
Part II

Tabu Search

Chapter 3

TABU SEARCH-BASED
METAHEURISTIC ALGORITHM
FOR LARGE-SCALE
SET COVERING PROBLEMS

Marco Caserta
Instituto Tecnológico de Monterrey
Calle del Puente, 222
Col. Ejidos de Huipulco
Del. Tlalpan, México DF, 14380
México
marco.caserta@itesm.mx

Abstract This paper presents an algorithm for the Set Covering Problem whose
centerpiece is a new primal-to-dual scheme aimed at linking any primal
solution to the dual feasible vector that best reflects the quality of the
primal solution. This new mechanism is used to intertwine a tabu search
based primal intensive scheme with a Lagrangian based dual intensive
scheme to design a dynamic primal-dual algorithm that progressively
reduces the gap between upper and lower bound. The algorithm has
been tested on benchmark problems from the literature: the gap be-
tween upper and lower bound in 6 instances of problems whose optimal
solution is not known has been further reduced, 4 of them via improve-
ments in the lower bound, and 4 by producing a solution that is better
than the best solution provided by other procedures.

Keywords: Set Covering; Tabu Search; Metaheuristic; Primal-to-Dual.

1. Introduction
Our interest toward the set covering problem (SCP) is motivated by

its use in the minimization of the number of patterns required to discrim-
inate observations from a given population. Having an effective SCP al-
gorithm, designed to tackle very large instances of SCP, is vital in order

44 Chapter 3

to define a pattern generation and pattern minimization scheme with
high classification power. This paper is devoted to the development of a
tabu search-based metaheuristic algorithm for very large scale set cover-
ing instances. We design a dynamic primal-and-dual scheme especially
suited for large instances of SCP that are typical in the classification of
data from massive data sets.

The set covering problem is a 0 − 1 integer problem with m rows in
M = {1, . . . ,m}, and n columns in N = {1, . . . , n}. A mathematical
formulation for SCP is

(SCP) : min {z = cx : Ax ≥ 1,x ∈ Bn} ,
where c ∈ Zn+ and A is a matrix of 0’s and 1’s. In the following, we
call cover a binary vector x ∈ Bn that is a feasible solution of SCP,
while a prime cover is a cover with no redundant columns. Also, let
Ji = {j ∈ N : aij = 1} be the index set of columns covering row i, and
Ij = {i ∈M : aij = 1} the index set of rows covered by column j.

Many real-world applications can be formulated as SCP, including
traditional delivery and routing problems, as well as scheduling and lo-
cation problems. More recent applications of SCP are found in probe
selection in hybridization experiments for DNA sequencing (e.g., Borne-
man et al., 2001) and feature selection and pattern construction in LAD,
the logical analysis of numerical data (e.g., Boros et al., 1996).

SCP isNP-complete (Garey and Johnson, 1979), hence exact solution
procedures are doomed to fail in solving practical SCP problems. Fur-
thermore, it is parameterized intractable, which is, W [2]−complete with
respect to the parameter “solution size” (Downey and Fellows, 1999; Nie-
dermeier, 2006; Dom et al., 2006). Supported by its applicability, the
need for solution procedures that can efficiently handle large-scale in-
stances of SCP has attracted a vast amount of interest in the optimiza-
tion community in the past four decades and a great deal of effort has
been directed, especially in the past two decades, toward the develop-
ment of approximate algorithms for SCP. As a result, some algorithms
are capable of solving SCPs with thousands of rows and millions of
columns (e.g., Ceria et al., 1998, Caprara et al., 1999).

To summarize, most approximate solution procedures for SCP are
dual heuristic procedures based upon the solution of the Lagrangian
relaxations of SCP via subgradient optimization (e.g. Caprara et al.,
1999, Ceria et al., 1998, Balas and Carrera, 1996, Fisher and Kedia,
1990, Vaasko and Wilson, 1984, and Balas and Ho, 1980). As the
dual procedures require greedy-type primal heuristics in order to build
a primal cover, they can also be viewed as primal-and-dual algorithms
with “dual-to-primal” mechanisms. In addition, more “advanced” dual

Metaheuristic Algorithm for Set Covering Problems 45

procedures for SCP typically feature some forms of probing and variable
fixing schemes that dynamically update primal and dual information of
SCP and aid in finding more effective solutions of SCP (e.g., Caprara
et al., 1999, Ceria et al., 1998, Balas and Carrera, 1996, and Beasley,
1990). Most algorithms designed to tackle very large scale instances work
on a subset of variables, called “core problem” or “kernel problem”. An
interesting approach aimed at identifying the kernel problem has been
proposed by Weihe, 1998, whose paper presents an effective data reduc-
tion technique that has been tested on very large railway problems. The
objective is to select the minimum set of stations needed to cover a given
set of trains. Real-world instances from the German and European Rail-
road network have been successfully solved by the author. The proposed
scheme can be divided into two phases: first, the irreducible core prob-
lem is identified via dominance and equivalence relations; next, the core
instance is solved via brute-force, when possible, or via heuristic scheme,
when the dimensions of the core make an exhaustive search still too ex-
pensive. The author proposes an interesting approach, since he suggests
that, when dealing with large scale instances, one should first work on
the preprocessing scheme and, afterwards, design the routine that will
work on the core instances, since it is only then that the characteristics
of the core instances are known.

A major contribution of the paper is the development of a “primal-to-
dual” (p2d) mechanism that, for any given primal solution, constructs
a feasible dual vector that minimizes the gap between the upper bound
of SCP given by the cover and the lower bound given by a feasible dual
solution with respect to the sufficient optimality conditions presented
in Theorem 3.1. The benefit of the primal-to-dual mechanism is two-
fold: (i) if the current cover is optimal to SCP, it verifies the optimality
and the search process can be terminated; (ii) otherwise, it constructs
a dual vector u that serves as a new starting vector for subgradient
optimization. If different prime covers are provided, the primal-to-dual
scheme constructs different u’s, allowing subgradient optimization to
explore different regions of the dual solution space. This, in turn, allows
greedy-type dual-to-primal heuristics to construct different prime covers
for SCP.

In this paper we integrate effective dual-to-primal mechanisms from the
literature and a specialization of the novel primal-to-dual mechanism pro-
vided in Caserta and Ryoo, 2001 for SCP. We develop a primal-intensive,
“dynamic” primal-and-dual metaheuristic for large-scale SCP. Compu-
tational experiments with the proposed metaheuristic on 94 benchmarks
from Caprara et al., 1999, Balas and Carrera, 1996, and Wedelin, 1995
indicate that the proposed algorithm advances the state-of-the-art

46 Chapter 3

in SCP quite substantially. Out of 94 benchmark problems, 21 of them
have not been solved to optimality. For 6 of these 21 problems, our algo-
rithm reduces the gap between best lower and upper bounds: new best
solutions to 4 problems are found and the lower bounds of 4 problems
have been improved. For the 73 benchmarks solved to optimality, the
proposed algorithm finds the optimal solutions.

The proposed algorithm is made up of metaheuristic components that
contribute to the efficiency and efficacy of the proposed algorithm. We
first present an overview of the overall algorithm in Section 2. Subse-
quently, we present the metaheuristic components of the proposed algo-
rithm in Sections 3-7. Computational experiments with 94 SCP bench-
mark problems are summarized in Section 8 and concluding remarks are
provided in Section 9.

2. Overall Algorithm
In this section we present the overall algorithm, while the remaining

sections will clarify each step of the proposed scheme. The basic idea
of the proposed scheme is related to the development of a mechanism
that connects the search in the primal space with the exploration of
the dual space. This scheme, called (p2d), is thoroughly presented in
Section 6 and is what makes the algorithm quite effective. The reason
why (p2d) sensibly improves the performance of the algorithm is that it
allows to create “synergies” between the primal phase, based upon the
Tabu Search paradigm, and the dual phase, based upon the Lagrangian
Relaxation technique coupled with subgradient optimization.

The pseudocode of Algorithm PD_SCA() along with Figure 3.1 provide
a first overview of the general algorithm.

3. Tabu Search Metaheuristic
The tabu search metaheuristic of the proposed algorithm is the re-

sult of a specialization of the meta-strategy provided in Caserta and
Ryoo, 2001 for SCP. For reasons of space, we provide details for those
components that are problem-specific in nature for SCP. The proposed
scheme is aimed at thoroughly exploring the feasible space along with
a portion of the infeasible space. Furthermore, by introducing random
and memory-based mechanisms, it aims at striking the balance between
diversification and intensification.

The overall tabu search metaheuristic procedure is summarized in
Procedure Tabu_Search_Metaheuristic(), while the remainder of the
section is devoted to explaining the different ingredients of such proce-
dure.

Metaheuristic Algorithm for Set Covering Problems 47

Algorithm PD_SCA();
initialize u via (3.3)
call Define_Core_Problem() {Section 7}
K =

⌈ |N |
|NC |

⌉
{total number of core problems examined}

k = 0 {cycles counter}
while k < K do

call Tabu_Search_Metaheuristic() {Section 3}
solve (p2d) {Section 6}
call Define_Core_Problem() {Section 7}
call Lagrangian_Optimization() {Section 5}
call Fixing_to_Zero() {Section 7}
call Fixing_to_One() {Section 7}
k ← k + 1 {increase cycles counter}

end while

Procedure Tabu_Search_Metaheuristic();
Input: x∗, UB, x0 (initial cover), T L, (core) problem instance
Output: x∗, UB, T L

for phase ∈ regular, intensification, diversification do
k ← 0 {# excursions into allowed infeasible region}
• = − {start with the releasing phase}
t← 0 {tabu search counter}
while k < 2 do

call Composite_Move_Assignment()
if xt+1 ∈ X then

if cxt+1 < UB then
x∗ ← xt+1; UB ← cxt+1 {update primal information}

end if
if (xt ∈ X) and (xt+1 ∈ X) then
k ← k + 1 {end tabu iteration}

end if
if (xt+1 ∈ X) and (xt ∈ X) then

solve (p2d) {see Section 6}
partial pricing {see Section 7}
call Lagrangian_Optimization() {see Section 5}

end if
end if

end while
end for

48 Chapter 3

Let xk denote the current prime cover. Let us denote by B the index
set of columns that take value 1 in xk. Let M0 = {i ∈M : Ji ∩ B = ∅}
denote the set of rows that are uncovered in xk. With this notation, the
feasible space of SCP can be defined as X :=

{
x ∈ {0, 1}n :

∣∣M0
∣∣ = 0

}
.

In contrast to X, let us define X :=
{
x ∈ {0, 1}n :

∣∣M0
∣∣ ≤ αm} \ X

as the “allowed infeasible space” of SCP, where α is a predetermined
parameter chosen in [0, 1). A key feature of the proposed tabu search
metaheuristic is its ability to escape from a locally optimal solution via
an excursion into the allowed infeasible space. Owing to the monotone
decreasing property of the objective function in x, solutions in X are,
usually, more attractive than the feasible solutions. Thus, even if xk is
a locally dominant prime cover, the search path will be able to escape
from it to a remote, different prime cover xk+1 through a sequence of
1-neighborhood moves in X ∪X.

Each composite move, from xk to xk+1, is comprised of a sequence of
a finite number of 1-neighborhood moves, selected in such a way that
a monotonic property in the search path is preserved with respect to
|M0|, a measurement of the amount of infeasibility associated with xk

(see Figure 3.1-(a).) Furthermore, let us indicate with I−j = {i ∈ Ij :
|Ji ∩ B| = 1} the set of rows uniquely covered, in the current solution
xk, by a column j ∈ B, and with I+

j = Ij ∩M0 the set of rows currently
uncovered that would be covered by adding a column j ∈ N \ B to the
partial cover xk. Finally, let us indicate with T L the tabu list. The
primal phase is made up by two sub-phases, which allow to implement
a strategic oscillation mechanism around the boundaries of the feasible
region:
1. ascending sub-phase: columns are constantly ‘released’ (set to
zero), in such a way that, on the one hand, the objective function value
monotonically improves and, on the other hand, the infeasibility level
monotonically increases. During this phase, at each iteration, a non-
tabu move (j /∈ T L) is chosen as j1 ∈ Γ−, where:

Γ− :=
{
jl ∈ B, I−jl 	= ∅, jl /∈ T L : cjl |I−jl | ≥ cjl+1|I−jl+1|

}

2. descending sub-phase: columns are constantly ‘added’ (set to
one), such that the infeasibility level monotonically decreases, eventually
reaching a prime cover. During this phase, at each iteration, a non-tabu
move (j /∈ T L) is chosen as j1 ∈ Γ+, where:

Γ+ :=
{
jl ∈ N \B, I+

jl
	= ∅, jl /∈ T L : rjl ≤ rjl+1

}

with rj := cj −
∑

i∈I+
j
ui.

Metaheuristic Algorithm for Set Covering Problems 49

We switch from one sub-phase to the other when the corresponding
Γ• is empty. To allow the search path to deviate from following a pre-
determined trajectory given by the use of the greedy merit functions, at
each iteration we select j1 probabilistically, as indicated by the scheme
Select_First_Move(). Each move is, in turn, classified as either a
regular, diversified or intensified move depending upon the way j1 is
selected.

Let x∗ denote the best solution found so far and let 0 < γ1 < γ2 < 1.
Let j• indicate a 1-neighborhood move that sets the j−th component of
xt to 1 if • = + (a set covering move) and to 0 if • = − (a set releasing
move) and let • denote the move in the opposite direction of •. Then,
each composite move from xt to xt+1 is comprised of a sequence of a
finite number of 1-neighborhood moves, and the choice of the first move
plays a critical role in the proposed meta-strategy.

Procedure Select_First_Move();
Input: • (= + or −), x∗, xt, T L
Output: j1

generate a random number γ in [0, 1]
if γ ∈ [0, γ1] then

select a move in Γ• {normal scheme}
else if γ ∈ (γ1, γ2] then

randomly select j1 among j ∈ N , j• 	∈ T L {random scheme}
else
Id• :=

{
j ∈ N, j• 	∈ T L : xtj 	= x∗j

}

if Id• = ∅ then
select a move in Γ• {memory-based scheme}

else
randomly select j1 from Id•

end if
end if

Remark. In order to allow for a more rigorous search of the solution
space, we recur to three different strategies that define three search
phases of the algorithm, namely the regular, diversification, and intensi-
fication phases. During the regular phase, we use γ1 = 0.8 and γ2 = 0.9
for the procedure Select_First_Move(), in such a way that the nor-
mal scheme is privileged above the random and memory-based scheme.
For the diversification phase, we increase the probability of selecting a
random move by using γ1 = 0.6 and γ2 = 0.9. Likewise, for the inten-
sification phase, we use γ1 = 0.6 and γ2 = 0.7, thus granting a higher
chance to the selection of a memory-based move.

50 Chapter 3

Finally, the overall definition of a composite move is illustrated in
Procedure Composite_Move_Assignment(). Denote by •el a unit vector
whose l−th component is−1 if • = − and +1 otherwise. We first identify
the portion of the search space that is being explored. It the boundary
of the “allowed infeasible region” has been reached or if feasibility has
been restored (lines 2,3), then the sub-phase is inverted and the process
is restarted. On the other hand, if the algorithm is currently in an
ascending or descending phase, mainly within the X region, the first
(ascending or descending) move is executed (line 5). The next steps are
aimed at identifying a set of moves that go in the opposite direction
of the first move. For example, if the algorithm is ascending into the
“allowed infeasible space”, we want to identify a set of descending moves
in such a way that the net effect is still to uncover rows. To illustrate, if
the first ascending move is such that column j1 ∈ B is set to 0, with the
consequence that |I−j | rows will be uncovered, a set of descending moves
ζ+ will be identified in such a way that the number of rows uncovered
by j1 is higher than the number of rows covered by all the moves in ζ+.
This is accomplished as illustrated in lines 6–10. Finally, lines 10 and
11 show how the composite move is executed and how the tabu list is
updated.

Procedure Composite_Move_Assignment();
Input: •, xt, T L, (core) problem instance
Output: •, xt+1, T L

1: call Select_First_Move() {identify j1 in Γ•}
2: if (xt + •ej1 	∈ X ∪X) or (xt ∈ X) then
3: • ← •, go to line 1 {invert search direction}
4: end if
5: T L ← T L ∪ {j1} {set first move as tabu}
6: if |I•

jt1
| ≥∑j∈Γ• |I•j | then

7: ζ• := Γ• {identify set of opposite moves}
8: else
9: ζ• :=

{
j1, . . . , ji ∈ Γ• : |I•

jt1
| ≥∑ji

j=j1
|I•j |, |I•jt1 | <

∑ji+1
j=j1
|I•j |
}

10: end if
11: xt+1 ← xt + •ej1 +

∑
j∈ζ• •ej {execute composite move}

12: T L ← T L ∪ {jl : jl ∈ ζ•} {update tabu status}

Remark. Note in the above that each move is selected in such a way
that a monotonic property in the search path is preserved with respect
to |M0|, a measurement of the amount of infeasibility associated with
xt.

Metaheuristic Algorithm for Set Covering Problems 51

Remark. Since the algorithm is especially designed to handle large-scale
instances of SCP, we always work on a subset of columns NC ⊂ N and
we employ pricing techniques to add or remove columns to and from NC

(See section7). Consequently, each occurrence of N in the definition of
neighborhoods must be replaced by NC .

4. Lagrangian Relaxation & Greedy Heuristics
The best known primal heuristic is the greedy one, which uses the

reduced cost information provided by the dual phase to construct a prime
cover. Balas and Ho, 1980, presented a list of scores based upon the
column cost per row covered to create a prime cover. Vaasko and Wilson,
1984, selected a column to be added to the partial cover according to the
value of a score function, randomly chosen among a pool of functions
based upon the column cost per row covered. At every iteration the
primal heuristic is run 30 times with randomly chosen score functions.
Beasley, 1990, proposed a Lagrangian based primal heuristic scheme that
extended the partial cover of the Lagrangian problem to a prime cover.
A score based upon the column cost per row covered is used to rank the
columns. Fisher and Kedia, 1990, proposed as score the reduced cost
computed using only the multipliers of rows left uncovered, rather than
the actual reduced cost. Bricker and Techapicjetvanich, 1993, studied
the effectiveness of five different primal heuristic scores, based upon the
column cost per row covered and the reduced cost per row covered, both
the real and the modified reduced cost. Balas and Carrera, 1996, coupled
the approach of Vaasko and Wilson, 1984, with a primal scheme that
creates a prime cover extending the partial cover of the Lagrangian phase
by choosing columns based upon their reduced cost. The primal scheme,
as a byproduct, produces an improved dual vector.

Let M0 denote the set of rows left uncovered by x, and B denotes the
set of columns fixed to 1 in the current (partial) cover x. Let |Ij ∩M0|
be the number of rows currently uncovered that would be covered by
setting xj to 1. During the dual Lagrangian phase we use the score

s(j) =

cj −
∑

i∈Ij∩M0

ui

|Ij ∩M0| ,

as in Fisher and Kedia, 1990, within the simple heuristic described in
Procedure Greedy_Heuristic().

52 Chapter 3

x

x
j−

w
w
w

1
2

3
3

2

1
+ζ

p2du

p2du uL

uL

X

x xP
k

tabu search phase
(regular, diversification, intensification)

tabu search phase

p2d
d2p

p2d d2p

(a)

(b)

lagrangian phase

dual space

X*

LB

UB

t

tabu search phase

gap gap

lagrangian phase

partial
covers

0
P xP

Figure 3.1. Dynamic Primal-and-Dual scheme: (a) from the feasibility point of view;
(b) from the objective function value point of view.

Metaheuristic Algorithm for Set Covering Problems 53

Procedure Greedy_Heuristic();
Input: u
Output: x
M0 ←M ; x← 0; B ← ∅ {initialization}
while M0 	= ∅ do
j ← argmin

j∈NC\B
{s(j)} {make a cover}

xj ← 1; M0 ←M0 \ Ij ; B ← B ∪ {j} {updating}
end while
remove redundancy in x {prime cover is obtained}

5. Subgradient Optimization
The Lagrangian relaxation of SCP is defined as

L(x,u) = min
x∈{0,1}n

n∑
j=1

rjxj +
m∑
i=1

ui,

where rj (the reduced cost for j, j = 1, . . . , n) is defined as cj −
∑

i∈Ij ui
and requires u such that an optimal vector xL minimizing the La-
grangian function can be computed by a standard technique:

xLj =

{
1, if cj −

∑
i∈Ij ui < 0

0, otherwise
, j ∈ N (3.1)

It is worth noting that, since vector xL is optimal to the Lagrangian
problem, L(u) provides a valid lower bound for SCP. For this reason,
we are interested in finding the vector u that solves the Lagrangian dual
problem, which is

LD(u) = max
u∈Rm+

L(x,u).

Most successful approaches for SCP in the literature solve a series
of Lagrangian relaxations of SCP and use the subgradient optimization
technique to generate a near-optimal vector u for �LD(u). For subgradi-
ent optimization, we use the formula of Held and Karp, 1971:

uk+1
i = max

{
uki + λ

UB − LB
‖s(uk)‖2 si(u

k), 0
}
, i ∈M, (3.2)

where UB and LB are the upper and lower bounds of the optimum
of SCP, λ is the step size parameter, and si(xk) = 1 − ∑j∈Ji xj is

54 Chapter 3

the component i of the subgradient. As in Caprara et al., 1999, u0 is
initialized as

u0
i = min

j∈Ji
cj
|Ij| , i ∈M (3.3)

and λ is updated after every p = 20 iterations, utilizing the best and
worst lower bounds information obtained during the last p iterations.
In addition, if the lower bound improvement in the last 4p iterations
is below the threshold limit of 1%, we apply a “perturbation scheme”
based upon the primal-to-dual scheme of Section 6 to enforce a drastic
modification of the vector u. We summarize the steps of the Lagrangian
optimization phase in Procedure Lagrangian_Optimization().

6. Primal-to-Dual Scheme
Let xP and xL denote a prime cover for SCP and a Lagrangian so-

lution for a given vector u ∈ Rm+ , respectively. Denote by z(•) and
L(•,u) the objective value of SCP and the value of the Lagrangian
function evaluated at •, respectively. Let BP = {j ∈ N : xPj = 1},
BL = {j ∈ N : xLj = 1}, BLP = BL \BP and BPL = BP \BL.

Lema 3.1. Suppose that xP ∈ {0, 1}n, xL ∈ {0, 1}n, and u ∈ Rm+
satisfy ui(

∑
j∈Ji x

P
j − 1) = 0, for all i ∈ M . Then, z(xP)− L(xL,u) =∑

j∈BPL rj −
∑

j∈BLP rj .

Proof. We have

L(xL,u) =
∑
i∈M

ui +
∑
j∈BL

(cj −
∑
i∈Ij

ui)

=
∑
i∈M

ui
∑
j∈Ji

xPj +
∑
j∈BL

cj −
∑
j∈BL

∑
i∈Ij

ui

=
∑
j∈BL

cj +
∑
j∈BP

∑
i∈Ij

ui −
∑
j∈BL

∑
i∈Ij

ui

=
∑
j∈BL

cj +
∑

j∈BPL

∑
i∈Ij

ui −
∑

j∈BLP

∑
i∈Ij

ui,

Metaheuristic Algorithm for Set Covering Problems 55

Procedure Lagrangian_Optimization();
Input: LB, UB, x∗, u0

Output: LB, UB, x∗
k ← 0 {Lagrangian iteration counter}
w← 0 {perturbation scheme counters}
xold = 0, λ0 = 0.1
while lower bound termination tolerance is not met do

if (k mod 20) = 0 then
if LBbest − LBworst > 0.01LBbest then
λk ← 0.5λk {modify step size}
w ← 0 {reset perturbation scheme counter}

else
w ← w + 1 {increase perturbation scheme counter}
if w < 4 then
λk ← 1.5λk

else
λk = 0.1 {apply perturbation scheme}
call p2d(xk,uk) {see Section 6}
if xold = xk then
δ = random(0, 0.1umax), where umax = mini∈M{ui}
ui ← δui for randomly chosen 10% of u

else
xold = xk

end if
end if

end if
LBbest = LBworst = L(xL,u) {set best and worst LB}

end if {new step size available}
k ← k + 1 {increase Lagrangian iteration counter}
update u via (3.2) {perform kth Lagrangian iteration}
solve Lagrangian relaxation via (3.1) {xL is obtained}
if L(xL,u) > LB then
LB ← L(xL,u) {update lower bound on SCP}

end if
if L(xL,u) > LBbest then
LBbest ← L(xL,u) {update best lower bound}

else if L(xL,u) < LBworst then
LBworst ← L(xL,u) {update worst lower bound}

end if
end while {lower bound termination tolerance met}

56 Chapter 3

where the second equality is obtained via ui(
∑

j∈Ji x
P
j − 1) = 0,∀i ∈M .

Now, we have

z(xP)− L(xL,u) =
∑
j∈BP

cj −
∑
j∈BL

cj −
∑

j∈BPL

∑
i∈Ij

ui +
∑

j∈BLP

∑
i∈Ij

ui

=
∑

j∈BPL
cj −

∑
j∈BLP

cj −
∑

j∈BPL

∑
i∈Ij

ui +
∑

j∈BLP

∑
i∈Ij

ui

=
∑

j∈BPL
(cj −

∑
i∈Ij

ui)−
∑

j∈BLP
(cj −

∑
i∈Ij

ui)

=
∑

j∈BPL
rj −

∑
j∈BLP

rj.

Theorem 3.1 (Sufficient Conditions). Suppose that xP ∈ {0, 1}n, xL ∈
{0, 1}n, and u ∈ Rm+ satisfy:

(i) ui(
∑
j∈Ji

xPj − 1) = 0, ∀i ∈M

(ii) rj = cj −
∑
i∈Ij

ui = 0, ∀j ∈ BP

(iii) rj = cj −
∑
i∈Ij

ui ≥ 0, ∀j ∈ N \BP

Then, xP solves SCP to optimality.

Proof. We need to show that both feasibility and optimality are ensured.
Feasibility of xP is enforced via conditions (ii) and (iii), while optimality
is ensured by conditions (i) and (ii), along with x∗ ∈ {0, 1}n.

The sufficient optimality conditions of x∗ for SCP in Theorem 3.1
can be exploited in the derivation of a mechanism that constructs a
“feasible” dual solution u that properly reflects the importance of each
constraint of SCP with respect to the characteristics of xP .

First, note that Conditions (ii) and (iii) of Theorem 3.1, along with the
requirement u ∈ Rm+ give the feasibility of u to the dual linear program
of the linearized SCP. Conditions (i) and (ii), along with x∗ ∈ {0, 1}n
ensure that the primal and dual solutions are optimal to their respective
programs. Let M1 := {i ∈M :

∑
j∈Ji x

P
j = 1} be the set of rows covered

only once by a given solution xP . Furthermore, let NC ⊆ N be the set
of columns in the current core problem, with |NC | � |N |. Consider the
following linear program:

Metaheuristic Algorithm for Set Covering Problems 57

(p2d):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min g =
∑

j∈BP \BL
(cj −

∑
i∈Ij

ui)

s.t. cj −
∑

i∈Ij∩M1

ui = 0, j ∈ BL ∩BP

cj −
∑

i∈Ij∩M1

ui ≥ 0, j ∈ NC \BP

ui ≥ 0, i ∈M1

It is worth noting that (p2d) is a LP with |(NC \ BP) ∪ (BP ∩ BL)|
rows and |M1| columns. Also, note that the two non-trivial constraints
of (p2d) set ui = 0 for all i ∈ M \ M1, and, through the minimiza-
tion process, (p2d) modifies the remaining components of the vector u
feasible to the dual of the linearized SCP that satisfies the sufficiency
conditions of Theorem 3.1 “as much as possible” to yield u that reflects
the characteristics of xP . It is easy to see that, if (p2d) has a feasible
solution, such solution is dual feasible and, consequently,

∑
i ui provides

a valid lower bound for SCP.
The following is an obvious consequence of (p2d) and Theorem 3.1:

Corollary 3.1. If the optimum of (p2d) is equal to zero, then xP solves
SCP.

The following also holds true:

Theorem 3.2. Of all dual feasible u ∈ Rm+ , u∗ obtained from solving
(p2d) minimizes the gap z(xP) − L(xL,u∗) with respect to xP and xL

and Condition (i) of Theorem 3.1.

Proof. The dual feasibility of u∗ is immediate. The formulation of (p2d)
and Theorem 3.1 easily show that z(xP)−L(xL,u∗) is minimized by the
xP and u∗ pair.

7. Variable Fixing, Pricing and Core Problem
Generation

In this section we present the variables fixing schemes for SCP. When
probing xj at 1, not only the Lagrangian multipliers of all rows i ∈ Ij
must be set to 0 but also all rq, q ∈ Ji for every i ∈ Ij , must be reduced
to properly update the importance of the columns after setting xj = 1.
Let:

δ+
j :=

∑
i∈Ij

ui × (|q ∈ Ji : rq ≤ 0| − 1)

The proposed score is embedded in the Fixing_to_Zero() scheme as
in Balas and Carrera, 1996:

58 Chapter 3

Procedure Fixing_to_Zero();
Input: N , NC , LB, UB, u
Output: N , NC

for j ∈ NC \BP do
if �LB + rj + δ+

j � ≥ UB then
NC ← NC \ {j} {eliminate column from core problem}
N ← N \ {j} {permanently eliminate column}

end if
end for

Remark. Ceria et al., 1998, fixed a variable to zero if its reduced cost is
greater than the gap between upper and lower bound. Balas and Carrera,
1996, computed a factor Δj for every column j ∈ N \ B defined as the
improvement in the value of the vector u obtained by fixing xj to one.
Subsequently, one column j is fixed to zero if �LB + rj + Δj� ≥ UB.

To fix a column j ∈ BP permanently at 1 compute, for each i ∈ I−j ,
the variation of ui required in order for at least another column q ∈ Ji,
q 	= j to have a non-positive reduced cost. This amount of modification
required by ui is

δ−j =
∑

i∈I−j

min
q∈Ji
{rq},

and xj , j ∈ BP , can be permanently fixed to 1 if �LB− rj + δ−j � ≥ UB.
Procedure Fixing_to_One() summarizes the scheme used.

Procedure Fixing_to_One();
Input: N , NC , LB, UB, F , u
Output: N , NC , F

for j ∈ BP do
if �LB − rj + δ−j � ≥ UB then
xj ← 1
NC ← NC \ {j} {eliminate column from core problem}
F ← F ∪ {j} {include column in fixed columns set F}

end if
end for

To define core problems NC ⊆ N , we employ a pricing scheme that
resembles the one presented in Caprara et al., 1999. We first add to the
core problem NC all the columns whose reduced cost is less than 0.1.
Subsequently, whenever possible, for each row i ∈ M , we add enough
columns j ∈ Ji to NC in such a way that each row is covered by at least

Metaheuristic Algorithm for Set Covering Problems 59

5 columns in the core problem. These columns are added according to
the reduced cost value.

8. Computational Results on SCP Benchmarks
In this section we present the results obtained by testing the algorithm

on benchmark problems. The algorithm was implemented in C++ and
compiled with the GNU C++ compiler with the -O2 option. The (p2d)
problem is solved using the linear programming solver Clp() of COIN-
OR Library (Lougee-Heimer, 2003). The computing platform used is a
Linux workstation with Intel Pentium 4 1.1GHz processor and 256 Mb
of RAM memory.

The parameters value for the tabu search metaheuristic are: θ = 2
(number of excursion into the infeasible region for each TS phase), α =
0.1 (maximum infeasibility allowed) and τ ∈ [τmin, τmax] (tabu tenure),
where:

τmax = α× |x|, τmin = 0.1τmax

The value of τ is set to τmin every time a new best solution is found
and increased every time dominated solutions are visited. The rationale
behind such a choice is that, on the one hand, we want to thoroughly
explore promising regions, in which “good” feasible solutions are found,
while, on the other hand, we aim at escaping from unattractive regions
by increasing the tabu tenure, thus forcing the algorithm to move toward
a different region.

Computational results for Beasley’s OR Library (Beasley, 1990) are
not reported because the algorithm always finds the optimal, or the best
known, solution. We only report, in Table 3.1, the results of Beasley’s
OR Library RAIL problems. The table shows that to 4 out of 7 instances
the gap between upper and lower bound has been further reduced. In
addition, for the two biggest instances a new best result is found, which
indicates that the algorithm is especially suited for very large scale prob-
lems. Finally, Table 3.2 reports the results on the instances appeared
in Wedelin, 1995. Out of 6 instances, for 4 of them the algorithm finds
the optimal solution, and for the last two it finds a solution that is better
than any other solution found so far.

9. Conclusions
We have presented a new dynamic scheme for large scale set covering

problems. The backbone of the algorithm is a new primal-to-dual mech-
anism that, given any prime cover, constructs the dual feasible vector
that better reflects the quality of the prime cover. Using this new mech-
anism, the algorithm updates the status of the search in the dual space

60 Chapter 3

any time a new prime cover is found and vice versa, dynamically linking
the primal intensive phase with the dual intensive phase.

When tested on benchmark problems, the algorithm improved the
best known results on 6 instances, 2 of them by providing a better lower
bound, 2 by finding a solution that is better that any other solution
found so far, and 2 by improving both upper and lower bound.

Owing to the intensive use of primal-based schemes, the algorithm is
especially suited for those instances of SCP with a number of rows much
larger than the number of columns. Considering a classification problem,
where a set of observations is partitioned into true and false, one wants
to classify future observations based upon the value of certain attributes.
The problem of selecting the smallest support set of attributes needed to
classify a population can be formulated as SCP. However, if we indicate
with m the number of observations, equally divided between positive
and negative observations, the number of rows of SCP is of the order
of O(m2), leading to SCPs with m � n. For this reason, some new
applications of SCP, such as probe selection problem for hybridization
experiment as well as attributes identification and patterns selection in
logical analysis of data, can be better tackled with a primal intensive
approach rather that via the traditional Lagrangian based approach.
This approach could be fostered by the design of a parallel algorithm
for very large instances of SCP and, hence, applied to large problems in
data mining and genetics.

Finally, it is also worth noting that the technique proposed in Sec-
tion 3 of this paper, dealing with the swap of columns within and outside
of the current solution is a generalization of oscillation mechanisms as
well as k-flip mechanisms, such as the ones of Glover and Kochenberger,
1996, Chu and Beasley, 1998, Caserta et al., 2006 or Yagiura et al., 2006.
The results obtained on SCPs by these authors along with the promising
results of the proposed scheme endorse the idea that oscillating mech-
anisms (continually crossing the boundaries of the feasible region) are
very powerful ingredients of a metaheuristic scheme when it comes to
solving large scale combinatorial optimization problems.

References
Balas, E. and Carrera, M. C. (1996). A Dynamic Subgradient-Based

Branch-and-Bound Procedure for Set Covering Problem. Operations
Research, 44(6):875–890.

Balas, E. and Ho, A. (1980). Set Covering Algorithms Using Cutting
Planes, Heuristics and Subgradient Optimization: a Computational
Study. Mathematical Programming Study, 112:37–60.

Metaheuristic Algorithm for Set Covering Problems 61

Table 3.1. Results on the RAIL test instances from Beasley’s OR-Library

Name Size
Best in Literature PD-SCP

LB UB Time LB UB Time

RAIL582 582×55,515 210 211 570� 210 211 131
RAIL507 507×63,009 173 174 817† 173 174 139

RAIL516 516×47,311 182 182 3000� 182 182 217

RAIL2536 2536×1,081,841 685 691 10000§ 687 691 338

RAIL2586 2,586×920,683 937 948 1183§ 939 948 399
RAIL4284 4284 ×1,092,610 1051 1065 10000§ 1055 1063 1022

RAIL4872 4,872×968,672 1,509 1,534 4566§ 1514 1532 1166
�: Caprara et al. (1999) - time in PC486/33 CPU seconds.
§: Caprara et al. (1999) - time in HP735/125 CPU seconds.
†: Ceria et al. (1998) - time in PC486/33 CPU seconds.

Table 3.2. Results on instances from Wedelin (1995)

Name Range
Best in Literature PD-SCP

UB Time UB Time

b727scratch 29×157 94,400 †,§ 0.3 94,400 0.1

alitalia 118×1,165 27,258,300†,§ 6.2 27,258,300 2.1
a320 199×6,931 12,620,100†,§ 79.5 12,620,100 37.3

a320coc 235×18,753 14,495,500† 1,023.7 14,495,500 228.1

sasjump 742×10,370 7,339,537 § 396.3 7,339, 521 221.7
sasd9imp2 1,366×25,032 5,262,190 † 1,579.7 5,262, 140 1,066.3
§: Caprara et al. (1999) - time given in DECstation 5000/240 CPU seconds.
†: Wedelin (1995) - time given in DECstation 5000/240 CPU seconds.

62 Chapter 3

Beasley, J. E. (1990). A Lagrangian Heuristic for Set Covering Problems.
Naval Research Logistics, 37:151–164.

Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., and Jiang,
T. (2001). Probe Selection Algorithms with Applications in the Analy-
sis of Microbial Community. Bioinformatics - Discovery Notes, 1(1):1–
9.

Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., and
Muchnik, I. (1996). An Implementation of Logical Analysis of Data.
Technical report, Rutgers University, New Brunswick, NJ - 08903-
5062.

Bricker, D. and Techapicjetvanich, K. (1993). Investigation of
Lagrangian Heuristics for Set Covering Problems. Technical Report
Iowa City, IA, 52242, University of Iowa.

Caprara, A., Fischetti, M., and Toth, P. (1999). A Heuristic Method for
the Set Covering Problem. Operations Research, 47(5):730–743.

Caserta, M., Quiñonez Rico, E., and Márquez Uribe, A. (2006). A Cross
Entropy Algorithm for the Knapsack Problem with Setups. Computers
and Operations Research.

Caserta, M. and Ryoo, H. S. (2001). Efficient Tabu Search-Based Pro-
cedure for Optimal Redundancy Allocation in Complex System Reli-
ability. In Proc. 5th Intl Conference on Optimization: Techniques and
Applications, pages 592–599.

Ceria, S., Nobili, P., and Sassan, A. (1998). A Lagrangian-based Heuris-
tic for Large-scale Set Covering Problems. Mathematical Programming
Ser B, 81:215–228.

Chu, P. C. and Beasley, J. E. (1998). A Genetic Algorithm for the Mul-
tidimensional Knapsack Problem. Journal of Heuristics, 4(1):63–86.

Dom, M., Guo, J., Niedermeier, R., and Wernicke, S. (2006). Minimum
Membership Set Covering and the Consecutive Ones Property. In
Arge, L. and Freivalds, R., editors, SWAT 2006 - 10th Scandinavian
Workshop on Algorithm Theory, volume 4059 of Springer LNCS, page
337.

Downey, R. G. and Fellows, M. R. (1999). Parameterized Complexity.
Monographs in Computer Science. Springer.

Fisher, M. L. and Kedia, P. (1990). Optimal Solutions of Set Cover-
ing/Partitioning Problems using Dual Heuristics. Management Sci-
ence, 36:674–688.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability:
a Guide to the Theory of NP-Completeness. Freeman.

Glover, F. and Kochenberger, G. A. (1996). Critical Event Tabu Search
for Multidimensional Knapsack Problems, chapter In Meta-Heuristics:

Metaheuristic Algorithm for Set Covering Problems 63

Theory and Applications – I.H. Osman and J.P. Kelly, pages 407–427.
Kluwer Academic Publishers.

Held, M. and Karp, R. M. (1971). The Traveling Salesman Problem and
Minimum Spanning Tree: Part II. Mathematical Programming, 1:6–25.

Lougee-Heimer, R. (2003). The Common Optimization INterface for
Operations Research. IBM Journal of Research and Developmentg,
47:57–66.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Ox-
forf University Press.

Vaasko, F. J and Wilson, G. R. (1984). An Efficient Heuristic for Large
Set Covering Problems. Naval Research Logistics, 31:163–171.

Wedelin, D. (1995). An Algorithm for Large Scale 0-1 Integer Program-
ming with Applications to Airline Crew Scheduling. Annals of Oper-
ational Research, 57:283–301.

Weihe, K. (1998). Covering Trains by Stations or the Power of Data
Reduction. In Battiti, R. and Bertosi, A. A., editors, OnLine Proceed-
ings of the 1st Workshop on Algorithms and Experiments (ALEX’98)
- Trento, Italy, pages 1–8.

Yagiura, M., Kishida, M., and Ibaraki, T. (2006). A 3-Flip Neighbor-
hood Local Search for the Set Covering Problem. European Journal
of Operational Research, 172:472–499.

