
Variable Neighborhood Search for Noisy
Problems Applied to Project Portfolio Analysis

Walter J. Gutjahr, Stefan Katzensteiner, Peter Reiter

Dept. of Statistics and Decision Support Systems, University of Vienna
{walter.gutjahr,stefan.katzensteiner,peter.reiter}@univie.ac.at,

http://mailbox.univie.ac.at/walter.gutjahr/

Abstract. Motivated by an application in project portfolio analysis un-
der uncertainty, we develop an algorithm S-VNS for solving stochas-
tic combinatorial optimization (SCO) problems based on the Variable
Neighborhood Search (VNS) metaheuristic, and show its theoretical
soundness by a mathematical convergence result. S-VNS is the first
general-purpose algorithm for SCO problems using VNS. It combines
a classical VNS search strategy with a sampling approach with suit-
ably increasing sample size. After the presentation of the algorithm, the
considered application problem in project management, which combines
a project portfolio decision on an upper level and project scheduling as
well as staff assignment decisions on a lower level, is described. Uncertain
work times require a treatment as an SCO problem. First experimental
results on the application of S-VNS to this problem are outlined.

Keywords. Variable Neighborhood Search, stochastic combinatorial op-
timization, project portfolio selection, staff assignment, project schedul-
ing.

1 Introduction

Stochastic combinatorial optimization (SCO) problems occur very frequently in
diverse types of applications, since many optimization problems have a discrete
or combinatorial structure, and very often, decisions have to be made under
uncertainty. In this case, a standard approach offered by the operations research
paradigm is to represent uncertain aspects quantitatively by a stochastic model,
and to optimize the decision with respect to important characteristics (usually
expected values, sometimes also variances, quantiles etc.) of the cost function
which is then a random variable. For stochastic models involving a high degree
of realism and therefore usually also a high degree of complexity, it can easily
occur that these characteristics cannot be computed from explicit formulas or
by means of numerical procedures, but must be estimated by simulation. This
has led to the development of so-called simulation-optimization methods such
as the Stochastic Branch-and-Bound Method [16], the Stochastic Ruler Method
[2], or the Nested Partitions Method [17]. For a good survey on this area, cf. [5].

2

Especially in cases where already the underlying deterministic combinato-
rial optimization (CO) problem is computationally hard and practical prob-
lem instances are of a medium or large size, combined methods treating the
combinatorial aspect of the problem by a metaheuristic seem to be advisable.
Such metaheuristic-supported simulation-optimization algorithms have been de-
veloped, e.g., based on Simulated Annealing ([7], [8], [1]), Genetic Algorithms
[4], or Ant Colony Optimization ([9], [10]).

Recently, much attention is given in the literature to the Variable Neighbor-
hood Search (VNS) metaheuristic developed by Hansen and Mladenovich [12]
which seems to produce excellent results on several hard deterministic CO prob-
lems. To our best knowledge, however, no attempt has been made up to now to
develop an extension of a VNS algorithm for the treatment of SCO problems
by a simulation-optimization approach. Thus, a general-purpose technique for
treating SCO problems by a VNS-based method seems still to be lacking.

In the present work, we propose a VNS-based algorithm called S-VNS which
is applicable to a broad class of SCO problems. We give a formal “proof of con-
cept” for the algorithm by deriving a strict mathematical convergence result:
Under mild conditions, the current solutions of S-VNS converge to (global) op-
timality. A convergence result for a metaheuristic is certainly not yet a sufficient
condition for its practical usefulness. However, one would hesitate to apply a
heuristic algorithm for which cases cannot be excluded where the optimal solu-
tion can never be found, no matter how much computation time is invested. In a
deterministic context, convergence of the “best solution so far” to the optimum
can typically be easily achieved by introducing a sufficient amount of random-
ness into the search process. In a stochastic context, however, the problem is
complicated by two factors: First, the “best solution so far” can not be deter-
mined with certainty by simulation. Secondly, the question of a suitable sample
size scheme in an iterative stochastic optimization procedure is non-trivial, as
outlined very clearly by Homem-de-Mello in [13].

The development of our VNS variant for stochastic problems is mainly mo-
tivated by an application in the field of project portfolio analysis under uncer-
tainty. Practical project management, especially in the R & D area, requires
(repeated) decisions on sets of projects, so-called portfolios, that are to be car-
ried out, while rejecting or deferring other project candidates because of capacity
limits or of insufficient benefits to be expected from those projects (cf. , e.g., [15]
or [6]). In real applications, this decision cannot be separated from two other
decisions to be made on a “lower decision level”: one on the scheduling of the
required work packages of each project that has been chosen, the other on the
assignment of personnel to work packages. The problem is stochastic in so far as
the work times needed by each work package have to be considered as random
variables. Finally, when considering objective functions, we do not only take ac-
count of economic goals and of potential tardiness of projects, but also include a
strategic goal connected with the work of the staff in different “competencies”.
All in all, this gives a problem formulation that is sufficiently complex to serve
as a test case for the proposed S-VNS algorithm.

3

The plan of the paper is the following: In section 2, the proposed algorithm
S-VNS is presented. Section 3 contains the mathematical convergence result. In
section 4, we present the application problem under consideration, outline the
way it is attacked, and present results of the application of S-VNS for a specific
example instance. Section 5 contains conclusions.

2 The Proposed Simulation-Optimization Algorithm

2.1 General Problem Structure

The proposed algorithm is designed to provide solutions to the following rather
general type of stochastic combinatorial optimization problems:

Minimize f(x) = E (F (x, ω)) s.t. x ∈ S.

Therein, x is the decision, F is the cost function, ω denotes the influence of
randomness, E denotes the mathematical expectation, and S is a set of feasible
decisions, which we always assume as finite.

We focus on application cases where it is difficult or even impossible to com-
pute E (F (x, ω)) numerically. Instead of determining approximations to this ex-
pected value by numerical techniques (e.g., numerical integration or analytical
transform techniques), we resort to estimating it by sampling: For this purpose,
a sample Z of s independent random scenarios ω1, . . . , ωs is drawn. The sam-
ple average estimate (SAE) is then given by f̃(x) = (1/s)

∑s
ν=1 F (x, ων) ≈

E (F (x, ω)). It is easy to see that f̃(x) is an unbiased estimator for f(x).
A typical application of our approach is given by the case where the SAEs are

obtained by Monte-Carlo simulation. In this situation, we can interpret a sce-
nario ων as a random number or a vector of random numbers allowing, together
with the solution x and the cost function F , the computation of an observation
F (x, ων).

2.2 The Algorithm S-VNS

Our proposed solution algorithm, S-VNS, follows the general lines of the VNS
algorithm as described in [12], but extends it by the computation of SAEs at
several places, and by the introduction of an additional step called tournament,
where a current candidate solution x is compared to a solution x̂ considered best
so far, replacing x̂ by x if the SAE of x (based on an appropriate sample size)
turns out as better than the SAE of x̂.

As ordinary VNS, the procedure S-VNS uses a hierarchy of neighborhood
structures: For each x ∈ S, we assume a k-neighborhood Nk(x) ⊆ S of x as
given, where k = 0, . . . , kmax. It is assumed that N0(x) = {x} for all x ∈
S. Furthermore, we assume that the sets Nk (k = 0, . . . , kmax) are nonempty
and pairwise disjoint. The last assumption comes in a natural manner if the
neighborhoods are derived from a distance function d(., .) on S by the definition
Nk(x) = {y ∈ S | d(x, y) = k}. (An alternative assumption would be to consider

4

neighborhoods that form a chain of inclusions: N0(x) ⊂ N1(x) ⊂ . . . ⊂ Nkmax
.

This situation occurs if one sets Nk(x) = {y ∈ S | d(x, y) ≤ k}. Our theoretical
result can also be extended to this case, but we skip this point for the sake of
brevity.)

Procedure S-VNS
set m = 1;
choose x ∈ S;
set x̂ = x; // best-so-far solution
repeat until stopping criterion is met{

(1) set k = 1;
(2) repeat until k = kmax {

(a) (shaking:) generate an x′ ∈ Nk(x) at random;
(b) (local search:)

set x̄ = x′;
set local-optimum-found = false;
set ρ = 1;
repeat until local-optimum-found or ρ > ρmax {

draw a sample Z of size s0;
compute the SAEs of x̄ and of all solutions in N1(x̄) w.r.t. Z;
set x̄∗ = solution in N1(x̄) with best SAE;
if (x̄∗ has better SAE than x̄) {

set x̄ = x̄∗;
set ρ = ρ + 1;

}
else set local-optimum-found = true;

}
set x′′ = x̄;

(c) (move-or-not:)
draw a sample Z ′ of size s0;
compute the SAEs of x and of x′′ w.r.t. Z ′;
if (x′′ has better SAE than x) {

set x = x′′;
set k = 1;

}
else set k = k + 1;

(d) (tournament:)
draw a sample Z ′′ of size sm;
compute the SAEs of x̂ and of x w.r.t. Z ′′;
if (x has better SAE than x̂)

set x̂ = x;
set m = m + 1;

} }

Fig. 1. Pseudocode S-VNS.

5

Fig. 1 shows the pseudo-code of S-VNS. We call the part (a) – (d) of the
execution starting with a shaking step and ending with a tournament step a
round of the algorithm. The integer m (m = 1, 2, . . .) is used as a round index.
A round begins with the determination of a random neighbor solution x′ to the
current solution x (“shaking”), which aims at escaping from local optima. The
size k of the neighborhood is dynamically controlled. The shaking mechanism
must ensure that all solutions x′ in the considered neighborhood have a positive
probability of being selected. After that, x′ is improved by local search steps until
either a local optimum is found, or a certain predefined number ρmax of steps
is reached. Since the comparison of the current local search solution x̄ with its
neighbor solutions requires the estimation of objective function values, a sample
Z (updated in each step) of constant size s0 is used in each local search step.

Each round starts with some value of the neighborhood size variable k. We
can group the rounds to cycles, where a new cycle is started any time when a
round starts with k = 1. A cycle consists of one or several rounds with consecu-
tively increasing values of k.

Local search results in a solution x′′. In the step “move-or-not”, this solution
replaces the current incumbent x if it evaluates better at a further sample Z ′,
again of size s0. In the last case, the neighborhood size is reduced to one. Finally,
the “tournament” between the incumbent x and the solution x̂ considered best
so far takes place. The size sm of the sample Z ′′ on which this tournament is
based has to be increased with suitable speed during the process in dependence
on m. (This is contrary to the sizes of samples Z and Z ′ which are not increased.)
We denote the solution x exposed to the tournament in round m by x(m), and it
will be shown in the next section that on certain conditions, the sequence x(m)
converges to a globally optimal solution.

3 Convergence Analysis

As it is seen from the pseudo-code, S-VNS works with different random samples
at different occasions. Let us start their description with sample Z ′′. In round m,
sample Z ′′ contains scenarios ωm

1 , . . . , ωm
sm

. We use the symbol ωm for the sm-
tupel (ωm

1 , . . . , ωm
sm

), and the symbol ω for (ω1, ω2, . . .).
Sample Z contains, in the ρ-th local search step of the m-th round, sce-

narios ηm
ρ,1, . . . , η

m
ρ,s0

, and sample Z ′ contains scenarios which we denote by
ηm
0,1, . . . , η

m
0,s0

. By ηm, the matrix (ηm
ρ,ν) (ρ = 0, . . . , ρmax; ν = 1, . . . , s0) is de-

noted, and η = (η1, η2, . . .) comprises all ηm.
Finally, there is an additional influence of randomness which is active in

the shaking step of the algorithm. We denote the random scenario influencing
the choice of the solution x′ in the shaking step of round m by ξm, and set
ξ = (ξ1, ξ2, . . .). Note that apart from ξm, the decision on x′ is also dependent
on the current x and on the current value of k.

The total information (ξ, η, ω) determining the random influence will be
called sample path.

6

Throughout this article, we assume that all scenarios ωm
ν , ηm

ρ,ν and ξm are
independent. Moreover, it is assumed that the ωm

ν have identical probability
measures for all m and ν, the ηm

ρ,ν have identical probability measures for all
m, ρ and ν, and the ξm have identical probability measures for all m. These
assumptions are satisfied in a natural way if S-VNS applies Monte-Carlo simu-
lation for cost evaluation, based on a series of independent random numbers the
distribution of which is independent of x and m.

Note that we have two different probability mechanisms in the algorithm. The
first mechanism generates the part (ξ, η) of the sample path. This mechanism
completely determines the control flow in S-VNS, with the exception of the
question whether in the tournament, x̂ is updated to the value x or not. We
denote the probability space consisting of the elements (ξ, η) by Ξ, and the
probability measure on it by P . The second mechanism generates the part ω of
the sample path. It influences the decision which solution wins a tournament.
We denote the probability space consisting of the elements ω by Ω, and the
probability measure on it by P̃ .

For deriving our main theoretical result, we make use of the following lemma
which has be proven by large-deviation theory:

Lemma 3.1 (Homem-de-Mello [13], Proposition 3.2). Suppose that for a scheme
(s1, s2, . . .) of sample sizes and independent scenarios ωm

ν ,

(i) for each x ∈ S, the variances var[F (x, ωm
1)] are bounded by some constant

M = M(x) > 0,
(ii) the scenarios ωm

ν have identical probability measures, and the SAEs f̃m(x) =
(1/sm)

∑sm

ν=1 F (x, ωm
ν) are unbiased1, i.e., E (f̃m(x)) = f(x) for all x,

(iii)
∑∞

m=1 αsm < ∞ for all α ∈]0, 1[.

Then for each x, we have f̃m(x) → f(x) (m →∞) for P̃ -almost all ω ∈ Ω.

We are now able to show convergence of S-VNS to a (globally) optimal solu-
tion. The proof is given in the Appendix.

Theorem 3.1. Consider S-VNS. Suppose that

(a)
⋃kmax

k=0 Nk(x) = S for all x ∈ S,
(b) the assumptions (i) – (iii) of Lemma 3.1 are satisfied for the tournaments in

S-VNS, and
(c) the distribution of F (x, ω) has a nonzero density in each point of IR.

Then, for P -almost all (ξ, η) ∈ Ξ and P̃ -almost all ω ∈ Ω, there exists an integer
m0 (depending on the sample path (ξ, η, ω)) such that xm ∈ S∗ for all m ≥ m0,
where S∗ is the set of optimal solutions.

Remark 1. In typical VNS applications, kmax is usually set to a smaller value
than the minimum value ensuring that each solution can be reached from any x

1 Homem-de-Mello also refers to a more general framework where E (F (x, ωm
ν)) can

be different from f(x). In our context, unbiasedness follows by definition.

7

within a k-neighborhood with k ≤ kmax, as assumed in condition (a) of The-
orem 3.1. In future investigations, one might try to generalize the result by
omitting condition (a).

Remark 2. A sufficient condition for assumption (iii) in Lemma 2.1 to be sat-
isfied is that the sample size sm grows as c0 ·

√
m with a constant c0 > 0, which

is a fairly moderate growth. However, not all increasing samples size schedules
satisfy assumption (iii); e.g., logarithmic growth is not sufficient.

4 The Application Problem: Stochastic Project Selection,
Scheduling and Staffing

4.1 Problem Formulation

We apply the proposed algorithm to the stochastic version of a problem the
deterministic version of which has been introduced in [11] (cf. also [15], [6]). The
problem encompasses a project portfolio selection decision on an upper decision
level and decisions on project scheduling and staff assignment on a lower level.
The upper-level decision consists in the choice of a subset of projects from a
given set of candidates i = 1, . . . , n. Let the binary decision variable xi take the
value 1 iff project i is to be selected, and let x = (x1, . . . , xn). Projects have
ready times ρi and due dates δi. The decision has to be made under uncertainty
on the work times needed by the projects with respect to certain required human
competencies r = 1, . . . , R, which can be considered as “resources”. It is assumed
that project i requires a (so-called “effective”) work time of Dir in competency r
(r = 1, . . . , R), where Dir is a random variable with a (known) distribution the
parameters of which can be estimated in advance. We call that part of a project i
that requires a particular competency r the work package with index (i, r).

A fixed team of employees j = 1, . . . , J is assumed as available. For each
employee, we suppose that her/his efficiency in each competency r can be quan-
tified as a value γjr, measuring the fraction of effective work in competency r
that s/he is able to deliver within given time, compared to the work of an em-
ployee with a “perfect” ability in the considered competency r. If employee j
with efficiency γjr works for y time units in work package (i, r), s/he reduces
the effective work time required for work package (i, r) by the amount γjr ·y. To
distinguish y from the effective work time γjr · y, we call y the real work time.

On the lower decision level, after a decision on a project portfolio has been
made, the workload corresponding to the single competencies has to be assigned
to the staff over time. Since work times are uncertain, a dynamic policy is re-
quired for this part of the planning process. We will consider a specific, fixed
policy of this type. It is allowed that several employees contribute to the same
work package (i, r), provided that the efficiency value of each of these employees
in competency r does not lie below some pre-defined minimum value γmin. Each
contribution is weighted by the efficiency value of the assigned employee.

As the objective function, we take a weighted average with fixed weights β1,
β2 resp. β3 of three terms: (1) Economic benefit (return etc.), which can be

8

estimated for each project i by a value wi, its overall value resulting as the sum
of the values wi of the selected projects i. (2) Expected strategic benefit, where
strategic benefit measures the degree to which the company engages in future-
oriented areas. To quantify this objective, desirability values vr are assigned
to each competency r. The strategic benefit is defined as the weighted sum of
the real work times Yr(x) the overall staff spends in each competency r (given
portfolio x), weighted by the values vr. It is important to note that we take here
real work times instead of effective work times; the reason for this choice is that in
models on organizational learning (cf., e.g., [3]), competence increment is rather
related to real than to effective work. As a consequence, the second objective
function is not simply determined by the set of selected projects, but influenced
by the staff assignment decision. Observe that the quantities Yr(x) depend also
on the random variables Dir and are therefore random variables themselves.
(3) The expected value of the total tardiness Ψ(x) of the selected projects with
respect to their due date (given portfolio x). The value Ψ(x) is the sum of the
tardiness values Ψi(x) of the selected projects i, where, with Ci(x) denoting the
completion time of project i under portfolio decision x, the tardiness Ψi(x) is
defined as (Ci(x)− δi)+ if xi = 1, and zero otherwise. Objective (3) enters with
negative sign into the overall objective function, since it is to be minimized.

In total, this produces the objective function

E

(
β1

n∑

i=1

wixi + β2

R∑
r=1

vrYr(x)− β3

n∑

i=1

Ψi(x)

)
→ max,

where the first term is in fact deterministic. The constraint is defined by the
(given) capacity limits of the employees.

4.2 Solution Technique

On the upper decision level of project portfolio selection, the problem presented
in the previous subsection is an SCO problem, which makes the proposed al-
gorithm S-VNS applicable. The feasible set S is in this case the set {0, 1}n of
possible project portfolios. What remains to be specified is the way the two
other aspects of the problem, namely project scheduling and staff assignment,
are handled on the lower decision level.

Evidently, our problem formulation contains a (particular) stochastic schedul-
ing problem as a special case. Methods for solving stochastic scheduling problems
have found considerable interest in the literature; we refer, e.g., to Möhring and
Stork [14]. As outlined in [14], a suitable approach to the solution of a stochastic
scheduling problem consists in determining a policy which acts at so-called deci-
sion points of the time axis. Roughly speaking, a decision point is a time point
where “something happens”. In our case, decision points are t = 0 (project
start), the ready times ρi of the projects, and the (random) completion times of
the work packages (i, r). It is important to ensure that the decision prescribed by
some policy for decision point t only uses information that is already available
at time t; for example, the knowledge of the random work time Dir required

9

by a work package (i, r) that is not yet completed at time t cannot be used in
the decision. However, since we assume that the distributions of these random
variables are known in advance, quantities as E (Dir) may be used by the policy
at any time.

Procedure Stochastic Scheduling-and-Staffing
set τ = 0; // decision point
repeat until all work packages are completed {

for all projects i in ascending order of their due dates δi {
for all yet uncompleted work packages (i, r) with τ ≥ ρi in descending order

of E (Dir) {
for all employees j in descending order of γjr {

if (employees j is not yet assigned and γjr ≥ γmin)
assign employee j to work package (i, r);

} } }
determine the earliest time τ ′ at which either one of the currently scheduled

work packages becomes completed, or a ready time occurs;
subtract, for each work package, the effective work done between time τ and

time τ ′ from the remaining effective work time (work times by employees
have to be weighted by their efficiencies);

set τ = τ ′, and set all assignments of employees to work packages back;
}

Fig. 2. Dynamic policy for the lower decision level.

For scheduling the remaining work in the selected projects and to re-assign
staff in a decision point, we have chosen a conceptually simple heuristic pol-
icy which can be classified as priority-based in the terminology of [14]: First of
all, projects with an earlier due date have a higher priority of being scheduled
immediately than projects with a later due date. Secondly, within a project i,
work packages (i, r) with a higher value of E (Dir) (i.e., those that can be ex-
pected to consume a higher amount of resources) obtain higher priorities. Fi-
nally, for each work package (i, r), employees j with free capacities and efficiency
value γjr ≥ γmin are assigned according to priorities defined by their efficiency
value γjr (higher priority for higher efficiency). We present the applied stochas-
tic scheduling-and-staffing algorithm in pseudo-code form in Fig. 2. The chosen
policy effects that at each decision point t, the set of employees is partitioned
into teams where each team is either assigned to a specific work package, or is
(in the case at most one team) “idle” at the moment.

4.3 A Numerical Example

At the moment, we are performing tests using benchmark data on candidate
projects, employees, work times, efficiencies and objectives from an application
provided by the E-Commerce Competence Center Austria (“EC3”), a public-
private R & D organization. The following illustration example is a simplified

10

version derived from this real-world application. Experiments were performed
on a PC Pentium 2.4 GHz with program code implemented in Matlab V 6.1.

The reduced example application (which does not use the EC3 data directly,
but is similar in flavor) considers n = 12 projects, J = 5 employees and R = 3
competencies. Ready times and due dates span over a time horizon of 32 months.
For modelling the work times Dir, triangular distributions have been used for
the first tests, where the parameter estimations map the typical high skewness of
work times in R & D projects, the most frequent value lying much closer to the
minimum value than to the maximum value. (We do not claim that triangular
distribution satisfy the conditions of Theorem 3.1, but they yield meaningful
test cases for the algorithm S-VNS nevertheless.) Efficiency values have been
determined by a special procedure the description of which is outside the scope
of this paper; in the case of the five selected employees for the illustration example
presented here, the efficiency values are such that one of the five employees is
highly specialized, whereas the efficiencies of the other four employees are more
evenly distributed over the three considered competencies. A minimum efficiency
score of γmin = 0.25 has been defined. The economic benefits of the 12 projects
have roughly been estimated by the vector (20, 1, 4, 5, 4, 4, 4, 4, 3, 1, 6, 8); for the
strategic benefits, the three considered competencies have been weighted by the
desirability values 2, 1 and 5, respectively. The time unit is a month. First,
we considered the case where the weights for the three parts of the objective
function (corresponding to economic benefit, strategic benefit and tardiness)
are estimated by the numbers β1 = 20, β2 = 1 and β3 = 100, respectively.
This means that work experience of 20 months gained in a competency with
desirability 1 is considered as of the same worth as an additional unit of economic
benefit, and the loss caused by a delay of one month is considered as equivalent
to the loss of five units of economic benefit.

It is not easy to evaluate the results delivered by the proposed algorithm
S-VNS, since exact solutions2 are very hard to determine already for this compa-
rably small problem size: Note that the solutions space for the portfolio decision
consists of 212 = 4096 portfolios, and from the observed variances and the typ-
ical differences between objective function values, we estimate that at least 104

simulation runs are necessary to compute a sufficiently accurate approximation
to the true objective function value f(x) enabling an identification of the optimal
solution with some reliability. Of course, even this time-consuming brute-force
procedure would not give a guarantee that the true optimum is found. In order
to have a yardstick for our heuristic results, we adopted the following pragmatic
procedure instead: First, a heuristic solution x̃ was determined by S-VNS, and
using the observed SAE variance, an aspiration level ca was determined in such
way that an SAE with sample size s(1) would be above ca for each solution that is
at least as good as x̃, except with a very small failure probability < 10−6. Then,
we performed complete enumeration of all portfolios x ∈ S by an SAE with

2 By the term “exact solution”, we refer in the sequel only to the portfolio selec-
tion decision, considering the described scheduling-and-staffing policy as fixed. The
question whether this policy can be improved will not be treated here.

11

sample size s(1). Whenever the resulting objective function estimate exceeded
the aspiration level ca for a solution x, we re-evaluated this solution based on a
second SAE with large sample size s(2) À s(1). For s(1) and s(2), we chose the
values 80 and 20 0000, respectively.

By this technique, we found the presumably best solution within a runtime
of about 5 hours and 20 minutes. For the weights indicated above, this was
the solution x∗ = (0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1). We performed now runs of S-
VNS where the stopping criterion was a pre-defined maximum number mmax of
rounds chosen in such a way that each run required about 1 minute computation
time only. For each parameter combination, the average relative deviation of the
objective function values of the delivered solutions in ten independent runs from
that of the (presumably) best solution was computed. We observed that for
several parameter combinations, the optimal solution was found in a majority of
runs. Let us look at two special parameter combinations. Therein, c0 denotes the
factor of

√
m in Remark 2 after Theorem 3.1, and ∆r gives the average relative

deviation of the solution quality from the optimum in percent. It can be seen
that the relative derivations are rather low:

(i) s0 = 5, c0 = 5, kmax = 12, ρmax = 10, mmax = 10: ∆r = 1.13%.
(ii) s0 = 3, c0 = 10, kmax = 12, ρmax = 10, mmax = 10: ∆r = 0.86%.

Reducing the weight β3 for objective function 3 from 100 to 20 describes the
situation where violations of due dates have less serious consequences. The op-
timal solution for this weight combination is x∗ = (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).
It is seen that here, the decision maker can risk to include the larger (and more
profitable) project no. 1 into the portfolio. Using parameter combination (i) from
above, all of ten independent runs of S-VNS provided this optimal solution.

5 Conclusions

We have presented a simulation-optimization algorithm S-VNS for stochastic
combinatorial optimization problems, based on the Variable Neighborhood Search
metaheuristic, and shown that the solutions produced by S-VNS converge under
rather weak conditions to optimality. As an application case, a stochastic project
portfolio selection problem involving project scheduling and staff assignment de-
cisions has been described, and the application of the proposed algorithm to this
problem has been outlined.

First experimental observations have been obtained, which are of course not
yet sufficient for an experimental evaluation of the approach, but show promising
results. Tests on a large number of randomly generated instances as well as on
real-life instances will be necessary to judge the solution quality achieved by
the method. In particular, these tests should include comparisons with other
simulation-optimization techniques and verify the found results by statistical
significance tests. Within our mentioned application context, we are performing
extensive investigations of this type, and a long version of the present paper is
planned providing results of this type.

12

Acknowledgment. Financial support from the Austrian Science Fund (FWF)
by grant #L264-N13 is gratefully acknowledged.

References

1. Alrefaei, M.H., Andradottir, S., A Simulated Annealing algorithm with constant
temperature for discrete stochastic optimization, Management Sci. 45, pp. 748 -
764 (1999).

2. Alrefaei, M.H., Andradottir, S., “A modification of the stochastic ruler method
for discrete stochastic optimization”, European J. of Operational Research 133, pp.
160-182 (2001).

3. Chen, A.N.K., Edgington, T.M., “Assessing value in organizational knowledge cre-
ation: considerations for knowledge workers”, MIS Quaterly 29, pp. 279–309 (2005).

4. Fitzpatrick, J.M., Grefenstette, J.J., “Genetic algorithms in noisy environments”,
Machine Learning 3, pp. 101–120 (1988).

5. Fu, M.C., “Optimization for simulation: theory vs. practice”, INFORMS J. on
Computing 14, pp. 192-215 (2002).

6. Gabriel, S.A., Kumar, S., Ordonez, J., Nasserian, A., “A multiobjective optimiza-
tion model for project selection with probabilistic considerations”, Socio-Economic
Planning Sciences 40, pp. 297–313 (2006).

7. Gelfand, S.B., Mitter, S.K., Simulated Annealing with noisy or imprecise measure-
ments, J. Optim. Theory Appl. 69, pp. 49 - 62 (1989).

8. Gutjahr, W.J., Pflug, G., “Simulated annealing for noisy cost functions”, J. of
Global Optimization, 8 (1996), pp. 1–13.

9. Gutjahr, W.J., “A converging ACO algorithm for stochastic combinatorial opti-
mization”, Proc. SAGA 2003 (Stochastic Algorithms: Foundations and Applica-
tions), Springer LNCS 2827, pp. 10-25 (2003).

10. Gutjahr, W.J., “S-ACO: An ant-based approach to combinatorial optimization
under uncertainty”, Proc. ANTS 2004 (4th International Workshop on Ant Colony
Optimization and Swarm Intelligence), Springer LNCS 3172, pp. 238-249 (2004).

11. Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, Ch., Denk, M.,
“Competence-Driven Project Portfolio Selection, Scheduling and Staff Assign-
ment”, Technical Report, University of Vienna, Dept. of Statistics and Decision
Support Systems (2007).

12. Hansen, P., Mladenović, N., “Variable neighborhood search: Principles and appli-
cations”, European J. of Operational Research 130, pp. 449–467 (2001).

13. Homem-de-Mello, T., “Variable-sample methods for stochastic optimization”,
ACM Trans. on Modeling and Computer Simulation 13, pp. 108–133 (2003).

14. Möhring, R.H., Stork, F., “Linear preselective policies for stochastic project
scheduling”, Mathematical Methods of Operations Research 52, pp. 501–515
(2000).

15. Nozic, L.K., Turnquist, M.A., Xu, N., “Managing portfolios of projects under un-
certainty”, Annals of Operations Research 132, pp. 243–256 (2004).

16. Norkin, V.I., Ermoliev, Y.M., Ruszczynski, A., “On optimal allocation of indivisi-
bles under uncertainty”, Operations Research 46 (1998), pp. 381–395.

17. Shi, L., Olafsson, S., “Nested partitions method for global optimization”, Opera-
tions Research 48, pp. 390–407 (2000).

13

APPENDIX

For the proof of Theorem 3.1, we first show the following auxiliary result:

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Let
x∗ ∈ S∗, and consider a fixed cycle starting with current solution x ∈ S (and
k = 1 by definition of a cycle).

(a) If x 6= x∗, then with P -probability larger or equal to a constant c > 0, (i) the
medium repeat loop is executed at least until k has that value k∗ for which
x∗ ∈ Nk∗(x), (ii) the shaking at the beginning of the round with k = k∗

yields the solution x′ = x∗, (iii) in this round, local search (starting with
x′ = x∗) ends with x′′ = x∗, and (iv) in the “move-or-not” part of this
round, x′′ = x∗ is judged as better than x, such that x∗ is exposed to the
tournament.

(b) If x = x∗, then with P -probability larger or equal to a constant c̄ > 0, in the
first round of the cycle, x = x∗ wins against x′′, such that x remains equal
to x∗, and x∗ is exposed to the tournament.

Proof. Let A1 to A4 denote the events mentioned under (i) – (iv) in part (a) of
the lemma, respectively. We have

P (A1 ∩ . . . ∩A4) = P (A1) · P (A2 |A1) · P (A3 |A1 ∩A2) · P (A4 |A1 ∩A2 ∩A3).

For proving (a), it suffices to show that all four factors of the product on the
r.h.s. have constants > 0 as lower bounds.

Let k∗ = k∗(x) be that k ∈ {1, . . . , kmax} for which x∗ ∈ Nk∗(x) holds.
(k∗ exists because of assumption (a) of Theorem 3.1.) Let ∆ = maxx∈S f(x) −
minx∈S f(x) denote the maximum distance between the objective function values
of two solutions in S. Because of assumption (c) of Theorem 3.1 and the fact
that the sample size s0 is constant, there is a probability larger or equal to some
constant c1 that in the test of x against x′′ in “move or not”, the value of f(x) is
underestimated by at least ∆/2, and the value of x′′ is over-estimated by at least
∆/2, with the consequence that x appears as the better solution and the “else”
branch of “move or not” is executed (i.e., k is increased). With a P -probability
of at least ck∗−1

1 ≥ ckmax−1
1 > 0, this happens in k∗− 1 successive rounds. Hence

P (A1) ≥ ckmax−1
1 is shown.

It is immediately seen that

P (A2 |A1) = P (x∗ is selected | shaking selects from Nk∗(x))

≥ min
1≤k≤kmax

min
x′∈Nk

P (x′ is selected | shaking selects from Nk∗(x))

and the last is a constant > 0 by the basic property of the shaking mechanism
and the finiteness of S.

Concerning P (A3 |A1 ∩ A2), observe that if already during the first execu-
tion of the innermost repeat loop, the value of f for the solution x̄ = x′ = x∗ is

14

underestimated and the values of f for all solutions in N1(x∗) are overestimated,
x∗ is judged as a local optimum and becomes therefore the new x′′. By assump-
tion (c) of Theorem 3.1, both the probability of underestimating and that of
overestimating a function value by the SAE is larger than some constant c2 > 0,
hence the mentioned probability is at least c

N1(x
∗)+1

2 ≥ c
|S|
2 > 0.

Finally, we need a lower bound for P (A4 |A1∩A2∩A3). If in the test between
x and x′′ in “move-or-not”, the function value of x′′ = x∗ is underestimated
and that of x is overestimated, then x∗ wins the test and gets exposed to the
tournament. The probability for the mentioned event is at least c2

2 > 0.
Together, this proves assertion (a) of the lemma. For showing (b), let us

assume x = x∗. Let x′′ be the solution yielded by the local search in the first
round of the cycle. As in the last paragraph, it follows then that x∗ wins against
x′′ with a probability of at least c2

2 > 0. ut
Proof of Theorem 3.1. The core of the proof is similar to the proof of Theorem
4.1 in [13] which refers to a random search algorithm. Within our context, we
have to take account of the more complicated situation induced by the VNS–
type search. First of all, we show that for arbitrary fixed x∗ ∈ S∗, it holds with
P -probability one that x(m) = x∗ for infinitely many m. Indeed, by applying
Lemma 3.2 above to the cycles following the cycle in which an arbitrary fixed
round m0 is contained, we see that in each of these cycles, with P -probability of
at least min(c, c′) > 0, the solution x∗ gets exposed to at least one tournament.
Because of the independence of the scenarios by condition (b) of the theorem, it
follows that for P -almost all (ξ, η), there exists a round m1 > m0 with x(m1) =
x∗. Hence, with the exception of a set Ξe ⊆ Ξ of combinations (ξ, η) with
P -measure zero, x(m) = x∗ for infinitely many m.

Now let f̃m(x) denote the SAE obtained for solution x if x is exposed to the
sample ωm. According to Lemma 3.1, for each x, it holds that f̃m(x) → f(x) for
all ω ∈ Ω with the exception of a set Ωe

x with P̃ -measure zero. In other words,
for arbitrary fixed δ > 0, |f̃m(x) − f(x)| ≥ δ can hold for only finitely many m
except if ω ∈ Ωe

x. Therefore, for ω ∈ Ω \ Ωe
x, there is an integer Kx = Kx(δ, ω)

such that
|f̃m(x)− f(x)| < δ for all m ≥ Kx. (1)

Let K = maxx∈S Kx. Because of the finiteness of S, also Ωe =
⋃

x∈S Ωe
x has

P̃ -measure zero. For ω ∈ Ω \ Ωe, inequality (1) implies |f̃m(x) − f(x)| < δ for
all m ≥ K, independently of x. We set now

δ = (1/2) · min
x′,y′∈S, x′ 6=y′

|f(x′)− f(y′)|

and assume x ∈ S and y ∈ S to be arbitrary solutions with f(x) < f(y). For all
ω ∈ Ω \Ωe, if m ≥ K,

f̃m(x)− f̃m(y) = (f̃m(x)− f(x)) + (f(x)− f(y)) + (f(y)− f̃m(y))

≤ |f̃m(x)− f(x)|+ |f̃m(y)− f(y)| − (f(y)− f(x))

15

< 2δ − (f(y)− f(x)) = min
x′,y′∈S, x′ 6=y′

|f(x′)− f(y′)| − (f(y)− f(x)) ≤ 0. (2)

According to the assertion derived in the first paragraph of the proof, there
exists an integer m1 > K such that in round m1, a solution x∗ ∈ S∗ is exposed
to the tournament, i.e., x(m1) = x∗, except for combinations (ξ, η) ∈ Ξe with P -
measure zero. (Of course, since K depends on ω, the round index m1 depends not
only on (ξ, η), but on ω as well; however, this has no influence on the exception
set Ξe.) In this case, x∗ wins the tournament in round m1 against an arbitrary
solution x̂ /∈ S∗, because, by (2),

f̃m1(x
∗)− f̃m1(x̂) < 0.

Also in the case of x̂ ∈ S∗, a solution contained in S∗ wins the tournament.
Hence, in any case, x̂m1+1 ∈ S∗. Since this situation also prevails in all subse-
quent rounds, we obtain xm ∈ S∗ for all m ≥ m1. ut

