3
	 genomicro4

	List of tables
	List of figures
	Bibliography

