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Summary

Objective: We describe a patient admission scheduling algorithm that supports the
operational decisions in a hospital. It involves efficiently assigning patients to beds in
the appropriate departments, taking into account the medical needs of the patients
as well as their preferences, while keeping the number of patients in the different
departments balanced.

Methods: Due to the combinatorial complexity of the admission scheduling problem,
there is a need for an algorithm that intelligently assists the admission scheduler in
taking decisions fast. To this end a hybridized tabu search algorithm is developed to
tackle the admission scheduling problem. For testing, we use a randomly generated
data set. The performance of the algorithm is compared with an integer programming
approach.

Results and conclusion: The metaheuristic allows flexible modelling and presents
feasible solutions even when disrupted by the user at an early stage in the calculation.
The integer programming approach is not able to find a solution in 1 h of calculation
time.

© 2009 Elsevier B.V. All rights reserved.
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matically assign patients to hospital beds based on a
tabu search algorithm hybridized with a token-ring
approach. This algorithm will assist admission sche-
dulers to carry out the hospital management’s deci-
sions at the operational level. It enables scheduling
patients more efficiently, meaning that they will be
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assigned to beds in the appropriate departments,
satisfying as much as possible the patients’ wishes
and all the necessary medical constraints. Mean-
while the algorithm will also try to balance the
number of patients between the different depart-
ments.

Newly admitted patients need a free bed that
satisfies both the personal preferences (single, twin
room, or a ward) as well as the medical needs of the
patient (availability of oxygen or telemetry in the
room) located in the department that is specialized
in treating the clinical picture. The assignhment of
patients to beds is often carried out by a central
admission office that individually contacts every
appropriate department a few days before the
effective admission of the patient. Other hospitals
organize the admission of patients without a central
admission office, leaving admission responsibility
with the departments. In the latter case, a lack
of overview of the departments may result in under
occupancy. Patients may be refused in one depart-
ment while free suitable beds are available in
another department.

Generally speaking patients can be divided in two
groups: inpatients and outpatients. Inpatients spend
several days or nights in a hospital, whereas the
admission of outpatients is expressed in hours. We
will concentrate in this paper on inpatients only.
Inpatients can further be divided in three groups:
emergency, elective and admitted patients. Emer-
gency patients are hard to schedule, since by defini-
tion they have no appointment with the physician
and arrive at random. Several papers are devoted to
the arrival and assignment of emergency patients
(see [1] for an overview). Most hospitals provide
some slack beds that can be used for emergency
patients. Elective inpatients are waiting for an
admission date. This means that an admission office
can determine when to admit them. Such patients
allow the hospital to improve its occupancy rate as
they can be assighed to the most appropriate per-
iod. In this paper however, we simplify the problem
by assuming that the patients’ admission dates are
known before. The physician who advised the
patient to be admitted to the hospital, diagnosed
the patient’s disease which is associated with a
default (average) length-of-stay.

The available literature on admission scheduling
mainly concentrates on more abstract levels than
what we consider in this paper. Those papers focus
on the decisions of the hospital management at the
tactical and strategic level, in order to increase the
hospital’s efficiency. We will focus in this paper on
the operational level, in which the decisions made
by the hospital management are executed at the
level of the assignment of patients to specific beds in

given days. It is our experience, and this was pointed
out by Kusters and Groot [2] as well, that a bed
admission support application only stands a chance
to get accepted if its decisions are supported by
human experts and if interactions with the user are
allowed. The admission scheduling algorithm that
we describe in this article suggests solutions to the
manual admission officer that satisfy the decisions
made by the hospital management. Since we focus
solely on the operational level, we assume that all
admission rules and issues have been resolved by the
hospital management beforehand. It is aimed at
automatising the work of the admission scheduler,
who allocates patients to the most appropriate
beds/rooms/departments over their entire hospital
stay.

In Section 2, we introduce some problem related
terminology. A review of the literature is given in
Section 3, while in Section 4 the problem is
described formally. In Section 5, the mathematical
model for the patient admission scheduling problem
is formulated. Integer programming is applied to
solve the model. However, it does not generate a
feasible solution in reasonable time. To this end, we
decided to apply a metaheuristic approach to assign
patients to beds, which is described in detail in
Section 6. In Section 7, we give future research
directions and conclude.

2. Terminology

We first introduce some problem specific terminol-
ogy that we will use throughout the rest of the
paper.

e Admitted patients are patients that are effec-
tively admitted to the hospital and are assigned to
a room and a bed.

e Planned patients have an admission date and an
expected length-of-stay (LOS), which is deter-
mined by the government for every pathology.
To reduce the expenses in the public health sec-
tor, the government demands the hospitals to
treat every pathology within this pre-defined
amount of time. Planned patients are not
admitted to the hospital yet.

e Transfer: Moving a patient from one room to
another during his/her stay. We distinguish
between planned and unplanned transfers. A
planned transfer can, for example, concern a
move to intensive care after surgery, and a move
back to another department after recovery. An
unplanned transfer could be caused by bed or
room shortage. Unplanned transfers should be
avoided as much as possible.
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e Room: A room is characterized by a number of
physical properties, e.g. the availability of oxygen
or telemetry. Not every room is appropriate for
every patient: different equipment is required for
babies and elderly people, for example. A room
may contain one or more beds. Hospitals normally
do not assign patients of different gender to the
same room at the same time.

e Specialism: A hospital department is in general
highly specialized in treating one kind of pathol-
ogy (cardiovascular diseases, oncology, dermatol-
ogy, etc.). We call this the major specialism of the
department. Often the same department is also
carrying out other treatments as a minor speci-
alism. Some of the rooms are equipped to accom-
modate and some of the nurses are trained to
treat patients with diseases that correspond to
the department’s minor specialism. Nurses
belonging to a department are trained to care
for patients with the specific pathology. This is
similar to what the authors of [3] call nursing
units. Rooms that belong to the department can
be especially equipped for the major specialism
or one of the minor specialisms of the depart-
ment.

e Night: We will consider a night as the smallest unit
of time. Each length-of-stay is expressed in
nights. During the night it is highly uncommon
to admit planned patients.

3. Literature review

Hospital admission scheduling is well reported on in
the research literature. In order to reduce spending
in health care, hospitals are compelled to use their
resources more efficiently.

Hospital admission scheduling is the process of
assigning patients to beds in such a way that the
medical concerns and personal wishes are fulfilled
as much as possible. This process can be carried out
at three different levels: strategic, tactical or
operational. According to [4], the operational level
applies concrete rules for the admission of patients,
which follow the strategic and tactical decisions
that are made by the hospital management. A stra-
tegic decision could involve maximizing the usage of
the resources (MRI scanner, operating theatres,
nurses, beds, etc.) in the hospital or minimizing
the waiting time of the patients [4,5].

In the first part of this literature review we
mention some of the best studied health care exam-
ples that are solved using artificial intelligence
techniques. Numerous articles can be found that
address tactical and strategic levels, but to our
knowledge the admission of patients on the opera-
tional level is not widely reported on. In the two

subsequent sections we discuss the literature on the
tactical and strategic levels of admission scheduling
and also on hospital capacity planning, since they
influence the bed occupancy.

3.1. Artificial intelligence in health care

The application of artificial intelligence in health
care is widespread. Well-known applications are for
example nurse rostering (see [6] for a review),
scheduling operating rooms [7], emergency room
physicians [8] and outpatient’s appointments [9].
These applications range from solving over-simpli-
fied exercises of thought to over-constrained real-
world problems. Spyropoulos [10] provides an over-
view of planning and scheduling approaches in the
hospital management and therapy planning domain.

Although not directly related to the problem of
assigning patients to beds, the problem that is dis-
cussed and solved by Hans et al. [11] bears some
resemblance with our problem. An algorithm is
described which at the same time assigns elective
patients to operating rooms, optimizes the operat-
ing theatre utilization and minimizes the total over-
time of the surgeries. Both constructive and local
search heuristics are applied to solve the problem.
All the proposed optimization techniques lead to a
better utilization of the operating theatres, com-
pared to the schedule that was originally made by
the (human) specialists.

Another, somewhat similar problem, is described
by Ogulata et al. [12]. It involves generating a weekly
work schedule for physiotherapists. Patients are
selected from a list and scheduled on a day of the
week, according to the priority and the duration of
their treatment. They are scheduled in such a manner
that the workload of the physiotherapists is equally
balanced. Patients’ preferences concerning the day
of the week for treatment are not taken into con-
sideration. Ogulata et al. solve the problem using the
mathematical programming tools GAMS and MPL.

Marinagi et al. [13] describe the patient exam-
ination scheduling problem which precedes the pro-
blem tackled in this paper. Before a physician can
diagnose a patient, several examinations have to be
performed, such as X-rays and ultrasound images,
blood samples, etc. The goal is to minimize the
patient’s examination time in the hospital and to
maximize the utilization of resources. The problem
is solved by a combination of agent technology, a
hierarchical planner which supports the decomposi-
tion of complex tests into smaller parts and a sche-
duler. Subject to the different actions that need to
be executed, which is the result obtained by the
planner, the scheduler tries to assign the actions to
appropriate timeslots.
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3.2. Admission scheduling

Gemmel and Van Dierdonck [5] review the available
literature on admission scheduling and conclude
that not only the bed utilization should be taken
into account, but also information on the availabil-
ity and use of resources such as operating rooms,
nurses, etc. From the reviewed literature they
gather two conditions that have to be fulfilled
before one can really talk about scheduling admis-
sions, namely

e the scheduler should have access to valid infor-
mation about the availability of resources;

e the scheduler should have (limited) authority to
change the admission dates.

When these conditions are not fulfilled the admis-
sion service of the hospital administers patients
instead of scheduling them. In the same article,
Gemmel and Van Dierdonck survey how 83 Belgian
hospitals perceive admission scheduling in practice.
It shows a large gap between theory and practice. If
the two above conditions are taken into considera-
tion, the survey reveals that only one third of the
surveyed Belgian hospitals schedule their admis-
sions. The admission services of the remaining
two thirds of the hospitals actually carry out only
an administrative function. From the survey it is also
clear that most hospitals have no information on the
expected length-of-stay or on the expected work-
load, which is - of course - crucial when scheduling
admissions.

In the extensive literature review of Smith-
Daniels et al. [1], inpatient admission scheduling
is classified as a facility allocation decision, in which
it is assumed that the medical services’ size already
have been defined, and the resources are con-
strained by the available beds. The maximization
of bed occupancy levels depends on three variability
sources:

e The admission of emergency patients: in general
some slack capacity is available to admit emer-
gency patients.

e The length-of-stay (LOS) of patients: the
expected LOS of a patient is an estimate — based
on empirical data, or on a probability distribution
— that can differ from the actual duration.

e The requirements of the patient service-mix:
dependent on the clinical picture of the patient,
he/she may require, besides a bed, different
other resources, such as telemetry, specific nur-
sing care, surgical rooms, etc. Focusing solely on
bed occupancy can have as a consequence that
the other resources are over or under used. Ide-

ally, the work load of the nurses should also be
taken into consideration when admitting
patients.

3.3. Hospital capacity planning

Green [3] discusses both the problem of delays in
emergency departments, and the problem of decid-
ing on the available number of beds in the hospital.
She argues that using bed occupancy levels as a base
for determining the number of beds in the hospital is
not accurate. Most reported occupancy levels in the
literature are taken at midnight, when the hospital
usually has a lower occupancy than during the day.
This can lead to a discrepancy of 20% between the
reported and the real occupancy levels. Another
problem that arises is that the occupancy levels
are yearly averages, and as such do not take into
account periods with higher occupancy (e.g. due to
flu epidemics, disasters, etc.) or lower occupancy
(due to holiday periods, etc.). The occupancy level
is even not uniform over a week: in general there are
less patients admitted to the hospital in the week-
end than on weekdays. Green [3] suggests to use —
instead of occupancy levels — the average delay
before a patient can be admitted. One of the solu-
tions that is proposed in the article is to increase the
bed flexibility. This means for example that more
beds should be equipped with extra facilities.

Harper and Shahani [14] describe a simulation
model in which bed occupancy and patients’ refu-
sals can be calculated, taking into account different
what-if scenarios. Akcali et al. [15] describe a net-
work flow approach that assists in determining the
optimal bed capacity in hospitals. It takes into
account the hospital budget and the maximum num-
ber of days a patient is on the waiting list before
being admitted to the hospital. It is however
assumed that all the beds in the hospital are iden-
tical.

4. Problem description and generation
of test data

In this section we describe the admission scheduling
problem formally and how the test data is generated.

4.1. Parameters and variables

We present the notation that is used throughout the

paper.

e Patients are denoted P;, withi=1,...,P, with P
the total number of patients. There are F female
patients and M male patients, with P=F + M.
Patients have the following properties:
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o an admission date AD;, with AD; in1,..., T —1,
and a discharge date DD;, with DD; in 2,..., T
and AD; < DDy;

o an age A; and a gender G;j;

o atreatment, which corresponds to a specialism
S;; and

o a room preference RPre f,,.

e Nights are denoted Ny, with k=1,... T, with T
the number of nights in the planning period of the
time horizon.

e Departments are denoted as D, with
m=1,...,D, with D the number of departments.
Departments can support one or more specialisms
S, with [ =1,....,S, with S the total number of
specialisms. A department D, can enforce that
assigned patients have a specific age.

e A specialism S; can enforce that rooms satisfy
specific room properties RP.

e The jth room of the hospital is denoted R;, with
j=1,...,R, with R the number of rooms in the
hospital. A room R; can have one or more room
properties and a gender. According to the speci-
alisms that are supported in the department,
rooms can support in some degree different spe-
cialisms.

e The b th bed of room R; is denoted Bj,, with
b=1,...,Bj, with B; the number of beds in room
R;. The capacity (number of occupied beds) of the
room R; at night Ny is denoted b j.

e The transfer of patient P; from room R; to another
room on timeslot Ny is presented as T j.

4.2. Constraints

We distinguish between hard and soft constraints.
Hard constraints are those that have to be satisfied
in order to obtain a feasible solution. A feasible
solution that satisfies many soft constraints will be
considered of better quality than a solution that
satisfies fewer of them.

4.2.1. Hard constraints

e HC1: During the considered planning period the
room R; needs to be available. A blocked room
(due to maintenance, refurbishment, etc.) can-
not be used.

e HC2: The admission AD; and discharge date DD;
and consequently the length-of-stay of a planned
patient P; cannot be changed by the admission
office. This can only be adapted by the respon-
sible doctor.

e HC3: For each admission of a patient P; the
length-of-stay is contiguous.

e HC4: Two patients P;, and P;, (i #i;) cannot be
assigned to the same bed B}, in the same time slot
Ny.

e HC5: Male/female patients should be assigned to
appropriate rooms R; as described in Section 2.

e HC6: Patients P; should be assigned to depart-
ments D, that are suited for their age. Elderly
patients, for example, should not be assigned to a
department that is specialized in paediatrics.

e HC7: The medical treatment of a patient P; may
require that he/she is assigned to a room R; with
special equipment. These room properties are
mandatory for the treatment.

e HC8: Some patients P; have to be assigned to a
single room R; for medical reasons (quarantine).

Note that hard constraint HC2 is in contradiction
with Gemmel and Van Dierdonck’s [5] definition of
admission scheduling. We opt not to modify the
admission dates of patients.

4.2.2. Soft constraints

e SC1: The patient’s room choice (single, twin, or
ward) has to be respected if possible. A patient P;
who asked for a single room, should preferably be
assigned — in case of lack of single rooms — to a
twin room. If it is not possible to assign a patient
to his/her room of choice, the hospital may miss
out on revenues. Physicians in some countries
(such as Belgium) are allowed to charge a higher
honorarium to patients who are nursed in a single
room, if and only if these patients requested a
single room during the admission process.

e SC2: A patient P; is preferably nursed in a depart-
ment Dy, that has the right equipment and staff to
treat the patient’s disease.

e SC3: A patient P; is preferably assigned to a room
R; that in some degree corresponds to the speci-
alism that is needed to treat the patient’s clinical
picture.

e SC4: The medical treatment of a patient P; may
require that he/she is assigned to a room R; with
special equipment. These room properties are
recommended to treat the patient. Note that this
is the soft constraint version of hard constraint
HC7.

e SC5: The number of unplanned transfers should
be minimized.

In some hospitals soft constraint SC1 is treated as
a hard constraint. Attributing a higher relative
importance to constraint SC1 than, for example,
to constraint SC5 may lead to a higher number of
unplanned transfers. Suppose that an inpatient
asked for a single room, which was not available
at the time of admission. When a single room
becomes available in a department with the right
specialism, the admission officer may choose
between moving the patient to that free single room
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or leaving the patient where she/he is. Although the
former decision will lead to an unplanned transfer, it
will probably please the patient and the physician in
attendance more. It is up to the hospital manage-
ment to balance the relative importance of each of
the constraints.

4.3. Constraint weights

Not all the constraints of Section 4.2 are equally
important. The weights we attribute to the con-
straints determine their mutual relative importance
(Table 1).

In this example we preferred to avoid unplanned
transfers above fulfilling the room preferences of
the patients. This explains the high value of SC5,
compared to the low value of SC1.

4.4, Generation of the data set

We opted to generate data for the experiments,
since obtaining real-world data was, due to privacy
issues, hard. Although the data is generated, it is
based on a realistic hospital situation, and on inter-
views with experienced ‘human’ patient admission
schedulers.

We consider a planning horizon of 2 weeks and a
hospital that consists of 6 departments, each having
one major specialism and two minor specialisms.
The departments are configured in such a way that
every specialism is assigned to three different
departments, once as a major and twice as a minor.
The number of rooms in every department ranges
from 20 to 30. They are divided as follows:

e at most five single rooms;

e between five and ten twin rooms;

e and the rest of the rooms in the department
contain four beds.

Each room can have 0, 1 or 2 room properties. Per
specialism a random number (with a maximum of
five) of subspecialisms is generated. With each sub-
specialism a length-of-stay is associated that is
generated randomly based on a normal distribution
with mean 5 and variance 3. Each planned patient is
randomly associated with a subspecialism (and
hence with a corresponding length-of-stay), and
his/her room preference is generated. The special-
ism that is awarded to the patient also implies the
requested/required room properties. For every day
of the considered planning period 60 new patients
are generated. The data set can be found at http://
allserv.kahosl.be/~peter/pas/.

Of course, when this application will be used in
daily practice, all the necessary patient data,

Table 1 Weights of the constraints.
Constraint Corresponding weight
HC5 5.0
HCé6 10.0
HC7 5.0
HC8 10.0
Sc1 0.8
Sc2 1.0
SC3 1.0
SC4 2.0
SC5 11.0

including length-of-stay, assigned specialism, etc.
should be provided by the hospital administration.

5. Integer programming approach

We introduce a mathematical model for the patient
admission scheduling problem. This will be the start-
ing point for solving the problem with integer pro-
gramming. We start by introducing some extra
concepts, that ease the mathematical expression of
the problem. After that, we present the decision
variables, the objective function and the constraints.
Note that the mathematical model only takes into
account the most common case in which the gender of
the first patient determines the gender of the room.

5.1. Extra constants

® Sieqi is the set of rooms that have the required
equipment to treat patient P;. This limits the
rooms to which patients can be assighed based
on the age constraint and the mandatory room
equipment (HC6 and HC7).

e P;;is the penalty incurred when assigning patient
P; to room R;. The penalty value P;; will be the
result of violations of the soft constraints SC1,
SC2, SC3 and SC4.

5.2. Decision variables

® Xijjk

o Jis 1if patient P; is assigned to room R; on night
Ni;

o 0 otherwise.

tijk

o is 1 if patient P; is transferred from room R; to
another room at night Ny;

o 0 otherwise.

® Vik
o is 1 if room R; at night Ny can accommodate

only female patients;

o 0in case of only males.
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5.3. Objective function

The objective is to minimize the weighted sum of

the total penalty incurred for assigning patients to

unpreferred rooms and the number of transfers:

Min> " pij- Xiji+ W - tiji, (1
ijk

with w the weight for the violations of the transfers.
5.4. Constraints

Each patient P; has to be assigned to a room during
his/her stay:

> Xijg=1,Yk=AD;,....DD;,Vi=1,....,P  (2)
j

At any time, a room should not contain more
patients than the available number of beds in the
room. Moreover, all patients in a room should have
the same gender:

f
injkSbjkyjkvvj:17""R7vk:1""’T 3)

i=1

p
Z Xijk Sblk(1 _y]k)7vj: 17"'7R7Vk
i=f+1

=1,...,T 4)

Eq. (3) limits the number of female patients per
room and per timeslot, while Eq. (4) limits the
number of male patients per room and timeslot. If
a room accommodates only women, then the
right-hand side of Eq. (4) becomes 0; and vice
versa.

Decision variable t; . is 1 if patient i is transferred
from room R; to room R; at time k, 0 otherwise:

tijk > Xijk — Xijke1, Vi=1,...,p, V]
—1,... R Vk
= AD;,...,DD; — 1 (5)

5.5. Results

The mathematical model was implemented in ILOG
CPLEX. The program was run on a dedicated com-
puter with an Intel quad core processor and 4 GB
RAM. However, the integer program did not find a
feasible solution within 1 h of calculation. The first
feasible solution was found after 13,350 s of calcu-
lation. After 1 week of calculation the optimal
solution was not obtained.

Since the bed assignhment application needs to
respond promptly when new patients are admitted,
the computation of a solution should take very little
time.

6. A tabu search algorithm for
assigning patients to beds

A good candidate optimization method, which has
on condition a feasible solution exists, the property
to always provide a solution (good or bad), even
after a few moments of calculation is local search.
The solution is the result of iteratively changing
small parts of the current solution into a new (or
candidate) solution by applying neighbourhood
moves. The number of moves that are evaluated
in aniteration is called the tournament factor. From
this set the move leading to the best solution is
selected and executed, creating a new solution. The
essential ingredients in any local search method are

e the representation of a solution,

e the neighbourhoods, which describe the solutions
that can be reached from a solution by a single
move,

e the cost function, which is a measure for the
quality of the solution.

In the next sections we will describe these three
items.

Tabu search [16] inherits the above described
ingredients from local search, but also adds memory
to the search procedure: the properties of the last
applied moves are saved in a tabu list, which allows
escaping from local optima. The algorithm involves
a diversification and intensification strategy. When a
better solution is found the tabu list length is
decreased, while in the other case the tabu list in
increased in order to escape from the local mini-
mum. The tabu search algorithm is extended with a
token-ring search as discussed in [17,18]. In a token-
ring search, neighbourhoods are switched after a
number of non-improving moves. When the maxi-
mum number of non-improving moves is reached in
the final neighbourhood, the algorithm applies the
first neighbourhood again. The algorithm introduces
randomness in the search. Small parts of the solu-
tion, in this case individual patients are randomly
selected and moved. Randomness is furthermore
inherently present in the algorithm itself. The qual-
ity of a solution may be equal for two possible moves
in the same iteration. In this case the tabu search
algorithm randomly selects one of the equal moves.

6.1. The representation of a solution

We represent a solution as a set of two-dimensional
matrices. Each row of a matrix represents a bed in a
department. The columns represent the consecu-
tive nights. The number of nights equals the period
over which the patient to bed assignment is carried
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N1 N2 N3 N4 N5 N6 N7

o
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Fig. 1 Graphical representation of a solution. Every
department is represented by a matrix. The columns
denote the nights N; and the rows denote the beds By
that are available in room Ry; in department Dy.

out. The number of individual matrices in a solution
equals the number of different departments in the
hospital. Fig. 1 represents a rather small hospital
that consists of three departments, each possessing
several beds.

A patientin thismodel is represented as an ordered
set of smaller objects. Each object correspond to a
night stay. We call them ‘patient stay parts’. In Fig. 2
patient P has a LOS of four nights and is transferred to
another bed at the second night. The solution pre-
sented in Fig. 2 violates soft constraint SC5.

By choosing this representation the hard con-
straint HC4 is always fulfilled. The other hard con-
straints will be included in the cost function.

6.2. Neighbourhoods

A neighbourhood defines the solutions that can be
obtained from the current one by moving one or

Nq. Nao Na Ng Ns Ng N7 Ng Ng
be) >4
1

Q P,%Fi o

P;
Y By
3,/
S
%%/ 7

Fig. 2 Graphical representation of patient P¢’s stay. This
patient has a LOS of four nights and he/she is transferred
to another room during the second night of stay.

Fig. 3  Graphical representation of the swap-beds neigh-
bourhood. The algorithm tries to move the patient stay
part at night N; in bed Bi;; to other beds in the same
column.

more patient stay parts to other positions in the
matrix representation. Although we only have two
basic moves, by adding restrictions on the direction,
several neighbourhoods can be produced.

e The first basic move swaps the content of two
matrix elements within the same department. If
both matrix elements are non-empty, it means
that the corresponding patient stay parts are
swapped. If however one of the matrix elements
is empty and the other is not, then the non-empty
patient stay part is moved to an empty bed. This
move will be the basis for the first neighbourhood
(see Section 6.2.1).

e In the second basic move, all the patient stay
parts of one patient are moved to an empty place
either in another department or in the same
department. This move is the basis for all the
other neighbourhoods (see Sections 6.2.2—6.2.4).

6.2.1. Swap-beds neighbourhood
In the first neighbourhood we limit the moves to
swapping patient stay parts in the same department.
In order to avoid violations of the hard constraints
HC2 and HC3, only moves in the same column are
allowed (see Fig. 3). This means that patient stay
parts can only be moved in the space dimension (to
another bed) and not in the time dimension. If abedis
already taken by another patient stay part, the two
patient stay parts are swapped.

In this neighbourhood we randomly select arow in
which the algorithm searches the best matrix ele-
ment to move to another row.

6.2.2. Move-patient-to-another-department
neighbourhood

Since different departments with the same special-
ism exist, patients do not necessarily need to be
nursed in the department supporting the specialism
as a major. Due to over occupancy in one depart-
ment, patients can be moved to another depart-
ment with the same specialism. As the first
neighbourhood (see Section 6.2.1) only allows swaps
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of beds within the same department, we con-
structed a second neighbourhood in which patients
can be moved to another department with the same
specialism in case of over occupancy.

This neighbourhood incorporates some load bal-
ancing of patients across departments. At the start
of every iteration, the algorithm selects the depart-
ment with the highest number of patient stay parts.
From this department a patient is randomly chosen
and moved to another department, which has a
major or minor specialism that corresponds to the
patient’s medical requirements. The tabu search
algorithm selects the best move from the proposed
destination rows for each involved patient stay part.
Similarly to the first neighbourhood, the patient stay
parts are moved in such a way that constraints HC2
and HC3 are never violated.

6.2.3. Move-patient-to-same-department
neighbourhood

The move-patient-to-same-department neighbour-
hood is quite analogous to the previous neighbour-
hood, except that all the patient stay parts of one
patient are moved to empty beds in the same
department.

6.2.4. Move-best-patient-to-another-
department neighbourhood

This neighbourhood is similar to the second neigh-
bourhood, except that the algorithm does not select
a patient at random. Instead it selects from a list of
randomly chosen patients assigned to the same
department the best candidate patient to move
to another department.

6.3. Initial solution

As a start, we generate an initial solution that only
takes the hard constraints HC1, HC2, HC3, and HC4
into account. To assure that constraints HC2 and
HC3 are satisfied, the patient stay parts of every
patient are assigned in such a way that they are
contiguous (HC3) and begin and end at the appro-
priate date (HC2). Constraint HC1 is satisfied since
we do not assign patient stay parts to blocked beds.
The assignment of patients to departments in the
initial solution is carried out in a greedy manner:

e The first patient from the patient list is selected.
e According to the patient’s medical requirements,
a list of departments that support the specialism
is generated. The list is ordered as follows:
o first the departments supporting the specialism
as a major;
o second the departments supporting the speci-
alism as a minor; and

o last the departments not supporting the speci-
alism.

e When for a specific night, no free room is left in
the major specialism department, the initial algo-
rithm searches an empty timeslot in one of the
departments that support the specialism as a
minor.

e If also these departments are fully occupied for
that particular night, the algorithm searches an
empty timeslot in another department.

e The above process is repeated until all the
patients are assigned or until all the beds for a
particular night are occupied and no more
patients from the patient list can be admitted.

6.4. Cost function

The cost function evaluates a solution and is deter-
mined by the weighted sum of the violations of the
constraints. Four constraints do not need to be
evaluated: the hard constraint HC4 is always satis-
fied, due to the representation of a solution. We do
not assign patient stay parts to blocked beds (HC1).
The neighbourhoods are constructed in such a way
that hard constraints HC2 and HC3 cannot be vio-
lated. The constraints that we take into considera-
tion in the cost function are HC5, HC6, HC7, HCS,
SC1, SC2, SC3, SC4 and SC5.

Due to the fact that some hard constraints can
never be violated in this approach, the cost function
does not correspond to the objective function of the
integer programming formulation (see Section 5.3).

6.5. Experiments

We compare the tabu search algorithm hybridized
with a token-ring approach with two implementa-
tions of variable neighbourhood descent [19]. From
the tests we find that the hybridized tabu search
produces better results than with a variable neigh-
bourhood descent.

6.5.1. Variable neighbourhood descent

variants

We carry out experiments in which we hybridize the
tabu search algorithm with

e a token-ring (abbreviated as TR) approach or;
e avariable neighbourhood descent (abbreviated as
VND).

The difference between the two methods lies in
the point of time when the tabu search algorithm
switches to another neighbourhood. In the token-
ring search another neighbourhood is chosen each
time a number of non-improving moves are
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exceeded, while the variable neighbourhood des-
cent algorithm switches to another neighbourhood
after one non-improving move. In contrast to the
token-ring search, the variable neighbourhood des-
cent switches to the first neighbourhood indepen-
dently of the current neighbourhood, whenever a
better solution than the current best solution is
found. Intuitively, the first neighbourhood can be
considered as a kind of repair neighbourhood that
tries to fix some of the moves of the other neigh-
bourhoods.

Since we have to take into account the random-
ness of the tabu search algorithm (see Section 6)
every experiment is carried out ten times. The

result of the statistical processing is denoted in
box plots, which graphically show the first and third
quartiles, the median and the minimum and max-
imum values of each of the ten runs.

In the first experiment, we investigate two dif-
ferent approaches of the variable neighbourhood
descent method. We make a distinction between
returning to the first - repair - neighbourhood with
or without any information about the department in
which the best solution was found. In the top part of
Table 2 we present four different settings of the
algorithm (Test 1 to Test 4), which are each con-
ducted ten times. The stop criterion of the tabu
search algorithm was set to 50,000 iterations. The

Table 2 The cost of the best solution; the number of iterations needed to find the best solution; and the elapsed time
to obtain the best solution are presented for 12 different tests. Each test is executed ten times. The best values for

each test are presented in bold.

Test 1: VND Test 2: VND Test 3: VND Test 4: VND

cost iter. time cost iter. time cost iter. time cost iter. time
2355.2 49,377 3234  2600.2 49,810 3183 2664.6 49,957 1477 2764.4 46,687 1305
2423.8 49,131 3169  2381.8 48,893 3223 2818.2 49,246 1447  2799.2 48,128 1343
2484.8 48,720 3226 2308 49,193 3175  2628.8 48,343 1419 2655 49,430 1385
2423.2 49,900 3328 2389.8 49,106 3119  2601.2 49,238 1458  2650.8 48,292 1366
2332.8 49,720 3267 2472.2 49,073 3176 2532 49,955 1466  2511.2 49,118 1385
2384.2 49,730 3175 2616.6 49,486 3174  2782.8 48,090 1432 2500.4 49,956 1391
2632.2 49,860 3171 2500.2 48,553 3083 2618.8 49,622 1462  2740.6 48,574 1361
2490 48,840 3078 2425.2 49,927 3151 2426.2 49,531 1464  2583.4 49,986 1389
2514.2 49,832 3139  2457.2 49,806 3124  2603.8 49,679 1462  2673.2 47,844 1325
2486.2 49,216 3210  2346.8 49,905 3318  2730.4 49,405 1461 2620.6 49,047 1364
Test 5: VND Test 6: VND Test 7: TR(100-200) Test 8: TR(300—1000)
cost iter. time cost iter. time cost iter. time cost iter. time
2232.6 96,746 5908 2064.8 95,211 5937 1792 99,361 4844  1672.2 79,923 3841
2329.2 98,463 6031 1917.6 99,911 6011 1832.4 90,586 4249 2013 36,412 1865
2311 97,200 5778 2340.8 97,656 6038 1805.8 99,151 4759 1729.6 86,997 3604
2131 99,089 5913  2156.6 96,389 5694 2035 91,207 4370 1495.4 96,159 4004
2376.8 97,513 6102 2199.4 99,824 6090 1661.8 91,266 4393 1680.4 77,239 3821
2054.4 96,700 6202 2028.8 98,540 6076 1678.8 99,873 4937 1680.4 87,349 3867
2127.4 99,206 6403 2252.6 99,578 6017  1737.2 98,414 4782 1707.8 92,963 4755
2209.6 96,917 5856 2200 99,680 6069  1901.2 92,760 4576 1465.6 93,594 4515
2060.6 99,403 6179  2105.8 97,748 5849 1616.6 98,657 4997 1600.2 53,695 2335
2118.2 98,160 6169 2127 96,645 5917 1861.6 97,860 4612 1700.6 99,917 4413
Test 9: TR+VND Test 10: TR(300—1500) Test 11: TR(120—180) Test 12: TR(200—800)
cost iter. time cost iter. time cost iter. time cost iter. time
1906.2 97,680 4460 1472.8 91,463 5108 1701 96,726 4796 1607.6 91,197 4409
1806.4 98,624 4425 1687 89,927 4742 1687.6 91,316 4512 1813.4 97,210 3699
2030.2 99,028 4351 1633.4 93,201 4376  1740.2 98,833 4758 1760.2 92,586 4278
2137.6 99,989 4410 1446.4 97,193 4973 1787.2 96,963 4806 1793.6 72,221 3536
1983 96,021 4326 1460.2 86,285 4193  2039.8 99,189 4744  1728.2 97,709 3526
1911 99,585 4510 1578.2 96,073 4766  1883.6 90,767 4354 2105.8 94,513 4418
1837.6 96,596 4454 1514.4 96,794 4696 1978.2 99,709 4717 1694.4 89,477 4224
2044.2 95,179 4276 1558.6 96,073 4413 1821.2 99,478 4857 1738.6 98,581 4890
1838.8 99,531 4381 1686.6 57,068 2470 2037.2 92,228 4394 1718.2 99,888 4642
1836.2 96,271 4245 1519.4 77,205 4341 1745.4 97,022 4780 1679.2 69,467 3293
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Boxplot representation of the 4 first tests
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Fig. 4 Box plot of the result of Test 1 up to Test 4. The
maximum number of iterations is 50,000.

corresponding box plots of the four algorithms are
presented in Fig. 4.

e In Test 1 we add extra memory to the search
algorithm by registering the department in which
a better solution than the current best solution
was found. The registered department is then
passed on to the first neighbourhood, and the
search continues in this department starting from
the best solution. We apply the four neighbour-
hoods discussed in Section 6.2.

e In Test 2, the algorithm jumps back to the first
neighbourhood when finding a better solution
than the current best in one of the other neigh-
bourhoods, but we do not register the department

in which this solution was found. We apply the
four neighbourhoods described earlier.

e In Test 3, we repeat Test 1, except that we only
take the first three neighbourhoods into account
(Sections 6.2.1, 6.2.2 and 6.2.3).

e The second test is repeated in Test 4, except that
we do not use the move-best-patient-to-another-
department neighbourhood.

Since the last neighbourhood is, compared to the
other neighbourhoods, a rather large neighbourhood
to explore, we investigated whether it is favourable
to exclude this neighbourhood or not. The first four
tests in Table 2 demonstrate that for the same
number of iterations the execution times for the
third and last test are shorter than for the first two
tests. We conduct a Wilcoxon Rank Sum test, in
order to prove that the difference between applying
an extra neighbourhood or not is statistically sig-
nificant. According to the Wilcoxon test, there is a
statistically significant difference between the first
two tests and the last two (with 95% confidence), in
the sense that better solutions are obtained when
adding the last neighbourhood.

We conducted experiments with two variable
neighbourhood descent variants (with and without
recollection of the previous department) and we
found that the difference between both approaches
is not statistically significant (with 95% confidence).

6.5.2. Variable neighbourhood descent versus
token-ring

In the next experiments we check whether there is a
statistically significant difference between the vari-
able neighbourhood descent and the token-ring

Boxplot representation of the last 8 tests
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Fig. 5 Box plot of the results of Test 5 up to Test 12. Maximum number of iterations is 100,000.
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approach. The stop criterion in all of the considered
experiments is 100,000 iterations and we apply all
four neighbourhoods.

In Test 5 and Test 6 (see Table 2), we repeat the
experiments of Test 1 and Test 2, with a stop criter-
ion that equals 100,000 iterations. It is obvious from
Tests 1, 2, 5 and 6 that the tabu search algorithm
produces better results if it can search for a longer
period of time.

In contrast to the variable neighbourhood des-
cent approach, the token-ring search has two para-
meters to be set: the maximum length of the
dynamic varying tabu list and the number of non-
improving moves before the algorithm switches to
another neighbourhood. We use primes as values for
the tabu list length. Before the search starts, a list
of primes smaller than the parameter value is gen-
erated. If in one iteration a better solution is found,
the previous prime in the ordered list becomes the
new tabu list length. The lower limit of the tabu list
length is 7. If, however, an iteration generates no
better solution, the next prime in the prime list
becomes the new tabu list length. In the next tests
we experiment with different parameter settings of
the token-ring search (Fig. 5).

e In Test 7 (see Table 2) the maximum tabu list
length is 100 (actually this means the largest
prime smaller than 100), while the number of
non-improving moves is set to 200. Applying a
Wilcoxon Rank Sum test to Test 5 and Test 7
reveals that the difference between the two tests
is statistically significant (95% confidence), which

means in this case that the token-ring search of
Test 7 finds better results than the variable neigh-
bourhood descent of Test 5.

e The parameter settings in Test 8 for the maximum
tabu list length are 300, while the algorithm
switches neighbourhoods after 1000 non-improv-
ing moves. According to the applied Wilcoxon
test, Test 8 does not produce significantly better
solutions than Test 7 (95% confidence).

e In Test 9 we combine both the token-ring search
and the variable neighbourhood descent
approach. The maximum tabu list length is 120
and the allowed number of non-improving moves
is 10. When switching back to the first neighbour-
hood the algorithm remembers the department
that was explored last.

e The next three tests (Test 10, Test 11, Test 12) are
analogous to Test 8. The parameters for the max-
imum tabu list length are set to 300, 120 and 200
while the maximum number of non-improving
moves are set to 1500, 180 and 800 respectively.

For Test 5 up to Test 12, we also statistically
processed the elapsed times and present the results
in box plots in Fig. 6. Wilcoxon tests indicate that all
token-ring search algorithms produce significantly
better solutions in a smaller amount of time than the
variable neighbourhood descent.

6.5.3. General remarks

We end this section with a general note. The execu-
tion times seem rather long, since we start from a
situation in which no patients are admitted or

Boxplot representation of test 5 to test 12
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Fig. 6 Elapsed time box plots of Test 5 up to Test 12.
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assigned to beds. In reality, several beds will be
occupied and are — as long as these admitted patients
are assigned to the right beds in the right depart-
ments — preferably not available for the planned
patients. This means that only a percentage of the
beds will be available for the planned patients, which
reduces the search space considerably.

The data set considers the ideal case in which all
patients leave the hospital at the foreseen dates. Of
course, the discharge dates of the patients during
their stay may change. The idea is to fix the current
assignment of all patients that are in the hospital
and to manually adapt the discharge dates.

7. Conclusions and future work

In this paper we present a hospital admission sche-
duling problem, which to our knowledge has not
been reported on in the artificial intelligence lit-
erature. We introduce a tabu search algorithm
hybridized with both a token-ring and a variable
neighbourhood descent approach to tackle the pro-
blem. Actually, the problem was first solved with
integer programming. However, it took a state-of-
the art commercial MIP solver more than 3 htofinda
feasible solution.

Apart from the computational complexity exhib-
ited by the integer programming attempt to solve
the problem when compared to the tabu search, we
feel that the latter approach in this case can profit
from another essential difference. In general meta-
heuristic and local search methods combine signifi-
cant modelling power with superior flexibility in
implementing domain dependent experience in
the algorithm. In the present example this is appar-
ent in the implementation of the various neighbour-
hoods. Our results demonstrate that the resulting
transparency leads to fast algorithms producing
satisfactory solutions. As our statistical analysis
shows, the behaviour is sufficiently stable for use
in an actual application.

The tabu search algorithm is meant to ease the
admission schedulers task, since it automatically
assigns patients to beds taking into account their
wishes and medical nursing needs.

Also the number of patients is balanced across the
different departments. As a consequence of the
latter, the workload and resource utilization will
be spread more evenly over the entire hospital.

The presented algorithmic support will especially
improve the hospital performance when considering
patients’ waiting lists. Issues will arise with respect to
the priority of patients and/or treatments, accepta-
ble waiting times for non-urgent treatments, etc.
Extending the problem definition with waiting lists

will be one of our first future research concerns. This
implies that the patient assignments can also be
shifted in the time dimension (next to the current
moves in the space dimension). Besides the existing
neighbourhoods, which only allow moves in the space
dimension, additional ‘time dimension’ neighbour-
hoods should be included. Other research directions
involve addressing emergency admissions, consider-
ing the intensive care department, the combination
of patient assighment and operating theatre schedul-
ing. An additional point of attention considers evenly
spreading the nursing capacity across the entire hos-
pital. Some patients demand more attention than
others and that requires more detailed modelling.
Initial test results of applying the presented approach
to the patient assignment problem are promising and
thisresearch area s likely to become very challenging
in the near future.
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