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Summary. In this paper we introduce a hyperheuristic to solve hard strip packing
problems. The hyperheuristic manages a sequence of greedy low-level heuristics, each
element of the sequence placing a given number of objects. A low-level solution is built
by placing the objects following the sequence of low-level heuristics. The hyperheuristic
performs a hill-climbing algorithm on this sequence by testing different moves (adding,
removing, replacing a low-level heuristic). The results we obtained are very encouraging
and improve the results from the single heuristics tests. Thus, we conclude that the
collaboration among heuristics is an interesting approach to solve hard strip packing
problems.
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1 Introduction

In this paper we focus our attention on methods to solve the two-dimensional
strip packing problem, where a set of rectangles (objects) must be positioned on a
container (a rectangular space area). This container has a fixed width dimension
and a variable height size. The goal is, when possible, to introduce all the objects
in the container without overlapping, using a minimum height dimension of the
container. This problem is NP-hard and exact approaches [18,15] are in general
limited to small instances. Four variants of this problem exist, depending on the
possibility of rotation of the objects, and on the presence of the guillotine cut
constraint1.

In the literature many heuristic approaches have been proposed. In our under-
standing the most complete review has been presented in E. Hopper’s Thesis [11].
However, in the last few years the interest in this subject has increased, and so
has the interest in the number of research papers presenting new approaches and
improvements to the existing strategies. These approaches are in general single
� This work was partially financed by the Fondecyt Project 1060377.
1 This constraint requires that all objects placed in the container can be reproduced by

a series of guillotine cuts, i.e. edge-to-edge cuts parallel to the edges of the container.
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heuristics or heuristics incorporated into metaheuristics methods. Recently, the
concept of hyperheuristic has been introduced and successfully tested in different
problems, [5]. The key idea is to tackle problems using various low-level heuris-
tics and develop a framework that controls the applications of the heuristics.
Using this framework the time consuming task of designing an algorithm with
special components for a specific algorithm is reduced. This kind of approach is
useful to obtain a good solution for a problem in a reasonable amount of time. It
emphasizes a compromise between the quality of the solution and the invested
time for designing the algorithm. Our goal is to show that hyperheuristics can be
applied to solve Strip Packing Problems providing effective solutions in an effi-
cient way. Our hyperheuristic is compared to other approaches using well known
benchmarks. This paper is organized as follows: First we present an overview
of methods based on heuristics to solve the strip packing problem, which are
included in our hyperheuristic approach. Next we introduce our hyperheuristic.
We will then present the results obtained using the benchmarks. Finally, our
conclusions and future trends in this research area are presented.

2 Heuristics Based Methods

In this section, we present a survey of the main heuristics for strip packing
problems and of the most efficient algorithms using them.

2.1 Various Low-Level Heuristics

Baker in [2] introduced Bottom-Left heuristics (BL), which first orders the ob-
jects according to their area. The objects are placed at the top and pushed
down and left as much as possible. This method was improved by Chazelle [8]
and called Bottom Left Fit (BLF) : each object is located at the most bottom
and left possible place. Hopper [12] presented BLD which is an improved ver-
sion of BL, where the objects are ordered using various criteria (height, width,
perimeter, area) and the algorithm selects the best result obtained. Lesh et al.
in [16] focus their research on improving BLD heuristic. They call their new
heuristics BLD∗. In BLD∗ the objects are randomly ordered according to the
Kendall-tau distance from all of the possible fixed orders. This strategy is called
Bubble Search, [17] and can be applied to any constructive algorithm in or-
der to randomize a fixed ordering. As in GRASP, this strategy repeats greedy
placements with this randomized ordering until a time limit is reached.

Another type of heuristics, Best Fit (BF) [6], uses a dynamic ordering for the
rectangles to be located. The algorithm goes through the possible places from
the most bottom left one, and selects for each place the rectangle that best fits
in it (if it exists).

Let us now describe heuristics for problems with guillotine cut constraint.
The heuristics FFDH and NFDH proposed in [14] and BFDH proposed initially
in [19], and modified by [3] as BFDH* are very similar. In each of them, the
objects are oriented such that their width is not lower than their height, and
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they are ordered from highest to lowest. Each object is packed in a rectangular
sub-area of the container in the bottom left corner. The width of the sub-area
is given by the container, and the height is given by the first object packed in
this sub-area. When it is possible to include the current object to be placed
into some sub-areas, it is positioned into the sub-area having: the least available
area for BFDH; the bottom available area for FFDH; and the top area, if it is
available, for NFDH. In other cases the algorithm opens a new sub-area above
the existing sub-areas positioning the current object in the bottom left corner
as the first object of this sub-area. BFDH* seeks to improve this heuristic by
allowing object rotations, so that when the algorithm searches to include the
current object into a sub-area it tests both orientations.

Zhang et al. [21] propose a recursive heuristic HR for problems with guillotine
cut constraint. When the first object is positioned in the container (on the bot-
tom left corner) it identifies two remaining areas. It recursively continues placing
the remaining objects. To improve the performance of the heuristic, the authors
present a deterministic algorithm (HRalg) that gives priority to the objects with
bigger areas. Zhang et al. claim that their algorithm quickly obtains good results
on Hoper’s benchmarks.

For our approach we have selected HR, BF, BLF, BFDH* as the low-level
heuristics for problems without guillotine cut constraint, because they have
shown to be individually competitive. For problems with guillotine cut constraint
the selected heuristic are HR and BFDH*.

2.2 Metaheuristic Approaches

These and other low-level heuristics have been used in metaheuristic approaches,
as tabu search, simulated annealing, and genetic algorithms. The first idea is to
build an initial solution by a low level heuristic and to perform a local search on
the layout. Neveu et al. [20] present an incremental move, which allows additions
and removals of rectangles. They also implement a generic metaheuristic using
this move obtaining competitive results.

Other researchers prefer to work on the order of the objects for each position-
ing heuristic. In [12] they present a genetic algorithm and a simulated annealing
algorithm (GA+BLF and SA+BLF), both of which try to find the best order
for the objects to be placed in the container using the BLF strategy.

For the case of fixed orientation problems, the best approach to our knowledge
appears to be the GRASP based approach described in [1]. This approach repeats
the following two-phases algorithm: the rectangles are first placed by a slightly
randomized BF like constructive phase. Then the solution is improved by a
strictly improving Variable Neighborhood Search (VNS).

On the other hand, Bortfeldt [3] introduced a Genetic Algorithm called SP-
GAL and obtained the best results known in the literature for the problems
allowing the rectangles to be rotated. The algorithm generates an initial popu-
lation using a BFDH* heuristic which is an improvement of the BFDH heuris-
tic initially proposed in [19]. This heuristic works with a layer structure, that
takes into account the guillotine cut constraint. The genetic algorithm directly
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performs a search in this layer structure. For problems without the guillotine
cut constraint, a post-optimization procedure breaks this layer structure. The
same genetic algorithm is used in [4] for bigger instances (1000 pieces). It is
divided in GA-1, GA-2, GA-3 and GA-4, each of them initialized with diffe-
rent parameters. The procedure is only applied to problems with the guillotine
cut constraint, because the post-optimization procedure is negligible for large
instances [4].

Burke et al. [7] hybridize the best-fit heuristic with metaheuristic approaches
such as tabu search (BF-TS), simulated annealing (BF-SA) and genetic algo-
rithms (BF-GA). BF-SA obtains the best results.

3 The Hyperheuristic Approach: H-SP

The hyperheuristic framework manages a set of low-level heuristic and tries to
find a way to apply them. There are some genetic inspired hyperheuristics in the
literature to solve combinatorial problems [9,10]. However, in most of the cases,
they use a representation that just corresponds to a simple sequence of low-level
heuristics to be applied.

We have chosen to build a simple hyperheuristic that manages a sequence
of low-level greedy heuristics. From the analysis of the four selected low-level
heuristics we can remark the following:

• Performance changes according to the order of the objects and their rotation.
• The data structure to obtain a good implementation code is not always the

same for all of these heuristics.

Fig. 1. H-SP: Hyperheuristic for Strip Packing
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Taking into account these remarks, we have designed a new hyperheuristic
approach which allows us to include a good individual implementation for each
heuristic considering them as black boxes. They communicate following a pro-
tocol for modifying the current state of the search (the floor with the objects
already located by the preceding heuristics and the remaining objects to locate)
as shown in figure 1.

3.1 Representation

The representation structure used is a constructive algorithm formed by the se-
quential composition of constructive heuristics among a set H . A configuration
X is thus a constructive algorithm:

X = h1(p1, n1) ∗ h2(p2, n2) ∗ ... ∗ hk(pk, nk) (1)

Where h1, ..., hk ∈ H are the constructive heuristics, p1, ..., pk ∈ P are parame-
ters to initialize the heuristics and ni is an integer number that represents the
amount of pieces that the heuristic hi must place. ∗ is the sequential composition
operator.

The sets P and H depend on the kind of problem that will be solved (with
or without guillotine constraint, with or without rotation allowed).

Let N be the number of pieces to place inside the container. The next two
constraints must be satisfied:

ni > 0, ∀i = 1...k (2)

k∑
i=0

ni = N (3)

The parameters pi are related to the order and the rotation of the pieces
before the placement. The basic order criteria used are: decreasing heights (DP),
decreasing widths (DW), decreasing areas (DA) and decreasing perimeters (DP).
The rotation criteria used are: width greater or equal than the heights (W ≥ H),
heights greater or equal than the widths (H ≥ W ), rotate no object (NR) and
rotate all the objects (All R).

Figure 2 shows a configuration example with 3 heuristics. To translate the
configuration into the problem, the heuristics are evaluated sequentially. The
first is BLF, the parameters p indicate that the rectangles must be ordered by
decreasing weights (DW) and rotated with their widths greater or equal than
their heights (W ≥ H). Just when the process of ordering and rotation has been
realized, the BLF heuristic will begin to place the pieces inside the container
(n = 4 pieces, corresponding to the white rectangles). The rectangle numbers
indicate the placement order of the pieces.
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Fig. 2. Configuration example

3.2 Moves

The local search operations that we have defined in our high-level structure
allow heuristics to be added, deleted and replaced from the configuration. These
operations are applied with equal probability.

Let the current configuration:

XC = h1(..) ∗ ... ∗ hi−1(pi−1, ni−1) ∗ hi(pi, ni) ∗ hi+1(pi+1, ni+1) ∗ ... ∗ hk(..) (4)

The add operation selects random values i ∈ {1..k}, hadd ∈ H , padd ∈ P
and nadd ∈ {1..ni}. The return of the operation is a new configuration:

X ′
C = ... ∗ hi−1(..) ∗ hadd(padd, nadd) ∗ hi(pi, ni − nadd)... (5)

If ni − nadd is equal to 0, the heuristic hi is simply eliminated from the config-
uration. The key idea of this operation is to include new heuristics in a different
step of the algorithm in order to obtain a better cooperation among them.
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Fig. 3. Example of the add operation
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Fig. 4. Example of the remove operation

Figure 3 shows an example. The new heuristic is located in the third position
of the configuration, reducing by n′(2) the next heuristic n value.

The remove operation selects a random value i ∈ {1..k}. The return oper-
ation is a new configuration:

X ′
C = ... ∗ hi−1(pi−1, ni−1) ∗ hi+1(pi+1, ni+1 + ni) ∗ ... (6)

If the random value of i is equal to k, then:

X ′
C = ... ∗ hk−1(pk−1, nk−1 + nk) (7)

The idea here is to allow the algorithm to discard some heuristics obtaining
better results without them.

Figure 4 shows an example. The third heuristic is removed from the configu-
ration and the value of n′(3) is added to the next heuristic n value.

The replace operation selects random values i ∈ {1..k}, hrep ∈ H and
prep ∈ P . The operation returned is a new configuration:

X ′
C = ... ∗ hi−1(..) ∗ hrep(prep, ni) ∗ hi+1(..) ∗ ... (8)
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Fig. 5. Example of the replace operation

The idea of this operation is to give more exploration capability to the
algorithm.

Figure 5 shows an example. The third heuristic in the configuration is replaced
by a new one, with new parameters p and the same value of n.

All these operations maintain the constraints (2) and (3) satisfied. The repre-
sentation and the defined operations allow the hyperheuristic algorithm to reach
a wider combination between low-level heuristics.

3.3 Evaluation Function

Our approach uses the traditional fitness function for strip-packing [12], which is
to minimize the container’s height used. It is supposed that the container’s width
is fixed. The quality of a constructive algorithm or configuration is evaluated
according to the quality of the solution that it obtains.

3.4 Procedure

The hyperheuristic explores the space of constructive algorithms (Xs) by starting
from an initial and random generated configuration (X0). To do that, our approach
follows a Hill-climbing procedure, thus in each iteration it is applied one random
operation to the algorithm and if the new algorithm X ′

C is better or equal than
the current one (XC), then X ′

C will be the new algorithm for the next iteration.
In order to escape local minima, we have performed for each H-SP test 10

restarts. It means that one execution of H-SP of 100 seconds corresponds to 10
hill-climbing procedures of 10s each.

The initial algorithm is X0 = h1(p1, n1) ∗ h2(p2, n2) ∗ ... ∗ hm(pm, nm), with
h1 �= h2 �= ... �= hm and m = #H , in other words, all the heuristics are used
once to construct X0. The values of pi are selected at random from the set P ,
and the values of ni are fixed satisfying the equation (9):

ni =
i × N

m
−

i−1∑
j=1

nj (9)
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Algorithm 1. H-SP(T ime Limit)
for i = 1 to 10 do

restart time()
X0 ← RandomAlgorithm(H,P, N)
Best Algorithm ← X0

XC ← X0

while time()< Time Limit/10 do
select RandomNumberFrom(1..3)

case 1: X ′
C ← Add(XC)

case 2: X ′
C ← Remove(XC)

case 3: X ′
C ← Replace(XC)

end select

if Evaluate(X ′
C) ≥ Evaluate(XC) then

XC ← X ′
C

end if
end while

if Evaluate(XC) ≥ Evaluate(Best Algorithm) then
Best Algorithm = XC

end if
return Best Algorithm

end for

For example, if m = 4 (#H is also 4) and the amount of pieces N is 47, the
four heuristics in set H will be selected in some order, the parameters pi will be
randomly selected from P and the values of n1, n2, n3 and n4 will be respectively
11, 12, 12 and 12.

Algorithm 1 shows the procedure. RandomAlgorithm function generates the
initial constructive algorithm. Add, Remove and Replace functions, perform the
operations described in 3.2. Evaluate function executes the generated algorithms
and obtains their fitness. Finally the best solution can be obtained executing the
Best Algorithm.

4 Tests

We have performed two kinds of tests. The first one compares the results obtained
using low-level heuristics with the results of our hyperheuristic approach. We
report the quality of the solution found and the percentage used of each single
low-level heuristic in the hyperheuristic. The second test compares H-SP with
the best reported results from the strip-packing state of the art.

4.1 Benchmarks

For these tests we use the 21 Hopper’s instances classified in 7 classes C1, . . . , C7,
according to their size. The optimal solution of each instance is known, [12]. We
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Table 1. Gap to the solution for low-level heuristics and H-SP

Class Low-level heuristics H-SP20s
BLF HR BFDH* BF Average Best

C1 6.6 6.6 6.6 5 0 0
C2 13.3 8.8 8.8 8.8 0.89 0
C3 11.1 6.6 6.6 6.6 2.22 2.22
C4 4.4 3.8 3.8 3.3 1.67 1.67
C5 2.6 2.6 2.6 2.6 1.26 1.11
C6 3.1 2.7 2.7 2.5 1.28 0.83
C7 2.6 2.6 2.6 2.2 1.17 0.97

Average 6.24 4.81 4.81 4.42 1.21 0.97

also report the results obtained using Bortfeldt’s problems that have been re-
cently proposed in [3]. He has defined 360 instances of strip-packing problems
with 1000 rectangles and unknown optimal solutions. There are 12 sets of prob-
lems and 30 instances belonging to each set. They differ in four factors related
to the objects to be placed: width, area, heterogeneity and maximum dimension
ratio.

The hardware platform for the experiments was a PC Pentium IV, 2.66Ghz
with 1024 MB RAM under Debian operating system. The algorithm has been
implemented in C++.

4.2 Comparison with Low-Level Heuristics

The Table 1 shows the results, using Hopper’s instances and allowing rotation,
found by each single heuristic and the average and the best results obtained
by our H-SP algorithm over 10 runs. In order to compare H-SP with low-level
heuristics, we limited the running time of H-SP to 20 seconds.

The set H , in this test, is composed of the heuristics BLF,HR,BFDH*,BF,
in their original versions 2. And the set of parameters P is composed of all
combinations of types of ordering (7) and types of rotation (4) for the remaining
objects.

Each low-level heuristic is evaluated with each parameter in P (7 × 4 = 28)
and the best solution is shown, the time for each instance is not superior to 1
second. The results are calculated as the percentage from the optimal solution
(gap(%) = solution−opt

opt ).
The quality of the solution found by the low-level heuristics has been strongly

improved by the final constructive algorithm XF given by our framework. The
execution time of XF is comparable to the execution time of low-level heuristics
2 Originally each heuristic can decide when rotate or not an object, for the case of no

rotation allowed instances, this functionality is not used.
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Table 2. Average use of low-level heuristics in H-SP

Class Low-level heuristics
BLF HR BFDH* BF

C1 9.24 30.00 54.45 6.27
C2 11.14 27.17 11.95 49.72
C3 29.71 15.80 0.23 54.24
C4 34.46 24.41 8.52 32.59
C5 40.19 10.76 3.70 45.33
C6 15.82 10.97 1.95 71.25
C7 99.68 0.31 0 0

Average 34.48 13.07 5.49 46.94

Table 3. Gap to the solution for Hopper’s instances with rotation allowed (RF)

Class GA+ SA+ HRalg SPGAL H-SP100s H-SP1000s
BLF BLF Average Best Average Best Average Best

C1 4 4 8.33 1.7 1.7 0 0 0 0
C2 7 6 4.45 0.9 0 0 0 0 0
C3 5 5 6.67 2.2 2.2 2.22 2.22 1.78 1.11
C4 3 3 2.22 1.4 0 1.67 1.67 1.67 1.67
C5 4 3 1.85 0 0 1.11 1.11 1.11 1.11
C6 4 3 2.5 0.7 0.3 1 0.83 0.83 0.83
C7 5 4 1.8 0.5 0.3 1.03 0.97 0.69 0.56

Average 4.57 4 3.97 1.06 0.64 1 0.97 0.87 0.75

(in C7 instances, XF and BLF take 0.0045s and 0.0035s, respectively, to construct
a solution).

In Table 2, we report the average percentage of pieces that each heuristic of
the set H places in the final constructive algorithm XF for each kind of problem.

We can remark that each problem requires a different combination of the low-
level heuristics. This is the advantage of the implicit natural adaptation of the
hyperheuristic framework. We remark that BFDH* tends to be less applied as
the size of the problem increases, while BLF shows the exact contrary behavior.
A pattern cannot be identified for both BF and HR heuristics. Note however
that BF has been used more frequently than HR. In addition, HR is more useful
in solving smaller problem categories. Thus, the application percentage of the
low-level heuristics depends on the problem instance to be solved. Furthermore,
the algorithm is able to self-adapt to the problem at hand.

Figure 6 shows a typical final constructive algorithm and its solution for a
class C7 instance (especifically the C72 instance).
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Fig. 6. Solution for instance C72
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Table 4. Gap to the solution for Hopper’s instances without rotation (OF)

Class Iori BF+ SPGAL GRASP H-SP100s H-SP1000s
algorithm SA Best Average Best Average Best Average Best

C1 1.67 0 1.67 0 0 1.33 0 1 0
C2 2.22 6.25 2.22 0 0 0 0 0 0
C3 2.22 3.33 3.33 1.11 1.11 2.22 2.22 2.22 2.22
C4 4.75 1.67 2.78 1.67 1.67 2.11 1.67 1.67 1.67
C5 3.93 1.48 1.48 1.11 1.11 1.18 1.11 1.26 1.11
C6 4.00 1.39 1.67 1.58 1 1.39 1.11 1.22 0.83
C7 — 1.77 1.25 1.39 1.25 1.08 0.97 1 0.97

Average 3.13 2.27 2.06 0.98 0.88 1.33 1.01 1.2 0.97

4.3 Comparison with State-of-the-Art Algorithms

Tables 3 and 4 summarize the best results found in the literature [1, 3, 4, 12,
13, 16, 18, 21], and the results obtained by our hyperheuristic for the Hopper’s
instances. The results are calculated as the percentage from the optimal solution
(gap(%) = solution−opt

opt ).

Tests with rotation allowed (RF)

We have first studied the problems where the rotation of the rectangles is allowed.
Table 3 shows the results found in the literature for some algorithms compared
with H-SP. The algorithms GA+BLF and SA+BLF [12], were run on a Pentium
Pro 200 MHz with an average time per run of 674 minutes for SA+BLF and
136 minutes for GA+BLF. The deterministic algorithm HRalg [21], was run on
a 2.4GHz CPU, with an average time per run of 5.59 seconds (0 seconds for C1
instances, 36 seconds for C7). SPGAL [4] reports an average time per run of
159 seconds on a 2GHz Pentium and the algorithm was run 10 times for each
instance. The H-SP algorithm have been run 10 times with execution times of
100 and 1000 seconds for each instance. The set H is composed of the heuristics
BLF, HR, BFDH* and BF, in their original versions.

Results in Table 3 show that H-SP gives good quality solutions and even
better solutions than various other algorithms for the problem (metaheuristics
and heuristics) except for the SPGAL algorithm. This algorithm is especially
designed for these benchmarks and evaluates all possible rotations for each object
to be positioned.

Tests without Rotation (OF)

We have also tested the algorithms considering the same benchmarks, but with-
out allowing object rotations. To this test, the set H is composed of the heuristics
BLF, HR, BFDH* and BF, in their no-rotation-allowed versions. The set P is
reduced to only order parameters (rotation have no sense).
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Table 5. Gap to the solution for Bortfeldt’s instances

Set of Type RG Type OG Type RF
Problems GA4 H-SP GA4 H-SP H-SP H-SP

100s 100s 100s 1000s

1 2.44 3.39 4.43 4.89 1.44 1.01
2 1.86 1.92 3.79 3.70 0.99 0.74
3 2.61 1.54 3.07 2.32 1.26 1.07
4 2.34 1.04 2.85 1.64 0.75 0.62
5 1.27 3.11 2.08 4.12 1.07 0.82
6 1.04 1.67 1.68 2.38 0.76 0.61
7 1.87 1.59 2.39 2.13 1.60 1.46
8 1.18 1.51 1.62 1.92 1.08 0.92
9 3.03 2.12 4.34 3.45 1.25 0.76
10 1.78 1.27 1.67 1.52 0.52 0.38
11 1.87 1.46 2.45 1.97 1.32 1.12
12 1.83 1.58 2.12 2.03 0.61 0.54

Average 1.93 1.85 2.71 2.67 1.05 0.84

Table 4 shows the results found by some algorithms compared with H-SP.
The GRASP algorithm has been run 10 times on a 2GHz Pentium, the stopping
criterion is of 60 seconds. BF+SA [7] has been run 10 times on a 2GHz Pentium
with a limit of 60 seconds per run. Iori et al. [13] algorithm was run 300 seconds
on a Pentium III at 800Mhz. SPGAL [4] reports an average time per run of
160 seconds on a 2GHz Pentium and the algorithm was run 10 times for each
instance. The H-SP algorithm have been run 10 times with execution times of
100 and 1000 seconds for each instance.

Up to now, GRASP was the best approach. We obtained better average results
than GRASP in the two biggest classes (C6 and C7).

4.4 Tests with Bortfeldt’s Instances

We performed three series of tests with the 360 large new random instances
proposed by Bortfeldt and Gehring [4], subdivided in 12 sets of 30 instances. For
all these instances, the optimal solution is not known. We use as performance
index the gap with the continuous lower bound clb [4] ( gap(%) = (bestfound−clb)

clb ).
In Table 5 we have compared the Bortfeldt’s algorithm GA4 (based on SP-

GAL) with H-SP. In the second and third columns we consider the problems type
RG, that requires guillotine cuttings and allows objects to be rotated. For these
set of problems the average execution time of algorithm GA4 is 895 seconds on a
2GHz Pentium. For these guillotinable instances, the set H is composed of low-
level heuristics that respect that guillotine constraint. The heuristics are only
two: HR and BFDH* (Section 2.1). For each problem instance the hyperheuristic
is run once with a maximum execution time of 100 seconds.
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In the fourth and fifth columns we consider the problems type OG, that
requires guillotine cuttings and where the orientation of the objects is fixed. We
used the same low-level heuristics as for RG instances. The average execution
time for Bortfeldt’s algorithm is 717 seconds on a 2GHz Pentium. For each
problem instance the hyperheuristic is run once with a maximum execution
time of 100 seconds and the average results are shown.

We also considered the problems type RF shown in the last column, where
guillotine cutting is not required and the objects may be rotated. The set H
is composed of the heuristics: BLF, HR, BFDH* and BF, in their original ver-
sions. For each problem instance the hyperheuristic is run once with maximum
execution times of 100 and 1000 seconds.

We can remark that we are competitive for all these RG and OG bench-
marks with Bortfeldt’s algorithm. Moreover with the type RF we can see that
we reduced the gap obtained for the RG and OG problems. This behavior was
expected, since RF problems are less constrained, nevertheless, Bortfeldt and
Gehring say that their algorithms (GA-4 is the best of them) obtain negligible
improvements when they are applied with the post-optimization process [4], in
other words, when they are applied to RF problems.

Our framework is flexible: we only had to change the set of low-level heuristics
in each case, and the framework gives us competitive results.

5 Conclusions

This research allows us to conclude that using a hyperheuristic approach can
improve the performance of single greedy heuristics. Moreover, the hyperheuris-
tic is able to adapt itself to the problem by selecting a good combination of
these low-level heuristics. This framework is quite general: we have shown that
it could solve different strip packing problems (RF, OF, RG, OG). For solving
a new problem type, the major task is the selection of suitable and efficient
low-level heuristics. The hyperheuristic framework will allow cooperation among
them, hopefully improving their single behaviors.

For future works, we believe that adding new operations and low-level heuris-
tics can obtain configurations that explore in a better way the search space.
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