
Swarm and Evolutionary Computation 1 (2011) 19–31
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Invited paper

Parameter tuning for configuring and analyzing evolutionary algorithms
A.E. Eiben ∗, S.K. Smit 1
Department of Computer Science, Vrije Universiteit Amsterdam De Boelelaan 1081a 1081 HV, Amsterdam, Netherlands

a r t i c l e i n f o

Article history:
Received 8 November 2010
Received in revised form
24 January 2011
Accepted 2 February 2011
Available online 3 March 2011

Keywords:
Evolutionary algorithms
Parameter tuning
Algorithm performance
Robustness
Experimental methodology

a b s t r a c t

In this paper we present a conceptual framework for parameter tuning, provide a survey of tuning
methods, and discuss related methodological issues. The framework is based on a three-tier hierarchy of
a problem, an evolutionary algorithm (EA), and a tuner. Furthermore, we distinguish problem instances,
parameters, and EA performance measures as major factors, and discuss how tuning can be directed
to algorithm performance and/or robustness. For the survey part we establish different taxonomies to
categorize tuning methods and review existing work. Finally, we elaborate on how tuning can improve
methodology by facilitating well-funded experimental comparisons and algorithm analysis.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The main objectives of this paper are threefold. We want to
present a conceptual framework behind parameter tuning, provide
a survey of relevant literature, and argue for a tuning-aware exper-
imental methodology. The conceptual framework is comprised of
the pivotal notions regarding parameter tuning, arranged and pre-
sented in a certain logical structure. It also embodies a vocabulary
that can reduce ambiguity in discussions about parameter tuning.
However, we are not aiming at mathematical rigor, as we are not
to present formal definitions and theorems. Our treatment is pri-
marily practical.

We consider the design, or configuration, of an evolutionary
algorithm (EA) as a search problem in the space of its parameters
and, consequently, we perceive a tuning method as a search
algorithm in this space. We argue that parameter tuning can be
considered from two different perspectives, that of

• configuring an evolutionary algorithm by choosing parameter
values that optimize its performance, and

• analyzing an evolutionary algorithm by studying how its
performance depends on its parameter values.

To this end, it is essential that a search algorithm generates
much data while traversing the search space. In our case, these

∗ Corresponding author. Tel.: +31 0 20 5987758; fax: +31 0 20 5987653.
E-mail address: gusz@cs.vu.nl (A.E. Eiben).
URLs: http://www.cs.vu.nl/∼gusz (A.E. Eiben), http://www.cs.vu.nl/∼sksmit

(S.K. Smit).
1 Tel.: +31 20 59 87865; fax: +31 0 20 5987653.

2210-6502/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.swevo.2011.02.001
data concern a lot of parameter vectors and corresponding values
of algorithm performance. If one is only interested in an optimal
EA configuration then such data are not relevant—finding a
good parameter vector is enough. However, if one is interested
in gaining insights into the EA at hand, then these data are
highly relevant for they reveal information about the evolutionary
algorithm’s robustness, distribution of solution quality, sensitivity
etc. Adopting the terminology of Hooker [1], we refer to these
options as competitive and scientific testing, and discuss how
scientific testing is related to the notion of algorithm robustness.
We also show that there are multiple definitions of robustness
obtained through extending the above list by

• analyzing an evolutionary algorithm by studying how its
performance depends on the problems it is solving, and

• analyzing an evolutionary algorithm by studying how its
performance varies when executing independent repetitions of
its run,

and thenwe discuss how these definitions are related to parameter
tuning.

The rest of this paper is organized as follows. We begin
with an introductory treatment of EAs and their parameters in
Section 2. Then the general conceptual framework for parameter
tuning is outlined in Section 3. It is summarized by Fig. 3, that
shows that the solutions of a tuning problem depend on (1) the
problem(s) to be solved, (2) the EA used, (3) the utility function
that defines howwemeasure algorithm quality, and (4) the tuning
method. Section 4 elaborates on the third component, the utility
function, discussing various notions of algorithm performance
and robustness, followed by a discussion of robustness and EA
design in Section 5. The fourth component, the tuner, is the main

http://dx.doi.org/10.1016/j.swevo.2011.02.001
http://www.elsevier.com/locate/swevo
http://www.elsevier.com/locate/swevo
mailto:gusz@cs.vu.nl
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~sksmit
http://www.cs.vu.nl/~sksmit
http://www.cs.vu.nl/~sksmit
http://www.cs.vu.nl/~sksmit
http://www.cs.vu.nl/~sksmit
http://www.cs.vu.nl/~sksmit
http://dx.doi.org/10.1016/j.swevo.2011.02.001

20 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
Fig. 1. General framework of an evolutionary algorithm.

subject of two sections. Section 6 describes three different ways
to distinguish and classify tuning methods. Two of these focus on
algorithmic details, the third one also takes the intended usage into
account. The actual survey in Section 7 is structured by this latter
one. Finally, Section 8 makes the link between parameter tuning
and research methodology, giving recommendations towards a
more tuning-aware practice.

Let us finish this introduction with a note on the scope of this
paper. The title above indicates evolutionary algorithms as the
subject matter of this paper. However, most of our considerations
hold in the broader class of stochastic, heuristic search algorithms.
In fact, several ideas behind our discussion are taken from or
based on publications regarding heuristic methods in general, not
restricted to evolutionary computing, e.g., [1,2]. In turn, many of
the concepts introduced here for EAs can be directly transformed
to various others methods, including swarm algorithms, particle-
based optimizers, and the like.

2. Evolutionary algorithms and their parameters

Evolutionary algorithms form a class of heuristic search
methods based on a particular algorithmic framework whose
main components are the variation operators (mutation and
recombination) and the selection operators (parent selection and
survivor selection), cf. [3]. The general evolutionary algorithm
framework is shown in Fig. 1.

A decision to use an evolutionary algorithm implies that the
user adopts the main design decisions that led to the general
evolutionary algorithm framework. That is, the decisions to
use a population, manipulated by selection, recombination, and
mutation operators follow automatically, the user only needs to
specify ‘‘a few’’ details. In the sequel we use the term parameters to
denote these details.

In these terms, designing an EA for a given application
amounts to selecting good values for the parameters. For in-
stance, the definition of an EA might include setting the pa-
rameter crossoveroperator to onepoint, the parameter
crossoverrate to 0.5, and the parameter populationsize to
100. In principle, this is a sound naming convention, but intuitively
there is a difference between choosing a good crossover operator
from a given list of three operators and choosing a good value for
the related crossover rate pc ∈ [0, 1]. This difference canbe formal-
ized if we distinguish parameters by their domains. The parameter
crossoveroperator has a finite domain with no sensible dis-
tancemetric or ordering, e.g., {onepoint, uniform, averaging},
whereas the domain of the parameter pc is a subset of ℜ with the
natural structure for real numbers. This difference is essential for
searchability. For parameters with a domain that has a distance
metric, or is at least partially ordered, one can use heuristic search
and optimizationmethods to find optimal values. For the first type
of parameters this is not possible because the domain has no ex-
ploitable structure. The only option in this case is sampling.

The difference between two types of parameters has already
been noted in evolutionary computing, but various authors use
various naming conventions. For instance, [4] uses the names qual-
itative, and quantitative parameters, [5] distinguishes symbolic
and numeric parameters, [6] calls them categorical and numeri-
cal, while [7] refers to structural and behavioral parameters. Fur-
thermore, [8] calls unstructured parameters components and the
elements of their domains operators. In the corresponding termi-
nology, a parameter is instantiated by a value, while a compo-
nent is instantiated by allocating an operator to it. In the context
of statistics and data mining one distinguishes two types of vari-
ables (rather than parameters) depending on the presence of an
ordered structure, but a universal terminology is lacking here too.
Commonly used names are nominal vs. ordinal and categorical vs.
ordered variables.

From now on we will use the terms qualitative parameter
and quantitative parameter. For both types of parameters the
elements of the parameter’s domain are called parameter val-
ues and we instantiate a parameter by allocating a value to it.
In practice, quantitative parameters are mostly numerical val-
ues, e.g., the parameter crossover rate uses values from the
interval [0, 1], and qualitative parameters are often symbolic,
e.g., crossoveroperator. In theory, a set of symbolic val-
ues can be ordered too, for instance, we could sort the set
{averaging, onepoint, uniform} alphabetically. However,
in practice it would not make much sense to make
crossoveroperator a quantitative parameter by such a trick.

It is important to note that the number of parameters
of EAs is not specified in general. Depending on particu-
lar design choices one might obtain different numbers of pa-
rameters. For instance, instantiating the qualitative parameter
parentselection by tournament implies a new quantita-
tive parameter tournamentsize. However, choosing for
roulettewheel does not add any parameters. This example also
shows that there can be a hierarchy among parameters. Namely,
qualitative parameters may have quantitative parameters ‘‘under
them’’. If an unambiguous treatment is required, then we can call
such parameters sub-parameters, always belonging to a qualita-
tive parameter.

2.1. EAs and EA instances

The distinction between qualitative and quantitative para-
meters naturally supports a distinction between EAs and EA in-
stances. This view is based on considering qualitative parameters
as high-level ones that define the main structure of an evolution-
ary algorithm, and look at quantitative parameters as low-level
ones that define a specific variant of this EA. Following this nam-
ing convention an evolutionary algorithm is a partially specified al-
gorithm, fitting the framework shown in Fig. 1, where the values
to instantiate qualitative parameters are defined, but the quantita-
tive parameters are not. Hence, we consider two EAs to be different
if they differ in one of their qualitative parameters, for instance, use
different mutation operators. If the values for all parameters are
specified thenwe obtain an evolutionary algorithm instance. Table 1
illustrates this matter by showing three EA instances belonging to
just two EAs.

This terminology enables precise formulations (which we will
need in Section 4), meanwhile it enforces care with phrasing.
Observe, that the distinction between EAs and EA instances is
similar to distinguishing problems and problem instances. If
rigorous terminology is required then the right phrasing is ‘‘to
apply an EA instance to a problem instance’’. However, such rigor
is not always needed, and formally inaccurate but understandable
phrases like ‘‘to apply an EA to a problem’’ are acceptable if they
cannot lead to confusion.

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 21
Table 1
Three EA instances specified by the qualitative parameters representation, re-
combination, mutation, parent selection, survivor selection, and the quantita-
tive parameters mutation rate (pm), mutation step size (σ), crossover rate (pc), pop-
ulation size (µ), offspring size (λ), and tournament size (κ). In our terminology, the
instances in columns A1 and A2 are just variants of the same EA. The EA instance in
column A3 belongs to a different EA, because it is different in its qualitative param-
eters.

A1 A2 A3

Qualitative parameters

Representation Bitstring Bitstring Real-valued
Recombination 1-point 1-point Averaging
Mutation Bit-flip Bit-flip Gaussian N(0, σ)

Parent selection Tournament Tournament Uniform random
Survivor selection Generational Generational (µ, λ)

Quantitative parameters

pm 0.01 0.1 0.05
σ n.a. n.a. 0.1
pc 0.5 0.7 0.7
µ 100 100 10
λ n.a. n.a. 70
κ 2 4 n.a.

3. Tuning evolutionary algorithms

In the broad sense, algorithm design includes all decisions
needed to specify an algorithm (instance) for solving a given
problem (instance). Throughout this paper we perceive parameter
tuning as a special case of algorithmdesign. The principal challenge
for evolutionary algorithm designers is caused by the fact that
the design details, i.e., parameter values, largely influence the
performance of the algorithm. For instance, an EA with good
parameter values can be orders of magnitude better than one
with poorly chosen parameter values. Hence, algorithm design in
general, and EA design in particular, is an optimization problem
itself. In the field of evolutionary computing one traditionally
distinguishes two approaches to choosing parameter values,
following the scheme offered in [9]:

• Parameter tuning, where (good) parameter values are estab-
lished before the runof a given EA. In this case, parameter values
are fixed in the initialization stage and do not change while the
EA is running.

• Parameter control, where (good) parameter values are estab-
lished during the run of a given EA. In this case, parameter
values are given an initial value when starting the EA and they
undergo changes while the EA is running.

There has been much research into parameter control during the
last decade. It has been successfully applied in various domains
of metaheuristics, including Evolution Strategies [10], Genetic
Algorithms [11], Differential Evolution [12,13] and Particle Swarm
Optimization [14]. However, the topic of parameter control is
beyond the scope of this paper; for a good overview of the area
we recommend [9,15].

To obtain a detailed view on parameter tuning, we distinguish
three layers: application layer, algorithm layer, and design layer,
see Fig. 2. As this figure indicates, thewhole scheme can be divided

Fig. 2. Control flow (left) and information flow (right) through the three layers in
the hierarchy of parameter tuning.
Table 2
Vocabulary distinguishing the main entities in the context of problem solving and
parameter tuning.

Problem solving Parameter tuning

Method at work Evolutionary algorithm Tuning procedure
Search space Solution vectors Parameter vectors
Quality Fitness Utility
Assessment Evaluation Test

into two optimization problems thatwe refer to as problem solving
and parameter tuning. The problem solving part consists of a
problem on the application layer and an EA on the algorithm layer
trying to find an optimal solution for this problem. Simply put,
the EA is iteratively generating candidate solutions seeking one
withmaximal quality. The parameter tuning part contains a tuning
method that is trying to find optimal parameter values for the EA
on the algorithm layer. Similarly to the problem solving part, the
tuning method is iteratively generating parameter vectors seeking
one with maximal quality, where the quality of a given parameter
vector is based on the performance of the EA using the values of it.
To avoid confusion we use distinct terms to designate the quality
function of these optimization problems. Conform the usual EC
terminology we use the term fitness for the quality of candidate
solutions of the problem on the application layer, and the term
utility to denote the quality of parameter vectors. Table 2 provides
a quick overview of the related vocabulary.

With this nomenclature, the problem to be solved by the
algorithm designer can be seen as a search problem in the space
of parameter vectors given some utility function. Solutions of
the parameter tuning problem can then be defined as parameter
vectors with maximum utility. Furthermore, we can distinguish
the so-called ‘‘structural tuning’’ and ‘‘parametric tuning’’ [16]
in a formal way: structural tuning takes place in the space
of qualitative parameters, while parametric tuning refers to
searching through quantitative parameters.

Nowwe can define the utility landscape as an abstract landscape
where the locations are the parameter vectors of an EA and
the height reflects utility. It is obvious that fitness landscapes
– commonly used in EC – have a lot in common with utility
landscapes as introduced here. However, despite the obvious
analogies, there are some differences we want to note here. First
of all, fitness values are most often deterministic—depending, of
course, on the problem instance to be solved. However, the utility
values are always stochastic, because they reflect the performance
of an EA which is a stochastic search method. This implies that the
maximum utility sought by tuning needs to be defined in some
statistical sense. In fact, even comparing utility values could be
difficult if the underlying data shows a big variance. In Section 4.1
we will return to this issue. Second, the notion of fitness is
usually strongly related to the objective function of the problem
on the application layer and differences between suitable fitness
functions mostly concern arithmetic details. The notion of utility,
however, depends on the performance metrics used to define EA
quality, thus ultimately on the preferences of the user.

Fig. 3 illustrates the generic scheme of parameter tuning in a
graphical form. It shows that the solutions of a tuning problem

Utility
Function

Evolutionary
Algorithm

Test
Problem(s)

Tuner

Set of
good

parameter
values

Fig. 3. Generic scheme of parameter tuning showing how good parameter values
depend on four factors: the problem instance(s) to be solved, the EA used, the utility
function, and the tuner itself.

22 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
a

Fig. 4. Illustration of algorithm applicability (A), fallibility (B), tolerance (C), tuneability (D). See the text for detailed explanation.
depend on the problem(s) to be solved, the EA used, and the utility
function. Adding the tuner to the equation, we obtain this picture
showing how a set of good parameter values obtained through
tuning depends on four factors. In the next section we discuss
algorithm quality, the basis of utility functions, in more detail.

4. Algorithm quality: performance and robustness

Next we take a closer look on (evolutionary) algorithm quality.
To structure our discussion we identify two main factors that
determine algorithm quality: performance and robustness.

4.1. Performance measures

In general, there are two atomic performance measures for
EAs: one regarding solution quality and one regarding algorithm
speed. Most, if not all, performance metrics used in EC are based
on variations and combinations of these two. Solution quality can
be naturally expressed by the fitness function the EA is using. As
for algorithm speed, time or search effort needs to be measured.
This can be done by, for instance, the number of fitness evaluations,
CPU time, wall-clock time, etc. In [17] we discussed pro’s and
con’s of various time measures. Here we do not go into this issue,
just assume that one of them has been chosen. Then there are
different combinations of fitness and time that can be used to
define algorithm performance in one single run. For instance:

• Given a maximum running time (computational effort), algo-
rithm performance is defined as the best fitness at termination.

• Given a minimum fitness level, algorithm performance is
defined as the running time (computational effort) needed to
reach it.

• Given a maximum running time (computational effort) and
a minimum fitness level, algorithm performance is defined
through the Boolean notion of success: a run succeeds if the
given fitness is reachedwithin the given time, otherwise it fails.

Obviously, by the stochastic nature of EAs, multiple runs on
the same problem are necessary to get a good estimation of
performance. By aggregating the measures mentioned above over
a number of runs, we obtain the performance metrics commonly
used in evolutionary computing, cf. [3, Chapter 14]:

• MBF (mean best fitness).
• AES (average number of evaluations to solution).
• SR (success rate),

respectively. Straightforward as they are, these measures are not
always appropriate. The most prominent problem in here is the
possibly large variance in the data, i.e., the performance results of
the EA in question. If this is the case, then using the mean (and
standard deviation) may not be meaningful and the use of the
median or the best fitness can be preferable [18]. Visualizations
like boxplots and plots of the Empirical Cumulative Distribution
Function (ECDF) [19] can be also be useful in such cases.
When designing a good EA, one may tune it to maximize either
of these performance measures or a combination of them such as
Success Performance (SP) [20]. Obviously, the actual performance
metrics determines the utility landscape, and therefore the choice
of the best parameter vector. In a recent case study,we have shown
that tuning for different performance measures (MBF, SR, or rank)
can yield parameter values that differ in orders of magnitude,
cf. [21]. This demonstrates that any claim about good parameter
values in general, without a reference to the performancemeasure,
should be taken with a grain of salt.

4.2. Robustness

Regarding robustness, the first thing to be noted is that
there are different interpretations of this notion in the literature.
The existing (informal) definitions do have a common feature:
robustness is related to the variance of algorithm performance
across some dimension. However, they differ in what this
dimension is. To this end, there are indeed more options, given
the fact that the performance of an EA (instance) depends on (1)
the problem instance it is solving, (2) the parameter vector it uses,
(3) the random seed used to realize stochasticity. Therefore, the
variance of performance can be considered along three different
dimensions: parameter values, problem instances, and random
seeds, leading to three different types of robustness.

4.2.1. Robustness to changes in problem specification
In the simplest case, we are tuning an evolutionary algorithm

A on one function f . Then the utility of a parameter vector p̄ is
measured by the performance of the EA instance A(p̄) on f . In
this case, tuning delivers a specialist, that is, an EA instance that is
very good in solving f , with no claims or indications regarding its
performance on other problem instances. This can be a satisfactory
result if one is only interested in solving f . However, algorithm
designers in general, and evolutionary computing experts in
particular, are often interested in EAs (EA instances) thatworkwell
on many objective functions. In such a case, tuning is performed
on a test suite consisting of many test functions f1, . . . , fn and it
delivers a generalist.

The left diagram of Fig. 4 illustrates this matter, exhibiting
EA performance across a range of problems. Based on this
performance curve we define two properties. If the height of the
curve (Max–Min, shown by the arrow B) is large, we call the EA
fallible, because it can fail greatly on some problems. If the width
(shown by the arrow A) is large, we call the EA widely applicable.
Note that the length of arrow A depends on the performance
threshold T . This means that we consider an EA applicable to a
problem if its performance exceeds this threshold. Othermeasures
of width or height, or even the two combined (such as standard
deviation) are also possible. For the historically inclined readers,
the famous figures in the classic books of Goldberg [22, pg. 6], and
Michalewicz, [23, pg. 292], refer to this kind of robustness.

It should be noticed that this notion of robustness is applicable
to EA instances, and not to EAs. The reason is simple, to measure

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 23
Table 3
Six notions related to robustness, based on the variance of algorithm performance
across different spaces and directions (width vs. height). The notions tolerant and
tuneable apply to EAs, the other four to EA instances or parameter vectors. See text
for more details.

Robustness as variance across Large value for
Width Height

Problem instances Widely applicable Fallible
Parameter values Tolerant Tuneable
Random seeds Successful Unstable

performance one needs to have a fully specified EA instance A(p̄).
Then it is A(p̄), and/or the parameter vector p̄, that is robust
(fallible, widely applicable).

4.2.2. Robustness to changes in parameter values
Another popular interpretation of algorithm robustness is

related to performance variations caused by different parameter
values. This notion of robustness is defined for EAs. Of course, it
is again the EA instance A(p̄) whose performance forms the basic
measurement, but here we aggregate over parameter vectors. The
right diagram of Fig. 4 shows the performance of A(p̄) for different
values of p̄. In otherwords, it is a plot of the utility values belonging
to different parameter vectors. Based on this curve we define two
properties. If the height of the curve (Max–Min, shown by the
arrow D) is large, then we call the EA tuneable, because it can
be made much better or worse by selecting different parameter
values.2 If the size of the parameter space leading to acceptable
performance (shown by the arrow C) is large enough, then we
call the EA tolerant. Note that the length of arrow C depends
on the performance threshold T that defines what acceptable
performance is. Furthermore, it can be measured per parameter
individually, and on the parameter space as a whole. Using such
a definition, it is EAs (specified by a particular configuration of the
qualitative parameters) that can be compared by their robustness
(tuneability or tolerance). Optimizing this quality requires a search
through the qualitative parameters.

4.2.3. Robustness to changes in random seeds
EAs are stochastic algorithms, because they rely on random

choices in several steps. Therefore, all experimental investigations
should be statistically sound, requiring a number of independent
repetitions of a run with the same setup, but with different
random seeds. Hereby we obtain information over the third kind
of robustness. Because it is hard to define a meaningful ordering of
random seedswe cannot use an equivalent of the diagrams of Fig. 4
and have to redefine width and height.

Instead of width, here we can use the ratio of runs ending
with a good result above some threshold T . This measure is well-
known in the literature, in Section 4.1 it was mentioned as success
rate. We call an EA instance successful if this success rate is high.
The equivalent of a height-based notion describes the difference
between the worst and best runs among all repetitions using
different random seeds. If the difference between the best and
worst run is big, then we call this EA instance unstable. The height
is not often used on its own, although it can support a worst-case
analysis. More commonly, height and width are combined in a
single measure by means of the standard deviation.

Table 3 summarizes our terminology regarding robustness
showing six adjectives that can be used as context specific
replacements of the term robust. For a good understanding, it is
important to note that the concepts in the left column (those under
‘Width’) are not the opposites of the ones in the right column (those
under ‘Height’).

2 This notion is very similar to the one used by Preuss [24].
5. Configuring and analyzing EAs by tuning

Based on the previous section we can identify different
purposes behind tuning an (evolutionary) algorithm:

1. To obtain an algorithm instance with high performance, given
a performance measure or a combination of measures (on one
or more problems).

2. To obtain an algorithm instance that is robust to changes in
problem specification.

3. To indicate the robustness of the given algorithm to changes in
parameter values.

4. To obtain an algorithm instance that is robust to random effects
during execution.

Note, that the case of robustness to changes in parameter
values is somewhat of an outlier in this list, because we
cannot optimize a given EA for this. This is a straightforward
consequence of restricting tuning to parametric tuning. That is,
if the object to be tuned is an EA with all qualitative parameters
specified, then tuning stands for searching for a good vector of
quantitative parameters. Then it is easy to see that a good vector
can be defined by (1) or (2), or (4) in the above list, but a
parameter vector that is robust to changes in parameter values
does notmake sense. Of course, it is possible to do structural tuning
(i.e., searching for a good vector of qualitative parameters) such
that we obtain an EA robust to changes in quantitative parameter
values. Doing so can reveal interesting and sometimes unexpected
relationships between qualitative and quantitative parameters. For
instance, in [8] we demonstrated that using crossover in a GA
makes themutation parametersmore tolerant. This illustrates that
structural tuning can increase robustness to changes in certain
quantitative parameter values.

As explained in [1], there is a big difference between compet-
itive and scientific testing of heuristic methods. Simply put, com-
petitive testing is solely aiming at obtaining an algorithmic setup
that meets some success criterion, for instance, beats some actual
benchmark. Scientific testing is more concerned with gaining in-
sights into an algorithm through controlled experimentation. In
general, such a controlled experimentation should aim to study the
effects of problem characteristics and algorithm characteristics on
algorithm behavior (performance).

In evolutionary computing, tuning usually amounts to com-
petitive testing to configure some evolutionary algorithm in a
performance driven manner. In a business context one seeks an
algorithm instance that provides a good solution at low computa-
tional costs for a given practical problem. In an academic context, a
researcher is typically after an instance of his/her newly invented
EA that outperforms some benchmark (evolutionary) algorithms
on some benchmark problems. In the current EC practice parame-
ter values are mostly selected by conventions, ad hoc choices, and
experimental comparisons on a limited scale. In previous publica-
tions we discussed the drawbacks of this practice, explained that
there are better alternatives in the form of existing tuning algo-
rithms and argued for using them.

For instance, in [8] we experimented with structural and
parametric tuning, addressing the costs and gains of tuning
quantitatively. We found that EAs differ greatly in the amount
of tuning needed to reach a given performance, and this tuning
cost depends on the overall setup of the EA (the values of the
qualitative parameters), rather than the number of (quantitative)
parameters. In [25] we compared threemethods, (meta-)evolution
strategies, REVAC and SPO for tuning a GA.3 We studied their
differences in finding superior parameter values and the amount

3 See Section 7 and the references therein for details on REVAC and SPO.

24 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
0
0.2

0.4
0.6

0.8
1

Parameter Value

Problem

P
er

fo
rm

an
ce

0.5

0.6

0.7

0.8

0.9

Fig. 5. Illustration of the grand utility landscape showing the performance (z) of
EA instances belonging to a given parameter vector (x) on a given problem instance
(y). Note: The ‘‘cloud’’ of repeated runs is not shown.

of information they provide. These experiments showed how
common wisdom about good parameter values can be easily
refuted by algorithmic tuning. In [21] we demonstrated the
benefits of tuning in a challenging case study. We applied
REVAC to an EA that had been carefully designed and optimized
approximating its best possible performance: the winner of the
CEC-2005 Special Session on Real-Parameter Optimization, [20]. In
just a few days, the world champion has been improved and much
has been learned about its parameters. Most recently, we have
proposed the use of entropy in a paper focusing on the analysis,
rather than the optimization of EAs through parameter tuning [26].
We discussed different notions of entropy and explained in detail
how our REVAC method collects entropy data while tuning an
EA. We illustrated the matter with experiments that showed how
such data can be used to indicate the relevance (tuneability) of
qualitative and quantitative parameters and the amount of tuning
needed per parameter.

There are two main messages emerging from our experience.
First, using tuning algorithms is highly rewarding. The efforts are
moderate and the gains in performance can be very significant.
Second, by using tuning algorithms one does not only obtain
superior parameter values, but also much information about
parameter values and algorithm performance. This information
can be used to obtain a deeper understanding of the algorithm in
question. In other words, using tuning algorithms helps not only in
calibrating, but also in analyzing evolutionary algorithms. In terms
of testing heuristics, this means a transition from competitive to
scientific testing. It is easy to see that a detailed understanding
of algorithm behavior has a great practical relevance. Knowing
the effects of problem characteristics and algorithm characteristics
on algorithm behavior, users can make well-informed design
decisions regarding the (evolutionary) algorithm they want to
use. Obviously, the biggest impact in this direction is achieved
if the tuning data and the aggregated knowledge are shared
among users and members of the scientific community, such that
individual users/researchers do not have to execute their own
tuning sessions.

Fig. 5 shows the kind of data that can be gathered by systematic
tuning. For the sake of this illustration, we restrict ourselves to
parameter vectors of length n = 1. That is, we only take a single
parameter into account. Thus, we obtain a 3D landscape with one
axis x representing the values of the parameter and another axis
y representing the problem instances investigated. (In the general
case of n parameters, we have n+1 axes here.) The third dimension
z shows the performance of the EA instance belonging to a given
parameter vector on a given problem instance. It should be noted
that for stochastic algorithms, such as EAs, this landscape is blurry
if the repetitions with different random seeds are also taken into
account. That is, rather than one z-value for a pair ⟨x, y⟩, we have
one z for every run, for repeated runs we get a ‘‘cloud’’.

Although this 3D landscape gives the best complete overview
of performance and robustness, lower-dimensional hyperplanes
are also interesting and sometimes more clear. To begin with,
let us mention the 1D hyperplane, or slice, corresponding to
one pair ⟨x, y⟩. In the full picture including the ‘‘cloud’’, such a
slice contains the outcomes of all repetitions, thus data about
robustness to changes in random seeds as discussed Section 4.2.3.
Such data are often reported in the EC literature in the form of the
average performance and the corresponding standard deviation for
a given EA instance (x) on a given problem instance (y), or they
are visualized by means of boxplots and graphs of the Empirical
Cumulative Distribution Function (ECDF) [19].

The left-hand-side of Fig. 6 shows 2D slices corresponding
to specific parameter vectors, thus specific EA instances. Such a
slice shows how the performance of a specific EA instance varies
over the range of problem instances. This provides information on
robustness to changes in problem specification, for instance if the
given EA instance is fallible or widely applicable, cf. Section 4.2.1.
Such data are often reported in the EC literature, be it with a
different presentation. A frequently used option is to show a table
containing the experimental outcomes (performance results) of
one or more EA instances on a predefined test suite, e.g., the five
DeJong functions, the 25 functions of the CEC-2005 contest, etc.
Notice that the two EA instances depicted on left-hand-side of
Fig. 6 are quite different regarding their behavior. For instance,
the foremost EA instance is rather fallible, while the second one
is widely applicable (assuming a threshold T = 0.75).

The right-hand-side of Fig. 6 shows 2D slices corresponding
to specific problem instances. On such a slice we see how the
Fig. 6. Illustration of parameter-wise slices (left) and problem-wise slices (right) of the grand utility landscape shown in Fig. 5. (The ‘‘cloud’’ of repeated runs is not shown.)
See the text for explanation and interpretation.

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 25
Table 4
Tuning methods distinguished by taxonomy T1 & T2 .

Described in section Method Taxonomy T1 Taxonomy T2

Section 7.1 Latin-Square [29] Single stage A
Taguchi Orthogonal Arrays [30] Single stage A

Section 7.1.1 CALIBRA [40] Multi stage A
Empirical Modelling of Genetic Algorithms [29] Two stage A

Section 7.2

Sequential Experiment Designs [63] Single stage A
François–Lavergne [45] Single stage A
Logistic Regression [44] Single stage A
ANOVA [34] Single stage A
Design of Experiments with Regression
Tree [64]

Single stage A

Section 7.2.1
Coy’s procedure [46] Multi stage A
Sequential Parameter Optimization (SPO) [36] Multi stage A
SPO + OCBA [47] Multi stage A

Section 7.3

Interactive Analysis [49] Single stage B
Ranking and Selection [50] Single stage B
Multiple Comparison Procedures [51] Single stage B
Sequential indifference-zone selection [52] Single stage B
Racing [35] Single stage B
F-RACE [16] Single stage B

Section 7.3.1 Iterative F-RACE [39] Multi stage A & B

Section 7.4

Meta-Plan [54] Multi stage A
Meta-Algorithm [32] Multi stage A
Meta-GA [65] Multi stage A
Meta-GA + Racing [5] Multi stage A & B
FocusedILS [55] Multi stage A & B
Meta-ES [66] Multi stage A
Meta-CMA-ES [25] Multi stage A
OPSO [67] Multi stage A

Section 7.4.1
Local Unimodal Sampling [59] Multi stage A
REVAC [68] Multi stage A
REVAC ++ [25] Multi stage A & B

Section 7.4.2 M-FETA [60] Multi stage A & B
Performance Fronts [61] Multi stage A
performance of the given EA depends on the parameter vectors it
uses. This discloses information regarding robustness to changes
in parameter values (e.g., tuneability and tolerance), as discussed
in Section 4.2.2. In evolutionary computing such data is hardly
ever published. This is a straightforward consequence of the
current practice, where parameter values are mostly selected
by conventions, ad hoc choices, and very limited experimental
comparisons. In other words, usually such data is not even
produced, let alone stored and presented. By the increased
adoption of tuning algorithms this practice could change and
knowledge about EA parameterization could be collected and
disseminated.

For tuning problems involving multiple parameters, similar,
but higher dimensional, planes exist which provide the same
information as in this simplified scenario. However, visualizing
such hyperplanes is much harder and requires dimension-
reduction approaches, such as contour-plots [27], aggregations
such as boxplots and ECDFs. There are also visualizations that
are specifically designed for analyzing utility landscapes such as
entropy [26] plots that can be used to assess the tolerance and
tuneability of an algorithm.

6. Positioning tuning methods

In this section we describe three different ways to distinguish
and classify tuning methods. The first two are strongly oriented
to the internal algorithmic differences between tuners. In [28]
we used the resulting taxonomies to structure a survey of tuning
algorithms. The overview in this paper is organized differently, led
by a new taxonomy, taking into account the different notions of
robustness, or, more generally, various aspects of scientific testing.
6.1. Tuning algorithms: taxonomy T1

In essence, all tuning algorithms work by the GENERATE-and-
TEST principle, i.e., through generating parameter vectors and
testing them to establish their utility. Tuners can be then divided
into two main categories:

1. non-iterative and
2. iterative tuners.

All non-iterative tuners execute the GENERATE step only once,
during initialization, thus creating a fixed set of vectors. Each of
those vectors is then tested during the TEST phase to find the best
vector in the given set. Hence, one could say that non-iterative
tuners follow the INITIALIZE-and-TEST template. Initialization can
be done by random sampling, generating a systematic grid in the
parameter space, or some space filling set of vectors. Examples
of such methods are Latin-Square [29] and Taguchi Orthogonal
Arrays [30].

The second category of tuners is formed by iterative methods
that do not fix the set of vectors during initialization, but start
with a small initial set and create new vectors iteratively during
execution. Common examples of such methods are meta-EAs
(Section 7.4) and Iterative Sampling Methods (Section 7.1.1).
Section 7 and Table 4 provide a more elaborate overview of
algorithms and their classification based on this taxonomy.

Given the stochastic nature of EAs, a number of tests is
necessary for a reliable estimate of utility. Following [31,4], we
distinguish

1. single-stage and
2. multi-stage procedures.

26 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
Single-stage procedures perform the same number of tests for
each given vector, while multi-stage procedures use a more
sophisticated strategy. In general, they augment the TEST step
by adding a SELECT step, where only promising vectors are
selected for further testing, deliberately ignoring those with a low
performance.

6.2. Tuning algorithms: taxonomy T2

The taxonomy presented in this section is based on the search
effort perspective. Obviously, good tuning algorithms try to find a
good parameter vectorwith the least possible effort. In general, the
total search effort can be expressed as A × B × C , where
A is the number of parameter vectors to be tested by the tuner.
B is the number of tests, e.g., EA runs, per parameter vector to

establish its utility. The product A × B represents the total
number of algorithm runs used by the tuners.

C is the number of function evaluations performed in one run of
the EA.

Based on this perspective, we divide existing tuning methods into
four categories: those that try to allocate search efforts optimally
by saving on A, B, C , respectively. In addition, there are tuners that
try to allocate search efforts optimally by saving on A and B.

Methods for optimizing A are trying to allocate search efforts
efficiently by cleverly generating parameter vectors. Strictly
speaking they might not always minimize A, but try to ‘‘optimize
the spending’’, that is, get the most out of testing A parameter
vectors. Such tuners are usually iterativemethods. The idea behind
most tuners in this category is to start with a relatively small
set of vectors and iteratively generate new sets in a clever way,
i.e., such that new vectors are likely to be good. Well-known
examples in this category are the classical meta-GA [32] and the
more recent REVACmethod [33]. These tuners are only appropriate
for quantitative parameters, because qualitative parameters do not
have an ordering that could be exploited by a search algorithm,
cf. Section 2. Formally, a meta-EA could work on parameter
vectors that contain qualitative parameters too. But even then, its
working would boil down to random sampling in the (sub)space of
qualitative parameters.

Methods for optimizing B are trying to reduce the number
of tests per parameter vector. The fundamental dilemma here
is that fewer tests yield less reliable estimates of utility. If the
number of tests is too low, then the utilities of two parameter
vectors might not be statistically distinguishable. More tests can
improve (sharpen) the reliability of the utility estimates such
that the superiority of one vector over the other can be safely
concluded. However, more tests come with a price in the form
of longer runtimes. The methods in this group use the same trick
to deal with this problem: initially they perform only a few tests
per parameter vector and increase this number to the minimum
level that is enough to obtain statistically sound comparisons
between the given parameter vectors. Such methods are known as
statistical screening, ranking and selection. Well-known examples in
this category are ANOVA [34] and racing [35]. These tuners are in
principle applicable for quantitative and qualitative parameters.

Obviously, the greatest benefit in terms of reduced tuning effort
would come from optimizing both A and B. Currently there are
a few tuning methods based this idea, for example, Sequential
Parameter Optimization (SPO) [36–38] and REVAC++ [25].

Optimizing/reducing the number of fitness evaluations per EA
run (C) amounts to terminating a run before themaximumnumber
of fitness evaluations is reached. This could be done, for instance,
by a mechanism which detects that the given run is not worth to
be continued. In principle, this could lead to a great reduction of
tuning effort too. However, as of summer 2010 we are not aware
of any parameter tuners in this category.

An overview of algorithms and their classification based on this
taxonomy is shown in Table 4.
6.3. Tuning algorithms: taxonomy T3

Section 4 specifies four different quality indicators that can be
used to evaluate evolutionary algorithms. In order to find values
for these indicators, knowledge of the grand utility landscape
over the set of all possible parameter values and the set of all
possible problems is required. Since both sets are infinitely large,
just enumerating is not feasible. However, many parameter tuning
algorithms are not only able to find the best parameter values, but
also supply information about various robustness indicators.

The quality and quantity of these indicators varies per tuning
method. In general, there are two main tasks for parameter
tuning. The first task is to find the parameter vector(s) with
the highest possible performance. This could be perceived as
exploitation of knowledge about the parameter values. The second
one is the task of acquiring much information on robustness.
This requires exploration of the parameter space. Each of the
tuning methods has a different balance between exploitation and
exploration, and focuses on different types of robustness. Based on
this distinction, we can identify four main approaches, namely an
approach solely for finding the best performing vectors (meta-EA),
an approach mainly aimed at providing information (sampling),
and two approaches that are a combination of both (screening and
model-based).

Although each of the main approaches uses distinct techniques
and has a different goal, within each of those approaches special-
izedmethods have emerged that are hybrids, and incorporate ideas
and objectives from the other approaches. Approaches designed
for finding the best possible parameter vector are enhanced with
features that provide more information about robustness (such as
REVAC [33]), while approaches from the informative type are im-
proved for delivering high performing parameter values (such as
I/F-RACE [39] and CALIBRA [40]). Most of these methods even al-
low for a smooth transition between exploitation and exploration
by defining suitable parameters values.

7. Survey of tuning methods

In this section we provide an overview of search methods for
tuning evolutionary algorithms. To organize this overview, each
of the tuning methods is assigned to a certain category according
to taxonomy T3. Hence, the four main categories are: sampling
methods, model-based methods, screening methods, and meta-
evolutionary algorithms. Furthermore, the different branches are
shown in which an approach from the main category is altered to
specialize more on one specific task.

7.1. Sampling methods

Samplingmethods can be described asmethods that reduce the
search effort by cutting the number of parameter vectors tested (A)
with respect to a full factorial design. The twomost commonly used
sampling methods are Latin-Square [29] and Taguchi Orthogonal
Arrays [30]. The outcome of a samplingmethod session needs to be
analyzed afterward to predict which parameter values work best
and which are themost robust. Therefore, most sampling methods
are mainly used as a starting point for model-based Methods or
as an initialization method, rather than as independent parameter
tuners. The lack of search refinement leads to parameter vectors of
low quality and causes that the information that can be acquired is
rather limited, especially on algorithms with a low tolerance.

7.1.1. Iterative sampling methods
CALIBRA [40] and Empirical Modelling of Genetic Algo-

rithms [29] are examples of iterative samplingmethods. Unlike the

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 27
single-stage sampling methods, they refine the area from which
new points are sampled in each iteration. Hence, they can be used
as independent tuners. The method in [29] is a two-stage proce-
dure that starts with a graeco-latin square over the whole param-
eter space and proceeds with a fully crossed factorial design with
narrowed ranges. CALIBRA starts with a full factorial experiment,
based on the 1st and 3rd quantile within the range of each param-
eter. Using these outcomes, new vectors for the next iteration are
generated based on a Taguchi Orthogonal Array with three (nar-
rowed) levels and this procedure is repeated until the maximum
number of tests is reached.

Since both methods require a quality measure to define a
promising area for resampling, they can only be used to tune for
optimizing EA performance, not for robustness. However, if such a
choice is made, the thorough parameter sweep that is performed
allows for a detailed analysis of the robustness in the parameter
space and solutions of reasonable quality.

7.2. Model-based methods

Using meta models or surrogate models is a well established
approach for the optimization of computationally expensive
problems by (evolutionary) search [41,42]. Applied for parameter
tuning, such a method constructs a model of the utility landscape
and reduces the number of tests (B) by replacing some of the real
tests by using themodel estimates. Themodel is constructed based
on data about parameters and their utility, delivered by testing.
A common approach is to use a regression method to predict the
utility of an unknown parameter vector [43–45]. Themodel is then
a formula that maps parameter values to an estimated utility value
û. Eq. (1) is an example of such a mapping for two parameters
p1, p2.

û(p1, p2) = β0 + β1 · p1 + β2 · p21 + β3 · p2

+ β4 · p22 · β5 · p1 · p2. (1)

In such a formula, the β values indicate the relevance of the
associated parameter. A high β value leads to large deviations in
utility when varied, and therefore indicates an EA with a high
tuneability. Based on these values, it is also possible to estimate
the tolerance of the algorithm on a given level of performance. If
the model-basedmethod is applied to multiple problems, then the
difference in β values also indicates a lower robustness to changes
in problem definition. However, as model-based methods rely on
a single-stage sampling method for generating a population, the
quality of the best vector found and the quality of the model is
relatively low.

7.2.1. Iterative model-based methods
Iterative model-basedmethods are developed to overcome this

issue and allow for a more fine-grained search of the parameter
space. Coy’s procedure [46] is one of the most basic extensions,
where the standard Model-Based Method is followed by a local
search procedure to optimize on the parameter values. It describes
a two-stage procedure in which the first stage is used to find a
model, and the second stage is specifically aimed at identifying
the best parameter vector. The first stage consists of a full factorial
design over the whole parameter space. The outcomes are used
to fit a linear regression model, and to determine the path of
steepest descent. In the second stage, this path is followed and
new vectors are generated and tested until the best solution found
has not changed for a specified number of steps. As the model is
not updated in this second stage, the quality of the best parameter
vector found heavily depends on the correctness of the model in
the first stage.
Unlike the two-stage procedure of Coy, Sequential Parameter
Optimization (SPO) [36,47] performs a true multi-stage procedure
where the model is constantly updated. Each iteration starts with
generating a set of new vectors and predicting their utility using
the model. The vectors with the highest predicted utility are
then tested to determine their ‘true’ utility, and these measured
utility values are used to update the model for the next iteration.
After reaching the maximum number of tests, the procedure
terminates with an accurate model of the most promising areas.
Obviously, both the accuracy of the model and the quality of
the best parameter vector depend on the type of model used.
Although this can be anymodel, such as regression trees or logistic
regression, the authors advocate the use of Kriging to model the
utility landscape. In a comparative study it has been shown that
SPO is able to find high quality parameter vectors comparable
to the ones found by meta-evolutionary algorithms [25]. This,
combined with the information that can be extracted from the
resulting models, makes it a high quality parameter tuner.

7.3. Screening methods

The idea behind screening methods is to identify the best
parameter vector from a given a set of vectors with a minimum
number of tests. They are trying to save on B by iteratively testing
only those vectors that deserve further investigation. The chosen
vectors are (re-)tested and the whole process is repeated until
no further testing is needed. Therefore, they can either identify
the best parameter vector with less computational effort than
sampling methods, or investigate a larger set of parameter vectors
with the same computational effort. In the latter case, the quality
of best parameter vector found is likely to be higher and there is
also more information to estimate the robustness to changes in
parameter values.

Screening methods are one of the oldest approaches to param-
eter tuning and are heavily influenced by the field of system se-
lection, where the objective is to select the best option from a
range of competing systems with as few stochastic simulations as
necessary [48]. As parameter vectors can be seen as competing sys-
tems and a run of the algorithmas a stochastic simulation,methods
from the field of system selection can be seen as parameter tun-
ing approaches. Interactive Analysis (IA) [49], Ranking and Selec-
tion (R&S) [50], Multiple Comparison Procedures (MPC) [51] and
Fully sequential indifference-zone Selection Procedure (FSP) [52]
are the four main approaches from this field [53]. Their main dif-
ferences are in the guarantees that can be given about the selection
of the best system and the required number of repetitions. As with
most screening methods, all four rely on the assumption that the
outcomes of the simulation are normally distributed. The extent
to which this assumption holds is of course doubtful, although by
means of batching [53], these assumptions can be met. The main
advantage is that such methods guarantee that the system indi-
cated as the best, is either within a certain range (R&S and FSP) or
has a certain confidence level (MPC). A more detailed overview of
the differences between these algorithms is in [48,53].

For the specific application of parameter tuning, the term
racing is adopted from [35]. Although in essence it is not much
different from the system selection mechanisms, racing methods
are aimed at selecting the best system from a very large set,
whilemost system selectionmethods only deal with relatively few
competing systems. Furthermore, both Hoeffding Races [35] (that
uses Hoeffding’s bound) and F-RACE [16] (that uses the Friedman’s
two-way ANOVA by ranks statistical test) use tests that work
without any assumptions about the underlying distribution, giving
them an advantage over system selection methods.

7.3.1. Iterative screening methods
Iterative F-RACE (I/F-RACE) [39] is an extension to F-RACE [16]

with the specific goal of combining screening methods and a

28 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
fine-grained search. Initially, an I/F-RACE starts with a region as
big as the parameter space that is used to sample a relatively small
population of vectors. Using the racing techniques from F-RACE,
the number of vectors in this population is reduced until a certain
condition is met. However, unlike standard F-RACE, this is only the
start of the procedure. Namely, amulti-variate normal distribution
is fit on the surviving vectors, which is then used as a probability
density function to sample points for a new population. The whole
procedure of screening and generating new points can be repeated
again, until the maximum number of tests is reached. Because I/F-
RACE is a multi-stage method that samples from a distribution, it
can be seen as a basic form of an iterative model-based method, or
a special form of meta-evolutionary algorithm, and therefore has
many of the same characteristics, such as good performance and
valuable information about parameter robustness.

7.4. Meta-evolutionary algorithms

Finding parameter vectors with a high utility is a complex
optimization task with a nonlinear objective function, interacting
variables, multiple local optima, noise, and a lack of analytic
solvers. Ironically, this is exactly the type of problem where EAs
are very competitive heuristic solvers. Therefore, it is a natural idea
to use an evolutionary approach to optimize the parameters of an
evolutionary algorithm.

The idea of a meta-EA was already introduced in 1978 by
Mercer and Sampson [54], but due to the large computational
costs, their researchwas very limited. Greffenstette [32] conducted
more extensive experiments with his Meta-GA and showed its
effectiveness. In general, the individuals used in a meta-EA are
parameter vectors of the baseline EA to be tuned and the (meta)
fitness of such a vector is its utility, determined by running
the baseline EA with the given parameter values. Using this
representation and utility as (meta) fitness, any evolutionary
algorithm can be used as a meta-EA, if only it can cope with
the given vector representation. However, the tuning problem
has two challenging characteristics, the noise in (meta) fitness
values and the very expensive (meta) evaluations. This gave rise
to more tuning-specific algorithms that use the same techniques
as screening methods.

FocusedILS [55] is such a method, that adds a screening
approach to an existing technique. It is an extension to the
ParamILS framework [56] that describes a work-flow very similar
to a (1 + 1) evolution strategy. It differs with respect to the
variation operation, which only changes a single parameter value,
rather than applying a Gaussian perturbation to the whole vector.
Furthermore, it requires the abstract procedure ‘x̄ is better than
ȳ’ to be defined. The basic implementation of this procedure is
based on comparing the average utilities over N runs, however
in FocusedILS this is replaced by racing. A similar enhancement is
proposed in [5] which adds racing to a Meta-GA for tuning both
numerical and symbolic parameters. Both show the added value
of such an approach in terms of the number of parameters that is
tested, speed, and the quality of the best parameter vector.

Although meta-EAs turn out to be excellent in finding high
quality vectors [25], they do not provide any model of the utility
landscape, nor insights into the different types of robustness of the
baseline EA.

7.4.1. Enhanced meta-evolutionary algorithms
To enhance meta-EAs with such features, Nannen and Eiben

introduced a method for Relevance Estimation and Value Cali-
bration of parameters (REVAC) [57,33]. In essence, REVAC is a
specific type of meta-EA where the population approximates the
probability density function of themost promising areas of the util-
ity landscape, similar to Iterative F-RACE. This function is rather
simple –decomposed by coordinates (parameters), hence blind for
parameter interactions– but can be used for analyzing the sensi-
tivity and relevance of the different parameters and the costs of
tuning each parameter [8]. Furthermore, REVAC has been extended
with racing and sharpening techniques [25] in order to deal with
the stochasticity of the utility values more effectively.

A third extension to REVAC, introduced in [58], aims at finding
parameter values that can be considered as widely applicable. The
approach is similar to that of Local Unimodal Sampling [59] in
which the utility of a parameter vector is defined as the average
utility over a range of problems. This approach is further extended
in [21] to allow for more sophisticated methods of aggregating the
performance of multiple runs. Results show that such an enhanced
meta-EA is able to find much better robust parameter values than
one could do by hand, as it greatly improved the performance of
the winner of the competition on the CEC-2005 test suite, cf. [21].

7.4.2. Multi-objective meta-evolutionary algorithms
Sometimes the application and/or user requirements imply

that multiple problems or performance indicators are taken into
account. A straightforward approach then is to aggregate these
into one measure in order to optimize all of them. However, [58]
shows that such an approach runs into several problems. For
instance, if the test suite contains objective functionswith different
levels of difficulty (as most test suites do), then the tuner favors
parameter values that make the baseline EA good on the hard test
functions, because this leads to higher overall gains than improving
performance on problems that are solved very well already. This
introduces a (hidden) bias that is not intended by the user.

Alternatives to the simple aggregation approach can be sought
by approaching the multi-function tuning problem as a multi-
objective optimization problem. This view is quite natural as each
performance measure and fitness function in the test suite can
be regarded as one objective. Tuning along this line of thought
can leverage on existing knowledge regarding multi-objective
EAs. These create a Parameter Pareto Front that can be used to
evaluate robustness to changes in problem definition, as well as
performance using multiple performance criteria [60].

The method presented by Dréo in [61] used only multiple
performance measures, as the test suite consisted of a single
problem. To estimate the utility using each of these performance
measures, a fixed number of repetitive runs were performed and
averaged. The tuning algorithm itself was NSGA-II, a well-known
multi-objective optimization algorithm [62]. Although in [61] only
speed and accuracy are defined as objectives, it can be easily
extended to tune for stability too. In [60], the authors took
a completely different approach and built a tuning algorithm
specifically designed for multi-objective parameter tuning. The
main advantage of the new algorithm, M-FETA, is the presence
of special operators that reduce the number of tests per vector
(B). By assuming that the utility landscape is fairly smooth, the
utility of neighboring parameter vectors can be used for estimating
the utility of a vector. Thus, similarly to model-based tuning, the
need for expensive real tests is reduced. During the run of the
tuner, these estimations are sharpened by generating new vectors
close to the ones that need more investigation, thus narrowing
down the neighborhood-size in those areas. Vectors with a high
performance, or a reasonable performance and high variance (due
to a large neighborhood-size), are regarded as the ones that need
more investigation, due to the fact that M-FETA adopts statistical
tests to evaluate dominance.

Inherently to their multi-objective character, these tuners
return a diverse set of parameter vectors. Compared to the
standard meta-EA approach, this usually leads to a better
estimation of parameter robustness at the cost of a lower utility
of the best parameter vector found. However, a substantial added
value lies in the insights regarding applicability and fallibility,
which are quite unique and hard to get using other approaches.

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 29
Table 5
Tuning methods distinguished by taxonomy T3 .

Described in section Method Performance Seeds Parameters Problems
Quality Speed Success Stability Tolerance Tuneability Applicability Fallibility

Section 7.1 Latin-Square [29] −− −− −− � −− −− −− −−

Taguchi Orthogonal Arrays [30] −− −− −− � −− −− −− −−

Section 7.1.1 CALIBRA [40] � � + + −− −−

Empirical Modelling of Genetic
Algorithms [29]

� − + + −− −−

Section 7.2

Sequential Experiment Designs [63] − − − − � � � �
François–Lavergne [45] − − − − � � � �
Logistic Regression [44] − − − − � � � �
ANOVA [34] − − − − � � � �
Design of Experiments with Regression
Tree [64]

− − − − � � � �

Section 7.2.1
Coy’s Procedure [46] + − � � � �
Sequential Parameter Optimization
(SPO) [36]

++ − ++ ++ + +

SPO + OCBA [47] ++ − ++ ++ + +

Section 7.3

Interactive Analysis [49] − −− � + −− −−

Ranking and Selection [50] − −− � + −− −−

Multiple Comparison Procedures [51] − −− � + −− −−

Sequential indifference-zone selection [52] − −− � + −− −−

Racing [35] − −− � + −− −−

F-RACE [16] − −− � + −− −−

Section 7.3.1 Iterative F-RACE [39] + −− ++ + −− −−

Section 7.4

Meta-Plan [54] ++ − −− −− −− −−

Meta-Algorithm [32] ++ − −− −− −− −−

Meta-GA [65] ++ − −− −− −− −−

Meta-GA + Racing [5] ++ − −− −− −− −−

FocusedILS [55] ++ − −− −− −− −−

Meta-ES [66] ++ − −− −− −− −−

Meta-CMA-ES [25] ++ − −− −− −− −−

OPSO [67] ++ − −− −− −− −−

Section 7.4.1
Local Unimodal Sampling [59] + − −− −− � �
REVAC [68] + − ++ + −− −−

REVAC ++ [25] ++ −− ++ + � �

Section 7.4.2 M-FETA [60] + + + + � � ++ ++

Performance Fronts [61] + + + + − − + +

Algorithms that span multiple columns can optimize/give information on one of the columns at the time.
++ excellent quality, + good quality, � reasonable quality, − poor quality, −− very poor quality.
7.5. Overview of tuner capabilities

Our overview is summarized by Table 5 listing the parameter
tuning approaches in this survey, showing to what extent they are
able to:

1. Tune an EA for high performance, given a performancemeasure.
2. Tune an EA to be robust to randomvariations, or at least indicate

this kind of robustness.
3. Indicate the robustness of an EA to changes in parameter values.
4. Tune an EA to be robust to changes in problem specification, or

at least indicate this kind of robustness.

On each aspect, the algorithms are rated varying from ++ to
−−. Grades are given based on the limits imposed by techniques
that are used. Algorithms for optimizing B are generally worse in
finding the optimal performance, as they depend on an initial static
set of vectors. On the other hand, algorithms for optimizing A are
generally worse in generating models and assessing robustness,
because they are aimed at finding the best parameter vector. In
case an algorithmoptimizes both onA andB, then the grade is given
based on the focus of the algorithm. In general, methods receive a
high grade on the aspects they are designed for and a low grade on
the aspects not taken into account in the algorithm design.

Furthermore, if an algorithm is only able to optimize, or to give
information, on one aspect at the time (for example only a single
performance measure), a combined grade is given.
8. Parameter tuning and research methodology

As explained in the Introduction, there are three main
subjects treated in this paper: a conceptual framework, a survey,
and a tuning-aware experimental methodology. In this section
we reconsider all these matters and conclude the paper by
summarizing the principal messages.

Let us begin with noting that parameter tuning in EC has been a
largely ignored issue for a long time. Over the last couple of years,
there are promising developments (tuning related publications
and software), but still, in the current EC practice parameter values
are mostly selected by conventions, ad hoc choices, and very
limited experimental comparisons. To this end, our main message
is that there are well-working alternatives in the form of existing
tuning algorithms. These can deliver good parameter values at
moderate costs. This observation is not new per se. In fact, all
publications about tuning methods, including ours from the past,
carry the same basic message. A new angle here is to consider the
impact of widely using algorithmic parameter tuners that enable
measuring tuning efforts. Such a new practice will enable better
founded experimental comparisons.

To illustrate the methodological improvement let us compare
the kind of claims a traditional paper and a tuning-aware paper
would make when assessing a new EA (NEA) by comparing it
experimentally to a benchmark EA (BEA). In a traditional paper,NEA
and BEA are presented by explaining their qualitative parameter
values (operators for selection, variation, populationmanagement,
etc.), followed by the specification of the values for their

30 A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31
quantitative parameters, say p̄ and q̄, without any information on
why and how p̄ and q̄ are selected. Then the results obtained with
NEA(p̄) and BEA(q̄) are presented to underpin the main findings.
These findings are typically claims about NEA(p̄) being better than
BEA(q̄), most often also inferring that NEA is better than BEA
(e.g., that the new crossover in NEA is superior). Following the new
tuning-aware methodology, NEA and BEA are presented and tuned
with the same tuning method spending the same tuning effort X ,
thus arriving to a motivated and documented choice for p̄ and q̄.
Then the results obtainedwithNEA(p̄) and BEA(q̄) are presented to
underpin the claim that the practical best of NEA is better than the
practical best of BEA. (Obviously, ‘‘practical best’’ stands for ‘‘after
spending effort X on tuning it’’.) In [28] we discuss tuningmethods
from the competitive testing perspective and elaborate on related
methodological issues in more details.

An important aspect to be noted is the impact of the tuner
and the tuning budget (the effort X that can be spent on tuning).
Obviously, the practical best of any EA, as we regard it here,
depends on both of them. Thus, claims about the practical best
of EAs are subject to these two choices—hyper-parameters, if you
wish. Itmight be argued that the problemof arbitrary parameters is
now repeated at a higher level. Yet, the tuning-aware comparisons
as we advocate here are preferable to the old practice, because
they support informed design choices and accumulate much
information about EAs.

Further to improved experimental comparisons, the wide
adoption of parameter tuners would enable better evolutionary
algorithm design. As mentioned before, using tuning algorithms
one cannot only obtain superior parameter values, but also
much information about problem instances, parameter values, and
algorithm performance. This information can be used to analyze
EAs and to obtain a deeper understanding of them. This is obviously
a long term benefit, but such information is also useful on the short
andmid term as it can serve as empirical evidence to justify design
decisions. To illuminate thismatter, let us consider some examples.

In practice, there might be (and in our experience: there is)
a group of EA users who do not have the resources and the
willingness to tune an algorithm for their specific problem. Rather,
they are interested in a good EA off-the-shelf. Therefore, available
knowledge about variations of EA performance along the problem-
dimension is particularly interesting for them. If the given problem
(instance) can be related to a known type of problems then the
user can make an informed choice for an algorithm setup with a
high performance on that specific type. On the other hand, if the
problem at hand does not belong to a known problem type, or if
there is not enough information on that type, then right choice
is a widely applicable EA, especially if its parameters are very
tolerant. This increases the chances that the untuned instantiation
will find good solutions. Yet another case concerns users with
repetitive problems, for example, a parcel delivery company that
needs to solve almost the same routing problem instance every
day. As explained in [3, Chapter 14], the appropriate algorithm
in this case is one that is robust to changes in random seeds, as
this increases the chances that a decent solution will be found
every day with a low probability of making big mistakes. In all
these examples, the user depends on the availability of information
about the robustness of EA parameters.

Finally, let us touchupon the conditions for benefiting EAdesign
through tuning. Obviously, it is required that data obtained by
tuning is preserved and made available for analysis. This can be
done on different scales, ranging from one single user (academic
or industrial), through a group of users (research group or R&D
department), up to thewhole evolutionary computing community.
Furthermore, the tuning methods themselves need some revision
too. They need to work with a minimum user effort and provide
the functionalities to store and present (visualize) all information
necessary for a thorough analysis. In essence, this represents a
requirement for the developers of tuningmethods. The acceptance
by the community and the obtainable benefits will be realized only
if tuningmethods are available online, are user-friendly, and assist
the user in taking a more scientific testing approach.

References

[1] J. Hooker, Testing heuristics: we have it all wrong, Journal of Heuristics 1
(1995) 33–42.

[2] R. Barr, B. Golden, J. Kelly, M. Rescende, W. Stewart, Designing and reporting
on computational experiments with heuristic methods, Journal of Heuristics
1 (1995) 9–32.

[3] A.E. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer-Verlag,
London, 2003.

[4] T. Bartz-Beielstein, Experimental Research in Evolutionary Computation—
The New Experimentalism, in: Natural Computing Series, Springer, Berlin,
Heidelberg, New York, 2006.

[5] B. Yuan, M. Gallagher, Combining meta-EAs and racing for difficult EA
parameter tuning tasks, in: [15], pp. 121–142.

[6] M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-race and iterated F-race: an
overview, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Eds.),
Experimental Methods for the Analysis of Optimization Algorithms, Springer,
2010, pp. 311–336.

[7] J. Maturana, F. Lardeux, F. Saubion, Controlling behavioral and structural
parameters in evolutionary algorithms, in: International Conference on
Artificial Evolution, EA’2009, in: Lecture Notes in Computer Science, vol. 5926,
Springer, 2009, pp. 110–121.

[8] V. Nannen, S.K. Smit, A.E. Eiben, Costs and benefits of tuning parameters
of evolutionary algorithms, in: G. Rudolph, T. Jansen, S.M. Lucas, C. Poloni,
N. Beume (Eds.), Parallel Problem Solving from Nature – PPSN X, in: Lecture
Notes in Computer Science, vol. 5199, Springer, 2008, pp. 528–538.

[9] A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary
algorithms, IEEE Transactions on Evolutionary Computation 3 (1999) 124–141.

[10] O. Kramer, Evolutionary self-adaptation: a survey of operators and strategy
parameters, Evolutionary Intelligence 3 (2010) 51–65. On-line first.

[11] A. Fialho, Adaptive operator selection for optimization, Ph.D. Thesis, Université
Paris-Sud XI, Orsay, France, 2010.

[12] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, Transactions on
Evolutionary Computation 13 (2009) 398–417.

[13] R. Mallipeddi, P. Suganthan, Differential evolution algorithm with ensemble
of parameters and mutation and crossover strategies, in: B. Panigrahi, S. Das,
P. Suganthan, S. Dash (Eds.), Swarm, Evolutionary, and Memetic Computing,
in: Lecture Notes in Computer Science, vol. 6466, Springer, Berlin, Heidelberg,
2010, pp. 71–78.

[14] Z.-H. Zhan, J. Zhang, Adaptive particle swarm optimization, in: M. Dorigo,
M. Birattari, C. Blum, M. Clerc, T. Stützle, A. Winfield (Eds.), Ant Colony
Optimization and Swarm Intelligence, in: Lecture Notes in Computer Science,
vol. 5217, Springer, Berlin, Heidelberg, 2008, pp. 227–234.

[15] F. Lobo, C. Lima, Z.Michalewicz, Parameter Setting in Evolutionary Algorithms,
Springer, 2007.

[16] M. Birattari, Tuning Metaheuristics, Springer, 2005.
[17] A.E. Eiben,M. Jelasity, A critical note on experimental researchmethodology in

experimental research methodology in EC, in: 2002 Congress on Evolutionary
Computation, CEC’2002, IEEE Press, Piscataway, NJ, 2002, pp. 582–587.

[18] T. Bartz-Beielstein, New experimentalism applied to evolutionary computa-
tion, Ph.D. Thesis, Universität Dortmund, 2005.

[19] M. Chiarandini, L. Paquete,M. Preuss, E. Ridge, Experiments onmetaheuristics:
methodological overview and open issues, Technical Report DMF-2007-03-
003, The Danish Mathematical Society, 2007.

[20] P. Suganthan,N.Hansen, J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem
definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization, Technical Report, Nanyang Technological University,
2005.

[21] S.K. Smit, A.E. Eiben, Beating the ‘world champion’ evolutionary algorithm
via REVAC tuning, in: IEEE Congress on Evolutionary Computation, IEEE
Computational Intelligence Society, IEEE Press, Barcelona, Spain, 2010, pp. 1–8.

[22] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[23] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
3rd, extended ed., Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[24] M. Preuss, Adaptability of algorithms for real-valued optimization, in: M. Gi-
acobini, et al. (Eds.), Applications of Evolutionary Computing, EvoWorkshops
2009. Proceedings, in: Lecture Notes in Computer Science, vol. 5484, Springer,
Berlin, 2009, pp. 665–674.

[25] S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary
algorithms, in: IEEE Congress on Evolutionary Computation, IEEE Press,
Trondheim, 2009, pp. 399–406.

[26] S.K. Smit, A.E. Eiben, Using entropy for parameter analysis of evolutionary
algorithms, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Eds.),
ExperimentalMethods for theAnalysis ofOptimizationAlgorithms, in:Natural
Computing Series, Springer, 2010, pp. 287–310.

A.E. Eiben, S.K. Smit / Swarm and Evolutionary Computation 1 (2011) 19–31 31
[27] T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, The sequential parameter
optimization toolbox, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete,
M. Preuss (Eds.), Empirical Methods for the Analysis of Optimization
Algorithms, Springer, Berlin, Heidelberg, New York, 2009, pp. 337–360.

[28] A.E. Eiben, S.K. Smit, Evolutionary algorithm parameters and methods to tune
them, in: E.M.Y. Hamadi, F. Saubion (Eds.), Autonomous Search, Springer, 2011.

[29] R. Myers, E.R. Hancock, Empirical modelling of genetic algorithms, Evolution-
ary Computation 9 (2001) 461–493.

[30] G. Taguchi, T. Yokoyama, Taguchi Methods: Design of Experiments, ASI Press,
1993.

[31] R.E. Bechhofer, C.W. Dunnett, D.M. Goldsman, M. Hartmann, A comparison of
the performances of procedures for selecting the normal population having
the largest mean when populations have a common unknown variance,
Communications in Statistics B19 (1990) 971–1006.

[32] J. Greffenstette, Optimisation of control parameters for genetic algorithms,
in: A. Sage (Ed.), IEEE Transactions on Systems, Man and Cybernetics, vol. 16
(1), IEEE Press, Piscataway, NJ, 1986, pp. 122–128.

[33] V. Nannen, A.E. Eiben, Relevance Estimation and Value Calibration of
evolutionary algorithm parameters, in: M. M. Veloso (Ed.), Proceedings of the
20th International Joint Conference on Artificial Intelligence, IJCAI, Hyderabad,
India, 2007, pp. 1034–1039.

[34] J. Schaffer, R. Caruana, L. Eshelman, R. Das, A study of control parameters
affecting online performance of genetic algorithms for function optimization,
in: Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 51–60.

[35] O. Maron, A. Moore, The racing algorithm: model selection for lazy learners,
in: Artificial Intelligence Review, vol. 11, Kluwer Academic Publishers,
Norwell, MA, USA, 1997, pp. 193–225.

[36] T. Bartz-Beielstein, K. Parsopoulos, M. Vrahatis, Analysis of particle swarm
optimization using computational statistics, in: Chalkis (Ed.), Proceedings of
the International Conference of Numerical Analysis and AppliedMathematics,
ICNAAM 2004, Wiley, 2004, pp. 34–37.

[37] T. Bartz-Beielstein, Experimental analysis of evolution strategies: overview
and comprehensive introduction, Technical Report Reihe CI 157/03, SFB 531,
Universität Dortmund, Dortmund, Germany, 2003.

[38] T. Bartz-Beielstein, M. Preuss, Considerations of budget allocation for
sequential parameter optimization, SPO, in: L. Paquete, et al. (Eds.), Workshop
on Empirical Methods for the Analysis of Algorithms, Proceedings, Online
Proceedings, Reykjavik, Iceland, 2006, pp. 35–40.

[39] P. Balaprakash, M. Birattari, T. Stutzle, Improvement strategies for the F-race
algorithm: sampling design and iterative refinement, in: T. Bartz-Beielstein,
M. Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels (Eds.),
Hybrid Metaheuristics, in: Lecture Notes in Computer Science, vol. 4771,
Springer, Berlin, Heidelberg, 2007, pp. 108–122.

[40] B. Adenso-Diaz, M. Laguna, Fine-tuning of algorithms using fractional
experimental designs and local search, Operations Research 54 (2006) 99–114.

[41] M. El-Beltagy, P. Nair, A. Keane,Metamodeling techniques for evolutionary op-
timization of computationally expensive problems: promises and limitations,
in: W. Banzhaf, J. Daida, A.E. Eiben, M. Garzon, V. Honavar, M. Jakiela, R. Smith
(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-1999, Morgan Kaufmann, San Francisco, 1999, pp. 196–203.

[42] Y. Jin, A comprehensive survey of fitness approximation in evolutionary
computation, Soft Computing 9 (2005) 3–12.

[43] A. Czarn, C. MacNish, K. Vijayan, B. Turlach, R. Gupta, Statistical exploratory
analysis of genetic algorithms, IEEE Transactions on Evolutionary Computation
8 (2004) 405–421.

[44] I. Ramos, M. Goldbarg, E. Goldbarg, A. Neto, Logistic regression for parameter
tuning on an evolutionary algorithm, in: Proceedings of the 2005 IEEE
Congress on Evolutionary Computation IEEE Congress on Evolutionary
Computation, vol. 2, IEEE Press, Edinburgh, UK, 2005, pp. 1061–1068.

[45] O. François, C. Lavergne, Design of evolutionary algorithms—a statistical
perspective, IEEE Transactions on Evolutionary Computation 5 (2001)
129–148.

[46] S.P. Coy, B.L. Golden, G.C. Runger, E.A. Wasil, Using experimental design to
find effective parameter settings for heuristics, Journal of Heuristics 7 (2001)
77–97.

[47] C.W.G. Lasarczyk, Genetische programmierung einer algorithmischen chemie,
Ph.D. Thesis, Technische Universiteit Dortmund, 2007.
[48] D. Goldsman, B.L. Nelson, B. Schmeiser, Methods for selecting the best system,
in: WSC’91: Proceedings of the 23rd Conference on Winter Simulation, IEEE
Computer Society, Washington, DC, USA, 1991, pp. 177–186.

[49] B. Schmeiser, Simulation experiments, Handbooks in Operations Research and
Management Science 2 (1990) 295–330.

[50] Y. Rinott, On two-stage selection procedures and related probability-
inequalities, Communications in Statistics—Theory and Methods 7 (1978)
799–811.

[51] Y. Hochberg, A.C. Tamhane, Multiple Comparison Procedures, John Wiley &
Sons, Inc., New York, NY, USA, 1987.

[52] S.-H. Kim, B.L. Nelson, A fully sequential procedure for indifference-zone
selection in simulation, ACM Transactions on Modeling and Computer
Simulation 11 (2001) 251–273.

[53] J. Branke, E. Chick, C. Schmidt, New developments in ranking and selection: an
empirical comparison of the three main approaches, in: WSC’05: Proceedings
of the 37th Conference on Winter Simulation, Winter Simulation Conference,
2005, pp. 708–717.

[54] R. Mercer, J. Sampson, Adaptive search using a reproductive metaplan,
Kybernetes 7 (1978) 215–228.

[55] F. Hutter, H.H. Hoos, T. Stützle, Automatic algorithm configuration based
on local search, in: Proc. of the Twenty-Second Conference on Artifical
Intelligence, AAAI’07, pp. 1152–1157.

[56] F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stutzle, ParamILS: an automatic
algorithm configuration framework, Journal of Artificial Intelligence Research
36 (2009) 267–306.

[57] V. Nannen, A.E. Eiben, A method for parameter calibration and relevance
estimation in evolutionary algorithms, in: M. Keijzer (Ed.), Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO’06, Morgan
Kaufmann, San Francisco, 2006, pp. 183–190.

[58] S.K. Smit, A.E. Eiben, Parameter tuning of evolutionary algorithms: generalist
vs. specialist, in: C. Di Chio, et al. (Eds.), Applications of Evolutionary
Computation, in: LectureNotes in Computer Science, vol. 6024, Springer, 2010,
pp. 542–551.

[59] M. Pedersen, A. Chipperfield, Simplifying particle swarmoptimization, Applied
Soft Computing 10 (2010) 618–628.

[60] S.K. Smit, A.E. Eiben, Z. Szlávik, AnMOEA-basedmethod to tune EA parameters
on multiple objective functions, in: J. Filipe, J. Kacprzyk (Eds.), Proceedings of
the International Joint Conference on Computational Intelligence, IJCCI-2010,
SciTePress, Valencia, Spain, 2010, pp. 261–268.

[61] J. Dréo, Using performance fronts for parameter setting of stochastic
metaheuristics, in: GECCO’09: Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference, ACM, New
York, NY, USA, 2009, pp. 2197–2200.

[62] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6
(2002) 182–197.

[63] E. Ridge, D. Kudenko, Sequential experiment designs for screening and tuning
parameters of stochastic heuristics, in: Workshop on Empirical Methods for
the Analysis of Algorithms, Reykjavik, Iceland, Online Proceedings, 2006, pp.
27–34.

[64] T. Bartz-Beielstein, S. Markon, Tuning search algorithms for real-world
applications: a regression tree based approach, Technical Report of the
Collaborative Research Centre 531 Computational Intelligence CI-172/04,
University of Dortmund, 2004.

[65] B. Freisleben, M. Hartfelder, Optimization of genetic algorithms by genetic
algorithms, in: R. Albrecht, C. Reeves, N. Steele (Eds.), Artificial Neural
Networks and Genetic Algorithms, Springer, 1993, pp. 392–399.

[66] T. Bäck, Parallel optimization of evolutionary algorithms, in: Y. Davidor,
H.-P. Schwefel, R. Männer (Eds.), Proceedings of the 3rd Conference on Parallel
Problem Solving from Nature, in: Lecture Notes in Computer Science, vol. 866,
Springer, Berlin, Heidelberg, New York, 1994, pp. 418–427.

[67] M. Meissner, M. Schmuker, G. Schneider, Optimized particle swarm optimiza-
tion (OPSO) and its application to artificial neural network training, BMCBioin-
formatics 7 (2006) 125.

[68] V. Nannen, A.E. Eiben, Efficient Relevance Estimation and Value Calibration
of evolutionary algorithm parameters, in: IEEE Congress on Evolutionary
Computation, IEEE, 2007, pp. 103–110.

	Parameter tuning for configuring and analyzing evolutionary algorithms
	Introduction
	Evolutionary algorithms and their parameters
	EAs and EA instances

	Tuning evolutionary algorithms
	Algorithm quality: performance and robustness
	Performance measures
	Robustness
	Robustness to changes in problem specification
	Robustness to changes in parameter values
	Robustness to changes in random seeds

	Configuring and analyzing EAs by tuning
	Positioning tuning methods
	Tuning algorithms: taxonomy T1
	Tuning algorithms: taxonomy T2
	Tuning algorithms: taxonomy T3

	Survey of tuning methods
	Sampling methods
	Iterative sampling methods

	Model-based methods
	Iterative model-based methods

	Screening methods
	Iterative screening methods

	Meta-evolutionary algorithms
	Enhanced meta-evolutionary algorithms
	Multi-objective meta-evolutionary algorithms

	Overview of tuner capabilities

	Parameter tuning and research methodology
	References

