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Abstract

The traditional concept of a genetic algorithm (GA) is that of selection,
crossover and mutation. However, a limited amount of data from the
literature has suggested that the niche for the beneficial effect of crossover
upon GA performance may be smaller than has traditionally been held.
Based upon previous results on not-linear-separable problems we decided
to explore this by comparing two test problem suites, one comprising non-
rotated functions and the other comprising the same functions rotated by
45 degrees rendering them not-linear-separable.
We find that for the difficult rotated functions the crossover operator

was detrimental to the performance of the GA. We conjecture that what
makes a problem difficult for the GA is complex and involves factors
such as the degree of optimization at local minima due to crossover, the
bias associated with the mutation operator and the Hamming Distances
present in the individual problems due to the encoding.
Finally, we tested our GA on a real world landscape minimization

problem to see if the results obtained would match those from the difficult
rotated functions. We find that they match and that the features which
make certain of the test functions difficult are also present in the real
world problem.

Keywords: detrimentality, crossover, rotated functions, linear-

separable, not-linear-separable

1



1 Introduction

It has been traditionally maintained that the crossover operator is an integral
component of a genetic algorithm. This has been held to the extent that many
GA practitioners believe that it is the inclusion of the crossover operator that
distinguishes GAs from all other optimization algorithms [6].
Despite this, work by Eshelman and Schaffer, entitled Crossover’s Niche,

suggested that there exists a unique niche for which crossover is advantageous
and this is smaller than has been traditionally held by the GA community. As
such, it is an open question as to how important the crossover operator is for
many real-world problems [9].
In our earlier work [5] we observed that the crossover operator is advanta-

geous for linear-separable real-valued optimization problems such as De Jong’s
F1 and F3 but detrimental for not-linear-separable problems such as De Jong’s
F2 and Schaffer’s F6 [5]. We define linear-separable problems as those where
the objective function can be written as a sum of univariate functions, which are
allowed to be non-linear, where each of the functions can take one component
of the input vector as an argument.
Our observation prompted us to explore instances where crossover may be

beneficial or detrimental by comparing two test problem suites that we formu-
lated. The first suite comprises linear-separable problems. The second suite
comprises the same suite of problems but having been rotated by 45 degrees in
the solution space rendering them not-linear-separable.
In this paper the literature that the crossover operator may not always be

useful in improving GA performance is reviewed in Section 2. This is followed
in Section 3 by a discussion of the observations we have made in our previous
work which prompted us to embark upon the research described in the following
sections. In Section 4 we describe our experimental set-up including refinements
to our previously published statistical methodology. Section 5 describes the
results of our experimental work. Section 6 reviews the factors that influence
the detrimentality of crossover. Section 7 demonstrates that the detrimentality
of crossover is a real world phenomenon. A discussion in Section 8 concludes
the paper and suggests areas for future research.

2 Review of the Usefulness of Crossover

A genetic algorithm works by encoding potential solutions to a problem as a
series of bits or genes on a bit-string or chromosome. The mechanics of a genetic
algorithm are straightforward: in its simplest form new solutions are generated
using crossover, where genes are swapped over between pairs of chromosomes,
and mutation, where the binary value of a gene is inverted.
From a traditional perspective it has been maintained that crossover is a

necessary inclusion in a GA. This has been sustained to the extent that some
practitioners hold that the resultant algorithm is no longer a GA if the crossover
operator is omitted [6]. Mutation, on the other hand, has been traditionally
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seen as a background operator with the unique role, as described by Holland, of
ensuring that no allele or value of a bit character (1 or 0) permanently disappears
from the population [11].
However, over time this traditional stance has been an issue of contention,

with some GA practitioners claiming that a GA without crossover, known as
naive evolution (which comprises of selection and mutation only), may be a
much more powerful search algorithm than the GA community has previously
held [8].
An initial example of research in this area is that by Eshelman and Schaffer

in their paper entitled Crossover’s Niche. The authors argued that what dis-
tinguishes the GA among population-based hillclimbers is pair-wise mating and
that problems can be devised where crossover gives a competitive advantage.
However, it was conjectured that many problems do not have these features and
it remains an open question as to how important crossover may be for real world
problems. In addition, because GAs are susceptible to premature convergence
the niche for which crossover is beneficial to GA performance may be smaller
than most GA practitioners maintain [9].
Jones [14] added to this by showing that a macromutational hillclimber (one

that involves large scale mutations) easily outperforms a standard GA on Hol-
lands’s Royal Road problem [18] which has the properties that Eshelman and
Schaffer ascribe to problems residing in Crossover’s Niche. Thus the niche may
be even smaller than Eshelman and Schaffer had anticipated.
Interestingly, Salomon conjectured that Crossover’s Niche is in fact linear-

separable problems [23]. From his work with Rastrigin-like functions he con-
jectured that crossover implicitly exploits the decomposability property of the
fitness function: the optimization is decomposable into n independent one-
dimensional (one bit string) sub-problems [23]. Salomon’s conjectures resulted
from observations of empirical data and have yet to be confirmed by statistical
analysis.
The above papers drew attention to the idea that under particular circum-

stances the crossover operator may not prove useful in improving GA perfor-
mance. However, limited research has taken place exploring this issue.
One study which has addressed this topic to a limited degree is that by

Schaffer et al [24]. These researchers conducted a factorial design study using
the analysis of variance (ANOVA) studying the De Jong suite plus an additional
five problems. Close examination of the best online pools suggested a relative
insensitivity to the crossover operator when using Gray encoding. It was sug-
gested that this is because the use of Gray encoding makes searching the solution
space much less susceptible to Hamming cliffs [24, 8]. However, Schaffer et al
did not conjecture the general type of problems that would demonstrate this
behaviour.
Further debate about the usefulness of the crossover operator was made

by Fogel and Atmar [10]. These researchers conducted several experiments
requiring solving systems of linear equations. The authors concluded that the
crossover operator provided no significant benefit. Rather, random mutation
consistently generated more efficient searches [10].
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In describing the above studies it must be noted that a number of criticisms
have been made about the work carried out so far. For example, Reeves and
Wright suggested that the amount of information in a sample can never be
sufficient to enable one to decide on the nature of the epistasis in a problem
[21]. This implies that the problems Eshelman and Schaffer describe as being
most apt for the crossover operator may not be easily recognizable in practice.
Moreover, in reference to the work of Schaffer et al [24], the study itself was

limited by a number of issues. These included little attention given to blocking
for seed as a source of variation or noise, issues dealing with the calculation of
power and sample size were not considered, and there was a lack of a detailed
analysis of response curves.
In overview, while there is some suggestion from the literature that the

crossover operator may not always be useful, it appears unclear as to when this
may occur and the possible reasons for its occurrence.
Next, we re-examine observations from our previous work that provided the

impetus for our present research.

3 Observations from our Earlier Work

Our work into the statistical exploratory analysis of genetic algorithms involved
Analysis of Variance (ANOVA) examination of four benchmark functions. These
were: De Jong’s F1 [7] known as the SPHERE, De Jong’s F3 [7] known as the
STEP function, De Jong’s F2 [7] known as ROSENBROCK’S SADDLE and
Schaffer’s F6 [6]. These were all implemented as minimization problems and
are displayed in Equations 1, 2, 3 and 4, respectively:

f1(x) = Σ
3
i=1x

2
i
,−5.12 ≤ xi ≤ 5.12, (1)

f3(x) = Σ
5
i=1bxic,−5.12 ≤ xi ≤ 5.12, (2)

f2(x) = 100(x2 − x2
1)

2 + (1− x1)
2,−2.048 ≤ xi ≤ 2.048, (3)

f6(x) = 0.5 +
(sin

√

x2
1 + x2

2)
2 − 0.5

(1.0 + 0.001(x2
1 + x2

2))
2
,−100.0 ≤ xi ≤ 100.0. (4)

We found that for De Jong’s F1 and F3 the traditional GA, where crossover
was included, performed optimally when the crossover rate was 100%. In con-
trast for De Jong’s F2 and Schaffer’s F6, the crossover operator was statistically
demonstrated to be having a detrimental effect upon performance. We also
found for these latter two functions that the ANOVA interaction term between
crossover and mutation was significant and negative, which indicates an in-
verse relationship between crossover and mutation. Moreover, the difficulty of a
problem was associated with the optimal mutation rate, with De Jong’s F2 and
Schaffer’s F6 demonstrating optimal mutation rates significantly higher than
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traditional recommendations. This is consistent with other mutation rules re-
ported in the literature. For example, Petrovski, Wilson and McCall who carried
out fractional factorial experiments in the domain of anti-cancer chemotherapy.
These were combined with linear regression in order to pinpoint which param-
eters were significant and estimate their best values. They found bit flipping
mutation rates in the order of 19.81% and 10.69% to be the most optimal [20]
in their experiments.
When considering the possible difference in these functions that could pro-

duce such varied results a clear demarcation between them was that De Jong’s
F1 and F3 are linear-separable problems, echoing the conjecture made by Sa-
loman that linear-separable problems are Crossover’s Niche [23]. In contrast,
De Jong’s F2 and Schaffer’s F6 are not-linear-separable problems.
The question that arose from our work was that, if we compared two test

function series differing only in that one test function series was linear-separable
while the other was not-linear-separable, would we see the same pattern?
The two test function series we decided to compare comprised firstly of the

test function series, FNn, which we have used in prior work to examine the
importance of the ANOVA interaction term between crossover and mutation
[4]. This is a linear-separable problem which increases in modality as the value
for n increases. We chose an arbitrary number of six functions as our test suite.
The second test function series we used to compare this against consisted of

these same functions rotated by 45 degrees in the solution space. This rotation
rendered the series of problems, which we call FNnR45, not-linear-separable.
By comparing the linear-separable form of the problem to the not-linear-

separable form we expected to see a difference in the effect of the crossover
operator. Given the suggestions from the literature and our own experience
with linear-separable versus not-linear-separable functions, we conjectured that
we would see a largely beneficial effect of crossover for the linear-separable prob-
lems, FNn, but some detrimental effect of crossover for the not-linear-separable
problems, FNnR45. Furthermore, if the latter turned out to be true, then we
would attempt to explain the reasons why crossover acts detrimentally for (spe-
cific) not-linear-separable problems.
Finally, given the conjecture by Eshelman and Schaffer that it remains an

open question as to how important crossover may be for real-world problems [9]
we decided to trial our GA on a practical (but still highly multimodal) landscape
minimization problem to see if the results from our test functions would carry
over to those obtained on the real world landscape.
In Section 4 we outline our experimental set-up.

4 Methods

Much of our methodology has been published elsewhere [5, 4, 1]. However,
we briefly overview aspects pertinent to this paper and also elaborate on any
additions to our methods.
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4.1 Description of our Test Function Series

As described above, we compared a linear-separable test function series FNn
against its rotated form (rotated by 45 degrees in the x and y coordinate solution
space) rendering it a not-linear-separable test function series FNnR45. We
then tested the algorithm on a newly devised benchmarking problem from the
Huygens Suite [17, 16]. These are described below:

1. Test function FNn for n=1 to n=6, which are linear-separable equations,
as displayed in Equation 5 below:

FNn(x1 , x2 ) = Σ
2
i=10.5(1− cos(

nπxi

100
)e−|

xi

1000
|),−100 ≤ xi ≤ 100. (5)

2. Test function FNnR45 (R45 standing for the original test function FNn
having been rotated by 45 degrees in the solution space), being not-linear-
separable, for n=1 to n=6 as displayed in Equation 6 below:

FNnR45 (x1 , x2 ) = 0.5(1− cos(
nπ x1+x2√

2

100
)e−|

x1+x2
√

2

1000
|) +

0.5(1− cos(
nπ x1−x2√

2

100
)e−|

x1−x2
√

2

1000
|),−100 ≤ xi ≤ 100. (6)

3. MacNish has devised a problem series for benchmarking, that based on
fractal landscapes, reflect the attributes of highly multimodal problems
seen in real world situations [17, 16].

We chose to run our GA on the first landscape in MacNish’s 20 series for
which a plot was provided, shown in Figure 1.

4.2 Implementation of the Genetic Algorithm

We implemented a genetic algorithm as detailed in Table 1. The implementation
of the genetic algorithm was deliberately simple so that a clear and concise com-
parison of linear-separable versus not-linear-separable problems could be made.
Further work could include other variants (eg different encodings, crossover
strategies, selection mechanisms, elitism, etc) of genetic algorithms proposed in
the literature to see if the results are consistent with those variants.

4.3 Experimental Design and Statistical Test

In order to control for the effect of seed we implemented a randomized complete
block design and used the analysis of variance (ANOVA) in order to compare
performances for 2 or more parameters. In ANOVA the null hypothesis is that
the means for different levels of a parameter are equal. The alternative hypoth-
esis is that the means for levels of a parameter are not all equal and thus we
conclude that the parameter has an effect upon the response variable.
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Figure 1: Landscape 20 101 from the Huygens Suite [17, 16].

4.4 Level of significance

There are 2 types of errors associated with statistical testing. A type I error is
the rejection of the null hypothesis when it is true. A type II error is the non-
rejection of the null hypothesis when the alternative hypothesis is true. The
probability of making a type I error is denoted by α and the probability of a
type II error is denoted by β. Since the null hypothesis represents the most
conservative proposal it is considered that a type I error is more serious than a
type II error [13].
For published research a level of significance of 1% is often used [15]. P-

values less than 1% suggest that the null hypothesis is strongly rejected or that
the result is highly statistically significant [13]. In the present study we have
employed 1% as our level of significance.

4.5 Level of Significance for Orthogonal Simultaneous Mul-

tiple Comparisons

In a situation of orthogonal simultaneous multiple comparisons within a pa-
rameter it is necessary to modify the level of significance. This is because the
probability of achieving one or more statistically significant results in n simul-
taneous independent multiple comparisons will exceed the level of significance
chosen (1% in the present study). This is illustrated in Equation 7.

P (at least one significant result in n) = 1− (1− α)n. (7)

This occurs in ANOVA when the sum of squares for each parameter is parti-
tioned into orthogonal contrast terms. In order to ensure that the probability of
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achieving one or more statistically significant results in n simultaneous multiple
comparisons is exactly 1%, we use a modified level of significance for testing
each of n orthogonal polynomial contrast terms calculated in accordance with
Equation 8.

Modified level of significance = 1− (1− α)
1
n . (8)

Our approach is different from the Bonferroni method [19] which, for the
present work, would simply divide the overall level of significance by the num-
ber of simultaneous multiple comparisons. The Bonferroni method will ensure
that the probability of achieving one or more statistically significant results in
n simultaneous multiple comparisons is no greater than 1%. Thus, it yields an
upper bound such that the actual probability of achieving one or more statis-
tically significant results in n simultaneous multiple comparisons may be much
smaller.

Table 1: Details of the genetic algorithm
Variable representation Bit string
Bits per variable 22
Genes Binary value 1 or 0
Population size 50 chromosomes
Chromosome coding Gray coding
Selection Probabilistic selection 1

Experimental unit Blocks containing independent runs
of the genetic algorithm for different
crossover and mutation rates
with the same seeds

Crossover Single point (randomly selected)
per variable

Mutation Randomly generated bit replacement 2

Performance measure Final epoch ie
epoch at which fitness of best
chromosome ≤ 10−threshold

of maximum fitness
(see Appendix A for details
of the threshold for each
test function)

1Probabilistic selection used here is the random selection of parents with the probability
of selection being directly proportional to the fitness of a chromosome.

2Mutation is implemented as described by Davis [6]. That is, if the probability test is
passed the binary bit is replaced by another binary bit that is randomly generated. Fifty per
cent of the time the new bit will be the same as the old bit. The bit-flipping mutation rate is
therefore half of the implemented mutation rate.
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4.6 Power

As outlined previously it is imperative to have some means of calculating whether
the size of the sample chosen has sufficient power. In order to do so it is nec-
essary to specify the degree to which the null hypothesis is false. This can be
done by using the effect size index, f, as described by Cohen [3].
Our initial work had been based on increasing the sample size by a factor

of 5 until we achieved at least 80% power for detecting a difference of at least
5 epochs. However, as f is related to the standard deviation, which may differ
considerably according to the problem under study, we refined our previous
methodology by calculating power based on an accepted standard value of f.
In our initial research our simplest benchmark problem was De Jong’s F1

[7] which showed the smallest standard deviation. In reference to this problem
a difference of at least 5 epochs was approximated by an f value of 0.4 which
denotes a large effect. To obtain a power of at least 80% using this f value
we required a pooled ANOVA analysis using 5 by 500 replicate data-sets. We
therefore used 5 by 500 replicate data-sets as a starting point in the present
study and then confirmed the level of power achieved.
Given our previous experience in power calculations with GA analysis, we

suggest that 0.4 may be used as a standard for the effect size when attempting
to analyze the performance of a GA. It should also be noted that in using this
approach it is possible to calculate power a priori and thus ascertain if a given
sample size will confer a required level of power. However, we continued to
adhere to post hoc power calculations in line with our previous work.

4.7 Pooled Analysis Design

If large data-sets are required these may not be able to be analyzed when a
parameter has too many levels resulting in the statistical software having to
deal with too many and too large matrices. We again made use of a pooled
analysis design for the present study as follows:

1. For each individual experiment we calculated the mean of the performance
measure for each combination of crossover and mutation.

2. These data from individual experiments were concatenated into a new
pooled data file. The response variable was now the mean of the perfor-
mance measure averaged over the number of replicates in the individual
experiment. This results in a smaller error variance as the average of a
number of observations is expected to be closer than a single observation
to the population mean.

Each individual experiment denoted one level of the block parameter.

3. Analysis was carried out in the same manner as for individual experiments.
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4.8 Estimates of Optimal Values for Crossover and Muta-

tion

The aim of the present research was to explore the detrimentality of crossover.
That is, to statistically determine the optimal crossover rate for each test func-
tion with detrimental crossover corresponding to an optimal crossover rate of
0%. We therefore used our previous methodology which enlisted polynomial
regression to obtain an estimate of the optimal rate for both the crossover and
the mutation operators.

5 Results

5.1 Exploratory analysis of test functions FN1 to FN6

The results of exploratory analyzes for test functions FN1 to FN6, are shown
in Table A-1, Table A-2, Table B-1 and Table C-1. It should be noted that the
results for FN1 to FN6 have been published elsewhere [4].
It can be seen that the crossover operator proved beneficial to the perfor-

mance of the GA in every instance. For example, in Table C-1 the optimal value
of crossover was 100% in every instance from FN1 to FN6.

5.2 Exploratory Analysis of test functions FN1R45 to

FN6R45

The results of exploratory analyzes for test functions FN1R45 to FN6R45 are
shown in Table A-3, Table A-4, Table B-2 and Table C-2. For the test function
series, FNnR45, where the test function FNn had been rotated by 45 degrees
in the solution space there was a marked difference in the results obtained.
Firstly, Table C-2 illustrates that crossover was detrimental for test func-

tions FN2R45, FN4R45 and FN5R45, where for these rotated forms the op-
timal crossover rate was 0%. This is in contrast to the non-rotated form of
these functions, as described above, where in each case crossover proved to be
beneficial.
Table C-2 also shows that where crossover was shown to be detrimental the

mutation rate was also higher than in instances where crossover was having
a beneficial effect. For example, for FN2R45 the optimal mutation rate was
25.45% (bit flipping mutation rate of 12.72%), for FN4R45 the optimal muta-
tion rate was 35.30% (bit flipping mutation rate of 17.65%) and for FN5R45
the optimal mutation rate was 33.38% (bit flipping mutation rate of 16.69%) .
In contrast, for FN1R45 the optimal mutation rate was 8.78% (bit flipping mu-
tation rate of 4.39%), for FN3R45 the optimal mutation rate was 12.36% (bit
flipping mutation rate of 6.18%) and for FN6R45 the optimal mutation rate was
12.97% (bit flipping mutation rate of 6.48%). Thus, in all cases where crossover
was detrimental the optimal mutation rate proved to be notably greater than
those instances where crossover was beneficial.
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As noted above, as a high mutation rate is a conjectured marker for the
difficulty of a problem the above results indicate that the crossover operator
proved to be detrimental for the most difficult of the not-linear-separable rotated
functions.

6 Factors Affecting the Detrimentality of Crossover

In the preceding work we observed that crossover was detrimental for three of the
six not-linear-separable rotated functions analyzed. As indicated by the optimal
mutation rates, these proved to be the most difficult of the six functions to solve.
Thus, it is conjectured that crossover proves to have a detrimental effect upon
GA performance if the not-linear-separable problem is difficult or hard for the
GA to solve.
As discussed below, we find that what makes a GA hard to solve is a complex

issue and involves factors such as the degree of optimization occurring at local
minima due to crossover, the bias of the mutation operator and the Hamming
Distances involved in the individual problems. In the next sections we discuss
each of these factors in turn.

6.1 Optimization Occurring at Local Minima due to Crossover

The first factor which influenced the difficulty of the problem for the GA was
the optimization occurring at local minima due to crossover. However, in order
to discuss this we must first investigate what roles crossover, and also mutation,
are playing in the GA.
Figure 2a, Figure 2b, and Figure 2c display chromosomes situated in one

heat map of function FN2R45. The heat map represents a view of the function
looking down from above with white areas denoting troughs and dark areas de-
noting peaks. The chromosomes are the 50 chromosomes that our GA contains.
These heat maps show the location of the chromosomes during an iteration of
the GA.
As can be seen in Figure 2b, which illustrates the location of chromosomes

after crossover, the chromosomes have dissipated little, moving by only a small
amount at the local minima sites (denoted by the white areas). In this case,
crossover is performing its classical function of exploitation within, or converging
on, the local minima occupied by the chromosomes [12].
In contrast, in Figure 2c after mutation the chromosomes have dissipated

more widely over the solution space. In this sense, mutation is performing its
classical function of exploration of the solution space [12]. It is also important to
note that we found that it is largely only with mutation that the chromosomes
are able to move out of the local optima that they are in and into newer regions
of the solution space. This is seen most clearly by referring to the bottom right
hand corner of the heat map for FN2R45 where several chromosomes have
moved from the local optimum situated there into outer lying regions of the
solution space.
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Figure 2a: FN2R45 :Initial Chromo-
some Population.

Figure 2b: FN2R45 :Chromosome
Population after Crossover.

Figure 2c: FN2R45 :Chromosome
Population after Mutation.

In summary, a review of all the heat maps, including the examples shown,
illustrated that while mutation was responsible for exploration of the solution
space, crossover was enacting exploitation at the sites of local minima. That is,
the heat maps showed that crossover was in effect responsible for optimization
taking place at the site of local minima thereby keeping chromosomes “stuck” in
those local minima. This meant that crossover was having the effect of hindering
the movement of chromosomes from local minima into the global minimum.
In order to quantify the degree of optimization at the local minima carried

out by crossover we recorded and compared the relative proportion of times
crossover and mutation improved the best fitness obtained by the population.
The results were that crossover improved fitness at sites of local minima
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82% of the time out of the total number of epochs (with a 99% confidence
interval of 80% to 84%) compared to mutation with a value of only 30% (with
a confidence interval of 29% to 31%). This lent support to what was visualized
on the heat maps, namely, that optimization of chromosomes at local minima
due to the crossover operator was hindering chromosomes moving out of these
local minima into newer regions of the solution space.

6.2 Bias Associated with the Mutation Operator

The mutation operator corrupts the reproduction of genotypes thereby intro-
ducing the variety that fuels natural selection [2]. This being said, there is
discussion in the literature as to the possible biases inherent in various imple-
mentations of mutation and the degree to which this makes a problem hard for
a GA to solve [2, 22].
Thus, to ascertain in the present work if there was any bias associated with

the mutation operator which might make the problems harder for the GA to
solve we carried out experiments where many copies of a single chromosome
comprised of two bit strings, which were initially placed in the center of the
local minimum located in the bottom right hand corner of the heat map of
FN2R45, underwent mutation and then were plotted onto the heat map surface
of the rotated function. Figure 3 shows an example of this for FN2R45 using
the optimal mutation rate of 25.45% (bit flipping mutation rate of 12.72%) with
10000 samples.

Figure 3: Mutation Plot for Test function FN2R45.

As can be seen, after mutation the chromosome landed in a criss-cross pat-
tern along the x and y directions illustrating that it is biased in the axial direc-
tion. The reason for this may be explained using a simple example as follows.
Figure 4 illustrates the probabilities associated with moving in the x , y and

diagonal directions for a single two bit chromosome. If we assume that a change
in a bit has a probability of 10%, then movement in either the x or y direction
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Figure 4: Probabilities associated with the movement of a single two bit chro-
mosome after mutation.

has a probability of 9% (0.9 times 0.1). However, movement in the diagonal
direction requires a change in both bit strings with a resultant probability of 1%
(0.1 times 0.1). Also, the probability of no change occurring to the chromosome,
and hence no movement, is 81% (0.9 times 0.9).
Simplistically speaking for the not-linear-separable problems we investigated,

the degree to which this bias made the problem hard for the GA was related
to the percentage of the local minima which lay on the x and y axes, given
that the global minimum was at the origin. In Figure 5a for FN2R45 none of
the local minima lay on the x or y axes compared with Figure 5b for FN3R45
where four of the twelve local minima lay on the x or y axes. Chromosomes in
these local minima were more likely to be shifted towards the global minimum
due to the bias of the mutation operator. Overviewing the results for all the
rotated functions, we observed that if roughly 20% or more of the local minima
lay along the x or y axes, as shown in Table 2, the crossover operator proved to
be beneficial for the function, otherwise it was detrimental.
More generally speaking, this axial bias is a special case of the more general

relationship between the problem encoding and the solution space, discussed
below.

6.3 Relationship between Gray Encoding and the Solution

Space

Figure 3 shows a bias not just in axial directions, but towards a grid-like pattern
with regions of higher density and others of much lower density. In general it
is much harder to make a “jump” to some areas of the space than others. The
selection generator compounds the effect of this bias by eliminating candidates
that are part way towards a better local minimum but have low fitness.
An illustrative case for the rotated functions is that of FN2R45 and FN3R45.

As shown in the response curves depicted in Figure 6a and Figure 6b, FN2R45
was the more difficult of the two functions for the GA. This is evidenced by the
fact that the number of epochs taken to reach the threshold was an order of
magnitude greater. This is despite the fact that FN3R45 is the more modal of

14



Figure 5a: Heat Map of FN2R45 il-
lustrating location of local minima
along X and Y axes.

Figure 5b: Heat Map of FN3R45 il-
lustrating location of local minima
along X and Y axes.

Table 2: Relationship between Local Minima and Detrimental Crossover

Test Function % Local Minima on X and Y Axes Detrimental Crossover

FN1R45 Nil Local Minima No

FN2R45 0% Yes

FN3R45 25% No

FN4R45 16.67% Yes

FN5R45 16.67% Yes

FN6R45 20% No

the two functions.
To illustrate why this is the case, we can examine the Hamming Distances

of the two functions. The Hamming Distance is a measure of the difference or
distance between two binary sequences of equal length. Hamming Distances
between the global minimum and the surrounding local minima for functions
FN2R45 and FN3R45 are shown in Figure 7a and Figure 7b, respectively.
As can be seen, FN2R45 has the larger Hamming Distance of 12 from any

of the local optima to the global optimum for either the x bit string or the y bit
string. The probability of making this (exact) jump with a bit-flipping mutation
rate of m for 44-bit chromosomes is:

P1 = m
24(1−m)20. (9)
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Figure 7a: Hamming Distances for
FN2R45.

Figure 7b: Hamming Distances for
FN3R45.

(Clearly a range of nearby jumps are possible, but we use the minima for
illustration. The probability will be higher if nearby jumps are taken into ac-
count).
In contrast, for FN3R45, the Hamming Distance from any of the local min-

ima to the global minimum is only 7 or 8. The probability of making the (exact)
jump is therefore of the order:

P2 = m
15(1−m)29. (10)

As can be seen in Figure 8, the probability of making the required jump is
far greater for FN3R45 for low mutation rates.
The larger Hamming Distances for the functions explained why the optimal

mutation rate for FN2R45 was higher (25.45% corresponding to a bit flipping
rate of 12.72%) than for FN3R45D (12.36% corresponding to a bit flipping rate
of 6.18%). This is because the greater Hamming Distances meant that a greater

16



0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

7
x 10

−13

Mutation rate (m)

P
ro

ba
bi

lit
y 

of
 ju

m
pi

ng
 H

am
m

in
g 

G
ap

 (
P

) P
1
 (FN2R45)

P
2
 (FN3R45)

Figure 8: Probability of jumping Hamming Gap versus Mutation rate.

number of bit flips are required in order to move chromosomes from any of the
local optima into the global optimum. These Hamming Distances are a direct
consequence of the relationship between the encoding and the solution space.
It is interesting to note that finding the optimal mutation rate appears to

be a case of finding a fixed point that is high enough up the Hamming Distance
probability curves for the space while at the same time minimizing the disruptive
effect of mutation on convergence.

7 Extending the Results to Difficult Practical

Problems

We have discussed a number of properties that make a problem difficult for a GA
to solve, such as high modality and local minima not artificially aligned within
the encoding to make the solution easier and their impact on the performance
of crossover. However, these have only been tested on artificial sequences of
problems that possess features such as symmetry and a regular repetition of local
minima. Before leaving this topic, we wanted to see if there was evidence the
results would carry over to real-world problems exhibiting the same properties
for difficult problems. In order to extend the results to a difficult practical
problem, we tested our GA on Landscape 20 101 shown in Figure 1. The results
are shown in Table A-5, Table B-3 and Table C-2.
As can be seen, the same behaviour of the GA emerged as for the difficult

rotated functions. That is, crossover, mutation and their interaction had a
statistically significant effect upon GA performance. However, for crossover the
effect was detrimental with an optimal crossover rate of 0%.
For mutation the optimal rate was a high 18.93% (bit flipping mutation
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rate of 9.46%), comparable to the high mutation rates seen with the difficult
not-linear-separable problems discussed above. Again as noted above, a high
mutation rate is a conjectured marker for the difficulty of the problem.
We can conjecture that this problem proved difficult for the GA for similar

reasons to the problems analyzed earlier. In the first case the random arrange-
ment of the local minima of this problem makes it unlikely that any of the local
minima are aligned in the axial directions. Thus, the bias of mutation means
that it is less likely that the global minimum will be found by chromosomes
moving in the x and y directions.
In reference to crossover, the fact that the surface of the Landscape 20 101

has a great number of local minima means that it is very likely that crossover was
enacting optimization at the local minima sites. This is supported by the fact
that the optimal mutation rate was high at 18.93% (bit flipping mutation rate of
9.46%), suggesting that a high mutation rate was required to get chromosomes
to jump out of regions of local minima where they were “stuck” due to local
optimization carried out by crossover.

8 Discussion

The issue of whether the crossover operator may be detrimental to the per-
formance of a GA is an issue which has been the subject of limited statistical
research. There has not as yet been a direct statistical attempt to prove the
detrimentality of crossover nor an attempt to describe the conditions under
which such detrimentality may occur. In this regard, we undertook the present
research to explore the issue of the detrimentality of crossover using a rigorous
statistical methodology.
In the first instance the results from our linear-separable test function series,

FNn, show that crossover is beneficial for these linear-separable problems. This
concurs with the suggestion of Salomon that Crossover’s Niche is in fact linear-
separable problems [23].
On the other hand, results from the rotated not-linear-separable test function

series demonstrated several instances where crossover was statistically proven to
be detrimental. This occurred for not-linear-separable problems which required
the highest mutation rates, which in our experience has been a marker for the
difficulty of a problem. Thus, what makes a not-linear-separable problem hard
for a GA to solve is linked to whether crossover will be detrimental to the
performance of the GA solving the problem.
In the course of our research we found that three factors were involved in

making a not-linear-separable problem hard for the GA to solve. These were
optimization carried out by crossover at the sites of local minima, the bias of
the mutation operator and the Hamming Distances for the individual problems.
In the first case, the difficulty of a problem was due to the degree of optimiza-

tion at local minima carried out by the crossover operator. That is, crossover
was carrying out optimization on chromosomes “stuck” in local minima result-
ing in their moving deeper into the local minima sites. Our experiments on
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this showed that at least 80% of the time crossover improved the fitness of
chromosomes at sites of local minima.
Secondly, we found that the mutation operator was biased along the x and

y axes. If a function had at least some of the local minima and the global
minimum aligned in the axial directions this made the problem easier to solve as
the chromosomes from these minima would be shifted with a greater likelihood
towards the global minimum.
Thirdly, the relationship between the problem and the solution space resulted

in situations where a less modal problem was actually more difficult to solve
because of the greater Hamming Distance between its local minima and the
global minimum. This was illustrated for FN2R45 and FN3R45 where the
latter was the more modal function, yet proved easier to solve as the Hamming
Distances between its local minima and its global minimum were lower.
Finally, we were able to demonstrate the detrimentality of crossover on a real

world problem, namely, a problem from the Huygens suite. The results showed
that crossover can be detrimental on a real world problem. The reasons for this
occurring may be extrapolated from the reasons found for the difficult rotated
FNn problem series. These include the degree of local optimization attributable
to the crossover operator and the bias of the mutation operator.
In conclusion, we have been able to demonstrate that crossover is statistically

detrimental for the difficult not-linear-separable problems and also the difficult
real world problem in the given configuration. Further research will be required
to extend the class of problems and illustrate if crossover can be demonstrated
to be detrimental with different encodings and in discrete problem domains.
However, our results suggest that crossover can prove to have a truly detrimental
effect upon GA performance.
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Appendices

A ANOVA tables

Table A-1: ANOVA results of FN1 to FN3

Test function FN1

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 6 211.3841 35.23068 102.8543 0.0000000

Mutation 8 195.0530 24.38163 71.1810 0.0000000

Interaction 48 12.5655 0.26178 0.7643 0.8678564

Block 4 5.7498 1.43745 4.1966 0.0026330

Residuals 248 84.9475 0.34253 - -

Residual standard error=0.5852608, Power=87.03%, Threshold=7.

Test function FN2

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 4 79.23721 19.80930 66.65568 0.0000000

Mutation 8 91.09235 11.38654 38.31421 0.0000000

Interaction 32 9.95044 0.31095 1.04631 0.4066007

Block 5 1.74695 0.34939 1.17565 0.3220536

Residuals 220 65.38147 0.29719 - -

Residual standard error=0.54515, Power=88.24%, Threshold=7.

Test function FN3

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 12 14002.2 1166.85 3.9242 0.00001088

Mutation 6 313701.8 52283.64 175.8325 0.00000000

Interaction 72 31744.0 440.89 1.4827 0.01105187

Block 4 5179.7 1294.94 4.3549 0.00188308

Residuals 360 107045.7 297.35 - -

Residual standard error=17.24381, Power=95.96%, Threshold=7.
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Table A-2: ANOVA results of FN4 to FN6

Test function FN4

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 6 169.0313 28.17188 93.23987 0.0000000

Mutation 8 131.1151 16.38938 54.24359 0.0000000

Interaction 48 10.1115 0.21066 0.69720 0.9329824

Block 4 4.9472 1.23681 4.09345 0.0031292

Residuals 248 74.9318 0.30214 - -

Residual standard error=0.5496764, Power=87.03%, Threshold=7.

Test function FN5

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 18 5566.06 309.225 46.8718 0.00000000

Mutation 8 18131.18 2266.398 343.5364 0.00000000

Interaction 144 1558.08 10.820 1.6401 0.00002663

Block 4 54.90 13.724 2.0802 0.08175970

Residuals 680 4486.13 6.597 - -

Residual standard error=2.568512, Power=99.90%, Threshold=7.

Test function FN6

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 18 207154 11509 4.0106 0.000000057

Mutation 8 16671466 2083933 726.2203 0.000000000

Interaction 144 736294 5113 1.7819 0.000001008

Block 4 41181 10295 3.5878 0.006617639

Residuals 680 1951301 2870 - -

Residual standard error=53.56828, Power=99.90%, Threshold=7.
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Table A-3: ANOVA results of FN1R45 to FN3R45

Test function FN1R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 8 596.70 74.59 101.9350 <2x10−16

Mutation 10 1551.30 155.13 212.0105 <2x10−16

Interaction 80 54.96 0.69 0.9389 0.6263

Block 4 2.12 0.53 0.7242 0.5758

Residuals 392 286.83 0.73 - -

Residual standard error=0.8554008, Power=97.02%, Threshold=7.

Test function FN2R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 8 691359 86420 30.6658 <2.2x10−16

Mutation 10 7590923 759092 269.3608 <2.2x10−16

Interaction 80 422004 5275 1.8718 4.963x10−05

Block 4 12955 3239 1.1493 0.3329

Residuals 392 1104705 2818 - -

Residual standard error=53.08601, Power=97.02%, Threshold=6.

Test function FN3R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 20 942.53 47.13 11.0612 <2.2x10−16

Mutation 6 2235.96 372.66 87.4686 <2.2x10−16

Interaction 120 844.28 7.04 1.6514 8.505x10−05

Block 4 69.94 17.48 4.1039 0.002742

Residuals 584 2488.14 4.26 - -

Residual standard error=2.064100, Power=99.71%, Threshold=7.
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Table A-4: ANOVA results of FN4R45 to FN6R45

Test function FN4R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 16 1159371 72461 61.5758 <2.2x10−16

Mutation 8 1968603 246075 209.1107 <2.2x10−16

Interaction 128 402189 3142 2.6701 1.458x10−15

Block 4 6601 1650 1.4022 0.2317

Residuals 608 715477 1177 - -

Residual standard error=34.30410, Power=99.76%, Threshold=5.

Test function FN5R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 10 756983 75698 84.9871 <2.2x10−16

Mutation 10 3162538 316254 355.0607 <2.2x10−16

Interaction 100 186328 1863 2.0919 1.301x10−07

Block 4 710 178 0.1994 0.9386

Residuals 480 427538 891 - -

Residual standard error=29.84466, Power=98.86%, Threshold=5.

Test function FN6R45

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 20 12649 632 52.6177 <2x10−16

Mutation 12 269824 22485 1870.6825 <2x10−16

Interaction 240 25698 107 8.9080 <2x10−16

Block 4 111 28 2.3052 0.05652

Residuals 1088 13078 12 - -

Residual standard error=3.466965, Power=100%, Threshold=7.
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Table A-5: ANOVA results of Landscape 20 101

Test function Landscape 20 101

Parameter Df Sum of Sq Mean Sq F Value p-value

Crossover 10 897763 89776 21.2996 <2x10−16

Mutation 6 11679219 1946536 461.8201 <2x10−16

Interaction 60 1059207 17653 4.1883 <2x10−16

Block 4 33611 8403 1.9936 0.09541

Residuals 304 1281337 4215 - -

Residual standard error=64.92244, Power=92.65%, Threshold=5.
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B Fitted response curves

Table B-1: Equations of fitted response curves for FN1 to FN6
FN1 Crossover Final epoch =

56.97715− 8.15829Cr
Mutation Final epoch =

81.23346− 745.06687Mu

+4338.52814Mu2

FN2 Crossover Final epoch =
56.9028000− 7.6368889Cr

Mutation Final epoch =
7.877x101 − 6.652x102Mu

+3.765x103Mu2

FN3 Crossover Final epoch =
454.9500− 26.0478Cr

Mutation Final epoch =
9.540x103 − 1.047x105Mu

+2.999x105Mu2

FN4 Crossover Final epoch =
51.395690− 7.307079Cr

Mutation Final epoch =
6.958x101 − 5.954x102Mu

+3.539x103Mu2

FN5 Overall Final epoch =

−218.5247+ 16.10332Cr+ 8.586955Cr2

+11631.9485Mu− 113700.7892Mu2

+344700.9038Mu3 − 246.3479(Cr ∗Mu)

FN6 Overall Final epoch =
−3731.3012+ 892.2784Cr+ 237189.8786Mu

−2052110.9896Mu2 + 4964206.9821Mu3

−4941.4196(Cr ∗Mu)
Crossover parameter level (Cr), Mutation parameter level (Mu).
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Table B-2: Equations of fitted response curves for FN1R45 to FN6R45
FN1R45 Crossover Final epoch =

70.410317− 8.471164Cr
Mutation Final epoch =

1.048x102− 9.756x102Mu

+5.556x103Mu2

FN2R45 Overall Final epoch =
3.666x104+ 3.283x103Cr− 2.811x105Mu
+5.569x105Mu2 − 1.174x104(Cr ∗Mu)

FN3R45 Overall Final epoch =
1.228x104+ 2.619x101Cr + 9.058Cr2

−3.854x105Mu + 4.577x106Mu2

−2.419x107Mu3 + 4.801x107Mu4

−2.605x102(Cr ∗Mu)

FN4R45 Overall Final epoch =
−1.260x105+ 2.234x103Cr + 1.203x106Mu

−3.768x106Mu2 + 3.906x106Mu3

−5.934x103(Cr ∗Mu)

FN5R45 Overall Final epoch =
−6.428x104+ 1.858x103Cr + 6.774x105Mu
−2.316x106Mu2 + 2.602x106Mu3

−5.032x103(Cr ∗Mu)

FN6R45 Overall Final epoch =

1.177x103+ 7.129x102Cr + 5.974x101Cr2

−3.074x104Mu + 3.463x105Mu2

−1.835x106Mu3 + 3.845x106Mu4

−1.633x104(Cr ∗Mu)− 4.103x102(Cr2 ∗Mu)
+1.232x105(Cr ∗Mu2)− 3.084x105(Cr ∗Mu3)

Crossover parameter level (Cr), Mutation parameter level (Mu).
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Table B-3: Equation of fitted response curve for Landscape 20 101
Landscape 20 101 Overall Final epoch =

2.214x104 + 5.246x103Cr− 3.141x105Mu
+1.485x106Mu2 − 2.285x106Mu3

−5.009x104(Cr ∗Mu) + 1.196x105(Cr ∗Mu2)
Crossover parameter level (Cr), Mutation parameter level (Mu).
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C Optimal parameter values

Table C-1: Optimal Parameter Values for FN1 to FN6

FN1 Crossover 100%

Mutation 8.59%

FN2 Crossover 100%

Mutation 8.83%

FN3 Crossover 100%

Mutation 17.45%

FN4 Crossover 100%

Mutation 8.41%

FN5 Crossover 100%

Mutation 14.11%

FN6 Crossover 100%

Mutation 19.47%
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Table C-2: Optimal Parameter Values for FN1R45 to FN6R45 and Land-
scape 20 101

FN1R45 Crossover 100%

Mutation 8.78%

FN2R45 Crossover 0%

Mutation 25.45%

FN3R45 Crossover 33.23%

Mutation 12.36%

FN4R45 Crossover 0%

Mutation 35.30%

FN5R45 Crossover 0%

Mutation 33.38%

FN6R45 Crossover 39.17%

Mutation 12.97%

Landscape 20 101 Crossover 0%

Mutation 18.93%
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