
C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/cosrev

Survey

A survey on search-based software design
Outi Räihä∗

Department of Software Systems, Tampere University of Technology, Korkeakoulunkatu 1, P.O. Box 553, 33101 Tampere, Finland

A R T I C L E I N F O

Article history:

Received 18 February 2010

Received in revised form

18 June 2010

Accepted 22 June 2010

Keywords:

Search-based software engineering

Software design

Search algorithms

Software quality

A B S T R A C T

This survey investigates search-based approaches to software design. The basics of the

most popular meta-heuristic algorithms are presented as background to the search-based

viewpoint. Software design is considered from a wide viewpoint, including topics that can

also be categorized as software maintenance or re-engineering. Search-based approaches

have been used in research from the high architecture design level to software clustering

and finally software refactoring. Enhancing and predicting software quality with search-

based methods is also taken into account as a part of the design process. The background

for the underlying software engineering problems is discussed, after which search-based

approaches are presented. Summarizing remarks and tables collecting the fundamental

issues of approaches for each type of problem are given. The choices regarding critical

decisions, such as representation and fitness function, when used in meta-heuristic search

algorithms, are emphasized and discussed in detail. Ideas for future research directions are

also given.
c⃝ 2010 Elsevier Inc. All rights reserved.
d

1. Introduction

Traditional software engineering attempts to find solutions
to problems in a variety of areas, such as testing, software
design, requirements engineering, etc. A human software
engineer must apply his acquired knowledge and resources
to solve such complex problems that have to simultaneously
meet needs but also be able to handle constraints. Often there
are conflicts regarding the wishes of different stakeholders,
i.e., compromises must be made with decisions regarding
both functional and non-functional aspects. However, as in
any other engineering discipline, software engineers still
attempt to find the optimal solution to any given problem,
regardless of its complexity. As systems get more complex,
the task of finding even a near optimal solution will
become far too laborious for a human. Automating (or semi-
automating) the process of finding, say, the optimal software
architecture or resource allocation in a software project, can

∗ Tel.: +358 50 5342813; fax: +358 3 31152913.
E-mail address: outi.raiha@tut.fi.

1574-0137/$ - see front matter c⃝ 2010 Elsevier Inc. All rights reserve
doi:10.1016/j.cosrev.2010.06.001
thus be seen as the ultimate dream in software engineering.
Results from applications of search techniques in other
engineering disciplines further support this idea, as they have
been extremely encouraging.

Search-based software engineering (SBSE) applies meta-
heuristic search techniques, such as genetic algorithms and
simulated annealing, to software engineering problems. It
stems from the realization that many tasks in software
engineering can be formulated as combinatorial search
problems. The goal is to find, from the wide range of
possibilities, a solution that is sufficiently good according to
an appropriate quality function. Ideally this would be the
optimal solution, but in reality optimality may be difficult
(if not impossible) to achieve or even define due to various
reasons, such as the size of the search space or the complexity
of the quality function. Allowing a search algorithm to find
a solution from such a wide space enables partial or full
automation of previously laborious tasks, solves problems

.

http://dx.doi.org/10.1016/j.cosrev.2010.06.001
www.sciencedirect.com
www.sciencedirect.com
www.sciencedirect.com
http://www.elsevier.com/locate/cosrev
mailto:outi.raiha@tut.fi
http://dx.doi.org/10.1016/j.cosrev.2010.06.001

204 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
that are hard to manage by other methods, and often leads
to solutions that a human software engineer might not have
been able to think of.

Interest in SBSE has been growing rapidly over recent
years, both in academia and industry. The combination of
increased computing power, and new, more efficient, search
algorithms has made SBSE a practical solution method for
many problems throughout the software engineering life
cycle [1]. Harman [2] has provided a brief overview to the
current state of SBSE, and problems in the field of software
engineering have been formulated as search problems by
Clarke et al. [3] and Harman and Jones [4].

Search-based approaches have been most extensively
applied in the field of software testing, and a covering
survey of this branch (focusing on test data generation) has
been made by McMinn [5]. A review on SBSE, concentrating
on testing, is also provided by Mantere and Alander [6].
Another test related survey has been made by Afzal
et al. [7,8], who concentrate on testing non-functional
properties. As there has been much research and many
previous surveys regarding the area of testing, it will be
omitted from this survey, even if the studies related to
testing could be considered as altering (and thus perhaps
improving) a software design. This happens, e.g., with
testability transformations. Harman et al. [9] define three
critical differences to traditional transformations, one of
them concerning the functionality of the program, and state
that “testability transformations need not preserve functional
equivalence”. This contradicts the idea of building a design
based on a fixed set of requirements.

This survey will cover the branch of software design.
Software design can be defined as “the process which
translates the requirements into a detailed design of a
software system” [10]. Here software design is considered
as described by Wirfs-Brock and Johnson [11]. Although
they consider only object-oriented design, the skeleton of a
process from requirements to actual design can be applied
to any form of software design. A design process starts
from requirements, and first enters an exploratory phase,
where the fundamental structure is decided. This leads to a
preliminary design, which then enters an analysis stage. After
the suggested design is analyzed and modified according
to the result, the final design is achieved. Following this
interpretation, software refactoring and clustering have also
been taken into account, as they are considered as actions of
modifying (based on a certain analysis) a preliminary model,
which in many cases is a working implementation.

The area of search-based software design has developed
greatly in very recent years, and is gaining an increasing
interest in the SBSE community. Although several surveys
have been made of the SBSE field as a whole, they deal with
the design area quite briefly. Also, the literature published
from the software design perspective either does not cover
search-based methods [10,12] or only briefly mentions the
option of having an algorithm to automate class hierarchy
design [11]. Thus, there is a need to cover this crossing of two
disciplines: search-based techniques and software design.
A new contribution is made, especially in summarizing
research in architecture level design that uses search-based
techniques, as this has been overlooked in previous studies
of search-based software engineering.

A special note should be made of the value added to
a recent comprehensive review on SBSE made by Harman
et al. [13], who give a thorough but very compact view of
the field as a whole. As they cover a very great number
of references, and the main contributions of the survey (as
stated by Harman et al. [13]) are coverage and completeness,
classification and trend analysis, it is natural that the
presentation of the papers lacks in some depth. The actual
studies are presented as they are, without criticism or
discussion of the particularities of a certain technique,
although basic information of each technique is collected in
categorical tables. In particular, the area of software design on
the architecture level is very briefly dealt with.

To this end, the present survey adds to the contribution
of the survey of Harman et al. [13] by giving a thorough
view of research in the area of search-based software design.
The area of software architecture design is given special
attention, and some additional recent references are also
included. The presented papers are discussed in detail and
critically analyzed. Summarizing remarks on the similarities
and differences between techniques are also provided.

Additionally, as Harman and Wegener [14] point out,
choosing the representation and fitness function is crucial in
all search-based approaches to software engineering. When
using genetic algorithms [15], which are especially popular in
search-based design, the choices regarding genetic operators
are just as important and very difficult to make. Thus,
this survey emphasizes the choices made regarding the
particular characteristics of search algorithms. The small but
critical decisions, such as what fitness function, encoding and
operations to use, are discussed and categorized in detail.
This helps in easily finding the distinct differences between
similar techniques, and identifying best practices. Also, any
new study in the field of search-based software engineering
would benefit from learning what kind of solutions have
proven to be particularly successful in the past.

The timeline for development of SBSE as a field is
presented in Fig. 1. It can clearly be seen that the earliest
applications were in testing, as can be deduced from the
number of existing surveys. However, more importantly, the
timeline also shows the steady increase of ideas in the
area of search based design in the past 10 years. Thus, a
survey covering this area is certainly due. All in all, the
timeline shows that SBSE has been a very active discipline
in the past 20 years, as only novel ideas are presented here.
Countless approaches and studies regarding these ideas have
been made but are not portrayed here. The explanations and
references for the data points in Fig. 1 are given in Table 1.

This survey proceeds as follows. Section 2 describes
search algorithms; and the underlying concepts for genetic
algorithms, simulated annealing and hill climbing are
discussed in detail. Different ways of performing the
exploratory phase of design are then presented as methods
for software architecture design (object-oriented and service-
oriented) in Section 3. Sections 4–6 deal with clustering,
refactoring and software quality, respectively, all of which
can be seen as components of the analysis phase, starting
from higher level re-design (clustering), going to low-
level re-design (re-factoring) and finally pure analysis.
The background for each underlying problem is first
presented, followed by recent approaches applying search-
based techniques to the problem. Summarizing remarks and
a summary table of the studies is presented after each
subsection. Finally, some ideas for future work are given in
Section 7, and conclusions are presented in Section 8.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 205
Design

Quality

Maintenance

Code
improvement
Project
management

Requirements

Testing

Other

Fundamental
search
algorithms

Fig. 1 – Timeline of SBSE development.
Table 1 – References for timeline data points.

(1) Genetic algorithm (GA) [15] (31) GA, hierarchical decompositions [42]
(2) Test data automation [110] (32) Next release problem [138]
(3) Test case automation [111] (33) GA, reverse engineering at architecture level [139]
(4) Retesting [112] (34) GA, combining quality predictive models [105]
(5) Simulated annealing (SA) [113] (35) GP, project effort estimation [140]
(6) Genetic programming (GP) [114] (36) Multiple hill climbing, clustering [72]
(7) Tabu search [115] (37) GA, code transformations [141]
(8) Revalidation [116] (38) SA, test suites [142]
(9) GAs in testing [117] (39) Architecture relations [143]; service composition [59]
(10) Ant colony optimization (ACO) [99] (40) Project resource allocation [144]
(11) GA, constraints [118] (41) Amorphous slicing [145]
(12) GA, project management [119] (42) ACO, testing [146]
(13) GA, test data [120] (43) GA, design patterns [32]
(14) GA, reliability model [121] (44) SA, quality prediction [107]
(15) Chaining approach, test data [122] (45) GA, software integration [147]
(16) GA, structural testing [123] (46) Use case -based design [29,30]; GA, repackaging [38]; Pareto optimal
(17) GA, protocol validation [124] refactoring [95]
(18) GA, response time [125] (47) Multiobjective next release problem [148]
(19) GA, GP, software agents [126] (48) ACO, model checking [149]; GP, model checking [150]; Pareto optimality,
(20) Clustering [64]; parallelization [93] test cases [151]
(21) GP, software versioning [127] (49) GA, code author identification [152]
(22) SA, flaw finding [128] (50) Class responsibility assignment [28]; Software behavior modeling [40];
(23) Project estimation [129] Architecture design [33]; model transformations by GA [34] and particle
(24) Compiler [130]; Task scheduling [131] swarm optimization [36]
(25) GP, re-engineering at code level [132] (51) Software verification [153]
(26) GP, quality determination [133] (52) Co-evolution, bug fixing [154]
(27) GA, reduced code space [134] (53) Requirements optimization [155]
(28) SA, regression testing [135] (54) Tabu search, testing [156]
(29) GA, Protocols for distributed applications [136] (55) GA, decision making in autonomic computing systems [157]
(30) Secure protocols [137]
2. Search algorithms

Meta-heuristics are commonly used for combinatorial
optimization, where the search space can become especially
large. Many practically important problems are NP-hard, and
thus, exact algorithms are not possible. Heuristic search
algorithms handle an optimization problem as a task of
finding a “good enough” solution among all possible solutions
to a given problem, while meta-heuristic algorithms are able
to solve even the general class of problems behind the certain
problem. A search would optimally end in a global optimum
in a search space, but at the very least it will give some local
optimum, i.e., a solution that is “better” than a significant
amount of alternative solutions nearby. A solution given by a
heuristic search algorithm can be taken as a starting point for
further searches or be taken as the “best” possible solution, if

206 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
its quality is considered high enough. For example, simulated
annealing can be used to produce seed solutions for a genetic
algorithm that constructs the initial population based on the
provided seeds.

In order to use search algorithms in software engineering,
the first step is that the particular software engineering
problem should be defined as a search problem. If this cannot
be done, search algorithms are most likely not the best way to
solve the problem, and defining the different parameters and
operations needed for the search algorithm can be difficult.
After this has been done, a suitable algorithm can be selected
and the issues regarding that algorithm must be dealt
with.

There are three common issues that need to be dealt
with by any search algorithm: 1. encoding the solution, 2.
defining transformations, and 3. measuring the “goodness”
of a solution. All algorithms need the solution to be encoded
according to the algorithm’s specific needs. For example, in
order for the genetic algorithm (GA) to operate, the encoding
should be done in such a way that it can be seen as
a chromosome consisting of a set of genes. However, for
the hill climbing (HC), any encoding where a neighborhood
can be defined is sufficient. The importance and difficulty
of encoding a solution increase as the complexity of
the problem at hand increases. In this case complexity
refers to how easily a solution can be defined, rather
to the computational complexity of the problem itself.
For example, a job-shop problem may be computationally
complex, but the solution candidates are simple to encode
as an integer array. However, a solution containing,
e.g., all the information regarding a software architecture,
is demanding to encode so that: 1. all information stays
intact, 2. operations can efficiently be applied to the selected
encoding of the solution, 3. the fitness evaluations can
be performed efficiently, and 4. there is minimal need for
“outside” data, i.e., data structures containing information
about the solution that are not included in the actual
encoding.

Defining a neighborhood is crucial to all algorithms; HC,
simulated annealing (SA) and tabu search operate purely on
the basis of moving from one solution to its neighbor. A
neighbor is achieved by some operation that transforms the
solution. These operations can be seen as equivalent to the
mutations needed by the GA.

Finally, the most important and difficult task is defining
a fitness function. If defining the fitness function fails, the
search algorithm will not be guided towards the desired
solutions. All search algorithms require this quality function
to evaluate the “goodness” of a solution in order to compare
solutions and thus guide the search.

To understand the basic concepts behind the approaches
presented here, the most commonly used search algorithms
are briefly introduced. The most common approach is to
use genetic algorithms. Hill climbing and its variations,
e.g., multi-ascent hill climbing (MAHC), is also quite popular
due to its simplicity. Finally, several studies use simulated
annealing. In addition to these algorithms, tabu search is a
widely known meta-heuristic search technique, and genetic

programming (GP) [16] is commonly used in problems that

can be encoded as trees. For a detailed description on

GA, see [17] or [18], for SA, see, e.g., [19], and for HC,

see [20], who also cover a wide range of other meta-heuristics.

For a description on multi-objective optimization with

evolutionary algorithms, see [21] or [22]. A survey on model-

based search, covering several meta-heuristic algorithms is

also made by Zlochin et al. [23].

2.1. Genetic algorithms

Genetic algorithms were invented by John Holland in the

1960s. Holland’s original goal was not to design application

specific algorithms, but rather to formally study the ways

of evolution and adaptation in nature and develop ways to

import them into computer science. Holland [15] presents the

genetic algorithm as an abstraction of biological evolution

and gives the theoretical framework for adaptation under the

genetic algorithm [17].

In order to explain genetic algorithms, some biological

terminology needs to be clarified. All living organisms consist

of cells, and every cell contains a set of chromosomes, which

are strings of DNA and give the basic information of the

particular organism. A chromosome can be further divided

into genes, which in turn are functional blocks of DNA, each

gene representing some particular property of the organism.

The different possibilities for each property, e.g., different

colors of the eye, are called alleles. Each gene is located at

a particular locus of the chromosome. When reproducing,

crossover occurs: genes are exchanged between the pair of

parent chromosomes. The offspring is subject to mutation,

where single bits of DNA are changed. The fitness of an

organism is the probability that the organism will live to

reproduce and carry on to the next generation [17]. The

set of chromosomes at hand at a given time is called a

population.

Genetic algorithms are a way of using the ideas of

evolution in computer science. When thinking of the

evolution and development of species in nature, in order

for the species to survive, it needs to develop to meet the

demands of its surroundings. Such evolution is achieved with

mutations and crossovers between different chromosomes,

i.e., individuals, while the fittest survive and are able to

participate in creating the next generation.

In computer science, genetic algorithms are used to

find a good solution from a very large search space, the

goal obviously being that the found solution is as good as

possible. To operate with a genetic algorithm, one needs an

encoding of the solution, i.e., a representation of the solution

in a form that can be interpreted as a chromosome, an

initial population, mutation and crossover operators, a fitness

function and a selection operator for choosing the survivors

for the next generation. Algorithm 1 gives the pseudo code for

a genetic algorithm.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 207
Algorithm 1 geneticAlgorithm

Input: formalization of solution, initialSolution
chromosomes← createPopulation(initialSolution)
while NOT terminationCondition do
foreach chromosome in chromosomes

p← randomProbability
if p > mutationProbability then
mutate(chromosome)
end if

end for
foreach chromosomePair in chromosomes
cp← randomProbability
if cp > crossoverProbability then

crossover(chromosomePair)
addOffspringToPopulation()
end if

end for
foreach chromosome in chromosomes
calculatefitness(chromosome)

end for
selectNextPopulation()

end while

As discussed, correctly defining the different operations

(mutations, crossover and fitness function) is vital in order

to achieve satisfactory results. However, as seen in Algorithm

1, there are also many parameters regarding the GA that

need to be defined and greatly affect the outcome. These

parameters are the population size, number of generations

(often used as the terminating condition) and the mutation

and crossover probabilities. Having a large enough population

ensures variability within a generation, and enables a wide

selection of different solutions at every stage of evolution.

However, at a certain point the results start to converge, and

a larger population always means more fitness evaluations

and thus requires more computation time. Similarly, the

more generations the algorithm is allowed to evolve for, the

higher the chances are that it will be able to reach the global

optimum. However, again, letting an algorithm run for, say,

10 000, generations will most probably not be beneficial,

as if the operations and parameters have been chosen

correctly, a reasonably good optimum should have been

foundmuch earlier. Mutation and crossover probabilities both

affect how fast the population evolves. If the probabilities

are too high, there is the risk that the implementation

of genetic operations becomes random instead of guided.

Vice versa, if the probabilities are too low there is the

risk that the population will evolve too slowly, and no

real diversity will exist. A theory to be noted with genetic

operators is the building block hypothesis, which states

that a genetic algorithm combines a set of sub-solutions,

or building blocks, to obtain the final solution. The sub-

solutions that are kept over the generations generally have an

above-average fitness [Salomon, 1998]. The crossover operator

is especially sensitive to this hypothesis, as an optimal
crossover would thus combine two rather large building

blocks in order to produce an offspring with a one-point

crossover.

2.2. Simulated annealing

Simulated annealing is originally a concept in physics. It

is used when the cooling of metal needs to be stopped at

given points, at which the metal needs to be warmed a bit,

before resuming the cooling process. The same idea can be

used to construct a search algorithm. At a certain point of

the search, when the fitness of the solution in question is

approaching a set value, the algorithm will briefly stop the

optimizing process and revert to choosing a solution that is

not the best in the current solution’s neighborhood. This way

getting stuck to a local optimum can effectively be avoided.

Since the fitness function in simulated annealing algorithms

should always be minimized, it is usually referred to as a cost

function [19].

Simulated annealing usually begins with a point x in the

search space that has been achieved through some heuristic

method. If no heuristic can be used, the starting point will be

chosen randomly. The cost value c, given by cost function E,

of point x is then calculated. Next a neighboring value x1 is

searched and its cost value c1 calculated. If c1 < c, then the

search moves onto x1. However, even though c ≤ c1, there

is still a chance, given by probability p, that the search is

allowed to continue to a solution with a bigger cost [3]. The

probability p is a function of the change in cost function ∆E,

and a parameter T:

p = e−∆E/T.

This definition for the probability of acceptance is based

on the law of thermodynamics that controls the simu-

lated annealing process in physics. The original function

is

p = e−∆E/kT,

where T is the temperature in the point of calculation and k

is Boltzmann’s constant [19].

The parameter T that substitutes the value of temperature

and the physical constant is controlled by a cooling

function C, and it is very high in the beginning of

simulated annealing and is slowly reduced while the search

progresses [4]. The actual cooling function is application

specific.

If the probability p given by this function is above a set

limit, then the solution is accepted even though the cost

increases. The search continues by choosing neighbors and

applying the probability function (which is always 1 if the cost

decreases) until a cost value is achieved that is satisfactorily

low. Algorithm 2 gives the pseudo code for a simulated

annealing algorithm.

208 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Algorithm 2 simulatedAnnealing

Input: formalization of solution, initialSolution,
cooling ratio α, initial
temperature T0, frozen temperature Tf , and

temperature constant r
Output: optimized solution finalSolution

initialQuality← evaluate(initialSolution)
← initialSolution

Q1 ← initialQuality
T← T0
while T0 > Tf do

ri ← 0
while ri > r do

Si ← findNeighbor(S1)

Qi ← evaluate(Q1)

if Qi > Q1 then
S1 ← Si
Q1 ← Qi

else
δ

← Q1 − Qi′

p← randomProbability
if p < e−δ/T then

S1 ← Si
Q1 ← Qi

end if
end if’

ri ← ri + 1
end while
T← T∗α

end while
return S1

The key parameters to be adjusted for SA are the initial
temperature, the cooling ratio and the temperature constant.
The combined effect of these determines how fast the cooling
happens. If the cooling is too fast, the algorithmmay not have
sufficient time to achieve an optimum. However, if the cooling
is too slow, the initial temperature may need a significantly
high value so that the solution will be able to evolve enough
(i.e., noticeably transform from the initial solution) before
reaching the frozen temperature.

2.3. Hill climbing

Hill climbing begins with a random solution, and then begins
to search through its neighbors for a better solution. There
are several versions of how this is done; in some versions
the algorithm moves on after finding the first neighbor that is
better than the current, some do a fixed number of neighbor
evaluations and continue to the best of this group, and some
versions go through the entire neighborhood of a solution
and select the best neighbor from which the procedure is
continued. Algorithm 3 adopts the last option, i.e., the entire
neighborhood is evaluated before moving on. Hill climbing
does not include any mechanisms to avoid getting stuck with
a local optimum.

There are three critical choices regarding HC: 1. defining
a neighborhood for each solution, 2. defining an evaluation
function for a solution, and 3. defining to what extent
each neighborhood is searched. If the problem at hand is
very complex and each solution has an exponential number
of neighbors, traversing through each neighborhood maybe
extremely time consuming. However, if the subgroup of
neighbors to be examined is chosen wisely, the actual
outcome of the algorithm may still be good enough, while
much time is saved when not every solution needs to be
evaluated.

Algorithm 3 hillClimbing

Input: formalization of solution, initialSolution
currentSolution← initialSolution
currentFitness← evaluate(currentSolution)
while betterNeighborsExist do

neighborhood← findNeighbors(currentSolution)
foreach neighbor in neighborhood

neighborFitness← evaluate(neighbor)
if neighborFitness > nextFitness then
nextSolution← neighbor
nextFitness← neighborFitness
end if

end for
if nextFitness> currentFitness then

currentSolution←nextSolution
else

termination
return currentSolution

end if
end while

3. Software architecture design

The core of every software system is its architecture.
Designing software architecture is a demanding task
requiring much expertise and knowledge of different
design alternatives, as well as the ability to grasp high-
level requirements and piece them together to make
detailed architectural decisions. In short, designing software
architecture takes verbally formed functional and quality
requirements and turns them into some kind of formal model
that is used as a base for code. Automating the design of
software is obviously a complex task, as the automation
tool would need to understand intricate semantics, have
access to a wide variety of design alternatives, and be able
to balance multi-objective quality factors. From the re-design
perspective, program comprehension is one of the most
expensive activities in software maintenance. The following
sections describe meta-heuristic approaches to software
architecture design for object-oriented and service-oriented
architectures.

3.1. Object-oriented architecture design

3.1.1. Background
At its simplest, object-oriented design deals with extracting
concepts from, e.g., use cases, and deriving methods and
attributes, which are distributed into classes. A further step

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 209
is to consider interfaces and inheritance. A final design
can be achieved through the implementation of architecture
styles [24] and design patterns [25]. When attempting
to automate the design of object-oriented architecture
from the concept level, the system requirements must be
formalized. After this, the major problem lies within quality
evaluation, as many design decisions improve some quality
attributes [26] but weaken others. Thus, a sufficient set of
quality estimators should be used, and a balance should
be found between them. Re-designing software architectures
automatically is slightly easier than building architecture
from the very beginning, as the initial model already
exists and it merely needs to be ameliorated. However,
implementing design patterns is never straightforward, and
measuring their impact on the quality of the system is
difficult. For more background on software architectures, see,
e.g., [27].

Approaches to search-based software design are presented
in Section 3.1.2 starting from low-level approaches, i.e., what
is needed when first beginning the architecture design,
to high-level approaches, ending with analyzing software
architecture. Object-oriented architecture design begins with
use cases and assigning responsibilities, i.e., methods and
attributes to classes [29,30,28]. After the basic structure,
the architecture can be further designed, either by applying
design patterns on an existing system [32] or by building
the design patterns into the system from the very beginning
[33–35]. If an idea for an optimal solution is available, model
transformations can be sought to achieve that solution [36].
There might also be many choices regarding the components
of the architecture, depending on the needs of the system. An
architecture can be made of alternative components [37] or
a subsystem can be sought after [38]. Studies have also been
made on identifying concept boundaries and thus automating
software comprehension [39], and composing behavioral
models for autonomic systems [40,41], which give a dynamic
view of software architecture. One of the most abstract
studies attempts to build hierarchical decompositions for a
software system [42], which already comes quite close to
software clustering. Summarizing remarks of the approaches
are given in Section 3.1.3, and the fundamentals of each study
are collected in Table 2.

3.1.2. Approaches
Bowman et al. [28] study the use of a multi-objective
genetic algorithm (MOGA) in solving the class responsibility
assignment problem. The objective is to optimize the class
structure of a system through the placement of methods
and attributes. The strength Pareto approach (SPEA2) is
used, which differs from a traditional GA in containing an
archive of individuals from past populations. This approach
combines several aspects that aid in finding the truly optimal
individuals and thus leaves less room for GA “to err” in terms
of undesired mutations or overly relying on metrics.

The chromosome is represented as an integer vector. Each
gene represents a method or an attribute in the system and
the integer value in a gene represents the class to which
the method or attribute in that locus belongs. Dependency
information between methods and attributes is stored in a
separatematrix. Mutations are performed by simply changing
the class value randomly; the creation of new classes is also
allowed. Crossover is the traditional one-point one. There
are also constraints: no empty classes are allowed (although
the selected encoding method also makes them impossible),
conceptually related methods are only moved in groups, and
classes must have dependencies on at least one other class.

The fitness function is formed of five different values mea-
suring cohesion and coupling: 1. method–attribute coupling,
2. method–method coupling, 3. method–generalization cou-
pling, 4. cohesive interaction and 5. ratio of cohesive inter-
action. A complementary measure for common usage is also
used. Selection is made with a binary-tournament selection,
where the fitter individual is selected 90% of the time.

In the case study an example system is used, and a
high-quality UML class diagram of this system is taken as a
basis. Three types of modifications are made and finally the
modifications are combined in a final test. The efficiency of
the MOGA is now evaluated in relation to how well it fixed
the changesmade to the optimal system. Results show that in
most cases the MOGAmanaged to fix the made modifications
and in some cases the resulting system also had a higher
fitness value than the original “optimal” system.

Bowman et al. [28] also compare MOGA to other search
algorithms, such as random search, hill climbing and a simple
genetic algorithm. Random search and hill climbing only
managed to fix a few of the modifications, and the simple GA
did not manage to fix any of the modifications. Thus, it would
seem that a more complex algorithm is needed for the class
responsibility assignment problem.

The need for highly developed algorithms is further
highlighted when noting that a ready system is being
ameliorated instead of completely automating the class
responsibility assignment. As a ready system can be assumed
to have some initial quality, and conceptually similar
methods and attributes are already largely grouped, it does
help the algorithm when re-assigning the moved methods
and attributes. This is due to the fact that by attempting
to re-locate the moved method or attribute to the “wrong”
class, the fitness value will be significantly lower than when
assigning the method or attribute to the “right” class.

Simons and Parmee [29–31] take use cases as the starting
point for system specification. Data is assigned to attributes
and actions to methods, and a set of uses is defined
between the two sets. The notion of class is used to group
methods and attributes. Each class must contain at least
one attribute and at least one method. Design solutions
are encoded directly into an object-oriented programming
language. This approach starts with pure requirements and
leaves all designing to the algorithm, making the problem of
finding an optimal class structure very much more difficult
than in cases where a ready system can be used as basis.

A single design solution is a chromosome. In a mutation,
a single individual is mutated by locating an attribute
and a method from one class to another. For crossover,
two individuals are chosen at random from the population
and their attributes and methods are swapped based on
their class position within the individuals. Cohesiveness
of methods (COM) is used to measure fitness; fitness for
class C is defined as f(C) = 1/(|Ac||Mc|) ∗

∑
(∆ij), where

Ac (respectively Mc) stands for the number of attributes

210 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Ta
bl
e
2
–
S
tu

d
ie
s
in

se
ar

ch
-b

as
ed

ob
je
ct
-o

ri
en

te
d
so

ft
w
ar
e
ar

ch
it
ec

tu
re

d
es

ig
n
.

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

B
ow

m
an

et
al
.[
28

]
C
la
ss

st
ru

ct
u
re

d
es

ig
n
is

(s
em

i-
)

au
to
m
at
ed

C
la
ss

d
ia
gr
am

as
m
et
h
od

s,
at
tr
ib
u
te
s
an

d
as

so
ci
at
io
n
s

In
te
ge

r
ve

ct
or

an
d
a

d
ep

en
d
en

cy
m
at
ri
x

R
an

d
om

ly
ch

an
ge

th
e

cl
as

s
of

m
et
h
od

or
at
tr
ib
u
te

St
an

d
ar
d

on
e-
p
oi
n
t

C
oh

es
io
n
an

d
co

u
p
li
n
g

O
p
ti
m
al

cl
as

s
st
ru

ct
u
re

C
om

p
ar
is
on

be
tw

ee
n

d
if
fe
re
n
t

al
go

ri
th

m
s

Si
m
on

s
an

d
Pa

rm
ee

[2
9–

31
]

C
la
ss

st
ru

ct
u
re

d
es

ig
n
is

au
to
m
at
ed

U
se

ca
se

s;
d
at
a

as
si
gn

ed
to

at
tr
ib
u
te
s
an

d
ac

ti
on

s
to

m
et
h
od

s

A
d
es

ig
n
so

lu
ti
on

w
h
er
e
at
tr
ib
u
te
s
an

d
m
et
h
od

s
ar
e

as
si
gn

ed
to

cl
as

se
s

A
n
at
tr
ib
u
te

an
d
a

m
et
h
od

ar
e
m
ov

ed
fr
om

on
e
cl
as

s
to

an
ot
h
er

A
tt
ri
bu

te
s
an

d
m
et
h
od

s
of

p
ar
en

ts
ar
e

sw
ap

p
ed

ac
co

rd
in
g
to

cl
as

s
p
os

it
io
n

C
oh

es
iv
en

es
s
of

m
et
h
od

s
(C
O
M
)

B
as

ic
cl
as

s
st
ru

ct
u
re

fo
r

sy
st
em

.

D
es

ig
n
so

lu
ti
on

s
en

co
d
ed

d
ir
ec

tl
y

in
to

a
p
ro

gr
am

m
in
g

la
n
gu

ag
e

A
m
ou

i
et

al
.[
32

]
A
p
p
ly
in
g
d
es

ig
n

p
at
te
rn

s;
h
ig
h
le
ve

l
ar
ch

it
ec

tu
re

d
es

ig
n

So
ft
w
ar
e
sy

st
em

C
h
ro

m
os

om
e
is

a
co

ll
ec

ti
on

of
su

p
er
ge

n
es

,
co

n
ta
in
in
g

in
fo
rm

at
io
n
of

p
at
te
rn

tr
an

sf
or

m
at
io
n
s

Im
p
le
m
en

ti
n
g
d
es

ig
n

p
at
te
rn

s
Si
n
gl
e-
p
oi
n
t

cr
os

so
ve

rs
fo
r

bo
th

su
p
er
ge

n
e

le
ve

la
n
d

ch
ro

m
os

om
e

le
ve

l,
w
it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

D
is
ta
n
ce

fr
om

m
ai
n
se

q
u
en

ce
Tr
an

sf
or

m
ed

sy
st
em

,d
es

ig
n

p
at
te
rn

s
u
se

d
as

tr
an

sf
or

m
at
io
n
s
to

im
p
ro
ve

m
od

ifi
ab

il
it
y

N
ew

co
n
ce

p
t
of

su
p
er
ge

n
e
u
se

d

R
äi
h
ä

et
al
.[
33

]
A
u
to
m
at
in
g

ar
ch

it
ec

tu
re

d
es

ig
n

R
es

p
on

si
bi
li
ty

d
ep

en
d
en

cy
gr
ap

h

C
h
ro

m
os

om
e
is

a
co

ll
ec

ti
on

of
su

p
er
ge

n
es

,
co

n
ta
in
in
g

in
fo
rm

at
io
n
of

re
sp

on
si
bi
li
ti
es

an
d

d
es

ig
n
p
at
te
rn

s

M
u
ta
ti
on

s
ap

p
ly

ar
ch

it
ec

tu
ra
ld

es
ig
n

p
at
te
rn

s
an

d
st
yl
es

A
st
an

d
ar
d

on
e-
p
oi
n
t

cr
os

so
ve

r
w
it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

Ef
fi
ci
en

cy
,

m
od

ifi
ab

il
it
y

an
d
co

m
p
le
xi
ty

U
M
L
cl
as

s
d
ia
gr
am

d
ep

ic
ti
n
g
th

e
so

ft
w
ar
e

ar
ch

it
ec

tu
re

R
äi
h
ä

et
al
.[
34

]
A
u
to
m
at
in
g

C
IM

-t
o-

PI
M

m
od

el
tr
an

sf
or

m
at
io
n
s

R
es

p
on

si
bi
li
ty

d
ep

en
d
en

cy
gr
ap

h
an

d
d
om

ai
n
m
od

el
(C
IM

m
od

el
)

C
h
ro

m
os

om
e
is

a
co

ll
ec

ti
on

of
su

p
er
ge

n
es

,
co

n
ta
in
in
g

in
fo
rm

at
io
n
of

re
sp

on
si
bi
li
ti
es

an
d

d
es

ig
n
p
at
te
rn

s

M
u
ta
ti
on

s
ap

p
ly

ar
ch

it
ec

tu
ra
ld

es
ig
n

p
at
te
rn

s
an

d
st
yl
es

A
st
an

d
ar
d

on
e-
p
oi
n
t

cr
os

so
ve

r
w
it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

Ef
fi
ci
en

cy
,

m
od

ifi
ab

il
it
y

an
d
co

m
p
le
xi
ty

U
M
L
cl
as

s
d
ia
gr
am

d
ep

ic
ti
n
g
th

e
so

ft
w
ar
e

ar
ch

it
ec

tu
re

(P
IM

m
od

el
)

R
äi
h
ä

et
al
.[
35

]
A
u
to
m
at
in
g

ar
ch

it
ec

tu
re

d
es

ig
n

R
es

p
on

si
bi
li
ty

d
ep

en
d
en

cy
gr
ap

h
an

d
d
om

ai
n
m
od

el

C
h
ro

m
os

om
e
is

a
co

ll
ec

ti
on

of
su

p
er
ge

n
es

,
co

n
ta
in
in
g

in
fo
rm

at
io
n
of

re
sp

on
si
bi
li
ti
es

an
d

d
es

ig
n
p
at
te
rn

s

M
u
ta
ti
on

s
ap

p
ly

ar
ch

it
ec

tu
ra
ld

es
ig
n

p
at
te
rn

s
an

d
st
yl
es

A
st
an

d
ar
d

on
e-
p
oi
n
t

cr
os

so
ve

r
w
it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

Ef
fi
ci
en

cy
,

m
od

ifi
ab

il
it
y,

co
m
p
le
xi
ty

an
d

m
od

ifi
ab

il
it
y

re
la
te
d

sc
en

ar
io
s

U
M
L
cl
as

s
d
ia
gr
am

d
ep

ic
ti
n
g
th

e
so

ft
w
ar
e

ar
ch

it
ec

tu
re

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 211
Ta
bl
e
2
(c
on

ti
n
u
ed

)

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

K
es

se
n
ti
n
i

et
al
.[
36

]
U
si
n
g
PS

O
fo
r

m
od

el
tr
an

sf
or

m
at
io
n
s

So
u
rc
e
m
od

el
,

ta
rg
et

m
od

el
an

d
m
ap

p
in
g
bl
oc

ks

In
te
ge

r
ve

ct
or

N
/A

N
/A

N
u
m
be

r
of

so
u
rc
e
m
od

el
co

n
st
ru

ct
s
th

at
ca

n
be

tr
an

sf
or

m
ed

O
p
ti
m
al

tr
an

sf
or

m
at
io
n
s

Pa
rt
ic
le

Sw
ar
m

O
p
ti
m
iz
at
io
n

(P
SO

)u
se

d
as

se
ar
ch

al
go

ri
th

m

K
im

an
d

Pa
rk

[3
7]

D
yn

am
ic

se
le
ct
io
n

of
so

ft
w
ar
e

co
m
p
on

en
ts

So
ft
go

al
in
te
rd

ep
en

d
en

cy
gr
ap

h
,d

ec
is
io
n

va
ri
ab

le
s

St
ri
n
g
of

in
te
ge

rs
re
p
re
se

n
ti
n
g

d
ec

is
io
n
va

ri
ab

le
s

G
oe

s
th

ro
u
gh

ea
ch

ge
n
e
an

d
ch

an
ge

s
th

e
d
ig
it
ac

co
rd

in
g
to

m
u
ta
ti
on

p
ro

ba
bi
li
ty

Tw
o-

p
oi
n
t

cr
os

so
ve

r
Q
u
al
it
y

at
tr
ib
u
te
s
gi
ve

n
by

u
se

r

O
p
ti
m
al

ar
ch

it
ec

tu
ra
l

in
st
an

ce
fr
om

th
e

se
t
of

al
li
n
st
an

ce
s

B
od

h
u
in

et
al
.[
38

]
A
u
to
m
at
in
g
cl
as

s
cl
u
st
er
in
g
in

ja
r

ar
ch

iv
es

A
gr
ou

p
in
g
of

cl
as

se
s
of

a
sy

st
em

A
n
in
te
ge

r
ar
ra
y,

ea
ch

ge
n
e
is

a
cl
u
st
er

of
cl
as

se
s
al
lo
ca

te
d

to
th

e
ja
r
re
p
re
se

n
te
d

by
in
te
ge

r

C
h
an

ge
s
th

e
al
lo
ca

ti
on

of
a
cl
as

s
cl
u
st
er

to
an

ot
h
er

ja
r
ar
ch

iv
e

St
an

d
ar
d

on
e-
p
oi
n
t

D
ow

n
lo
ad

co
st

of
ja
r
ar
ch

iv
e

O
p
ti
m
al

p
ac

ka
gi
n
g;

fi
n
d
in
g

th
e
su

bs
et
s
of

cl
as

se
s
m
os

t
li
ke

ly
to

be
u
se

d
to
ge

th
er

(t
o
be

p
la
ce

d
in

sa
m
e
ja
r

ar
ch

iv
e)

G
ol
d
et

al
.[
39

]
U
si
n
g
G
A

in
th

e
ar
ea

of
co

n
ce

p
ts

H
yp

ot
h
es

is
li
st

fo
r
co

n
ce

p
ts

O
n
e
or

m
or

e
se

gm
en

t
re
p
re
se

n
ta
ti
on

s
A

h
yp

ot
h
es

is
lo
ca

ti
on

is
ra
n
d
om

ly
re
p
la
ce

d
w
it
h
in

a
se

gm
en

t
p
ai
r

Se
gm

en
t
p
ai
rs

of
ov

er
la
p
p
in
g

lo
ca

ti
on

s
ar
e

co
m
bi
n
ed

,r
es

t
co

p
ie
d

St
ro

n
ge

st
ev

id
en

ce
fo
r

se
gm

en
ts

an
d

h
yp

ot
h
es

is
bi
n
d
in
g

O
p
ti
m
iz
ed

co
n
ce

p
t

as
si
gn

m
en

t
H
il
lc

li
m
bi
n
g

u
se

d
as

w
el
la

s
G
A

G
ol
d
sb

y
an

d
C
h
an

g
[4
0]
;

G
ol
d
sb

y
et

al
.[
41

]

D
es

ig
n
in
g
a
sy

st
em

fr
om

a
be

h
av

io
ra
l

p
oi
n
t
of

vi
ew

A
cl
as

s
d
ia
gr
am

,
op

ti
on

al
st
at
e

d
ia
gr
am

A
se

t
of

be
h
av

io
ra
l

in
st
ru

ct
io
n
s

C
h
an

ge
s,

re
m
ov

es
or

ad
d
s
an

in
st
ru

ct
io
n

Se
lf
-r
ep

li
ca

ti
on

N
u
m
be

r
of

ex
ec

u
te
d
ta
sk

s
U
M
L
st
at
e
d
ia
gr
am

gi
vi
n
g
th

e
be

h
av

io
ra
lm

od
el

of
sy

st
em

N
o
ac

tu
al

ev
ol
u
ti
on

ar
y

al
go

ri
th

m
u
se

d
,

bu
t
a
p
la
tf
or

m
th

at
is

“a
n

in
st
an

ce
of

ev
ol
u
ti
on

”

Lu
tz

[4
2]

In
fo
rm

at
io
n
th

eo
ry

ap
p
li
ed

in
so

ft
w
ar
e

d
es

ig
n
;h

ig
h
-l
ev

el
ar
ch

it
ec

tu
re

d
es

ig
n

So
ft
w
ar
e
sy

st
em

H
ie
ra
rc
h
ic
al

m
od

u
la
r

d
ec

om
p
os

it
io
n

(H
M
D
)

T
h
re
e
m
u
ta
ti
on

s
op

er
at
in
g
th

e
m
od

u
le

tr
ee

fo
r
th

e
H
M
D

A
va

ri
an

t
of

tr
ee

-b
as

ed
cr
os

so
ve

rs
,a

s
u
se

d
in

G
P,

w
it
h
co

rr
ec

ti
ve

fu
n
ct
io
n

1/
co

m
p
le
xi
ty

O
p
ti
m
al

h
ie
ra
rc
h
ic
al

d
ec

om
p
os

it
io
n
of

sy
st
em

212 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
(respectively methods) in class C, and ∆ij = 1, if method
j uses attribute i, and 0 otherwise. Selection is performed
by tournament and roulette-wheel. The choices regarding
encoding, genetic operators and fitness function are quite
traditional, although the problem to be solved is far from
traditional.

In an alternative approach, categorized by the authors as
evolutionary programming (EP)and inspired by Fogel et al. [43],
offspring are created by mutation and selection is made with
tournament selection. Two types of mutations are used, class-
level mutation and element-level mutation. At the class level,
all attributes and methods of a class in an individual are
swapped as a group with another class selected at random.
At the element level, elements (methods and attributes) in
an individual are swapped at random from one class to
another. Initialization of the population is made by allocating
a number of classes to each individual design at random,
within a range derived from the number of attributes and
methods. All attributes and methods from sets of attributes
and methods are then allocated to classes within individuals
at random. These operations appear quite simplistic, and
the actual change to the design remains minimal, since
the fitness of an individual depends on how methods and
attributes depending on one another are located. When the
elements are moved in a group, there does not seem to be
very much change in the actual design.

A case study is made with a cinema booking system
with 15 actions, 16 data and 39 uses. For GA, the average
COM fitness for the final generation for both tournament
and roulette-wheel is similar, as is the average number of
classes in the final generation. However, convergence to a
local optimum is quicker with tournament selection. Results
reveal that the average and maximum COM fitness of the
GA population with roulette-wheel selection lagged behind
tournament in terms of generation number. For EP, the
average population COM fitness in the final generation is
similar to that achieved by the GA.

The initial average fitness values of the three algorithms
are notably similar, although the variance of the values
increases from GA tournament to GA roulette-wheel to EP.
In terms of COM cohesion values, the generic operators
produced conceptual software designs of similar cohesion
to human performance. Simons and Parmee [29–31] suggest
that a multi-objective search may be better suited for support
of the design processes of the human designer. To take
into account the need for extra input, they attempted to
correct the fitness function by multiplying the COM value
by (a) the number of attributes and methods in the class
(COM.M+A); (b) the square root of the number of attributes
and methods in the class (COM.

√
(M + A); (c) the number

of uses in the class (COM.uses) and (d) the square root of
the number of uses in a class (COM.

√
uses). Using such

multipliers raises some questions, as there is no intuition for
using the square root multipliers. Multiplying by the sum of
methods and attributes or uses can intuitively be justified by
showing more appreciation to classes that are large but are
still comprehensible. However, such an appreciationmay lead
to preferring larger classes.

The authors have taken this into account by measuring
the number of classes in a design solution, and a design
solution with a higher number of classes is preferred to a
design solution with fewer classes. When cohesion metrics
that take class size into account are used, there is a
broad similarity between the average population cohesion
fitness and the manual design. Values achieved by the
COM.M+A and COM.uses and cohesion metrics are higher
than the manual design cohesion values, while COM.

√
(M +

A) and COM.
√
uses values are lower. Manually examining

the design produced by the evolutionary runs, a difference
is observed in the design solutions produced by the four
metrics that account for class size, when compared with the
metrics that do not. From the results produced for the two
case studies, it is evident that while the cohesion metrics
investigated have produced interesting cohesive class design
solutions, they are by no means a complete reflection of
the inherently multi-objective evaluations conducted by a
human designer. The evolutionary design variants produced
are thus highly dependent on the extent and choice of metrics
employed during search and exploration. These results
further emphasize the importance of properly defining a
fitness function and deciding on the appropriate metrics in
all software design related problems.

Amoui et al. [32] use the GA approach to improve
the reusability of software by applying architecture design
patterns to a UML model. The authors’ goal is to find the best
sequence of transformations, i.e., pattern implementations.
Used patterns come from the collection presented by Gamma
et al. [25], most of which improve the design quality and
reusability by decreasing the values of diverse coupling
metrics while increasing cohesion.

Chromosomes are an encoding of a sequence of
transformations and their parameters. Each individual
consists of several supergenes, each of which represents a
single transformation. A supergene is a group of neighboring
genes on a chromosome which are closely dependent and are
often functionally related. Only certain combinations of the
internal genes are valid. Invalid patterns possibly produced
through mutations or crossover are found and discarded.
The supergene concept introduced here is an insightful
approach into handling masses of complex data that needs
to be represented as a relatively simple form. Instead of
having only one piece of information per gene, this way
several pieces of related information can be grouped to such
supergenes, which then logically form a chromosome. In the
study by Bowman et al. [28] the need for additional data
storage (the matrix for data dependencies) demonstrates the
complexity of design problems. In this case the supergene
approach introduced by Amoui et al. [32] could have been
worthwhile trying to include all information regarding the
attributes and methods in the chromosome encoding.

Mutation randomly selects a supergene and mutates
a random number of genes inside the supergene. After
this, validity is checked. In the case of encountering
a transformed design which contradicts object-oriented
concepts, for example, a cyclic inheritance, a zero fitness
value is assigned to the chromosome. This is an interesting
way of dealing with anomalies; instead of implementing
a corrective operation to force validity, it is trusted that
the fitness function will suffice in discarding the unsuitable
individuals if they are given a low enough value.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 213
Two different versions of crossover are used. The first is
a single-point crossover applied at the supergene level, with
a randomly selected crossover point, which swaps the super-
genes beyond the crossover point, while the internal genes
of supergenes remain unchanged. This combines the promis-
ing patterns of two different transformation sequences. The
second crossover randomly selects two supergenes from
two parent chromosomes, and similarly applies single point
crossover to the genes inside the supergenes. This combines
the parameters of two successfully applied patterns. The
first crossover thus attempts to preserve high-level building
blocks, while the second version attempts to create low-level
building blocks.

The quality of the transformed design is evaluated,
as introduced by Martin [44], by its “distance from the
main sequence” (D), which combines several object-oriented
metrics by calculating the abstract classes’ ratio and coupling
between classes, and measures the overall reusability of a
system.

A case study is made with a UML design extracted from
some free, open source applications. The GA is executed in
two versions. In one version only the first crossover is applied
and in second both crossovers are used. A random search is
also used to see if the GA outperforms it. Results demonstrate
that the GA finds the optimal solution much more efficiently
and accurately. From the software design perspective, the
transformed design of the best chromosomes are evolved so
that abstract packages become more abstract and concrete
packages in turn become more concrete. The results suggest
that GA is a suitable approach for automating object-oriented
software transformations to increase reusability. As the
application of design patterns is by no means an easy task,
these initial results suggest that at least the structure and
needs of the GA do not restrict the automated design of the
software architecture.

Räihä et al. [33] take the design of software architecture
a step further than Simons and Parmee [29], by starting the
design from a responsibility dependency graph. The graph
can also be achieved from use cases, but the architecture is
developed further than the class distribution of actions and
data. A GA is used for the automation of design.

In this approach, each responsibility is represented by a
supergene, and a chromosome is a collection of supergenes.
The supergene contains information regarding the respon-
sibility, such as dependencies of other responsibilities, and
evaluated parameters such as execution time and variability.
Here the notion of supergene [32] is efficiently used in order to
store a large number of different types of data pieces within
the chromosome. Mutations are implemented as adding or
removing an architectural design pattern [25] or an interface,
or splitting or joining class(es). Implemented design patterns
are Façade and Strategy, as well as the message dispatcher
architecture style [24]. Dynamic mutation probabilities are
used to encourage the application of basic design choices
(the architectural style(s)) at the beginning and more refined
choices (such as the Strategy pattern) at the end of evolution.
Crossover is a standard one-point crossover. After the oper-
ations, the offspring and mutated chromosomes are always
checked for legality, as design patterns may easily be broken.
Selection is made with the roulette wheel method.
This approach actually combines the class responsibility
assignment problem studied by Simons and Paremee [29,30]
and the application of design patterns, as studied by Amoui
et al. [32]. Although the selection of design patterns is smaller,
the search problem of finding an optimal architecture is much
more difficult. First the GA needs to find the optimal class
responsibility distribution, and then apply design patterns. In
this case the search space grows exponentially, as in order to
optimally apply the design patterns, the class responsibility
distribution may need to be sub-optimal. This produces a
challenge when deciding on the fitness function.

The fitness function is a combination of object-oriented
software metrics, most of which are from the Chidamber and
Kemerer [45] collection, which have been grouped to mea-
sure quality concepts efficiency and modifiability. Some ad-
ditional metrics have also been developed to measure the
effect of communicating through a message dispatcher or in-
terfaces. Furthermore, a complexity measure is introduced.
The fitness function is defined as f = w1 PositiveModifiability
−w2 NegativeModifiability +w3 PositiveEfficiency −w4 Nega-
tiveEfficiency −w5 Complexity, where wis are weights to be
fixed. As discussed, defining the fitness function is the most
complex task in all SSBSE problems. In this case, when the
problem is so diverse, the fitness function is also intricate: it
requires a set of known metrics, a set of special metrics, the
grouping of these metrics and additionally weights in order to
set preferences to quality aspects.

The approach is tested on a sketch of a medium-sized
system [46]. Results show positive development in overall
fitness value, while the balancing of weights greatly affects
whether the design is more modifiable or efficient. However,
the actual designs are not compliant with the fitness values,
and would not be accepted by a human architect. This
suggests that further improvement is needed in defining the
fitness function.

Räihä et al. [34] further develop their work by implement-
ing more design patterns and an alternative approach. In
addition to the responsibility dependency graph, a domain
model may be given as input. The GA can now be utilized
in Model Driven Architecture design, as it takes care of the
transformations from Computationally Independent Model to
Platform Independent Model. The new design patterns are
Mediator and Proxy, and the service oriented architecture
style is also implemented by enabling a class to be called
through a server. The chromosome representation, mutation
and crossover operations, and selection method are kept the
same. Results show that the fitness values converge to some
optima and reasonable high-level designs are obtained.

In this case the task for the GA is made somewhat easier,
as a skeleton of a class structure is given to the algorithm
in the form of a domain model. This somewhat eliminates
the class responsibility assignment problem and the GA can
only concentrate on applying the design patterns. As the
results are significantly better, although the search space
is more complex when more patterns have been added to
the mutations, this suggests that the class responsibility
assignment problem is extremely complex on its own, and
more research on this would be highly beneficial as a
background for several search-based software design related
questions.

214 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Räihä et al. [35] continue to develop their approach by in-
cluding the Template pattern in the design pattern/mutation
collection and introducing scenarios as a way to enhance the
evaluation of a produced architecture. Scenarios are basically
a way to describe an interaction between the system and a
stakeholder. In their work, Räihä et al. [35] categorize and for-
malize modifiability related scenarios so that they can be en-
coded and given to the GA as an additional part of the fitness
function. Each scenario is given a list of preferences regarding
the architectural structures that are suitable for that scenario.
The preferences are then compared with the suggested archi-
tecture and a fitness value is calculated according to how well
the given architecture conforms to the preferences. This way
the fitness value is more pointed, as the most critical parts of
the architecture can be given extra attention and the eval-
uation is not completely based on general metrics. Results
from empirical studies made on two sample systems show
that when the scenarios are used, the GA retains the high-
speed phase of developing the architecture for 10–20 genera-
tions longer than in the case where scenarios are not used.
Also, when the scenario fitness is not included in the overall
fitness evaluations the GA tends to make decisions that do
not support the given scenarios.

Results from this study shows that when themodifications
are detailed in applying a design pattern (rather than
modifying the architecture “as a whole”), the fitness function
also needs to be more focused to study the places in an
architecture where such detailed solutions would be most
beneficial.

Kessentini et al. [36] also use a search-based approach
to model transformations. They start with a small set of
examples, from which transformation blocks are extracted,
and use particle swarm optimization (PSO) [47]. A model is
viewed as a triple of source model, target model and mapping
blocks between the source and target models. The source
model is formed by a set of constructs. The transformation
is only coherent if it does not conflict with the constructs.
The transformation quality of a source model (i.e., global
quality of a model) is the sum of the transformation qualities
of its constructs (i.e., local qualities). This approach is less
automated, as the transformations need to be extracted from
ready models, and are not general. However, using PSO is
especially interesting, and suggests that other algorithms
besides GA are also suitable for complex software design
problems.

To encode a transformation, an M-dimensional search
space is defined, M being the number of constructs. The
encoding is now an M-dimensional integer vector whose
elements are the mapping blocks selected for each construct.
The fitness function is a sum of constructs that can be
transformed by the associated blocks multiplied by relative
numbers of matched parameters and constructs. The fitness
value is normalized by dividing it by 2 ∗M, thus resulting in a
fitness range of [0, 1].

The method was evaluated and tried with 10 small-size
models, of which nine are used as a training set and one
as the actual model to be transformed. The precision of
model transformation (number of constructs with correct
transformations in relation to total number of constructs)
is calculated in addition to the fitness values. The best
solution was found after only 29 iterations, after which all
particles converged to that solution. The test generated 10
transformations. The average precision of these is more
than 90%, thus indicating that the transformations would
indeed give an optimal result, as the fitness value was also
high within the range. The test also showed that some
constructs were correctly transformed, although there were
no transformation examples available for these particular
constructs.

Kim and Park [37] use GAs to dynamically choose
components to form the software architecture according to
changing demands. The basic concept is to have a set of
interchangeable components (e.g., BasicUI and RichUI) which
can be selected according to user preferences. The goal is thus
to select an optimal architectural instance from all possible
instances. This is especially beneficial when the software
needs to be transferred, e.g., from a PC to a mobile device.

A softgoal interdependency graph (SIG) is used as a
basis for the problem; it represents relationships between
quality attributes. The quality attributes are formulated
by a set of quality variables. A utility function is used
to measure the user’s overall satisfaction: the user now
gives weights for the quality values to represent their
priority. Functional alternatives (i.e., the interchangeable
components) are denoted by operationalizing goals. The
operationalizing goals can have an impact on a softgoal, i.e., a
quality attribute. Alternatives with similar characteristics
are grouped by type. One alternative type corresponds
to one architectural decision variable. These represent
partial configurations of the application. A combination of
architectural decision variables comprises an architectural
instance.

In addition to the SIG, situation variables and their val-
ues are needed as input. Situation variables describe par-
tial information on environmental changes and determine
the impacts that architectural decision variables have on
the quality attributes. The impact is defined as a situ-
ation evaluation function, which is defined for each di-
rect interdependency between an operationalizing goal and
quality attribute. Although the fitness function is quite
standard, i.e., it calculates the quality through “quality val-
ues” and there are weights assigned, the actual computations
are not that straightforward. The quality attributes that the
fitness function is based on rely on decision variables and sit-
uation variables. These in turn need to be calculated by hand,
and there is no clear answer as to how the situation variables
themselves are gathered.

For the GA, the architectural instance is encoded as
a chromosome by using a string of integers representing
architectural decisions. Mutation is applied to offspring,
for which each digit is subjected to mutation (according
to mutation probability). Crossover is a standard two-point
crossover. The utility function is used as the fitness function
and tournament selection is used for selecting the next
generation.

An empirical study is made and compared to exhaustive
search. The time needed for the GA is less then 1∗10−5 of the
time needed for the exhaustive search. The GA also converges
to the best solution very quickly, after only 40 generations.
Thus, it would seem that using a search algorithm for this

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 215
problem would produce extremely good results, at least in
terms of time and speed. However, in this case all the
components need to be known beforehand, as the task is to
choose an optimal set from alternative components. It would
be interesting to see at least how all the different variables
needed are acquired, and how the approach could be more
generalized.

Bodhuin et al. [38] present an approach based on GAs and
an environment that, based on previous usage information of
an application, re-packages it with the objective of limiting
the amount of resources transmitted for using a set of
application features. The overall idea is to cluster together
(in jars) classes that, for a set of usage scenarios, are likely
to be used together. Bodhuin et al. [38] propose to cluster
together classes according to dynamic information obtained
from executing a series of usage scenarios. The approach
aims at grouping in jars classes that are used together
during the execution of a scenario, with the purpose of
minimizing the overall jar downloading cost, in terms of
time in seconds for downloading the application. After having
collected the execution trace, the approach determines a
preliminary re-packaging considering common class usages
and then improves it by using GAs. This approach can be
seen as attempting to find optimal sub-architectures for a
system, as each jar-package needs to be able to operate on
its own. Obviously the success of finding sub-systems greatly
depends on how well the class responsibility assignment
problem is solved in the system, linking these results to that
fundamental problem.

The proposed approach has four steps. First, the
application to be analyzed is instrumented, and then it is
exercised by executing several scenarios instantiated from
use cases. Second, a preliminary solution of the problem is
found, grouping together classes used by the same set of
scenarios. Third, GAs are used to determine the (sub)-optimal
set of jars. Fourth, based on the results of the previous steps,
jars are created.

For the GA, an integer array is used as the chromosome
representation, where each gene represents a cluster of
classes. The initial population is composed randomly.
Mutation selects a cluster of classes and randomly changes
its allocation to another jar archive. The crossover is the
standard one-point crossover. The fitness function is F(x) =

1/N ∗
∑

(Costi), where N is the number of scenarios and Cost
is calculated from the call cost of making a request to the
server and from the class sizes. 10% of the best individuals
are kept alive across subsequent generations. Individuals to
be reproduced are selected using a roulette-wheel selection.
Scenarios are used in a very different way here to in the
work of Räihä et al. [35]. Here, scenarios define actions made
with the system, and thus contain information of different
components of the system that are needed, but do not
deal with quality aspects other than how many operations,
i.e., scenarios, a certain set of responsibilities is able to
perform. Räihä et al. [35], however, use scenarios to describe
not functional operations but expectations to the system in
terms of quality aspects. These different studies suggest that
there are more ways of measuring quality than metrics, and
they should be more thoroughly investigated.
Results show that GA does improve the initial packaging,
by 60%–90% compared to the actual initial packaging, by
5%–43% compared to a packaging that contains two jars,
“used” and “unused”, and by 13%–23% compared to the
preliminary best solution. When delay increases, the GA
optimization starts to be much more useful than the
preliminary optimal solution, while the “used” packaging
becomes better. However, for a network delay value lower
or slightly higher than the value used for the optimization
process, the GA optimization is always the best packaging
option. It is found that even when there is a large corpus of
classes used in all scenarios, a cost reduction is still possible,
even if in such a case the preliminary optimized solution is
already a good one. The benefits of the proposed approach
depend strongly on several factors, such as the amount
of collected dynamic information, the number of scenarios
subjected to analysis, the size of the common corpus and
the network delay. However, the presented approach and its
results can be linked to several other software design related
questions, thus raising questions on how different promising
results can be combined so that evenmore complex problems
can be solved with search-based methods.

Gold et al. [39] experiment with applying search tech-
niques to integrate the boundary overlapping concept as-
signment. Hill climbing and GA approaches are investigated.
The fixed boundary Hypothesis Based Concept Assignment
(HBCA) [48] technique is compared to the new algorithms.
As program comprehension is extremely valuable when (re-
)designing software architecture, and locating (and under-
standing) overlapping concepts is one of the most demanding
tasks in comprehension, automating this task would signifi-
cantly save resources in program maintenance.

A concept may take the form of an action or object.
For each concept found from source code, a hypothesis is
generated and stored. The list of hypotheses is ordered
according to the position of the indicators in the source
code. The input for the search problem is the hypothesis list.
The hypothesis list is given by the application of HBCA. The
problem is defined as searching for segments of hypothesis
in each hypothesis list according to predetermined fitness
criteria such that each segment has the following attributes:
each segment contains one or more neighboring hypotheses
and there are no duplicate segments.

A chromosome is made up of a set of one or more
segment representations, and its length can vary. A segment
is encoded as a pair of values (locations) representing the
start and end hypothesis of the hypothesis list. All segments
with the same winning concept that overlap are compared,
and all but the fittest segment are removed from the
solution. Tournament selection is used for crossover and
mutation. Mutation in GA randomly replaces any hypothesis
location within any segment with any other valid hypothesis
location with the aim to cause the search to become more
randomized. In HC the mutation generates new solutions by
selecting a segment and increasing or decreasing one of the
values by a single increment. Selecting different mutations
for GA and HC is noteworthy: this choice is partially justified
by the authors by the fact that mutation is only the secondary
operation for the GA, and transformations are primarily done
with the crossover. The chosen mutation operator for the

216 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
GA seems to ensure diversity within the population. The
proposed HC takes advantage of the crossover for GA for the
restart mechanism, which recombines all segments to create
new pairs of location values, which are then added to the
current solution if their inclusion results in an improvement
to the fitness value. Crossover utilizes the location of the
segments, where only segments of overlapping locations
are recombined and the remainder are copied to the new
chromosome.

The fitness criteria’s aims are finding segments of
strongest evidence and binding as many of the hypotheses
within the hypothesis list as possible without compromising
the segment’s strength of evidence. The segmentation
strength is a combination of the inner fitness and the
potential fitness of each segment. The inner fitness fiti of
a segment is defined as signali–noisei, where signali is the
number of hypotheses within the segment that contribute to
the winner, and noisei represents the number of hypotheses
within the segment that do not contribute to the winner.
In addition, each segment is evaluated with respect to the
entire segment hypothesis list: the potential segment fitness,
fitp, is evaluated by taking account of signalp, the number of
hypotheses outside of the segment that could contribute to
the segment’s winning concept if they were included in the
segment. The potential segment fitness is thus defined as
f itp = signali − signalp. The overall segment fitness is defined
as segfit = fiti + fitp. The total segment fitness is a sum of
segment fitnesses. The fitness is normalized with respect to
the length of the hypothesis list. The chosen fitness function
seems quite simple when broken down to actual calculations.
This further confirms the findings, by e.g. [42], that simple
approaches tend to have promising results, as there is less
room to err.

An empirical study is used. Results are also compared
to sets of randomly generated solutions for each hypothesis
list, created according to the solutions structure. The results
from GA, HC and random experiment are compared based
on their fitness values. The GA fitness distribution is the
same as those of HC and random, but achieves higher values.
HC is clearly inferior. Comparing GA, HC and HBCA shows
a lack of solutions with low Signal to Noise ratios for GA
and HC when compared to HBCA. GA is identified as the
best of the proposed algorithms for concept assignment
which allow overlapping concept boundaries. Also, the HC
results are somewhat disappointing as they are found to be
significantly worse than GA and random solutions. However,
HC produces stronger results than HBCA on the signal to
size measure. The GA and HC are found to consistently
produce stronger concepts than HBCA. It might be worth
studying how the HC would have performed if it used the
samemutation operator as the GA. Although the GA primarily
used the crossover, which was used as a basis for the HC, the
GAs large population makes the application of this operator
significantly more different than with HC.

Goldsby and Chang [40] and Goldsby et al. [41] study the
digital evolution of behavioral models for autonomic systems
with Avida. It is difficult to predict the behavior of autonomic
systems before deployment, and thus automatic generation
of behavioral models greatly eases the task of software
engineers attempting the comprehend the system. In digital
evolution a population of self-replicating computer programs
(digital organisms) exists in a computational environment
and is subject to mutations and selection. In this approach
each digital organism is considered as a generator for a UML
state diagram describing the systems behavior.

Each organism is given instinctual knowledge of the
system in the form of a UML class diagram representing the
system structure, as well as optional seed state diagrams. A
genome is thus seen as a set of instructions telling the system
how to behave. The genome is also capable of replicating
itself. In fact, at the beginning of each population there exists
only one organism that only knows how to replicate itself,
thus creating the rest of the population. Mutations include
replacing an instruction, inserting an additional instruction
or removing an instruction from the genome. As genomes
are self-replicating, crossover is not used in order to create
offspring. Here the choice of UML state diagrams is clever, as it
visualizes the behavior in quite a simple manner, making the
interpretation of the result easy. Also the choice of encoding
conforms well to the chosen visualization method. However,
the actual encoding of rules into the genome is not simple,
and requires several different alphabets and lists of variables.

The fitness or quality of an organism is evaluated by a
set of tasks, defined by the developer. Each task that the
behavioral model is able to execute increases its merit. The
higher a merit an organism has, the more it will replicate
itself, eventually ending up dominating the population. This
is yet another instance where the fitness is measured by
something other than traditional metrics.

A behavioral model of an intelligent robot is used
as a case study for Avida. Through 100 runs of Avida,
seven behavioral models are generated for the example
system. Post-evolution analysis includes evaluation with the
following criteria: minimum states, minimum transitions,
fault tolerance, readability and tolerance. After the analysis,
one of the models meets all but one criterion (safety) and
three models meet three of the five criteria. One model does
not meet any of the additional criteria. Thus, the produced
behavioral models would seem to be of average quality.

Lutz [42] uses ameasure based on an information theoretic
minimum description length principle [49] to compare
hierarchical decompositions. This measure is furthermore
used as the fitness function for the GA which explores the
space of possible hierarchical decompositions of a system.
Although this is very similar to software clustering, this
approach is considered as architecture design as it does
not need an initial clustering to improve, but designs the
clustering purely based on the underlying system and its
dependencies.

In hierarchical graphs, links can represent such things
as dependency relationships between the components of
control-flow or data-flow. In order to consider the best way to
hierarchically break a system up into components, one needs
to know what makes a hierarchical modular decomposition
(HMD) of a system better than another. Lutz takes the view
that the best HMD of a system is the simplest. In practice
this seems to give rise to HMDs in which modules are highly
connected internally (high cohesion) and have relatively few
connections which cross module boundaries (low coupling),
and thus seems to achieve a principled trade-off between the

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 217
coupling and cohesion heuristics without actually involving
either. This also suggests that high quality architectures
can effectively be identified through subjective inspection.
A human architect may quite easily say if one design
appears simpler than another, while calculation cohesion and
coupling values are more time consuming and complex.

For the GA, the genome is a HMD for the underlying
system. The chromosomes in the initial population are
created by randomly mutating some number of times a
particular “seed” individual. The initial seed individual
is constructed by modularizing the initial system. Three
different mutation operations are used that can all be thought
of as operations on the module tree for the HMD. They are:
1. moving a randomly chosen node from where it is in the
tree into another randomly chosen module of the tree, 2.
modularizing the nodes of some randomly chosen module,
i.e., creating a new module containing the basic entities
of some module, and 3. removing a module “boundary”.
The crossover operator resembles the tree-based crossover
operation used in genetic programming and is most easily
considered as a concatenating operation on the module trees
of the two HMDs involved. However, legal solutions are not
guaranteed, and illegal ones are repaired.

The tree-like structure is significantly more complex than
usual genome encodings for a GA. This is of course in line
with the demands of the problem of finding an optimal
HMD, but also reflects on the understandability of the chosen
operations. The operations are difficult (if not impossible)
to completely understand without visualization, and difficult
corrective operations are needed in order to keep the system
structure intact. The analogy between the chosen tree-
operations and actual effects to the architecture is also quite
difficult to grasp.

The fitness is given as 1/complexity. Among other systems,
a real software design is used for testing. A HMD with
significantly lower complexity than the original was found
very reliably, and the system could group the various
components of the system into a HMD exhibiting a very
logical (in terms of function) structure. These results validate
that using simplicity as a fitness function is justified.

3.1.3. Summarizing remarks
Search-based approaches to software architecture design is
clearly a diverse field, as the studies presented solve very
different issues relating to OO software architecture design
and program comprehension. Some consensus can be found
in the very basics: solving the class responsibility assignment
problem, applying design choices to create an architecture
and finding an optimal modularization (Lutz [42] creates
a modularization, Kim and Park [37] attempt to find an
optimal set of components and Bodhuin et al. [38] attempt to
find optimal sub-architectures). However, even within these
sub-areas of OO design, the approaches are quite different,
and practically no agreement can be found when studying
the chosen encodings, operations or fitness function. What
is noticeable, however, is that several approaches to quite
different problems within this area use a fitness function that
is not based on metrics. This highlights the need for better
validation when using metrics in evaluating the quality of
software, and especially software architectures. Manymetrics
need source code and very detailed information; this alone
suggests that they are not suitable for this higher level
problem.

3.2. Service-oriented architecture design

3.2.1. Background
Web services are rapidly changing the landscape of software
engineering, and service-oriented architectures (SOA) are
especially popular in business. One of the most interesting
challenges introduced by web services is represented by
Quality of Service (QoS)-aware composition and late-binding.
This allows binding, at run-time, a service-oriented system
with a set of services that, among those providing the
required features, meet some non-functional constraints,
and optimize criteria such as the overall cost or response
time. Hence, QoS-aware composition can be modeled as
an optimization problem. This problem is NP-hard, which
makes it suitable for meta-heuristic search algorithms. For
more background on SOA, see, e.g., [50]. Section 3.2.2
describes several approaches that have used a GA to deal with
optimizing service compositions. Summarizing remarks on
the different approaches are given in Section 3.2.3, and the
fundamentals of each approach are collected in Table 3.

3.2.2. Approaches
Canfora et al. [51] propose a GA to optimize service
compositions. The approach attempts to quickly determine
a set of concrete services to be bound to the abstract services
composing the workflow of a composite service. Such a set
needs both tomeet QoS constraints, established in the Service
Level Agreement (SLA), and to optimize a function of some
other QoS parameters.

A composite service S is considered as a set of n abstract
services {s1, s2, . . . , sn}, whose structure is defined through
some workflow description language. Each component sj
can be bound to one of the m concrete services, which
are functionally equivalent. Computing the QoS of a
composite service is made by combining calculations for
quality attributes time, cost, availability, reliability and customer
attraction. Calculations take into account Switch, Sequence,
Flow and Loop patterns in the workflow.

The genome is encoded as an integer array whose number
of items equals the number of distinct abstract services
composing the services. Each item, in turn, contains an index
to the array of the concrete services matching that abstract
service. The mutation operator randomly replaces an abstract
service with another one among those available, while the
crossover operator is the standard two-point crossover. This
can be seen as an attempt to preserve building blocks,
i.e., sequences of optimal service bindings. Abstract services
for which only one concrete service is available are taken out
of the GA evolution.

The fitness function needs to maximize some QoS
attributes, while minimizing others. In addition, the fitness
function must penalize individuals that do not meet the
constraints and drive the evolution towards constraint
satisfaction, the distance from which is denoted by D. The
fitness function is f = (w1Cost + w2Time)/(w3Availability +

218 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Ta
bl
e
3
–
S
tu

d
ie
s
in

se
ar

ch
-b

as
ed

se
rv

ic
e-

or
ie
n
te
d
so

ft
w
ar
e
ar

ch
it
ec

tu
re

d
es

ig
n
.

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

C
an

fo
ra

et
al
.[
51

]
Se

rv
ic
e
co

m
p
os

it
io
n

w
it
h
re
sp

ec
t
to

Q
oS

at
tr
ib
u
te
s

Se
ts

of
ab

st
ra
ct

an
d
co

n
cr
et
e

se
rv
ic
es

In
te
ge

r
ar
ra
y,

w
h
os

e
si
ze

is
th

e
n
u
m
be

r
of

ab
st
ra
ct

se
rv
ic
es

,
ea

ch
it
em

co
n
ta
in
s

an
in
d
ex

to
ar
ra
y
of

co
n
cr
et
e
se

rv
ic
es

R
an

d
om

ly
re
p
la
ce

s
an

ab
st
ra
ct

se
rv
ic
e
w
it
h

an
ot
h
er

St
an

d
ar
d

tw
o-

p
oi
n
t

cr
os

so
ve

r

M
in
im

iz
e
co

st
an

d
ti
m
e,

m
ax

im
iz
e

av
ai
la
bi
li
ty

an
d

re
li
ab

il
it
y,

m
ee

t
co

n
st
ra
in
ts
,

w
it
h
p
en

al
ty

O
p
ti
m
iz
ed

se
rv
ic
e

co
m
p
os

it
io
n

m
ee

ti
n
g

co
n
st
ra
in
ts
,

co
n
cr
et
e
se

rv
ic
es

bo
u
n
d
to

ab
st
ra
ct

se
rv
ic
es

A
d
yn

am
ic

p
en

al
ty

w
as

ex
p
er
im

en
te
d

w
it
h

C
an

fo
ra

et
al
.[
52

]
R
ep

la
n
n
in
g
d
u
ri
n
g

ex
ec

u
ti
on

ti
m
e

Se
ts

of
ab

st
ra
ct

an
d
co

n
cr
et
e

se
rv
ic
es

In
te
ge

r
ar
ra
y,

w
h
os

e
si
ze

is
th

e
n
u
m
be

r
of

ab
st
ra
ct

se
rv
ic
es

,
ea

ch
it
em

co
n
ta
in
s

an
in
d
ex

to
ar
ra
y
of

co
n
cr
et
e
se

rv
ic
es

R
an

d
om

ly
re
p
la
ce

s
an

ab
st
ra
ct

se
rv
ic
e
w
it
h

an
ot
h
er

St
an

d
ar
d

tw
o-

p
oi
n
t

cr
os

so
ve

r

M
in
im

iz
e
co

st
an

d
ti
m
e,

m
ax

im
iz
e

av
ai
la
bi
li
ty

an
d

re
li
ab

il
it
y,

m
ee

t
co

n
st
ra
in
ts

O
p
ti
m
iz
ed

se
rv
ic
e

co
m
p
os

it
io
n

m
ee

ti
n
g

co
n
st
ra
in
ts
,

co
n
cr
et
e
se

rv
ic
es

bo
u
n
d
to

ab
st
ra
ct

se
rv
ic
es

G
A

u
se

d
to

ca
lc
u
la
te

in
it
ia
l

Q
oS

-v
al
u
e
an

d
Q
oS

-v
al
u
es

in
be

tw
ee

n
:

re
p
la
n
n
in
g
is

tr
ig
ge

re
d
by

ot
h
er

al
go

ri
th

m
s

Ja
eg

er
an

d
M
ü
h
l[
53

]
Se

rv
ic
e
as

si
gn

m
en

t
w
it
h
re
sp

ec
t
to

Q
oS

at
tr
ib
u
te
s

Se
le
ct
io
n
of

se
rv
ic
es

an
d

ta
sk

s
to

be
ca

rr
ie
d
ou

t

A
tu

p
le

re
p
re
se

n
ti
n
g

an
as

si
gn

m
en

t
of

a
ca

n
d
id
at
e
fo
r
a
ta
sk

C
h
an

ge
s
an

in
d
iv
id
u
al

ta
sk

-c
an

d
id
at
e

as
si
gn

m
en

t

C
om

bi
n
in
g

ta
sk

-c
an

d
id
at
e

as
si
gn

m
en

ts

M
in
im

iz
e
co

st
an

d
ti
m
e,

m
ax

im
iz
e

av
ai
la
bi
li
ty

an
d

re
li
ab

il
it
y,

m
ee

t
co

n
st
ra
in
ts
,

w
it
h
p
en

al
ty

Ta
sk

s
as

si
gn

ed
to

se
rv
ic
es

co
n
si
d
er
in
g
Q
oS

at
tr
ib
u
te
s

A
tr
ad

e-
of
f

co
u
p
le

be
tw

ee
n

ex
ec

u
ti
on

ti
m
e

an
d
co

st
is

d
efi

n
ed

Z
h
an

g
et

al
.[
54

]
Ta

sk
as

si
gn

m
en

t
w
it
h
re
la
ti
on

to
Q
oS

at
tr
ib
u
te
s

Se
le
ct
io
n
s
of

ta
sk

s
an

d
se

rv
ic
es

R
el
at
io
n
m
at
ri
x

co
d
in
g
sc

h
em

e
St
an

d
ar
d
,w

it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

St
an

d
ar
d
,w

it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

M
in
im

iz
e
co

st
an

d
ti
m
e,

m
ax

im
iz
e

av
ai
la
bi
li
ty

an
d

re
li
ab

il
it
y,

m
ee

t
co

n
st
ra
in
ts

Ta
sk

s
as

si
gn

ed
to

se
rv
ic
es

co
n
si
d
er
in
g
Q
oS

at
tr
ib
u
te
s

In
it
ia
lp

op
u
la
ti
on

an
d
m
u
ta
ti
on

p
ol
ic
ie
s
d
efi

n
ed

Su et
al
.[
55

]
Ta

sk
as

si
gn

m
en

t
w
it
h
re
la
ti
on

to
Q
oS

at
tr
ib
u
te
s

Se
le
ct
io
n
s
of

ta
sk

s
an

d
se

rv
ic
es

R
el
at
io
n
m
at
ri
x

co
d
in
g
sc

h
em

e
St
an

d
ar
d
,w

it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

St
an

d
ar
d
,w

it
h

co
rr
ec

ti
ve

fu
n
ct
io
n

M
in
im

iz
e
co

st
an

d
ti
m
e,

m
ax

im
iz
e

av
ai
la
bi
li
ty

an
d

re
li
ab

il
it
y,

m
ee

t
co

n
st
ra
in
ts

Ta
sk

s
as

si
gn

ed
to

se
rv
ic
es

co
n
si
d
er
in
g
Q
oS

at
tr
ib
u
te
s

In
it
ia
lp

op
u
la
ti
on

an
d
m
u
ta
ti
on

p
ol
ic
ie
s
d
efi

n
ed

C
ao

et
al
.

[5
6,
57

]
B
u
si
n
es

s
p
ro

ce
ss

op
ti
m
iz
at
io
n

C
ol
le
ct
io
n
s
of

w
eb

se
rv
ic
es

an
d

se
rv
ic
e
ag

en
ts

(S
A
g)

co
m
p
os

in
g

a
bu

si
n
es

s
p
ro

ce
ss

In
te
ge

r
en

co
d
in
g,

as
si
gn

in
g
a
SA

g
to

a
se

rv
ic
e

C
h
an

ge
s
th

e
se

rv
ic
e
to

w
h
ic
h
a
SA

g
is

bo
u
n
d

w
it
h
co

rr
ec

ti
ve

fu
n
ct
io
n

St
an

d
ar
d

on
e-
p
oi
n
t,

p
ro

d
u
ci
n
g
tw

o
n
ew

of
fs
p
ri
n
g

w
it
h
co

rr
ec

ti
ve

fu
n
ct
io
n

C
os

t
Se

rv
ic
es

as
si
gn

ed
to

se
rv
ic
e
ag

en
ts

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 219
w4Reliability) + w5D. QoS attributes are normalized in the
interval [0, 1). Although the fitness function seems simple
in this way, the actual calculations behind the different
attributes are complex. The values are achieved by calculating
the quality value for each attribute for each pattern in the
workflow. The actual functions to define how these values
are calculated are not defined, and it would be interesting
to see how, e.g., availability is achieved, as this would show
the amount of information needed as input to calculate
the fitness value. The weights w1, . . . , w5 are positive reals.
Normalizing the fitness evaluators ensures that the weights
have the true effect to the fitness value that they are meant
to have.

A dynamic penalty is experimented with, so that w5 is
increased over the generations. An elitist GA is used, where
the best two individuals are kept alive across generations. The
roulette wheel method is used for selection.

The GA is able to find solutions that meet the constraints,
and optimizes different parameters (here cost and time).
Results show that the dynamic fitness does not outperform
the static fitness. Even different calibrations of weights do not
help. The convergence times of GA and Integer Programming
(IP) [58] are compared for the (almost) same achieved solution.
The results show that when the number of concrete services
is small, IP outperforms GA. For about 17 concrete services,
the performance is about the same. After that, GA clearly
outperforms IP. Thus, as SOA is most useful when the number
of services is large, it would seem that GA is a worthwhile
solution to optimizing the service-binding.

Canfora et al. [52] have continued their work by using a GA
in replanning the binding between a composite service and
its invoked services during execution. Replanning is triggered
once it can be predicted that the actual service QoS will differ
from initial estimates. After this, the slice, i.e., the part of
workflow still remaining to be executed, is determined and
replanned. The used GA approach is the same as earlier,
but additional algorithms are used to trigger replanning
and computing workflow slices. The GA is used to calculate
the initial QoS-values as well as optimizing the replanned
slices. Experiments were made with realistic examples, and
results concentrate on the cost quality factor. The algorithms
managed to reduce the final cost from the initial estimate,
while response time increased in all cases. The authors end
with a note that the trade-off between response time and cost
quality factors needs to be examined thoroughly in the future.

Jaeger and Mühl [53] discuss the optimization problem
when selecting services while considering different QoS
characteristics. A GA is implemented and tested on a
simulation environment in order to compare its performance
with other approaches.

An individual in the implemented GA represents an
assignment of a candidate for each task and can be
represented by a tuple. A population represents a set
of task-candidate assignments. The initial population is
generated arbitrarily from possible combinations of tasks and
candidates. Mutation changes a particular task-candidate
assignment of an individual. Crossover is made by combining
two particular task-candidate assignments to form new ones
and depends on the fitness value. The fitness value is
computed based on the QoS resulting from the encoded task-
services assignment. Jaeger and Mühl use the same fitness
function as Canfora et al. [51,52] in order to get comparable
results.

A trade-off couple between execution time and cost is
defined as follows: the percentage a, added to the optimal
execution time, is taken to calculate the percentage b, added
to the optimal cost, with a + b = 100. Thus, the shorter
the execution time is, the worse will be the cost and vice
versa. The constraint is determined to perform the constraint
selection on the execution time first. The aggregated cost for
the composition is increased by 20% and then taken as the
constraint that has to be met by the selection. This appears as
an attempt to answer the problem noted by Canfora et al. [52]
in their later study.

Several variations of the fitness function are possible.
Jaeger and Mühl [53] use a multiplication of the fitness
to make the difference between weak and strong fitnesses
larger. When the multiplying factor is 4, it achieves higher
QoS values than those with a smaller factor; however, a
factor of 8 does not achieve values as high. The scaled
algorithm performed slightly better than the one with a
factor of 2, and behaved similarly to the weighted algorithm.
The penalty factor was also investigated, and it was varied
between 0.01 and 0.99 in steps of 0.01. The results show
that a factor of 0.5 would result in few cases where the
algorithm does not find a constraint meeting solution. On
the other hand, solutions below 0.1 appear too strong, as
they represent an unnecessary restriction of the GA to evolve
further invalid solutions. These different experiments on
some very basic parameters demonstrate the difficulty of
optimizing the GA: even themore simple choices are anything
but straightforward.

The GA offers a good performance at feasible computa-
tional efforts when compared to, e.g., bottom-up heuristics.
However, this approach shows a large gap when compared to
the resulting optimization of a branch-and-bound approach
or to exhaustive search. It appears that the considered setup
of values along with the given optimization goals and con-
straints prevent a GA from efficiently identifying very near
optimal solutions.

Zhang et al. [54] implement a GA that, by running only
once, can construct the composite service plan according to
the QoS requirements frommany services compositions. This
GA includes a special relation matrix coding scheme (RMCS)
of chromosomes proposed on the basis of the characters of
web services selection.

By means of the particular definition, it can simultane-
ously represent all paths of services selection. Furthermore,
the selected coding scheme can simultaneously denote many
web service scenarios that the one dimension coding scheme
can not express at one time.

According to the characteristic of the services composi-
tion, the RMCS is adopted using a neighboring matrix. In the
matrix, n is the number of all tasks included in services com-
position. The elements along themain diagonal for thematrix
express all the abstract service nodes one by one, and are ar-
ranged from the node with the smallest code number to the
node with the largest code number. The objects of the evolu-
tion operators are all elements along the main diagonal of the

220 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
matrix. The chromosome is made up of these elements. The
other elements in the matrix are to be used to check whether
the created new chromosomes by the crossover and muta-
tion operators are available and to calculate the QoS values
of chromosomes. This appears to mainly combine the integer
array and the table of services linked to it, used by Canfora
et al. [51], into one data structure. The tuple representation
chosen by Jaeger and Mühl [53] does not seem that differ-
ent either, as a tuple can basically contain the information
of what is represented by a column and a row in a matrix.

The policy for initial population attempts to confirm the
proportion of chromosomes for every path to the size of
the population. The method is to calculate the proportion of
compositions of every path to the sum of all compositions of
all paths. The more compositions there are of one path, the
more chromosomes for the path there are in the population.

The value of every task in every chromosome is confirmed
according to a local optimized method. The larger the value
of QoS of a concrete service is, the larger the probability to
be selected for the task is. Roulette wheel selection is used to
select concrete services for every task.

The probability of mutation is for the chromosome instead
of the locus. If mutation occurs, the object path will be
confirmed firstly as to whether it is the same as the current
path expressed by the current chromosome. If the paths are
different, the object path will be selected from all available
paths except the current one. If the object is itself, the new
chromosome will be checked to see whether it is the same as
the old chromosome. The same chromosomewill result in the
mutation operation again. If the objects are different paths
from the current path, a new chromosome will be related on
the basis of the object path.

A check operation is used after the invocations of
crossover and mutation. If the values of the crossover loci
in two crossover chromosomes are all for the selected web
services, the new chromosomes are valid. Else, the new
chromosomes need to be checked on the basis of the relation
matrix. Mutation checks are needed if changed from a
selected web service to a certain value or vice versa.

Zhang et al. [54] compared the GAwith RMCS to a standard
GAwith the same data, including workflows of different sizes.
The used fitness function is as defined by Canfora et al. [59].
The coding scheme, the initial population policy and the
mutation policy are the differences between the two GAs.
Results show that the novel GA outperforms the standard
one in terms of achieved fitness values. As the number
of tasks grows, so does the difference in fitness values
(and performance time, in favor of the standard solution)
between the two GAs. The weaknesses of this approach are
thus long running time and slow convergence. Tests on the
initial population and the mutation policies show that as
the number of tasks grows, the GA with RMCS more clearly
outperforms the standard one. Thus it would seem that
combining the information into a heavier data structure, a
matrix, increases execution time significantly. Also, as it is
noted that the improvement fitness values with the novel GA
for larger task sets is achieved by testing other improvement
than the encoding, the true achievements are the ones that
really differ from previous approaches, rather than the new
representation. Tests on the coding scheme show that the
novel matrix approach only achieves noticeably better fitness
values when the number of tasks is increased (although
the improvement is not linear): the fitness values for 10
tasks differ by less than 1%, the fitness values for 25 tasks
differ by approximately 30%, and the fitness values for 30
tasks by approximately 20%. Another interesting point is the
choice of parameters: Zhang et al. [54] use 10 000 generations
and 400 individuals for a population in their tests. However,
the standard GA seems to achieve its optimum after 1000
generations and the one with the novel encoding after 3000
generations. Thus one wonders about the need for such
unusual parameter selections.

Zhang et al. [54] report that experiments on QoS-aware
web services selection show that the GA with the presented
matrix approach can get a significantly better composite
service plan than the GA with the one dimensional coding
scheme, and that the QoS policies play an important role in
the improvement of the fitness of the GA.

Su et al. [55] continue the work of Zhang et al. [54]
by proposing improvements for the fitness function and
mutation policy. An objective fitness function 1 (OF1) is first
defined as a sum of quality factors and weights, providing the
user with a way to show favoritism between quality factors.
The sum of positive quality factors is divided by the sum of
negative quality factors. The second fitness function (OF2) is
a proportional one and takes into account the different ranges
of quality value. The third fitness function (OF3) combines
OF1 and OF2, producing a proportional fitness function that
also expresses the differences between negative and positive
quality factors. Thus Su et al. seem to have noticed the
problems with defining the fitness functions, as the fitness
function actually used by Canfora et al. [51,52] includes
similar improvements.

Four different mutation policies are also inspected.
Mutation policy 1 (MP1) operates so that the probability
of the mutation is tied to each locus of a chromosome.
Mutation policy 2 (MP2) has the mutation probability tied
to the chromosomes. Mutation policy 3 (MP3) has the same
principle as MP1, except that now the child may be identical
to the parent. Mutation policy 4 (MP4) has the probability tied
to each locus, and has an equal selection probability for each
concrete service and the “0” service.

Experiments with the different fitness functions suggest
that OF3 clearly outperforms OF1 and OF2 in terms of
the reached average maximum fitness value. This is quite
unsurprising, as OF3 is the most developed fitness function.
Experiments on the different mutation policies show that
MP1 obtains the best fitness values while MP4 performs the
worst.

Cao et al. [56,57] present a service selection model using
GA to optimize a business process composed of many
service agents (SAg). Each SAg corresponds to a collection of
available web services provided by multiple-service providers
to perform a specific function. Service selection is an
optimization process taking into account the relationships
among the services. When only measuring cost, the service
selection is equivalent to a single-objective optimization
problem. Better performance is achieved using GA compared
to using a local service selection strategy.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 221
An individual is generated for the initial population by
randomly selecting a web service for each SAg of the services
flow, and the newly generated individual is immediately
checked as to whether the corresponding solution satisfies
the constraints. If any of the constraints is violated, then
the generated individual is regarded as invalid and discarded.
Roulette wheel selection is used for individuals to breed.

Mutation bounds the selected SAg to a different web
service than the original one. After an offspring is mutated,
it is also immediately checked whether the corresponding
solution is valid. If any constraints are violated, then the
mutated offspring is discarded and the mutation operation
is retried.

A traditional single-point crossover operator is used to
produce two new offspring. After each crossover operation,
the offspring are immediately checked as to whether the
corresponding solutions are valid. If any of the constraints is
violated, then both offspring are discarded and the crossover
operation for the mated parents is retried. If valid offspring
still cannot be obtained after a certain number of retries, the
crossover operation for these two parents is given up to avoid
a possible infinite loop.

Cao et al. [56,57] take cost as the primary concern of
many business processes. The overall cost of each execution
path can always be represented by the summation cost of
its subset components. For GA, integer encoding is used.
The solution to service selection is encoded into a vector of
integers. The fitness function is defined as f = U −

∑
(costs

of service flows), if cost < U, and otherwise 0. The constant
U should be selected as an appropriate positive number to
ensure all good individuals get a positive fitness value in the
feasible solution space. On the other hand, U can also be
utilized to adjust the selection pressure of GA. This is a clever
approach to give the developer a simple way to adjust the
selection process and appreciation of different solutions.

In the case study the best fitness of the population has a
rapid increase at the beginning of the evolution process and
then convergences slowly. It means the overall cost of the SAg
is generally decreasing with the evolution process. For better
solutions, the whole optimization process can be repeated for
a number of times, and the best one in all final solutions
is selected as the ultimate solution to the service selection
problem.

3.2.3. Summarizing remarks
Contrary to the studies relating to OO architecture design,
the approaches to apply search algorithms in SOA design
are extremely similar. Nearly all studies use the same
fitness functions or they have made only small modifications
to it. Also the basic representation of the problem is
very similar; although different definitions are used, the
underlying problem is always linking concrete services with
abstract services. Improvements have been attempted by
creating different initial population and mutation policies;
note, that the actual mutation is still the same, but the
way the mutation is applied is changed. Additionally, there
is no consensus in the encoding of the solution, although
the problem is the same, and some tests have been made
to compare different encoding options. Thus the main
questions in this area seem to be: are there other problems
in SOA where search algorithms could be applied, and
can a truly optimal encoding be found to the currently
studied problem? Additionally, the fitness function deserves
much more attention and testing, as the developers of the
fitness function used by all the studies say themselves that
the relationships and trade-offs between different quality
attributes need to be carefully studied. Results with dynamic
fitness functions also interestingly did not increase the
fitness value. Räihä et al. [33,34] experimented with dynamic
mutations, but discarded them in their latest study [35].
This would suggest that using dynamicity with GAs is a
complex problem, demanding well-defined operations and
firm justifications for the use of such improvements before
adding them to the experiments.

3.3. Other

3.3.1. Background
In addition to purely designing software architecture, there
are some factors that should be optimized, regardless of
the particularities of an architecture. Firstly, there is the
reliability-cost tradeoff. The reliability of software is always
dependent on its architecture, and the different components
should be as reliable as possible. However, the more work
put in to ensure reliability of different components, the
more the software will cost. Wadekar and Gokhale [60]
implement a GA to optimize the reliability-cost tradeoff.
Secondly, there are some parameters, e.g., tile sizes in loop
tiling and loop unrolling, which can be optimized for all
software architectures in order to optimize the performance
of the software. Che et al. [61] apply search-based techniques
for such parameter optimization.

3.3.2. Approaches
Wadekar and Gokhale [60] present an optimization frame-
work founded on architecture-based analysis techniques, and
describe how the framework can be used to evaluate cost and
reliability tradeoffs using a GA. The methodology for the re-
liability analysis of a terminating application is based on its
architecture. The architecture is described using the one-step
transition probabilitymatrix P of a discrete timeMarkov chain
(DTMC).

Wadekar and Gokhale assume that the reliabilities of the
individual modules are known, with Ri denoting the reliability
of module i. It is also assumed that the cost of the software
consisting of n components, denoted by C, can be given by a
generic expression of the form: C = C1(R1) + C2(R2) + · · · +

Cn(Rn), where Ci is the cost of component i and depends
monotonically on the reliability Ri. Thus, the problem of
minimizing the software cost while achieving the desired
reliability is the problem of selecting module reliabilities.

A chromosome is a list of module reliabilities. Each
member in the list, a gene, corresponds to a module in the
software. The independent value in each gene is the reliability
of the module it represents, and the dependent value is the
module cost given by the module cost-reliability relation or a
table known a priori. The gene values are changed to alter the
cost and reliability of a software implementation represented
by a particular chromosome.

222 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Mutation and crossover operations are standard. To avoid
convergence to a local optimum as the population size
increases, the mutation operation is used more frequently.
A cumulative-probability based basic selection mechanism
is used for selection. Chromosomes are ranked by fitness
and divided into rank groups. The probability of selection of
chromosomes varies uniformly according to their rank group,
where chromosomes in the first rank group have the largest
probability. A new generation of the population is created
by selecting pimax/2 chromosomes, where pimax is maximum
population. If the cost reduction is less than or equal to ϕ% of
the current best cost τ number of times, the GA terminates.
During any generation cycle if the cost reduction is larger,
the counter τ is reset to 0. The reduction percentage factor
ϕ and the counter limit τ are parameters. This approach is
one of the few alternatives used to terminate a GA, as most
studies presented use a straightforward generation number
to terminate the execution of the algorithm.

The fitness function is f = (−K/lnR)/Cγ , where K is a
large positive constant. The fitness of solutions increases
superlinearly with their reliability. The constant γ is used to
linearize the cost variation. The maximum fitness is directly
proportional to K. An intermediate value of gamma, γ = 1.5,
allows the GA to distinguish between low-cost and high-cost
solutions, while selecting a sufficient number of high-cost
high-reliability solutions that may generate the optimal high-
reliability low-cost solution.

Wadekar and Gokhale [60] compare the GA against
exhaustive search. The results indicate that the GA
consistently and efficiently provides optimal or very close to
optimal designs, even though the percentage of such designs
in the overall feasible design space is extremely small. The
results also highlight the robustness of the GA. However, the
small number of near-optimal solutions demonstrates that
the fitness landscape is very complex, again conforming to
the need to extensively investigate the cost-reliability trade-
off. The case study results show how the GA can be effectively
used to select components such that the software cost is
minimized, for various cost structures.

Che et al. [61] present a framework for performance
optimization parameter selection, where the problem is
transformed into a combinatorial minimization problem.
Many performance optimization methods depend on the
right optimization parameters to get good performance for
an application. Che et al. search for the near optimal
optimization parameters in a manner that is adaptable
for different architectures. First, a reduction transformation
is performed to reduce the program’s runtime while
maintaining its relative performance with regard to different
parameter vectors. The near-optimal optimization parameter
vector based on the reduced program’s real execution time is
searched by GA, which converges to a near-optimal solution
quickly. The reduction transformation reduces the time to
evaluate the quality of each parameter vector.

First some transformations are applied to the application,
leaving the optimization parameter vector to be read from
a configuration file. Second, the application is compiled into
an executable with the native compiler. Then the framework
repeatedly generates the configure file with a different
parameter vector selected by search and then measures the
executable’s runtime.

The chromosome encoding for the GA is a vector of integer
values, with each integer corresponding to an optimization
parameter of a solution. No illegal solutions are allowed. The
population has a fixed size. A simple integer valuemutation is
implemented and an integer number recombination scheme
is used for crossover. The fitness value reflects the duality
of an individual in relation to other individuals. The linear
rank-based fitness assignment scheme is used to calculate
the fitness values. Selection for a new generation is made
by elitism and the roulette wheel method. Test results show
that the GA can adapt to different execution environments
automatically. For each platform, it always selects excellent
optimization parameters for 80% of programs. Results show
that the number of individuals evaluated is far smaller than
the size of the solution space for each program on each
platform. The optimization time is also small.

4. Software clustering

4.1. Background

As software systems develop and are maintained, they tend
to grow in size and complexity. A particular problem is the
growing number of dependencies between libraries, modules
and components within the modules. Software clustering
(or modularization) attempts to optimize the clustering of
components into modules in such a way that there are as
many dependencies within a module as possible and as
few dependencies between modules as possible. This will
enhance the understandability of a system, which in turn
will make it more maintainable and modifiable. Also, fewer
dependencies between modules usually results in better
efficiency.

As components or modules (depending on the level of
detail in the chosen representation) can be depicted as
vertices and dependencies between them as edges in a graph,
the software clustering problem can be traced back to a
graph partitioning problem, which is NP-complete. Genetic
algorithms have successfully been applied to a general graph
partitioning problem [62,63], and thus, the related software
clustering problem is most suitable for meta-heuristic search
techniques.

Although the basic problem is relatively simple to define
and the goodness of a modularization can be calculated
based on the goodness of the underlying graph partitioning,
the nature of software systems provides challenges when
defining the actual fitness function for the optimization
algorithm. Also, not all necessary information can be encoded
into a simple graph representation, and this presents
another question to be answered when designing a search-
based approach for modularization. Section 4.2 presents
approaches using GAs, HC and SA to find good software
modularizations, after which summarizing remarks are
presented in Section 4.3 and the fundamentals of each study
are collected in Table 4.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 223
Ta
bl
e
4
–
R
es

ea
rc
h
ap

p
ro

ac
h
es

in
se

ar
ch

-b
as

ed
so

ft
w
ar
e
cl
u
st
er

in
g.

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

M
an

co
ri
d
is

et
al
.[
64

]
A
u
to
m
at
io
n
of

p
ar
ti
ti
on

in
g

co
m
p
on

en
ts

of
a

sy
st
em

in
to

cl
u
st
er
s

Sy
st
em

gi
ve

n
as

a
m
od

u
le

d
ep

en
d
en

cy
gr
ap

h
(M

D
G
)

M
D
G

N
/A

N
/A

M
in
im

iz
e
in
te
r-

co
n
n
ec

ti
vi
ty
,

m
ax

im
iz
e
in
tr
a-

co
n
n
ec

ti
vi
ty
,

co
m
bi
n
ed

as
m
od

u
la
ri
za

ti
on

q
u
al
it
y
(M

Q
)

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

D
ov

al
et

al
.[
65

]
A
u
to
m
at
io
n
of

p
ar
ti
ti
on

in
g

co
m
p
on

en
ts

of
a

sy
st
em

in
to

cl
u
st
er
s

M
D
G

St
ri
n
g
of

in
te
ge

rs
St
an

d
ar
d

St
an

d
ar
d

M
Q

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

C
on

ti
n
u
ed

w
or

k
fr
om

M
an

co
ri
d
is

et
al
.[
64

]b
y

im
p
le
m
en

ti
n
g
a

G
A

M
an

co
ri
d
is

et
al
.[
66

]
A
u
to
m
at
io
n
of

p
ar
ti
ti
on

in
g

co
m
p
on

en
ts

of
a

sy
st
em

in
to

cl
u
st
er
s

M
D
G

M
D
G

N
/A

N
/A

M
Q

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

C
on

ti
n
u
ed

w
or

k
fr
om

M
an

co
ri
d
is

et
al
.[
64

];
ch

ar
ac

te
ri
st
ic
s
of

m
od

u
le
s
ta
ke

n
in
to

ac
co

u
n
t
in

cl
u
st
er
in
g

op
er
at
io
n
s

M
it
ch

el
la

n
d

M
an

co
ri
d
is

[6
7–

69
]

A
u
to
m
at
io
n
of

p
ar
ti
ti
on

in
g

co
m
p
on

en
ts

of
a

sy
st
em

in
to

cl
u
st
er
s

M
D
G

St
ri
n
g
of

in
te
ge

rs
St
an

d
ar
d

St
an

d
ar
d

M
Q

as
a
su

m
of

cl
u
st
er
in
g

fa
ct
or

s

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

C
on

ti
n
u
ed

w
or

k
fr
om

D
ov

al
et

al
.[
65

];
n
ew

d
efi

n
it
io
n
of

th
e

m
od

u
la
ri
za

ti
on

q
u
al
it
y
an

d
an

en
h
an

ce
d
H
C

al
go

ri
th

m

M
it
ch

el
la

n
d

M
an

co
ri
d
is

[6
9,
70

]

A
u
to
m
at
io
n
of

p
ar
ti
ti
on

in
g

co
m
p
on

en
ts

of
a

sy
st
em

in
to

cl
u
st
er
s

M
D
G

St
ri
n
g
of

in
te
ge

rs
St
an

d
ar
d

St
an

d
ar
d

M
Q
,s

ea
rc
h

la
n
d
sc

ap
e

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

C
on

ti
n
u
ed

w
or

k
fr
om

M
it
ch

el
l

an
d

M
an

co
ri
d
is

[6
7–

69
];
se

ar
ch

la
n
d
sc

ap
e
ta
ke

n
in
to

ac
co

u
n
t

M
it
ch

el
l

et
al
.[
71

]
A
u
to
m
at
ed

re
ve

rs
e

en
gi
n
ee

ri
n
g
fr
om

so
u
rc
e
co

d
e
to

ar
ch

it
ec

tu
re

So
u
rc
e
co

d
e
of

ap
p
li
ca

ti
on

N
/A

N
/A

N
/A

Q
u
al
it
y
ba

se
d

on
u
se

an
d
st
yl
e

re
la
ti
on

s

So
ft
w
ar
e

ar
ch

it
ec

tu
re

H
C
an

d
ed

ge
re
m
ov

al
ar
e
u
se

d
as

se
ar
ch

al
go

ri
th

m
s
fr
om

M
D
G
to

ar
ch

it
ec

tu
re

(c
on

ti
nu

ed
on

ne
xt

pa
ge

)

224 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Ta
bl
e
4
(c
on

ti
n
u
ed

)

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

M
ah

d
av

i
et

al
.[
72

,7
3]

A
u
to
m
at
ed

cl
u
st
er
in
g
of

sy
st
em

M
D
G

St
ri
n
g
of

in
te
ge

rs
St
an

d
ar
d

St
an

d
ar
d

M
Q

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

sy
st
em

M
u
lt
ip
le

h
il
l

cl
im

bs
ar
e
u
se

d
as

se
ar
ch

al
go

ri
th

m
;

bu
il
d
in
g
bl
oc

ks
ar
e
p
re
se

rv
ed

by
u
si
n
g
p
ar
al
le
lh

il
l

cl
im

bs

H
ar
m
an

et
al
.[
74

]
N
ew

en
co

d
in
g
an

d
cr
os

so
ve

r
in
tr
od

u
ce

d

Sy
st
em

as
m
od

u
le
s
an

d
el
em

en
ts

Lo
ok

-u
p
ta
bl
e
fo
r

m
od

u
le
s

M
ov

e
co

m
p
on

en
t
fr
om

on
e
m
od

u
le

to
an

ot
h
er

N
ew

cr
os

so
ve

r,
p
re
se

rv
es

p
ar
ti
al

m
od

u
le

al
lo
ca

ti
on

s

M
ax

im
iz
e

co
h
es

io
n
,

m
in
im

iz
e

co
u
p
li
n
g

O
p
ti
m
iz
ed

cl
u
st
er
in
g

H
ar
m
an

et
al
.[
75

]
C
om

p
ar
is
on

of
ro

bu
st
n
es

s
be

tw
ee

n
tw

o
fi
tn

es
s
fu

n
ct
io
n
s

C
lu
st
er
ed

sy
st
em

N
/A

N
/A

N
/A

M
Q

co
m
p
ar
ed

ag
ai
n
st

EV
M

-

A
n
to
n
io
l

et
al
.[
76

]
C
lu
st
er

op
ti
m
iz
at
io
n

Sy
st
em

co
n
ta
in
in
g

ap
p
li
ca

ti
on

s
an

d
li
br

ar
ie
s

B
it
m
at
ri
x

Tw
o
ra
n
d
om

ro
w
s
of

a
co

lu
m
n
in

m
at
ri
x
ar
e

sw
ap

p
ed

or
an

ob
je
ct

is
cl
on

ed
by

ch
an

gi
n
g

a
va

lu
e
fr
om

ze
ro

to
on

e

A
ra
n
d
om

co
lu
m
n
is

ta
ke

n
as

sp
li
t

p
oi
n
t
an

d
co

n
te
n
ts

ar
e

sw
ap

p
ed

In
te
r-
li
br

ar
y

d
ep

en
d
en

ci
es

,
n
u
m
be

r
of

ob
je
ct
-

ap
p
li
ca

ti
on

li
n
ks

an
d
si
ze

of
li
br

ar
ie
s

O
p
ti
m
iz
ed

cl
u
st
er
in
g,

si
ze

s
an

d
d
ep

en
d
en

ci
es

be
tw

ee
n
li
br

ar
ie
s

d
im

in
is
h
ed

O
p
ti
m
al

n
u
m
be

r
of

cl
u
st
er
s
is

ca
lc
u
la
te
d
fo
r
a

m
at
ri
x
w
it
h
th

e
Si
lh
ou

et
te

st
at
is
ti
c

D
iP

en
ta

et
al
.[
77

]
A

re
fa
ct
or

in
g

fr
am

ew
or

k
ta
ki
n
g

in
to

ac
co

u
n
t

se
ve

ra
la

sp
ec

ts
of

so
ft
w
ar
e
q
u
al
it
y

w
h
en

re
fa
ct
or

in
g

ex
is
ti
n
g
sy

st
em

.

So
ft
w
ar
e
sy

st
em

as
a
sy

st
em

gr
ap

h
SG

B
it
m
at
ri
x;

ea
ch

li
br

ar
y
of

cl
u
st
er
s
is

re
p
re
se

n
te
d
by

a
m
at
ri
x

Sw
ap

p
in
g
tw

o
bi
ts

in
a

co
lu
m
n
or

ch
an

gi
n
g
a

va
lu
e
fr
om

0
to

1
(t
ak

in
g
in
to

ac
co

u
n
t

p
re
co

n
d
it
io
n
s)

N
/A

D
ep

en
d
en

cy
fa
ct
or
,

p
ar
ti
ti
on

in
g

ra
ti
o,

st
an

d
ar
d

d
ev

ia
ti
on

an
d

fe
ed

ba
ck

R
ef
ac

to
re
d

li
br

ar
ie
s

H
C
an

d
G
A

u
se

d
.

H
yu

n
h
an

d
C
ai

[7
8]

C
on

fo
rm

an
ce

ch
ec

k
of

ac
tu

al
d
es

ig
n
to

su
gg

es
te
d
d
es

ig
n

D
es

ig
n
st
ru

ct
u
re

m
at
ri
ce

s
fo
r

d
es

ig
n
an

d
so

u
rc
e
co

d
e

(D
SM

)

G
ra
p
h
co

n
st
ru

ct
ed

of
D
SM

N
/A

N
/A

G
ra
p
h
ed

it
d
is
ta
n
ce

,
p
en

al
ty

an
d

d
if
fe
re
n
ti
at
io
n

be
tw

ee
n
gr
ap

h
s

w
it
h
sa

m
e

d
is
ta
n
ce

O
p
ti
m
iz
ed

cl
u
st
er
in
g
of

ac
tu

al
d
es

ig
n

co
n
fo
rm

in
g
to

su
gg

es
te
d
d
es

ig
n

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 225
4.2. Approaches

Mancoridis et al. [64] treat automatic modularization as an
optimization problem and have created the Bunch tool that
uses HC and GA to aid its clustering algorithms. A hierarchical
view of the system organization is created based solely on the
components and relationships that exist in the source code.
The first step is to represent the system modules and the
module-level relationships as a module dependency graph
(MDG). An algorithm is then used to partition the graph in
a way that derives the high-level subsystem structure from
the component-level relationships that are extracted from
the source code. The goal of this software modularization
process is to automatically partition the components of
a system into clusters (subsystems) so that the resultant
organization concurrentlyminimizes inter-connectivity while
maximizing intra-connectivity. This task is accomplished by
treating clustering as an optimization problem, where the
goal is to maximize an objective function based on a formal
characterization of the trade-off between inter- and intra-
connectivity. Intuitively, intra-connectivity could be seen as
cohesion and inter-connectivity as coupling.

The clusters, once discovered, represent higher-level
component abstractions of a system’s organization. Each
subsystem contains a collection of modules that either
cooperate to perform some high-level function in the overall
system or provide a set of related services that are used
throughout the system. Intra-connectivity Ai of cluster i
consisting of Ni components and mi intra-edge dependencies
as Ai = mi/N2

i , bound between 0 and 1. Inter-connectivity
measures the connectivity between two distinct clusters.
A high degree of inter-connectivity is an indication of
poor subsystem partitioning. Inter-connectivity Eij between
clusters i and j consisting of Ni and Nj components with
eij inter-edge dependencies is 0, if i = j, and eij/2 ∗ NiNj
otherwise, bound between 0 and 1. Modularization Quality
(MQ) demonstrates the trade-off between inter- and intra-
connectivities, and it is defined for a module dependency

graph partitioned into k clusters as 1/k ∗
∑ Ai−1

k∗ k−1
2

∗
∑

Ei,j if

k > 1, or A1, if k = 1.
The first step in automatic modularization is to parse

the source code and build a MDG. A sub-optimal clustering
algorithm works as the traditional hill climbing one by
randomly selecting a better neighbor. The GA starts with
a population of randomly generated initial partitions and
systematically improves them until all of the initial samples
converge. The GA uses the “neighboring partition” definition
to improve an individual, and thus only contains one
mutation operator, which is the same one as used with
HC. Selection is done by randomly selecting a percentage
of N partitions and improving each one by finding a better
neighboring partition. A new population is generated by
making N selections, with replacements for the existing
population of N partitions. Selections are random and
biased in favor of partitions with larger MQs. The algorithm
continues until no improvement is seen for t generations, or
until all of the partitions in the population have converged
to their maximum MQ, or until the maximum number of
generations has been reached. The partition with the largest
MQ in the last population is the sub-optimal solution.
Experimentation with this clustering technique has
shown good results for many of the systems that have
been investigated. The primary method used to evaluate
the results is to present an automatically generated
modularization of a software system to the actual system
designer and ask for feedback on the quality of the results. A
case studywasmade and the results were shown to an expert,
who highly appreciated the result produced by Bunch.

The validation of the method is interesting, as the original
designer of a system should be the onewho knows the system
best, and thus should be the best one to evaluate designs of
the system. It is also encouraging that the designers were
open and admitted that the tool was able to improve the
design that they must have though of as optimal at some
point. This indicates that there truly is a place for software
design tools if the methods are well-defined enough.

Doval et al. [65] have implemented a more refined GA in
the Bunch tool, as it now contains a crossover operator and
more definedmutation and crossover rates. The effectiveness
of the technique is demonstrated by applying it to a medium-
sized software system. For encoding, each node in the graph
(MDG) has a unique numerical identifier assigned to it. These
unique identifiers define which position in the encoded string
will be used to define that node’s cluster. Mutation and
crossover operators are standard. A roulette wheel selection
is used for the GA, complemented with elitism. The fitness
function is based on the MQ metric.The crossover rate
was 80% for populations of 100 individuals or fewer and
100% for populations of a thousand individuals or more,
varying linearly between those values. The mutation rate is
0.004 log2(N). The MQ values for constant population and
generation values were smaller, but fairly close, within 10%
of the final values achieved for population and generation.

The affect of the population size to crossover rate
is interesting, especially in the sense that with smaller
populations the rate is smaller. Intuitively it would seem that
with larger populations there would be a higher chance that
the population contains some extremely poor individuals,
the parts of which are not worthwhile to pass on to future
generations.

Mancoridis et al. [66] have continued to develop the
Bunch tool for optimizing modularization. Firstly, almost
every system has a fewmodules that do not seem to belong to
any particular subsystem, but rather, to several subsystems.
These modules are called omnipresent, because they either
use or are used by a large number of modules in the system.
In the improved version users are allowed to specify two
lists of omnipresent modules, one for clients and another for
suppliers. The omnipresent clients and suppliers are assigned
to two separate subsystems.

Secondly, experienced developers tend to have good
intuition about which modules belong to which subsystems.
However, Bunch might produce results that conflict with
this intuition for several reasons. This is addressed with
a user-directed clustering feature, which enables users to
cluster some modules manually, using their knowledge of
the system design while taking advantage of the automatic
clustering capabilities of Bunch to organize the remaining
modules. Both user-directed clustering and the manual
placement of omnipresent modules into subsystems have the

226 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
advantageous side-effect of reducing the search space of MDG
partitions. By enabling themanual placement ofmodules into
subsystems, these techniques decrease the number of nodes
in the MDG for the purposes of the optimization and, as a
result, speed up the clustering process.

Finally, once a system organization is obtained, it is
desirable to preserve as much of it as possible during
the evolution of the system. The integration of the
orphan adoption technique into Bunch enables designers to
preserve the subsystem structure when orphan modules are
introduced. An orphan module is either a new module that
is being integrated into the system, or a module that has
undergone structural changes. Bunch moves orphan modules
into existing subsystems, one at a time, and records the MQ
for each of the relocations. The subsystem that produces the
highest MQ is selected as the parent for the module. This
process, which is linear with respect to the number of clusters
in the partition, is repeated for each orphan module. Results
from a case study support the added features.

The chosen additions clearly stem from real needs when
modularizing software. However, two of the three operations
increase the power that the user has over Bunch, thus
decreasing the level of automation. Ideally the tool would be
able to locate the omnipresent modules themselves, and gain
the same level of expertise via a fitness function as experts, so
that the user would not need to cluster anything beforehand.
The last improvement, however, is truly beneficial, as hardly
any software system stays intact during maintenance, and
modules need to be added or modified. Automating the step
of finding the optimal place for a new module is a big step
towards the ideal of automating software design.

Mitchell and Mancoridis [67–69] have continued to work
with the Bunch tool and have further developed the MQ
metric. They define MQ as the sum of Clustering Factors for
each cluster of the partitioned MDG. The Clustering Factor
(CF) for a cluster is defined as a normalized ratio between the
total weight of the internal edges and half of the total weight
of external edges. The weight of the external edges is split
in half in order to apply an equal penalty to both clusters
that are connected by an external edge. If edge weights are
not provided by the MDG, it is assumed that each edge has a
weight of 1. The clustering factor is defined as

CF = intra-edges/

intra-edges+ 1/2 ∗

−
(inter-edges)

.

The measurement is adjusted, as Mitchell and Mancoridis
argue that the oldMQ tended tominimize the inter-edges that
exited the clusters, and not minimize the number of inter-
edges in general. The representation also supports weights.
This is an interesting observation, as the original definition
of the MQ metric makes no distinction to whether an edge
exits a cluster or not. Thus, one could ask whether the MQ
metric was the sole reason for the previous results, or if other
improvements besides the newly defined MQ metric also had
a significant effect on obtaining the better quality results.
The addition of weights is also noteworthy, as previously the
problem was not considered a multi-objective one, while the
addition of weights clearly indicates so.

The HC algorithm for the Bunch tool has also been
enhanced. During each iteration, several options are now
available for controlling the behavior of the hill-climbing
algorithm. First, the neighboring process may use the first
partition that it discovers with a larger MQ as the basis for
the next iteration. Second, the neighboring process examines
all neighboring partitions and selects the partition with the
largest MQ as the basis for the next iteration. Third, the
neighboring process ensures that it examines a minimum
number of neighboring partitions during each iteration. For
this, a threshold n is used to calculate the minimum number
of neighbors that must be considered during each iteration
of the process. Experience has shown that examining many
neighbors during each iteration, so that n > 75%, increases
the time the algorithm needs to converge to a solution. This
is quite intuitive, as each examination increases the run
time of the algorithm, and it is not likely that simply by
examining several neighbors the algorithm would suddenly
find a steeper climb (i.e., converge faster).

It is observed that as n increases so does the overall
runtime and the number of MQ evaluations. However,
altering n does not appear to have an observable impact
on the overall quality of the clustering results. A simulated
annealing algorithm is also made for comparison. Although
the simulated annealing implementation does not improve
the MQ, it does appear to help reduce the total runtime
needed to cluster each of the systems in this case study.

Mitchell and Mancoridis [69,70] continue their work by
proposing an evaluation technique for clustering based on
the search landscape of the graph being clustered. By gaining
insight into the search landscape, the quality of a typical
clustering result can be determined. The Bunch software
clustering system is examined. Authors model the search
landscape of each system undergoing clustering, and then
analyze how Bunch produces results within this landscape in
order to understand how Bunch consistently produces similar
results. Studying the search landscape of any problem is
very beneficial when attempting to understand why certain
changes to, e.g., the fitness function or the operators, have
the kind of effect they have on the results.

The search landscape is modeled using a series of
views and examined from two different perspectives. The
first perspective examines the structural aspects of the
search landscape, and the second perspective focuses on the
similarity aspects of the landscape. The structural search
landscape highlights similarities and differences from a
collection of clustering results by identifying trends in the
structure of graph partitions. The similarity search landscape
focuses on modeling the extent of similarity across all of the
clustering results.

The results produced by Bunch appear to have many
consistent properties. By examining views that compare the
cluster counts to the MQ values, it can be noticed that
Bunch tends to converge to one or two “basins of attraction”
for all of the systems studied. Also, for the real software
systems, these attraction areas appear to be tightly paced.
An interesting observation can be made when examining
the random system with a higher edge density: although
these systems converged to a consistent MQ, the number
of clusters varied significantly over all of the clustering
runs. The percentage of intra-edges in the clustering results
indicates that Bunch produces consistent solutions that have

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 227
a relatively large percentage of intra-edges. Also, the intra-
edge percentage increases as theMQ values increase. It seems
that selecting a random partition with a high intra-edge
percentage is highly unlikely. Another observation is that
Bunch generally improves the MQ of real software systems
much more than that of random systems with a high edge
density. The number of clusters produced compared with the
number of clusters in the random starting point indicates
that the random starting points appear to have a uniform
distribution with respect to the number of clusters. The view
shows that Bunch always converges to a “basin of attraction”
regardless of the number of clusters in the random starting
point.

When examining the structural views collectively, the
degree of commonality between the landscapes for the
systems in the case study is quite similar. Since the results
converge to similar MQ values, Mitchell and Mancoridis
speculate that the search space contains a large number of
isomorphic configurations that produce similar MQ values.
Once Bunch encounters one of these areas, its search
algorithms cannot find a way to transform the current
partition into a new partition with higher MQ. The main
observation is that the results produced by Bunch are stable.
However, the true meaning of the result is that the Bunch
actually gets stuck to a local optimum, and cannot find
a way to escape that local optimum. This is naturally
the problem for nearly all search algorithms: a true global
optimum is not even expected to be found. Doing this kind of
fitness landscape study should, however, aid in designing the
algorithm so that it would have a better chance of escaping
the local optimum, as the fitness landscape reveals what
drives the algorithm to the particular basins of attractions
that it chooses.

In order to investigate the search landscape further,
Mitchell and Mancoridis measure the degree of similarity
of the placement of nodes into clusters across all of the
clustering runs to see if there are any differences between
random graphs and real software systems. Bunch creates a
subsystem hierarchy, where the lower levels contain detailed
clusters, and higher levels contain clusters of clusters. Results
from similarity measures indicate that the results for real
software systems have more in common than the results
for random systems. Results with similarity measures also
support the isomorphic “basin of attraction” conjecture
proposed.

Mitchell et al. [71] have developed a two step process for
reverse engineering the software architecture of a system
directly from its source code. The first step involves clustering
the modules from the source code into abstract structures
called subsystems. Bunch is used to accomplish this. The
second step involves reverse engineering the subsystem-level
relations using a formal (and visual) architectural constraint
language. Using the reverse engineered subsystem hierarchy
as input, a second tool, ARIS, is used to enable software
developers to specify the rules and relations that govern how
modules and subsystems can relate to each other. This again
gives the user the possibility to use his/her own expertise as
a basis for the fitness function, so it is not based on metrics.

ARIS takes a clustered MDG as input and attempts to
find the missing style relations. The goal is to induce a set
of style relations that will make all of the use relations
well-formed. A relation is well-formed if it does not violate
any permission rule described by the style; this is called
the edge repair problem. The relative quality of a proposed
solution is evaluated by an objective function. The objective
function that is designed into the ARIS system measures the
well-formedness of a configuration in terms of the number
of well-formed and ill-formed relations it contains. The
quality measurement Q(C) for configuration C gives a high
quality score to configurations with a large number of well-
formed use relations and a low quality score to configurations
with a large number of ill-formed style relations or large
visibility. Here, as in many other cases where some external
expertise is added, the actual fitness function seems simple
(only calculating sums and divisions), but much work is
first needed by the user to define the input variables, here
rules, for the fitness function. Again, it raises the question:
what kind of automation is expected from a tool based on
search algorithms? Is it good enough that the algorithm only
performs a small task and expects a lot of input, or should the
algorithm be better defined so that it actually diminishes the
work load of the software designer instead of increasing it?

Two search algorithms have been implemented to maxi-
mize the objective function: HC and edge removal. The HC
algorithm starts by generating a random configuration. Incre-
mental improvement is achieved by evaluating the quality of
neighboring configurations. A neighboring configuration Cn is
one that can be obtained by a small modification to the cur-
rent configuration C. The search process iterates as long as a
new Cn can be found such that Q(Cn) > Q(C).

The edge removal algorithm is based on the assumption
that as long as there exists at least one solution to the
edge repair problem for a system with respect to a style
specification, the configuration that contains every possible
reparable relation will be one of the solutions. Using this
assumption, the edge removal algorithm starts by generating
the fully reparable configuration for a given style definition
and system structure graph. It then removes relations,
one at a time, until no more relations can be removed
without making the configuration ill-formed. A case study is
performed, where the results seem promising as they give
intuition to the nature of the system. This may be beneficial
for novice designers, who do not have very much knowledge
of the system, but it should be assumed that the developers
who have to define the rules that the tool is based on already
have a mature idea of the system in order to be able to define
those rules.

Mahdavi et al. [72,73] show that results from a set of
multiple hill climbs can be combined to locate good “building
blocks” for subsequent searches. Building blocks are formed
by identifying the common features in a selection of best
hill climbs. This process reduces the search space, while
simultaneously ‘hard wiring’ parts of the solution. Mahdavi
et al. also investigate the relationship between the improved
results and the system size.

An initial set of hill climbs is performed, and from these
a set of best hill climbs is identified according to some
“cut off” threshold. Using these selected best hill climbs,
the common features of each solution are identified. These
common features form building blocks for a subsequent hill

228 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
climb. A building block contains one or more modules fixed to
be in a particular cluster, if and only if all the selected initial
hill climbs agree that thesemodules were to be located within
the same cluster. Since all the selected hill climbs agree on
these choices, it is likely that good solutions will also contain
these choices.

The implementation uses parallel computing techniques
to simultaneously execute an initial set of hill climbs. From
these climbs the authors experiment with various cut off
points ranging from selecting the best 10% of hill climbs to the
best 100% in steps of 10%. The building blocks are fixed and a
new set of hill climbs are performed using the reduced search
space. The principal research question is whether or not
the identification of building blocks improves the subsequent
search.

A variety of experimental subjects are used. Two types of
MDGs are used: the first type contains non-weighted edges,
the second type has weighted edges. The MQ values are
gathered after the initial and the final climbs, and compared
for difference. Statistical tests provide some evidence towards
the premise that the improvement in MQ values is less likely
to be a random occurrence due to the nature of the hill climb
algorithm. The improvement is observed for MDGs with and
without weighted edges and for all size MDGs.

Larger MDGs show more substantial improvement when
the best initial fitness is compared with the best final
fitness values. One reason for observing a more substantial
improvement in larger MDGs may be attributed to the nature
of the MQ fitness measure. To overcome the limitation that
MQ is not normalized, the percentage MQ improvement
of the final runs over the initial runs is measured. These
statistical tests show no significant correlation between size
and improvement in fitness for both weighted and non-
weighted MDGs.

The increase in fitness, regardless of the number of nodes
or edges, tends to be more apparent as the building blocks
are created from a smaller selection of individuals. This may
signify some degree of importance for the selection process.

Results indicate that the subsequent search is narrowed
to focus on better solutions, that better clustering is obtained
and that the results tend to improve when the selection cutoff
is higher. These initial results suggest that the multiple hill
climbing technique is potentially a good way of identifying
building blocks. The authors also found that although there
was some correlation between system size and various
measures of the improvement achieved with multiple hill
climbing, none of these correlations is statistically significant.
These results would provide an interesting starting point to a
study where the building blocks achieved with multiple hill
climbs could be used to initialize the first population given to
a genetic algorithm.

Harman et al. [74] experiment with fitness functions de-
rived from measures of module granularity, cohesion and
coupling for software modularization. They present a new en-
coding and crossover operator and report initial results based
on simple component topology. The new representation al-
lows only one representation per modularization and the new
crossover operator attempts to preserve building blocks [79].

Harman et al. [74] present the problem of finding
a representation for modularization so that “non-unique
representations of modularizations artificially increase the
search space size, inhibiting search-based approaches to the
problem”. In their approach, modules are numbered, and
elements allocated to module numbers using a simple look-
up table. Component number one is always allocated to
module number one. All components in the same module
as component number one are also allocated to module
number one. Next, the lowest numbered component, n, not
in module one, is allocated to module number two. All
components into the same module as component number n
are allocated tomodule number two. This process is repeated,
choosing each lowest number unallocated component as the
defining element for the module. This representation must
be renormalized when components move as the result of
mutation and crossover. The chosen method clearly saves
resources and clarifies the search space, as there are no
alternative representations for the same solution.

Harman et al.’s crossover operator attempts to preserve
partial module allocations from parents to children in
an attempt to promote good building blocks. Rather than
selecting an arbitrary point of crossover within the two
parents, a random parent is selected and one of its arbitrarily
chosen modules is copied to the child. The allocated
components are removed from both parents. This removal
prevents duplication of components in the child when further
modules are copied from one or the other parent to the
child. The process of selecting a module from a parent and
copying to the child is repeated and the copied components
are removed from both parents until the child contains a
complete allocation. This approach ensures that at least one
module from the parents is preserved (in entirety) in the child
and that parts of other modules will also be preserved. As
it is not clarified how the modules are represented in the
chromosome, it is not, however, exactly clear how risky it
would be to perform traditional crossovers with the selected
encoding. In fact, it seems perfectly possible to make such
an encoding that supports building blocks even with the
traditional operators.

The fitness function maximizes cohesion and minimizes
coupling. In order to capture the additional requirement
that the produced modularization has a granularity (number
of modules) similar enough to the initial granularity, a
polynomial punishment factor is introduced into the fitness
function to reward solutions as they approach the target
value for granularity of the modularization. The granularity
is normalized to a percentage. The three fitness components
are given equal weights.

A standard one-point crossover is also implemented for
comparison. The GA with the novel crossover outperforms
the one with the traditional one, although it quickly becomes
trapped in local optima. This would suggest that the attempt
to reserve building blocks might actually be “too strong”,
as the GA does not have any method to escape the local
optimum. Results also show that the novel GA is more
sensitive to inappropriate choices of target granularity than
any other approach.

Harman et al. [75] present empirical results which
compare the robustness of two fitness functions used for
software module clustering: MQ is used exclusively for
module clustering and EVM [80] has previously been applied

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 229
to time series and gene expression data. The clustering
algorithm is based upon the Bunch algorithm [66] and
redefined. Three types of MDGs were studied: real program
MDGs, random MDGs and perfect MDGs.

The primary findings are that searches guided by both
fitness functions degrade smoothly as noise increases, but
EVM would appear to be the more robust fitness function
for real systems. Searches guided by MQ behave poorly for
perfect and near-perfect module dependency graphs (MDGs).
The results of perfect graphs (MDGs) show however, that
EVM produces clusterings which are perfect and that the
clusterings produced stay very close to the perfect results as
more noise is introduced. This is true both for the comparison
against the perfect clustering and the initial clustering. By
comparison, the MQ fitness function performs much worse
with perfect MDGs. Comparing results for random and real
MDGs, both fitness functions are fairly robust. Further results
show that searches guided by MQ do not produce the perfect
clustering for a perfect MDG but a clustering with higher MQ
values. This very strongly suggests that fitnessmetrics indeed
do not actually match what is truly desired of the solution.

These results highlight a possible weakness in MQ as a
guiding fitness function for modularization searches: it may
be possible to improve upon it by addressing that issue. The
results show that EVM performs consistently better than MQ
in the presence of noise for both perfect and real MDGs
but worse for random MDGs. The results for both fitness
functions are better for perfect or real graphs than random
graphs, as expected. As the real programs increase in size,
there appears to be a decrease in the difference between the
performance of searches guided by EVM and those guided by
MQ. The results show that both metrics are relatively robust
in the presence of noise, with EVM being the more robust of
the two.

This study is a significant indicator that fitness metrics
should never be blindly trusted. The problem here is
particularly curious, as the developers of the MQ metric
showed the results (achieved with the aid of this metric)
to actual software designers, who were reported to give
positive feedback. Thus, it could be assumed that the MQ
metric was based on real feedback from human designers.
However, it still failed in comparison to another metric, and
could not produce optimal results. These results suggest
that the quality requirements for software design problems
are extremely difficult to define, which in turn makes the
definition of a proper fitness function a demanding task.

Antoniol et al. [76] present an approach to re-factoring
libraries with the aim of reducing the memory requirements
of executables. The approach is organized in two steps:
the first step defines an initial solution based on clustering
methods, while the second step refines the initial solution
with a GA. Antoniol et al. [76] propose a GA approach
that considers the initial clusters as the starting population,
adopts a knowledge-based mutation function and has a
multi-objective fitness function. Tests on medium and large
open source software systems have effectively produced
smaller, loosely coupled libraries, and reduced the memory
requirement for each application.

Given a system composed by applications and libraries,
the idea is to re-factor the biggest libraries, splitting them
into two or more smaller clusters, so that each cluster
contains symbols used by a common subset of applications
(i.e., Antoniol et al. made the assumption that symbols often
used together should be contained in the same library). Given
that, for each library to be re-factored, a Boolean matrix MD is
composed.

Antoniol et al. [76] have chosen to apply the Silhouette
statistic [81] to compute the optimal number of clusters for
each MD matrix. Once the number of clusters is known
for each “old library”, agglomerative-nesting clustering was
performed on each MD matrix. This allows the identification
of a certain number of clusters. These clusters are the new
candidate libraries. When given a set of all objects contained
in the candidate libraries, a dependency graph is built, and
the removal of inter-library dependencies can therefore be
brought back to a graph partitioning problem.

The encoding is the achieved bit-matrix, where for each
matrix point [x, y] has value 1 if the object y is used by the
application or library defined by x, and 0 otherwise. The GA
is initialized with the encoding of the set of libraries obtained
in the previous step. This encoding method is well-chosen,
as there is no need to make any unnecessary transformation
between two encodings, and the genetic operations can be
easily defined for a matrix.

The mutation operator works in two modes: normally, a
random column is taken and two random rows are swapped.
When cloning an object, a random position in the matrix is
taken; if it is zero and the library is dependent on it, then the
mutation operator clones the object into the current library.
Of course the cloning of an object increases both linking
and size factors, therefore it should be minimized. This GA
activates the cloning only for the final part of the evolution
(after 66%) of generations in their case studies. This strategy
favors dependency minimization by moving objects between
libraries; then, at the end, remaining dependencies are
attempted to be removed by cloning objects. The crossover is
a one-point crossover: given two matrices, both are cut at the
same random column, and the two portions are exchanged.
Population size and number of generations were chosen by
an iterative procedure.

The fitness function attempts to balance three factors: the
number of inter-library dependencies at a given generation,
the total number of objects linked to each application
that should be as small as possible, and the size of the
new libraries. A unitary weight is set to the first factor,
and two weights are selected using an iterative trial-and-
error procedure, adjusting them each time until the factors
obtained at the final step are satisfactory. The partitioning
ratio is also calculated. Case study results show that the GA
manages to considerably reduce the number of dependencies,
while the partition ratio stays nearly the same or slightly
reduced. The proposed re-factoring process allows one to
obtain the smallest, loosely coupled libraries from the original
biggest ones.

The selected fitness function would benefit from more
enhanced techniques to deal with multi-objectivity. Also, in
multi-objective problems there usually are cases when one
goal may need to be emphasized at the cost of another goal.
In this case there are no such tests, as the weights are simply
optimized for a general case. It would be interesting to see

230 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
what kinds of results are achieved, if, e.g., the size of libraries
is shown significantly more appreciation than the number
of inter-library dependencies. If these cases would produce
interesting modularizations, then a Pareto optimal fitness
function would be good to experiment with.

Di Penta et al. [77] build on these results and present
a software renovation framework (SRF), a toolkit that
covers several aspects of software renovation, such as
removing unused objects and code clones, and refactoring
existing libraries into smaller ones. Refactoring has been
implemented in the SRF using a hybrid approach based on
hierarchical clustering, GAs and hill climbing, also taking into
account the developer’s feedback. Most of the SRF activities
deal with analyzing dependencies among software artifacts,
which can be represented with a dependency graph.

Software systems are represented by a system graph SG,
which contains the sets of all object modules, all software
system libraries, all software system applications and the
set of oriented edges representing dependencies between
objects. The refactoring framework consists of several steps:
1. software systems applications, libraries and dependencies
among them are identified, 2. unused functions and objects
are identified, removed or factored out, 3. duplicated or
cloned objects are identified and possibly factored out, 4.
circular dependencies among libraries are removed, or at
least reduced, 5. large libraries are refactored into smaller
ones and, if possible, transformed into dynamic libraries,
and 6. objects which are used by multiple applications, but
which are not yet organized into libraries, are grouped into
new libraries. Step five, splitting existing, large libraries into
smaller clusters of objects, is now studied more closely.

The refactoring of libraries is done in the SRF in the
following steps: 1. determine the optimal number of clusters
and an initial solution, 2. determine the new candidate
libraries using a GA, 3. ask developers’ feedback. The
effectiveness of the refactoring process is evaluated by
a quality measure of the new library organization, the
Partitioning Ratio, which should be minimized.

The genome representation and mutations are as
previously presented by Antoniol et al. [76]. Now, however, the
developers may also give a Lock Matrix when they strongly
believe that an object should belong to a certain cluster. The
mutation operator does not perform any action that would
bring a genome in an inconsistent state with respect to the
Lock Matrix. The crossover is the one point crossover, which
exchanges the content of two genome matrices around a
random column.

The fitness function F should balance four factors: the
number of inter-library dependencies, the total number of
objects linked to each application, the size of new libraries
and the feedback by developers. Thus, developer feedback is
brought to the fitness function as an additional element to
those already presented by Antoniol et al. [76]. The fitness
function F is defined to consist of the Dependency factor DF,
the Partitioning ratio PR, the Standard deviation factor SD
and the Feedback factor FF. The FF is stored in a bit-matrix
FM, which has the same structure of the genome matrix
and which incorporates those changes to the libraries that
developers suggested. Each factor of the fitness function is
given a separate real, positive weight. DF is given weight 1, as
it has maximum influence.

Di Penta et al. [77] report that the presented GA suffers
from slow convergence. To improve its performance, it has
been hybridized with HC techniques. In their experiment,
applying HC only to the last generation significantly improves
neither the performance nor the results, but applying HC
to the best individuals of each generation makes the GA
converge significantly faster. In the case study, the GA reduces
dependencies of one library to about 5% of the original
amount while keeping the PR almost constant. For two other
libraries, a significant reduction of inter-library dependencies
is obtained while slightly reducing PR in one and increasing
the PR in the other. The addition of HC into GA does
not improve the fitness values, since GA also converges to
similar results, when it is executed on an increased number
of generations and increased population size. Noticeably,
performing HC on the best individuals of each generation
produces a drastic reduction in convergence times. These
results show that hybrid algorithms are a strong candidate
when attempting to improve the results of search-based
approaches.

Huynh and Cai [78] present an automated approach to
check the conformance of source code modularity to the
designed modularity. Design structure matrices (DSMs) are
used as a uniform representation and they are automatically
clustered and checked for conformance by a GA. A design
DSM and source code DSM work at different levels of
abstraction. A design DSM usually needs a higher level of
abstraction to obtain the full picture of the system, while
a source code DSM usually uses classes or other program
constructs as variables labeling the rows and columns of the
matrix. Given two DSMs, one at the design level and the
other at the source code level, the GA takes one DSM as
the optimal goal and searches for a best clustering method
in the other DSM that maximizes the level of isomorphism
between the two DSMs. One of the two DSMs is defined as the
sample graph, and the other one as a model graph, and finally
a conformance criterion is defined. This approach appears
beneficial especially in the area of program comprehension
and validity checking (as well as purely increasing program
quality). Performing conformance checks on a large test set
of programs could even produce general ideas on where the
programs generally differ from the initial design.

To determine the conformance of the source code
modularity to the high level design modularity the variables
of the sample graph are clustered and thus a new graph is
formed, which is called the conformance graph. Each vertex
of the conformance graph is associated with a cluster of
variables from the sample graph. The more conforming the
source code modularity is to the design modularity, the closer
to isomorphic the conformance graph and the model graph
will be. In computing the level of isomorphism between two
graphs, the graph edit distance is computed between the
graphs.

With the given representation of the problem, a GA is
formulated with which the goal is to find the clustering of
sample graph vertices such that the conformance graph of
these clustered nodes is isomorphic, or almost isomorphic,
to the model graph. This is a projection. The algorithm

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 231
first creates an initial population of random projections. The
fitness function is defined as f = −D − P − λ − ϕ, where D is
the graph edit distance, P is a penalty, and λ and ϕ provide
finer differentiation between mappings with the same graph
edit distance. The last two functions allow the configuring
of a sample graph so that it can be clustered in different
ways, each corresponding to how the design targeted DSM
is clustered. The dissimilarity function λ is used to calculate
how separated components from each directory grouping are.
If a sample graph node attribute matches a name pattern
specified by the user but is not correctly mapped to the model
graph vertex then the fitness of the projection is reduced
through ϕ. Interestingly, the fitness function only measures
negative aspects, quite differently to other fitness functions in
modularization, which usually attempt to maximize at least
some quality value.

The GA is run on two DSM models of an example
software. The experiments consistently converge to produce
the desired result, although the tool sometimes produces a
result that is not the desired view of the source code, even
though the graphs are isomorphic, i.e., the result conforms
with themodel. The experiment shows the feasibility of using
a GA to automatically cluster DSM variables and correctly
identify links between source code components and high
level design components. The results support the hypothesis
that it is possible to check the conformance between source
code structure and design structure automatically, and this
approach has the potential to be scaled for use in large
software systems.

4.3. Summarizing remarks

The majority of the studies relating to search-based software
clustering have been done with the Bunch tool, which
has seen many improvements. This is very promising for
other approaches to search-based design as well, as the
tool has been accepted for use in the software engineering
community. However, there are still many open questions
in the area of software modularization. What is a proper
encoding to represent a modularization problem? This
question is especially highlighted by the study made by
Harman et al. [74], as they point out the massive amount
of redundant information in many encodings. What is
a proper fitness metric for modularizations? Again, the
study comparing the very popular MQ metric with another
modularization metric (EVM), showed that while the metric
is robust (as already validated by its developers), it can be
outperformed. How can metrics be relied on then? Di Penta
et al. [77] have attempted to enhance the performance of
their tool by giving the developers a chance to formalize their
knowledge on quality. However, defining quality as a matrix
form cannot be very user-friendly.

As stated, the research on software clustering revolves
quite strongly around Bunch or the MQ metric. The main
exceptions to this are the studies made by Antoniol et al., [76]
and Di Penta et al. [77] who use a matrix to encode the
modularization and use matrix-related or metrics instead
of the MQ, and Hyunh and Cai [78], who use a matrix and
then turn it into a graph, and use graph related metrics to
evaluate the quality of a proposed solution. Especially the
approach by Hyunh and Cai [78] is significantly different
to Bunch, as two modularizations are ultimately compared,
while Bunch attempts to ameliorate a poor modularization
without a certain goal that it is aiming towards. Thus,
there is much room in search-based software clustering
for alternative methods, as competition always makes each
different approach strive towards even better solutions.

5. Software refactoring

5.1. Background

Software evolution often results in “corruption” in software
design, as quality is overlooked while new features are
added, or the old software should be modified in order
to ensure the highest possible quality. At the same time
resources are limited. Refactoring and in particular the
miniaturization of libraries and applications are therefore
necessary. Program transformation is useful in a number
of applications including program comprehension, reverse
engineering and compiler optimization. A transformation
algorithm defines a sequence of transformation steps to apply
to a given program and it is described as changing one
program into another. It involves altering the program syntax
while leaving its semantics unchanged. In object-oriented
design, one of the biggest challenges when optimizing class
structures using random refactorings is to ensure behavior
preservation. One has to take special care of the pre- and
post-conditions of the refactorings.

There are three problems with treating software refactor-
ing as a search-based problem. First, how to determine which
are the useful metrics for a given system. Second, finding how
best to combine multiple metrics. Third, is that while each
run of the search generates a single sequence of refactorings,
the user is given no guidance as to which sequence may be
best for their given system, beyond their relative fitness val-
ues.

In practice, refactoring (object-oriented software) can
begin with simple restructurings of the class structure and
being very close to software clustering, and then move on
to a more detailed level of moving elements from one class
to another. The lowest level of refactoring already deals
with code, as procedures are sliced to eliminate redundancy
or transformed in order to simplify the program or make
it more efficient. Section 5.2 presents approaches where
search-based techniques have been used to automatically
achieve refactorings, as well as a study on a new method for
evaluating the fitness of a refactored software. Summarizing
remarks are then presented in Section 5.3, and the
fundamentals of each study are collected in Table 5.

5.2. Approaches

Seng et al. [82] describe a methodology that computes a
subsystem decomposition that can be used as a basis for
maintenance tasks by optimizing metrics and heuristics
of good subsystem design. GA is used for automatic
decomposition. If a desired architecture is given, e.g., a
layered architecture, and there are several violations, this

232 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Ta
bl
e
5
–
R
es

ea
rc
h
ap

p
ro

ac
h
es

in
se

ar
ch

-b
as

ed
so

ft
w
ar
e
re
fa
ct
or

in
g.

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

Se
n
g
et

al
.[
82

]
O
p
ti
m
iz
in
g

su
bs

ys
te
m

d
ec

om
p
os

it
io
n
fo
r

m
ai
n
te
n
an

ce

M
od

el
of

sy
st
em

as
a
gr
ap

h
,

ex
tr
ac

te
d
fr
om

so
u
rc
e
co

d
e

G
en

es
re
p
re
se

n
t

su
bs

ys
te
m

ca
n
d
id
at
es

Sp
li
t&

jo
in
,

el
im

in
at
io
n
an

d
ad

op
ti
on

Tw
o
ch

il
d
re
n

fr
om

tw
o

p
ar
en

ts
,

in
te
gr
at
in
g

cr
os

so
ve

r

C
oh

es
io
n
,

co
u
p
li
n
g,

co
m
p
le
xi
ty
,

bo
tt
le
n
ec

ks
an

d
cy

cl
es

So
u
rc
e
co

d
e

ex
tr
ac

te
d
fr
om

re
su

lt
in
g
m
od

el

Se
n
g
et

al
.[
83

]
R
ef
ac

to
ri
n
g
a

so
ft
w
ar
e
sy

st
em

w
it
h
a
w
id
e
se

t
of

op
er
at
io
n
s

M
od

el
of

sy
st
em

,
ex

tr
ac

te
d
fr
om

so
u
rc
e
co

d
e,

w
it
h
ac

ce
ss

ch
ai
n
s

O
rd

er
ed

li
st

of
re
fa
ct
or

in
gs

C
om

m
on

cl
as

s
st
ru

ct
u
re

re
fa
ct
or

in
gs

,
th

e
li
st

is
ex

te
n
d
ed

w
it
h
a
su

gg
es

te
d

tr
an

sf
or

m
at
io
n

M
in
im

iz
e

re
je
ct
ed

,
d
u
p
li
ca

te
d
an

d
u
n
u
se

d
m
et
h
od

s
an

d
fe
at
u
re
le
ss

cl
as

se
s
an

d
m
ax

im
iz
e

ab
st
ra
ct

cl
as

se
s

R
ef
ac

to
re
d

so
ft
w
ar
e

sy
st
em

A
li
st

of
su

gg
es

te
d

re
fa
ct
or

in
gs

O
’K
ee

ff
e
an

d
Ó

C
in
n
éi
d
e
[8
4]

A
u
to
m
at
in
g

so
ft
w
ar
e

re
fa
ct
or

in
g

So
ft
w
ar
e
sy

st
em

N
/A

R
es

tr
u
ct
u
re

cl
as

s
h
ie
ra
rc
h
y
an

d
m
et
h
od

m
ov

es
,m

u
ta
ti
on

s
in

co
u
n
te
r-
p
ai
rs

in
or
d
er

to
re
ve

rs
e
a
m
ov

e

N
/A

M
in
im

iz
e

re
je
ct
ed

,
d
u
p
li
ca

te
d
an

d
u
n
u
se

d
m
et
h
od

s
an

d
fe
at
u
re
le
ss

cl
as

se
s
an

d
m
ax

im
iz
e

ab
st
ra
ct

cl
as

se
s

R
ef
ac

to
re
d

so
ft
w
ar
e
sy

st
em

SA
u
se

d
as

se
ar
ch

al
go

ri
th

m
,

in
tr
od

u
ci
n
g
a

h
eu

ri
st
ic

fo
r

w
ei
gh

ti
n
g

co
n
fl
ic
ti
n
g

q
u
al
it
y
go

al
s

O
’K
ee

ff
e
an

d
Ó

C
in
n
éi
d
e
[8
5,
86

]
A
u
to
m
at
in
g

so
ft
w
ar
e

re
fa
ct
or

in
g

Sy
st
em

as
Ja
va

so
u
rc
e
co

d
e

N
/A

R
ef
ac

to
ri
n
gs

re
ga

rd
in
g

vi
si
bi
li
ty
,c

la
ss

h
ie
ra
rc
h
y
an

d
m
et
h
od

p
la
ce

m
en

t

N
/A

R
eu

sa
bi
li
ty
,

fl
ex

ib
il
it
y
an

d
u
n
d
er
st
an

d
ab

il
it
y

R
ef
ac

to
re
d
co

d
e

an
d
d
es

ig
n

im
p
ro
ve

m
en

t
re
p
or

t

T
h
re
e
va

ri
at
io
n
s

of
h
il
lc

li
m
bi
n
g

an
d
SA

u
se

d
as

se
ar
ch

al
go

ri
th

m
s

O
’K
ee

ff
e
an

d
Ó

C
in
n
éi
d
e
[8
7,
88

]
C
om

p
ar
is
on

be
tw

ee
n
d
if
fe
re
n
t

se
ar
ch

te
ch

n
iq
u
es

Sy
st
em

as
Ja
va

so
u
rc
e
co

d
e

O
rd

er
ed

li
st

of
re
fa
ct
or

in
gs

(S
en

g
et

al
.,
20

06
[8
3]
)

C
om

m
on

cl
as

s
st
ru

ct
u
re

re
fa
ct
or

in
gs

,
th

e
li
st

is
ex

te
n
d
ed

w
it
h
a
su

gg
es

te
d

tr
an

sf
or

m
at
io
n
(S
en

g
et

al
.[
83

])

A
ra
n
d
om

se
t

of
tr
an

sf
or

m
a-

ti
on

s
fr
om

on
e

p
ar
en

t
ch

os
en

,
th

e
tr
an

sf
or
-

m
at
io
n
s
of

th
e

ot
h
er

ad
d
ed

to
th

at
li
st

(S
en

g
et

al
.[
83

]

U
n
d
er
st
an

d
ab

il
it
y

R
ef
ac

to
re
d
co

d
e

an
d
d
es

ig
n

im
p
ro
ve

m
en

t
re
p
or

t

G
A

an
d
m
u
lt
ip
le

as
ce

n
t
h
il
lc

li
m
b

im
p
le
m
en

te
d

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 233
Ta
bl
e
5
(c
on

ti
n
u
ed

)

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

Q
ay

u
m

an
d

H
ec

ke
l[
89

]
R
ef
ac

to
ri
n
g
gr
ap

h
st
ru

ct
u
re

C
la
ss

d
ia
gr
am

N
/A

A
se

t
of

re
fa
ct
or

in
gs

d
efi

n
ed

fo
r
ea

ch
in
d
iv
id
u
al

p
ro

bl
em

N
/A

Pa
rt
ia
lfi

tn
es

s
ev

al
u
at
io
n
s,

co
st

an
d

q
u
al
it
y

A
se

q
u
en

ce
of

re
fa
ct
or

in
gs

A
C
O

u
se

d
as

se
ar
ch

al
go

ri
th

m

Ji
an

g
et

al
.[
90

]
Lo

ca
ti
n
g

d
ep

en
d
en

ce
st
ru

ct
u
re
s
w
it
h

sl
ic
in
g,

co
m
p
ar
in
g

d
if
fe
re
n
t
se

ar
ch

te
ch

n
iq
u
es

So
u
rc
e
co

d
e

Tw
o-

d
im

en
si
on

al
bi
t

m
at
ri
x

A
ra
n
d
om

bi
t
fl
ip

to
of
fs
p
ri
n
g

M
u
lt
i-
p
oi
n
t

cr
os

so
ve

r
C
ov

er
ag

e
an

d
O
ve

rl
ap

,w
h
ic
h

is
d
iv
id
ed

to
av

er
ag

e
an

d
m
ax

im
u
m

O
p
ti
m
al

se
t
of

p
ro

gr
am

sl
ic
es

H
C
,G

A
,R

an
d
om

se
ar
ch

an
d

G
re
ed

y
al
go

ri
th

m
im

p
le
m
en

te
d
;

fi
tn

es
s
fu

n
ct
io
n

is
u
se

d
as

a
p
ar
am

et
er

Ji
an

g
et

al
.[
91

]
Sp

li
tt
in
g

p
ro

ce
d
u
re
s

So
u
rc
e
co

d
e

Tw
o-

d
im

en
si
on

al
bi
t

m
at
ri
x

C
h
an

ge
bi
t

N
/A

O
ve

rl
ap

O
p
ti
m
al

se
t
of

p
ro

ce
d
u
re

sl
ic
es

w
it
h
ou

t
ov

er
la
p

G
re
ed

y
al
go

ri
th

m
u
se

d

Fa
ti
re
gu

n
et

al
.[
92

]
Pr
og

ra
m

re
fa
ct
or

in
g
on

so
u
rc
e
co

d
e
le
ve

l

So
u
rc
e
co

d
e

In
te
ge

r
ve

ct
or

co
n
ta
in
in
g

tr
an

sf
or

m
at
io
n

n
u
m
be

rs

St
an

d
ar
d

St
an

d
ar
d

on
e-
p
oi
n
t

Si
ze

of
so

u
rc
e

co
d
e
(L
O
C
)

A
se

q
u
en

ce
of

p
ro

gr
am

tr
an

sf
or

m
at
io
n
s

R
an

d
om

se
ar
ch

,
H
C
an

d
G
A

ar
e

u
se

d

W
il
li
am

s
[9
3]

Pr
og

ra
m

p
ar
al
le
li
za

ti
on

So
u
rc
e
co

d
e

Tw
o
al
te
rn

at
e

en
co

d
in
gs

:G
T

in
cl
u
d
es

a
th

re
e

sy
m
bo

la
bb

re
vi
at
io
n

of
tr
an

sf
or

m
at
io
n

an
d
a
lo
op

n
u
m
be

r,
G
S
in
cl
u
d
es

an
en

co
d
ed

st
at
em

en
t

A
p
p
ly
in
g
on

e
of

6
tr
an

sf
or

m
at
io
n
s,

ch
an

gi
n
g

tr
an

sf
or

m
at
io
n
or

lo
op

n
u
m
be

r

O
n
e-
p
oi
n
t
an

d
tw

o-
p
oi
n
t,

in
d
iv
id
u
al

cr
os

so
ve

r
p
oi
n
ts

Ex
ec

u
ti
on

ti
m
e

Tr
an

sf
or

m
ed

p
ro

gr
am

H
C
,G

A
,S

A
an

d
ES

im
p
le
m
en

te
d

R
ya

n
an

d
Iv
an

[9
4]

Pr
og

ra
m

p
ar
al
le
li
za

ti
on

So
u
rc
e
co

d
e

Tr
ee

st
ru

ct
u
re

of
tr
an

sf
or

m
at
io
n
s

A
p
p
ly
in
g
at
om

or
lo
op

le
ve

lt
ra
n
sf
or

m
at
io
n

N
/A

Ex
ec

u
ti
on

ti
m
e,

co
rr
ec

tn
es

s,
lo
op

tr
an

sf
or

m
at
io
n

su
cc

es
s

Tr
an

sf
or

m
ed

p
ro

gr
am

,
tr
an

sf
or

m
at
io
n

se
q
u
en

ce

G
P
u
se

d
as

al
go

ri
th

m

H
ar
m
an

an
d

Tr
at
t
[9
5]

Pa
re
to

op
ti
m
al
it
y

u
se

d
fo
r

m
u
lt
i-
ob

je
ct
iv
e

op
ti
m
iz
at
io
n

So
ft
w
ar
e
sy

st
em

N
/A

M
ov

e
m
et
h
od

N
/A

C
ou

p
li
n
g
an

d
st
an

d
ar
d

d
ev

ia
ti
on

of
m
et
h
od

s
p
er

cl
as

s

A
se

q
u
en

ce
of

re
fa
ct
or

in
gs

H
C
u
se

d
as

se
ar
ch

al
go

ri
th

m

234 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
approach attempts to determine another decomposition that
complies with the given architecture by moving classes
around. Instead of working directly on the source code, it is
first transformed into an abstract representation, which is
suitable for a common object-oriented language.

In the GA, several potential solutions, i.e., subsystem
decompositions, form a population. The initial population
can be created using different initialization strategies. Before
the algorithm starts, the user can customize the fitness
function by selecting several metrics or heuristics as well
as by changing thresholds. The model is a directed graph.
The nodes of the graph can either represent subsystems
or classes. Edges between subsystems or subsystems
and classes denote containment relations, whereas edges
between classes represent dependencies between classes.
The approach is based on the Grouping GA [96], which
is particularly well suited for finding groups in data. For
chromosome encoding, subsystem candidates are associated
with genes and the power set of classes is used as the
alphabet for genes. Consequently, a gene is associated with
a set of classes, i.e., an element of the power set. This
representation allows a one-to-one mapping of geno- and
phenotype to avoid redundant coding.

An adapted crossover operator and three kinds of
mutation are used. The operators are adapted so that they
are non-destructive and preserve a complete subsystem
candidate as far as possible. The split&join mutation either
divides one subsystem into two, or vice versa. The operator
splits a subsystem candidate in such a way that the
separation into two subsystem candidates occurs at a
loosely associated point in the dependency graph. Elimination
mutation deletes a subsystem candidate and distributes its
classes to other subsystem candidates, based on association
weights. Adoption mutation tries to find a new subsystem
candidate for an orphan, i.e., a subsystem candidate
containing only a single class. This operator moves the
orphan to the subsystem candidate that has the highest
connectivity to the orphan. The chosen mutations support
reversibility, i.e., a GA can always backtrack its steps. The
split&join mutation is obvious in this case, but also the
adoption mutation can be seen as a reverse operation for the
elimination, if a new subsystem can be created dynamically.

Initial population supports the building block theorem.
Randomly selected connected components of the depen-
dency graph are taken for half the population and highly fit
ones for the rest. The crossover operator forms two children
from two parents. After choosing the parents, the operator
selects a sequence of subsystem candidates in both parents,
and mutually integrates them as new subsystem candidates
in the other parent, and vice versa, thus forming two new
children consisting of both old and new subsystem candi-
dates. Old subsystem candidates which now contain dupli-
cated classes are deleted, and their non-duplicated classes
are collected and distributed over the remaining subsystem
candidates. The fitness function is defined as f = w1∗ cohe-
sion +w2∗ coupling +w3 ∗ complexity+w4 ∗ cycles+w5∗ bot-
tlenecks. Again the fitness function is based on the two most
used metrics, cohesion and coupling, but introduces some
new interesting concepts from OO design, such as cycles and
bottlenecks, which are more defined than the usual general
metrics.

For evaluation, a tool prototype has been implemented.
Evaluation on the clustering of different software systems
has revealed that results on roulette wheel selection are
only slightly better than those of tournament selection. The
adapted operators allow using a relatively small population
size and few generations. Results from a Java case study
show that the approach works well. Tests on optimizing
subsets of the fitness function show that only if all criteria
are optimized, are the authors able to achieve a suitable
compromise with very good complexity, bottleneck and
cyclomatic values and good values for coupling and cohesion.
Again, as the work here is very similar to optimal software
clustering, it can be questioned whether the metrics used
in those studies, that mainly calculate modified values for
coupling and cohesion, are actually sufficient.

Seng et al. [83] have continued their work by developing
a search-based approach that suggests a list of refactorings.
The approach uses an evolutionary algorithm and simulated
refactorings that do not change the system’s externally visible
behavior. The source code is transformed into a suitable
model — the phenotype. The genotype consists of the already
executed refactorings. Model elements are differentiated
according to the role they play in the system’s design
before trying to improve the structure. Not all elements can
be treated equally, because the design patterns sometimes
deliberately violate existing design heuristics. The approach
is restricted to those elements that respect general design
guidelines. Elements that deliberately do not respect them are
left untouched in order to preserve the developers conscious
design decisions. The notion of applying something that
is known to somehow worsen the quality of a system is
peculiar. In a way this is natural, as there are always trade-offs
when trying to optimize conflicting quality values, but each
decision should have a positive affect from some perspective.
Hence, it is odd that no quality evaluator has been found
that would prevent the elimination of these “deliberately
violating” patterns.

The initial population is created by copying the model
extracted from the source code a selected number of times.
Selection for a new generation is made with tournament
selection strategy. The optimization stops after a predefined
number of evolution steps. The source codemodel is designed
to accommodate several object-oriented languages. The basic
model elements are classes, methods, attributes, parameters
and local variables. In addition, special elements called access
chains are needed. An access chain models the accesses
inside a method body, because it is needed to adapt these
references during the optimization. If a method is moved,
the call sites need to be changed. An access chain therefore
consists of a list of accesses. Access chains are hierarchical,
because each method argument at a call site is modeled as
a separate access chain that could possibly contain further
access chains.

The model allows one to simulate most of the important
refactorings for changing the class structure of a system,
which are extract class, inline class, move attribute, push
down attribute, pull up attribute, push down method, pull
up method, extract superclass and collapse class hierarchy.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 235
The genotype consists of an ordered list of executed model
refactorings including necessary parameters. The phenotype
is created by applying these model refactorings in the order
that is given by the genotype to the initial source code model.
Therefore the order of the model refactorings is important,
since one model refactoring might create the necessary
preconditions for some of the following ones.

Mutation extends the current genome by an additional
model refactoring; the length of the genome is unlimited.
Crossover combines two genomes by selecting the first
random n model refactorings from parent one and adding
the model refactorings of parent two to the genome. The
refactorings from parent one are definitely safe, but not
all model refactorings of parent two might be applicable.
Therefore, the model refactorings are applied to the initial
source code model. If a refactoring that cannot be executed
is encountered due to unsatisfied preconditions, it is dropped.
Seng et al. argue that the advantage of this crossover operator
is that it guarantees that the externally visible behavior is
not changed, while the drawback is that it takes some time
to perform the crossover since the refactorings need to be
simulated again. This approach is quite similar to that of
Amoui et al. [32], discussed in Section 3, who approach the
problem from a slightly higher level by using architectural
design patterns as refactoring, but similarly search for the
optimal transformation sequence.

Fitness is a weighted sum of several metric values and
is designed to be maximized. The properties that should
be captured are coupling, cohesion, complexity and stabil-
ity. For coupling and cohesion, the metrics from Briand’s [97]
catalogue are used. For complexity, weighted methods per
class (WMC) and number of methods (NOM) are used.
The formula for stability is adapted from the recondi-
tioning of subsystem structures. Fitness =

∑
(weightm ∗

(M(S))–Minit(S))/Mmax(S)–Minit(S). Before optimizing the struc-
ture the model elements are classified according to the roles
they play in the systems design, e.g., whether they are a part
of a design pattern.

Tests show that after approximately 2000 generations in
a case study the fitness value does not significantly change
anymore. The approach is able to find refactorings that
improve the fitness value. Actually, this is to be expected,
as it would be rather surprising if it did not improve the
fitness value, as then there would be something significantly
wrong with the GA. Thus, more importantly, in order to judge
whether the refactorings make sense, they are manually
inspected by the authors, and from their perspective, all
proposed refactorings can be justified. As a second goal, the
authors modify the original system by selecting 10 random
methods and misplacing them. The approach successfully
moves back each method at least once.

O’Keeffe and Ó Cinnéide [84] have developed a prototype
software engineering tool capable of improving a design with
respect to a conflicting set of goals. A set of metrics is used for
evaluating the design quality. As the prioritization of different
goals is determined by weights associated with each metric,
a method is also described of assigning coherent weights to a
set of metrics based on object-oriented design heuristics.

The presented tool, Dearthóir, is a prototype for design
improvement, as it restructures a class hierarchy and moves
methods within it in order to minimize method rejection,
eliminate code duplication and ensure superclasses are
abstract when appropriate. The refactorings are behavior-
preserving transformations in Java code. The refactorings
employed are limited to those that have an effect on the
positioning of methods within an inheritance hierarchy.
Contrary to most other approaches, this tool uses simulated
annealing to find close-to-optimum solutions to this
combinatorial optimization problem. In order for the SA
search to move freely through the search space every change
to the design must be reversible. To ensure this, pairs of
refactorings have been chosen that complement each other.
The refactoring pairs are: 1. move a method up or down in
the class hierarchy, 2. extract (from abstract class) or collapse
a subclass, 3. make a class abstract or concrete, and 4. change
the superclass link of a class.

The following method is intended to filter out heuristics
that cannot easily be transformed into valid metrics
because they are vague, unsuitable for the programming
language in use, or dependent on semantics. Firstly, for
each heuristic: define the property to be maximized or
minimized in the heuristic, determine whether the property
can be accurately measured, and note whether the metrics
should be maximized or minimized. Secondly, identify
the dependencies between the metrics. Thirdly, establish
precedence between dependent metrics and a threshold
where necessary: prioritize heuristics. Fourthly, check that
the graph of precedence between metrics is acyclic. Finally,
weights should be assigned to each of the metrics according
to the precedences and threshold.

The selected metrics are: 1. minimize rejected methods
(RM) (number of inherited but unused methods), 2. minimize
unused methods (UM), 3. minimize featureless classes (FC),
4. minimize duplicate methods (DM) (number of methods
duplicated within an inheritance hierarchy), 5. maximize
abstract superclasses (AS). Metrics should be appreciated so
that DM > RM > FC > AS, and UM > FC. Note that the
used metrics are much more specific to the needs of object-
oriented design than the general structural metrics that are
commonly used. Also, the heuristic of defining the weights
(and the metrics) would be very beneficial for many studies,
as assigning balanced weights can be a very complex task,
and the dependencies between different metrics and their
affect on the weights is rarely taken into account (at least so
that it would be mentioned in the studies).

Most of the dependencies in the graph do not require
thresholds. However, a duplicatemethod is avoided by pulling
the method up into its superclass, which could result in the
method being rejected by any number of classes. Therefore a
threshold value is established for this dependency. O’Keeffe
and Ó Cinnéide argue that it is more important to avoid code
duplication than any amount of method rejection; therefore
the threshold can be an arbitrarily high number.

A case study is conducted with a small inheritance
hierarchy. The case study shows that the metric values for
input and output either become better or stay the same. In
the input design several classes contain clumps of methods,
where as in the output design methods are spread quite
evenly between the various classes. This indicates that
responsibilities are being distributed more evenly among the

236 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
classes, which means that components of the design are
more modular and therefore more likely to be reusable. This
in turn suggests that adherence to low-level heuristics can
lead to gains in terms of higher-level goals. Results indicate
that a balance between metrics has been achieved, as several
potentially conflicting design goals are accommodated.

O’Keeffe and Ó Cinnéide [85,86] have continued their
research by constructing a tool capable of refactoring object-
oriented programs to conform more closely to a given design
quality model, by formulating the task as a search problem
in the space of alternative designs. This tool, CODe-Imp,
can be configured to operate using various subsets of its
available automated refactorings, various search techniques,
and various evaluation functions based on combinations of
established metrics.

CODe-Imp uses a two-level representation; the actual
program to be refactored is given as source code and
represented as its Abstract Syntax Tree (AST), but a more
abstract model called the Java Program Model (JPM) is also
maintained, from which metric values are determined and
refactoring preconditions are checked. The change operator
is a transformation of the solution representation that
corresponds to a refactoring that can be carried out on the
source code.

The CODe-Imp calculates quality values according to the
fitness function and effects change in the current solution by
applying refactorings to the AST as required by a given search
technique. Output consists of the refactored input code as
well as a design improvement report including quality change
and metric information.

The refactoring configuration of the tool is constant
throughout the case studies and consists of the fol-
lowing fourteen refactorings. Push down/pull up field,
push down/pull up method, extract/collapse hierarchy, in-
crease/decrease field security, replace inheritance with dele-
gation/replace delegation with inheritance, increase/decrease
method security, made superclass abstract/concrete. During
the search process alternative designs are repeatedly gener-
ated by the application of a refactoring to the existing design,
evaluated for quality, and either accepted as the new current
design or rejected. As the current design changes, the num-
ber of points at which each refactoring can be applied will
also change. In order to see whether refactorings can bemade
without changing program behavior, a system of conservative
precondition checking is employed.

The used search techniques include first-ascent HC (HC1),
steepest-ascent HC (HC2), multiple-restart HC (MHC) and low-
temperature SA. For the SA, CODe-Imp employs the standard
geometric cooling schedule.

The evaluation functions are flexibility, reusability and
understandability of the QMOOD hierarchical design quality
model [87]. Each evaluation function in the model is based on
a weighted sum of quotients on the 11 metrics forming the
QMOOD (design size in class, number or hierarchies, average
number of ancestors, number of polymorphic methods, class
interface size, number of methods, data access metric, direct
class coupling, cohesion among methods of class, measure
of aggregation and measure of functional abstraction). Each
metric value for the refactored design is divided by the
corresponding value for the original design to give the
metric change quotient. A positive weight corresponds to
a metric that should be increased while a negative weight
corresponds to a metric that should be decreased. It should
be noted that while the complexity of the problem grew,
as the program representation became more intricate, the
number of refactorings (mutations) was more than doubled,
this reflected on the need for a significantlymore complicated
fitness function. The fitness function used in the previous
study only contained 5 metrics, while the current one
contains 11 metrics which are grouped into 3 different fitness
functions.

All techniques demonstrate strengths. HC1 consistently
produces quality improvements at a relatively low cost, HC2
produces the greatest mean quality improvements in two
of the six cases, MHC produces individual solutions of the
highest quality in two cases and SA produced the greatest
mean quality improvement in one case. Based on this it would
seem that the SA is actually inferior to the different hill
climbing approaches, as it only outperformed them in one
measure in one test case out of the six. Combining the results
of these different search algorithms would be interesting: is
it possible to produce such a hybrid that would preserve the
strengths from all algorithms?

Inspection of output code and analysis of solution
metrics provide some evidence in favor of the use of the
flexibility metric and even stronger evidence for using the
understandability function. The reusability in the present
form is not found suitable for maintenance because it
resulted in solutions including a large number of featureless
classes. As these kinds of classes are not generally accepted
in OO design (apart from having “technical classes”), one
might wonder whether some corrective function could be
used in order to prevent featureless classes from appearing
in the design. Simple pre-and post-conditions for mutations
might very well help dealing with the problem. The authors
conclude that both local search and simulated annealing are
effective in the context of search-based software refactoring.

O’Keeffe and Ó Cinnéide [88,98] have further continued
their work by implementing also a GA and a multiple
ascent HC (MAHC) to the CODe-Imp refactoring tool and
further testing the existing search techniques. The encoding,
crossover and mutation for the GA are similar to those
presented by Seng et al. [83], and the power of the tool has
been increased by adding a number of different refactorings
available for use in searching for a superior design.

The fitness function is an implementation of the
understandability function from Bansiya and Davis’s [87]
QMOOD hierarchical design quality model consisting of a
weighted sum of metric quotients between two designs. This
choice was clearly inspired by the earlier study, where two
other quality functions, flexibility and reusability, did not
perform as well in terms of actual quality enhancement. This
design quality evaluation function was previously found by
the authors to result in tangible improvements to object-
oriented program design in the context of search-based
refactoring.

Results for the SA support the recommendation of low
values for the cooling factor, since more computationally
expensive parameters do not yield greater quality function
gains.

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 237
In summary, SA has several disadvantages: it is hard
to recommend a cooling schedule that will generally be
effective, results vary considerably across input programs
and the search is quite slow. No significant advantage in
terms of quality gain was observed that would make up
for these shortcomings. The GA has the advantage that
it is easy to establish a set of parameters that work well
in the general case, but the disadvantages are that it is
costly to run and varies greatly for different input programs.
Again, no significant advantage in terms of quality gain
was observed that would make up for these shortcomings.
Multiple-ascent HC stood out as the most efficient search
technique in this study: it produced high-quality results
across all the input programs, is relatively easy to recommend
parameters for and runs more quickly than any of the
other techniques examined. Steepest ascent HC produced
surprisingly high quality solutions, suggesting that the search
space is less complex than might be expected, but is slow
when considering its known inability to escape local optima.
Results show MAHC to outperform both SA and GA over a
set of four input programs. As the genetic algorithm is the
most commonly used search technique, these results should
stimulate more comparisons between different algorithms.
The search space for this problem was, after all, quite large,
when taking into account the high number of refactorings
that could be applied to a design. Thus, maybe the more
refined hill climbing techniques could be compared to the GA.

Quaum and Heckel [89] apply the Ant Colony Optimiza-
tion (ACO) [99] for software refactoring. The software is repre-
sented as a class diagram with methods and attributes, and
the refactoring task is considered as a graph transformation
problem, which makes it suitable for ACO. In order to per-
form ACO, five things need to be defined: 1. a set of compo-
nents C and the edges between them, 2. a set of states as
a sequence of components belonging to C, 3. a set of candi-
date solutions S, with a subset of feasible candidate solutions
according to given constraints, 4. a non-empty subset (of S)
of optimal solutions, and 5. an evaluation associated to each
candidate solution. Based on this, Quaum and Heckel define
a graph by associating the set of graph vertices to the set of
proposed transformations. Edges are associated with depen-
dencies. The pheromone and heuristic values are associated
with the graph edges and are determined by partial evalua-
tions associated with incomplete candidate solutions.

The goal is to find an optimal set of transformations. These
transformations are pre-determined based on the given
program (graph) and consider, e.g., moving methods and
alternating the class hierarchy. An ant begins with an empty
solution from the start vertex in the graph and then gradually
checks the available refactoring steps in order to construct
a candidate solution. Initially, any random component from
C is chosen and then the partial evaluation function will
guide the selection of the corresponding edge through the
pheromone values. The fitness value is calculated for each
feasible sequence of transformations after applying it on
the source graph model, the basis for the fitness being the
cost of the transformation and the quality of the result. The
approach is tested on a small example system.

This approach demonstrates the use of yet another
search technique, ACO, which is especially suitable for
graph problems. Other choices, however, raise questions
particularly on the generality of this approach. It is only
tested on a small system, and all the transformations are
pre-defined, and dependent on the particular system. How
can this approach be generalized to be applied to any
system without extensive work required to define all possible
transformations of that system, which is incredibly laborious,
if the system is large? Also, the details regarding fitness
calculations are not very clear.

Jiang et al. [90] apply a set of search algorithms to program
slicing in order to locate dependence structures. They attempt
to find the subsets from all possible sets of program slices
that reveal interesting dependence structures. A program is
divided into slices according to program points, which are
the nodes of a System Dependency Graph (SDG) [100]. In
order to formulate the problem as a search problem, it is
instantiated as a set cover problem. With increasing program
sizes a search-based approach is extremely suitable for this
type of problem.

A program is represented as a bit matrix, where rows
indicate program slices and columns indicate program points.
The value in point i, j, is 1 if the slice based on criterion i
contains the program point j, and 0 if not. A solution should
contain as many program points as possible but should have
minimum overlap, i.e., slices that contain the same program
points.

The fitness function is seen as a parameter to the overall
approach of search-based slicing, as choosing the fitness
function depends on the properties of the slice set and
what the user considers as “interesting” when searching
for dependencies. The fitness function is based on metrics
that calculate the Coverage and Overlap of the program.
Coverage measures how many program points out of all
possible points the program contains. Overlap measures
the number of program points within the intersection of a
slicing set. It can be divided in many ways, but Jiang et al.
only consider Average, which evaluates the percentage of
overlapping program points based on pair-wise calculations,
and Maximum, which evaluates the maximum number of
overlapping points based on pair-wise calculations. Both
Coverage and Overlap are given weights and then combined
for the overall fitness function. Although it is said that the
user can define the fitness function based on his/her own
desires of what is “interesting”, it is left unclear whether the
definitions must rely on the presented metrics or whether the
user can build any kind of fitness function. Also, it is not clear
how the properties of the slice set affect the choice of fitness
function.

Jiang et al. [90] implement HC, GA, a Greedy Algo-
rithm [101] and a Random Search algorithm. The GA uses a
multi-point crossover and a standard bit change as a muta-
tion. Elitism and rank selection are used as selection meth-
ods. For HC, a multiple restart HC is implemented in order
to give it the same amount of computation time as the other
algorithms. A Greedy Algorithm consists of two sets: a solu-
tion set and a candidate set, and three functions: selection,
value-computing and solution function. A solution is created
out of the solution set, and a candidate set represents all pos-
sible elements that might be contained in a solution. Selec-
tion chooses the most promising candidate to be added to

238 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
the solution, value-computing function gives a value for the
solution and solution function checks whether the final so-
lution has been reached. Here the initial solution set is a bi-
nary string with each bit set to 0, and the candidate solution
set is made of all the slices. The value-computing function
calculates the program points in a solution and the selection
function chooses the one with the best coverage and smallest
overlap.

An empirical study is made with six open source
programs, and possible slices are collected with a separate
program from each program’s SDG. The program sizes vary
from 37 to 1008 program points. Every other algorithm except
the Greedy Algorithm was executed 100 times; the Greedy
algorithm gives the same result every time and thus does
not need several test runs. For the fitness function using
Average Overlap, the Greedy Algorithm performs the best
for all but one test case, where HC and GA perform the
best. Furthermore, it is seen that for smaller programs HC
outperforms GA and Random search. As the program size
increases, GA starts to perform better, and wins over HC. For
the second fitness function where the Maximum Overlap was
used, the results are similar to with the first fitness function.
However, in this case GA performs the best of the other
algorithms, and HC only beats Random search on the smallest
test case. The Greedy Algorithm also outperforms all others
in terms of execution time. It is no surprise that the Random
Search is outperformed every time. However, it is naturally a
bit disappointing that the Greedy Algorithm was superior in
every aspect, when compared to other search methods.

Jiang et al. [90] make another study by only using
the Greedy Algorithm for six different large programs.
As the previous study showed that the Greedy Algorithm
outperformed all other studied search algorithms, now it is
tested how efficient it is in decomposing a program into a set
of slices. Results suggest that less than 20% of a program can
be used to decompose the whole program or function.

Jiang et al. [91] continue by applying a Greedy Algorithm
to procedure splitting. They attempt to split a procedure into
two or more sub-procedures in order to improve cohesion.
The Greedy Algorithm is used to find close to optimal splitting
points.

A slice is represented as a bit matrix. A matrix value
is depends on whether a program point (i.e., a node in
the system’s SDG) belongs to a certain slice. The splitting
algorithm proceeds in four steps: 1. slice with respect to all
nodes in SDG to find all static backward slices, 2. find sets of
slices with minimum overlap, 3. recover slice statements by
combining nodes that belong to a single statement, 4. make
sub-procedures obtained executable.

Results indicate thatmore than 20% of procedures in all six
programs contain independent sub-programs. Also, it would
seem that most procedures are not splittable, and the ones
that are, can usually be split into only 2 or 3 sub-programs.
Splittability appears to correlate with the size of the program.

Fatiregun et al. [92] use meta-heuristic search algorithms
to automate, or partially automate the problem of finding
good program transformation sequences. With the proposed
method one can dynamically generate transformation
sequences for a variety of programs also using a variety of
objective functions. The goal is to reduce program size, but
the approach is argued to be sufficiently general that it can
be used to optimize any source-code level metric. Random
search (RS), hill climbing and GA are used.

An overall transformation of a program p to an improved
version p′ typically consists of many smaller transformation
tactics. Each tactic consists of the application of a set of rules.
A transformation rule is an atomic transformation capable
of performing the simple alterations. To achieve an effective
overall program transformation tactic, many rules may need
to be applied and each would have to be applied in the correct
order to achieve the desired results.

In HC, an initial sequence is generated randomly to serve
as the starting point. The algorithm is restarted several times
using a random sequence as the starting individual each time.
The aim is to divert the algorithm from any local optimum.

Each transformation sequence is encoded as an individual
that has a fixed sequence length of 20 possible transforma-
tions. An example individual is a vector of the transforma-
tion numbers. In HC, the neighbor is defined as the mutation
of a single gene from the original sequence. Crossover is the
standard one-point crossover. In addition to transformations,
cursor moves are also used. The tournament selection is used
for selecting mating parents and creating a single offspring,
which replaces the worse of the parents. The authors con-
sider optimizing the program with respect to the size of the
source-code, i.e., LOC, where the aim is to minimize the num-
ber of lines of code as much as possible. This metric is quite
simple, and the effects are hardly arguable, if the length of a
line of code is somehow restricted.

The fitness is measured as the nominal difference in
the lines of code between the source program and the new
transformed program created by that particular sequence.
This is evaluated by a process of five steps: 1. compute
length of the input program, 2. generate the transformation
sequence, 3. apply the transformation sequence, 4. compute
the current length of the program, 5. compute the fitness,
which is the difference between steps 1 and 4.

Results show that GA outperforms both RS and HC. In
cases where RS outperformed GA and HC, it was noticed
that GA and HC are not “moving” towards areas where
potential optimizations could be. Analyzing the GA, the
authors believe that the GA potentially kills off good
subsequences of transformations during crossover. These
results are interesting as this would indicate that the selected
(standard) crossover would not support the preservation of
building blocks. As discussed in Section 4, it may be that also
the encoding could be improved to preserve building blocks.
All in all, examining the fitness landscape and rethinking the
encoding and crossover operators may be able to improve the
results achieved with the GA.

Williams [93] implements several search algorithms in
his REVOLVER system that make program transformations in
order to parallelize the program and thus lessen the execution
time. The idea is to transform loops in different ways, and
as loops are the core of the approach, they are numbered.
HC, SA and GA are used, and most interestingly, two different
encodings are experimented with.

In the first encoding, Gene-Transformation (GT), each gene
represents a transformation that is applied to the system.
The gene contains information as to what transformation

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 239
is applied, and the number of the loop it is applied to.
Three different mutations can be used: changing the
transformation, changing the loop number or changing
both (i.e., the entire gene). Both one-point and two-point
crossovers are implemented. However, in the one-point
crossover, the crossover points for the parent chromosomes
are chosen individually for each parent, as they might be of
unequal length. This approach is applied to HC, SA and GA.

In the second encoding, Gene-Statement (GS), each gene
represents a statement in the program, e.g., an if- or a do-
statement, and the chromosome thus represents the program
as a sequence of statements. The mutations that are applied
are the chosen operations on loops, and applying them to
the program. This is actually quite odd, as only loop related
transformations are used, but there are only loops in some
of the genes. Note, that a mutation will alter the program,
as, say, combining two loops will remove the statement
representing one of them, and thus shortens the chromosome
by one gene. No crossover is used in this representation, and
the used algorithms are HC and evolutionary strategy (ES),
which is basically a GA, i.e., it has a population and selection,
but without the crossover.

The fitness function for both approaches is the actual
execution time of the transformed program, and tournament
selection is used. In the tests the population size was only
5 for the algorithms with populations, and the number of
generations only 50. These parameters seem incredibly low,
as there is very little room for versatility in the population,
and there is very little time for development also. Thus, one
wonders whether the benefits of the GA are truly used in this
approach.

Test results on five programs show that the ES and HC
with the GS encoding outperformed all other algorithms.
The traditional GA appeared the worst. These results further
suggest that the population parameter chosen for the
traditional GA should be revised, as the GA cannot use its
full potential. Interestingly, ES, which also had a population,
performed the best. The strength of the GS encoding is also
very interesting, considering there is much information in the
genes that cannot be mutated. However, ES did not have a
crossover, and thus choosing parents is not an issue for this
algorithm. All in all, the algorithms were able to improve the
execution times significantly.

Ryan and Ivan [94] have taken a rather different approach
to program parallelization, as they encode the program in tree
form and use genetic programming as the search algorithm.
They use GP in an unusual way, as it does not actually
“program”, but searches for the optimal transformations for
the program, thus making this study a design problem.

The program is considered as a sequence of instructions.
The actual tree given by the GP then comes from examining
the atoms representing the instructions, and deciding on
transformations based on the type of the instruction. The
GP works in two modes: atom mode and loop mode. Each
step begins in atom mode, and if the found instruction is a
loop, the mode is switched. In atom mode, there are three
classes of transformations. The transformations in the first
class split the sequence of instructions according to a given
percent, thus forking the execution of a program. The ones in
the second class also split the sequence of instructions, but
with less effect, as the split point is always either after the
first of before the last instruction. The last class delays the
execution of the program. Each atom mode transformation is
an internal node in a tree, and takes as input the program
segment before passing it onto the next transformation.
The program segment ultimately diminishes to one atom
as transformations are applied. In loop mode the idea is to
parallelize each loop by executing each iteration on a different
processor, unfortunately, though, this raises issues with data
dependencies. A significant operator in loop mode is loop
fusion, which combines consecutive loops.

The fitness function is a combination of fitness calcula-
tions from the atom mode and the loop mode. For the atom
mode the fitness is the execution time and the correctness
of the program. For loop mode the fitness is the number of
successes for applied loop operators. The initial results are
promising; the approach is able to parallelize programs and
thus ameliorate them in terms of execution time.

The approach of Ryan and Ivan [94] appears quite similar
to that of Williams [93] in terms of the choosing loops as
a key ingredient in the mutations. However, Ryan and Ivan
have taken atom transformations into account as traditional
mutations, while Williams has chosen to deal with non-loop
structures only at the encoding stage. The fitness function for
both approaches is basically the same, as execution time is
the most important factor. It would be interesting to study
the problem of program parallelization also in terms of other
quality factors and as a larger problem in the context of,
e.g., distributed systems.

Harman and Tratt [95] show how Pareto optimality can
improve search based refactoring, making the combination
of metrics easier and aiding the presentation of multiple
sequences of optimal refactorings to users. Intuitively, each
value on a Pareto front maximizes the multiple metrics
used to determine the refactorings. Through results obtained
from three case studies on large real-world systems, it is
shown how Pareto optimality allows users to pick from
different optimal sequences of refactorings, according to
their preferences. Moreover, Pareto optimality applies equally
to sub-sequences of refactorings, allowing users to pick
refactoring sequences based on the resources available to
implement those refactorings. Pareto optimality can also be
used to compare different fitness functions, and to combine
results from different fitness functions.

Harman and Tratt [95] use the move method refactoring
presented by Seng et al. [83]. Three systems are used in
the case study, all non-trivial real-world systems. The search
algorithm itself is a non-deterministic non-exhaustive hill
climbing approach. A random move method refactoring is
chosen and applied to the system. The fitness value of the
updated system is then calculated. If the new fitness value is
worse than the previous value, the refactoring is discarded
and another one is tried. If the new fitness value is better
than the previous, the refactoring is added to the current
sequence of refactorings, and applied to the current system to
form the base for the next iteration. A cut-off point is set for
checking neighbors before concluding that a local maximum
is reached. The end result of the search is a sequence of
refactorings and a list of the before and after values of the
various metrics involved in the search.

240 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Two metrics are used to measure the quality: coupling and
standard deviation of methods per class (SDMPC). Coupling
(CBO) is from Briand’s [97] catalogue. The second metric,
SDMPC, is used to act as a ‘counter metric’ for coupling.
An arbitrary combination of the metrics is used, the fitness
function being SDMPC ∗ CBO. The new fitness function
improves the CBO value of the refactored system while also
improving the SDMPC of the system. All the points on a Pareto
front are, in isolation, considered equivalently good. In such
cases, it might be that the user may prefer some of the Pareto
optimal points over others.

The concept of a Pareto front is argued to make as
much sense with subsets of data as it does for complete
sets. Harman and Tratt [95] also stress the importance of
knowing how many runs a search-based refactoring system
will need to achieve a reasonable Pareto front approximation.
Furthermore, developers are free to execute extra runs of
the system if they feel they have not yet achieved points
of sufficient quality on the front approximation. Pareto
optimality allows determining whether one fitness function
is subsumed by another: broadly speaking, if fitness function
f produces data which, when merged with the data produced
from function f ′, contributes no points to the Pareto front
then we know that f is subsumed by f ′. Although it may not
be immediately apparent, Pareto optimally confers a benefit
potentially more useful than simply determining whether
one fitness function is subsumed by another. If two fitness
functions generate different Pareto optimal points, then they
can naturally be combined to a single front. Pareto optimality
is shown to have many benefits for search-based refactoring,
as it lessens the need for “perfect” fitness functions. This
would make Pareto optimality an approach that should be
considered for any optimization problem with conflicting
goals.

5.3. Summarizing remarks

The approaches to search-based refactorings can be divided
into the following groups: refactoring the program at class
level, refactoring the program at procedure level, and
refactoring pieces of code. The most studies have been
performed on refactoring at class level, and they are all quite
similar, and actually end up using the same operations for
the search algorithm. For the other aspects only one or two
studies have been made, and this suggests that there is much
room for competing approaches. The most advanced results
have been achieved with refactorings at class level, while
studies in program transformations have achieved both good
and not so good results.

When examining the refactoring problems, one notable
characteristic is that Seng et al. [83] attempt to preserve
building blocks from the very beginning, and several other
studies have later built on the operators introduced by them.
The mutation selection by Seng et al. [83] also appears
popular. The complexity of the refactoring problem at class
level was most pointedly demonstrated by O’Keeffe and
Ó Cinnéide [85,86], who had a list of 14 mutations and
11metrics, and Quaum and Heckle [89], who had to pre-define
mutations according to the specific system. Considering that
there can be even more general refactorings in addition
to those presented by O’Keeffe and Ó Cinnéide, and that
they could be combined with system specific mutations, the
search space for an optimal refactoring sequence will soon
become incredibly large.

The approaches to search based refactoring also seem
advanced in the aspect that there have already been several
studies that compare different search algorithms and fitness
functions. As for the search algorithms, different hill climbing
applications are clearly very efficient and able to produce
high quality results. Interestingly, simulated annealing has
been outperformed by other algorithms, although one might
argue that it is more “sophisticated” than at least the basic
hill climbing. All in all, there are very few approaches that
use simulated annealing, and no breaking results have been
achieved with it. The studies in fitness functions further
support the notion of complexity in this problem area.
O’Keeffe and Ó Cinnéide [84] have considered the problem
of finding an appropriate fitness function so important
that they have developed a heuristic for balancing different
weights, and Harman et al. [95] have introduced the Pareto
optimality concept to this field, as software design is indeed
an area where trade-offs and compromises need to be
made. As for the other studies, the variety of metric quality
evaluators shows that a refined method for deciding on an
appropriate fitness function is truly needed. The only area
where consensus can be found is program transformations,
where quality can quite simply be measured in terms of run
time and correctness or size of the program.

6. Software quality

6.1. Background

Software quality assessment has become an increasingly
important field. The complexity caused by object-oriented
methods makes the task more important and more difficult.
An ideal quality predictive model can be seen as the mixture
of two types of knowledge: common knowledge of the domain
and context specific knowledge. In existing models, one of
the two types is often missing. During its operating time, a
software system undergoes various changes triggered by error
detection, evolution in the requirements or environment
changes. As a result, the behavior of the software gradually
deteriorates as modifications increase. This quality slump
may go as far as the entire software becoming unpredictable.

Software quality is a special concern when automatically
designing software systems, as the quality needs to be
measured with metrics and in pure numerical values. The
use of metrics may even be argued, as they cannot possibly
contain all the knowledge that an experienced human
designer has. Sahraoui et al. [102] have investigated whether
some object-oriented metrics can be used as an indicator
for automatically detecting situations where a particular
transformation can be applied to improve the quality of a
system. The detection process is based on analyzing the
impact of various transformations on these object-oriented
metrics using quality estimation models.

Sahraoui et al. [102] have constructed a tool which,
based on estimations on a given design, suggests particular

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 241
transformations that can be automatically applied in order
to improve the quality as estimated by the metrics. Roughly
speaking, building a quality estimation model consists of
establishing a relation of cause and effect between two
types of software characteristics. Firstly, internal attributes
which are directly measurable, such as size, inheritance
and coupling, and secondly, quality characteristics which are
measurable after a certain time of use such asmaintainability,
reliability and reusability. To study the impact of the global
transformations on the metrics, first the impact of each
elementary transformation is studied and then the global
impact is derived. A case study is used for the particular
case of the diagnosis of bad maintainability by using the
values of metrics for coupling and inheritance as symptoms.
Based on the results of this study, Sahraoui et al. [102]
argue that using metrics is a step toward the automation of
quality improvement, but that experiments also show that a
prescription cannot be executed without the validation of a
designer/programmer.

The use of evolution metrics for fitness functions has
especially been studied [103,104]. If one looks at the whole
process of detecting flaws and correcting them, metrics can
help automating a large part of it. However, the results of
the experiments show that a prescription cannot be executed
without the validation of a designer or programmer. This
approach cannot capture all the context of an application to
allow full automation.

Some approaches regarding software quality have also
been made with search-based techniques and are detailed
in Section 6.2. Bouktif et al. [105,106] aim at predicting
software quality of object-oriented systems with GAs, and
Vivanco and Jin [108] have implemented a GA to identify
possible problematic software components. Bouktif et al. [107]
have also implemented a SA to combine different quality
prediction models. Summarizing remarks are presented in
Section 6.3, and the fundamentals of each approach are
collected in Table 6.

6.2. Approaches

Bouktif et al. [105,106] study the prediction of stability
at object-oriented class level and propose two GA based
approaches to solve the problem of quality predictive models:
the first approach combines two rule sets and the second one
adapts an existing rule set. The predictive model will take the
form of a function that receives as input a set of structural
metrics and an estimation of stress, and produces as output a
binary estimation of the stability. Here, stress represents the
estimated percentage of added methods in a class between
two consecutive versions.

The model encoding for the GA that combines rule sets
is based on a decision tree. The decision tree is a complete
binary tree where each inner node represents a yes-or-no
question, each edge is labeled by one of the answers, and
terminal nodes contain one of the classification labels from
a predetermined set. The decision making process starts at
the root of the tree. When the questions at the inner nodes
are of form “Is x > a?”, the decision regions of the tree can be
represented as a set of isothetic boxes in an n-dimensional
space (n = number of metrics). For the GA representation,
these boxes are enumerated in a vector. Each gene is a (box,
label) pair, and a vector of these pairs is the chromosome. The
complexity of quality as a concept is directly shown in the
complexity of the encoding. No simple integer vector can be
used to represent quality estimations. An interesting research
question is to determine what is the minimal information
needed in order to evaluate or predict quality.

Mutation is a random change in the genes that happens
with a small probability. In this problem, the mutation
operator randomly changes the label of a box. To obtain
an offspring, a random subset of boxes from one parent is
selected and added to the set of boxes of the second parent.
The size of the random subset is v times the number of boxes
of the parent, where v is a parameter of the algorithm. By
keeping all the boxes of one of the parents, completeness
of the offspring is automatically ensured. To guarantee
consistency, the added boxes are made predominant (the
added boxes are “laid over” the original boxes). A level of
predominance is added as an extra element to the genes. Each
gene is now a three-tuple (box, label, level). The boxes of the
initial population have level 1. Each time a predominant box is
added to a chromosome, its level is set to 1 plus themaximum
level in the hosting chromosome. To find the label of an input
vector x (a software element), first all the boxes containing x
are found, and x is assigned the label of the box that have the
highest level of predominance.

To measure the fitness a correctness function is used; the
function calculates the number of cases that the rule correctly
classifies divided by the total number of cases that the rule
classifies. The correctness function is defined as C = 1 —
training error. By using the training error for measuring the
fitness, it is found that the GA tended to “neglect” unstable
classes. To give more weight to data points with minority
labels, Youden’s [109] J-index is used. Intuitively, the J-index
is the average correctness per label. If one has the same
number of points for each label, then J = C. As seen, the
actual fitness evaluations for quality seem simple, which
is surprising when compared to the complicated metric
combinations used to evaluate quality in all the various GA
implementations already presented. However, here the most
work is needed for defining the rules that need to be satisfied
and questions that need to be answered.

With a GA for adapting a rule set, an existing rule set
is used as the initial population of chromosomes, each rule
of the rule set being a chromosome and each condition in
the rule as well as the classification label being a gene. Each
chromosome is attributed a fitness value, which is C∗ t, where
t is the fraction of cases that the rule classifies in the training
set. The weight t allows rules to be given that cover a large set
of training cases a higher chance of being selected.

Parents for crossover are selected with the roulette wheel
method. A random cut point is generated for each parent,
i.e., the cut-points are different for each parent. Otherwise,
the operation is a traditional one-point crossover. By allowing
chromosomes within a pair to be cut at different places,
a wider variety is allowed with respect to the length of
the chromosomes. The chromosomes are then mutated. The
mutation of a gene consists of changing the value to which
the attribute encoded in the gene is compared to a value
chosen randomly from a predefined set of values for the

242 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
Ta
bl
e
6
–
S
tu

d
ie
s
in

se
ar

ch
-b

as
ed

so
ft
w
ar
e
q
u
al
it
y
en

h
an

ce
m

en
t.

A
u
th

or
A
p
p
ro

ac
h

In
p
u
t

En
co

d
in
g

M
u
ta
ti
on

C
ro

ss
ov

er
Fi
tn

es
s

O
u
tc
om

e
C
om

m
en

ts

B
ou

kt
if

et
al
.[
10

5,
10

6]
C
om

bi
n
in
g
tw

o
ru

le
se

ts
vs

.
ad

ap
ti
n
g
a
ru

le
se

t
w
it
h
G
A

in
q
u
al
it
y
p
re
d
ic
ti
on

m
od

el
s

D
ec

is
io
n
tr
ee

C
om

bi
n
at
io
n
:

bo
x,

la
be

l-
p
ai
rs

fr
om

d
ec

is
io
n

tr
ee

A
d
ap

ta
ti
on

:
on

e
ru

le
is

on
e

ch
ro

m
os

om
e,

ea
ch

co
n
d
it
io
n

in
th

e
ru

le
is

a
ge

n
e

C
om

bi
n
at
io
n
:c

h
an

ge
of

la
be

l
A
d
ap

ta
ti
on

:c
h
an

ge
va

lu
e
of

at
tr
ib
u
te

en
co

d
in
g

C
om

bi
n
at
io
n
:a

ra
n
d
om

se
t
of

bo
xe

s
fr
om

on
e
p
ar
en

t
ad

d
ed

to
th

e
ot
h
er

an
d
le
ve

lo
f

p
re
d
om

in
an

ce
ad

d
ed

to
ge

n
e
(b
ox

,l
ab

el
,

le
ve

l)
A
d
ap

ta
ti
on

:
st
an

d
ar
d
on

e-
p
oi
n
t,

p
ar
en

ts
se

le
ct
ed

w
it
h

ro
u
le
tt
e-
w
h
ee

l
m
et
h
od

C
or

re
ct
n
es

s
O
p
ti
m
al

ru
le

se
t

B
ou

kt
if

et
al
.[
10

7]
C
om

bi
n
in
g

so
ft
w
ar
e
q
u
al
it
y

p
re
d
ic
ti
on

m
od

el
s,

i.e
.,
ex

p
er
ts

Se
t
of

ex
am

p
le

m
od

el
s
an

d
co

n
te
xt

d
at
a

R
an

ge
an

d
co

n
d
it
io
n
al

p
ro

ba
bi
li
ti
es

M
od

if
y
ra
n
ge

or
p
ro

ba
bi
li
ty

or
ad

d
or

re
m
ov

e
an

ex
p
er
t

N
/A

C
or

re
ct
n
es

s
O
p
ti
m
al

m
od

el
co

m
bi
n
ed

of
su

b-
op

ti
m
al

m
od

el
s

SA
u
se

d

V
iv
an

co
an

d
Ji
n
[1
08

]
Id
en

ti
fi
ca

ti
on

of
co

m
p
le
x

co
m
p
on

en
ts

So
ft
w
ar
e

sy
st
em

N
/A

N
/A

N
/A

O
O

m
et
ri
cs

C
la
ss
es

d
iv
id
ed

ac
co

rd
in
g
to

co
m
p
le
xi
ty

le
ve

ls

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 243
attribute (or class label, in case the last gene is mutated).
The new chromosomes are scanned and trimmed to get rid
of redundancy in the conditions that form the rules that they
encode. Inconsistent rules are attributed a fitness value of 0
and will eventually die. A fixed population size is maintained.
Elitism is performed when the population size is odd. This
consists of copying one or more of the best chromosomes
from one generation to the next. Before passing from one
generation to another, the performance of combined rules to
one rule set is evaluated.

In the experimental setting, to build experts (that simulate
existingmodels), stress and 18metrics (belonging to coupling,
cohesion, complexity and inheritance) are used. Eleven
object-oriented systems are used to “create” 40 experts.
For the combining GA, the elitist strategy is used, where
the entire population apart from a small number of fittest
chromosomes is replaced. The test results show that
the approach of combining experts can yield significantly
better results than using individual models. The adaptation
approach does not perform as well as the combination,
although it gave a slight improvement over the initial model
in one case. The authors believe that using more numerous
and real experts on cleaner and less ambiguous data, the
improvement will be more significant. It is quite inspiring
that the approach of combining experts produced the more
promising results. If it can be assumed that experts in both
initial populations have the same amount of knowledge,
it would seem that merely adapting an expert would be
a smaller task to perform than successfully combining the
knowledge from two different experts. Thus the results are
very positive when considering what the GA is capable of.

Bouktif et al. [107] have continued their research by
applying simulated annealing to combine experts. Their
approach attempts to reuse and adapt quality predictive
models, each of which is viewed as a set of expertise parts.
The search then aims to find the best subset of expertise
parts, which forms a model with an optimal predictive
accuracy. The SA algorithm and a GA made for comparison
were defined for Bayesian classifiers (BCs), i.e., probabilistic
predictive models.

An optimal model is built of a set of experts, each of which
is given a weight. Each individual, i.e., chunk, of expertise
is presented by a tuple consisting of an interval and a set
of conditional probabilities. Transitions in the neighborhood
are made by changing probabilities or interval boundaries. A
transition may also be made by adding or deleting a chunk of
expertise. The fitness function is the correctness function.

For evaluation, the SA needs two elements as inputs:
a set of existing experts and a representative sample of
context data. Results show a considerable improvement in
the predictive accuracy, and the results produced by the
SA are stable. The values for GA and SA are so similar
that the authors do not see a need to value one approach
over the other. Results also show that the accuracy of the
best produced expert increases as the number of reused
models increases, and that good chunks of expertise can be
hidden in inaccurate models. Again, the results achieved with
SA encourage further usage of different search algorithms
apart from GA, or even combining and making more hybrid
approaches in order to increase quality in search based
approaches to software design.

Vivanco and Jin [108] present initial results of using a
parallel GA as a feature selection method to enhance a
predictive model’s ability to identify cognitively complex
components in a Java application. Linear discriminant
analysis (LDA) can be used as a multivariate predictive model.

It is theorized that the structural properties of modules
have an impact on the cognitive complexity of the system,
and further on, that modules that exhibit high cognitive
complexity result in poor quality components. Again, this
is in line with the assumption already made by Lutz [42],
that the simpler a design, the better. A preliminary study
is carried out with a biomedical application developed in
Java. Experienced program developers are asked to evaluate
the system. Classes labeled as low are considered easy
to understand and use, while a high ranking implied the
class is difficult to fully comprehend and would likely take
considerably much more effort to maintain. Source code
measurements, 63 metrics for each Java class, are computed
using a commercial source code inspection application. To
establish a baseline, all the availablemetrics are usedwith the
predictive model. The Chidamber and Kemerer [45] metrics
suite is used to determine if themodel would improve. Finally,
the GA is used to find alternate metrics subsets. Using the
available metrics with LDA, less than half of the Java classes
are properly classified as difficult to understand. The CK
metrics suite performs slightly better. Using GA, the LDA
predictive model has the highest performance using a subset
of 32 metrics. The GA metrics correctly classify close to 100%
of the low, nearly half of the medium and two thirds of the
high complexity classes.

Vivanco and Jin [108] are most interested in finding
the potentially problematic classes with high cognitive
complexity. A two-stage approach is evaluated. First, the low
complexity classes are classified against the medium/high
complexity classes. The GA driven LDA highly accurately
identifies the low and medium/high complexity classes with
a subset of 24 metrics. When only the medium complexity
classes are compared to high complexity, a GA subset of 28
metrics results in extremely high accuracy for the medium
complexity classes and in identifying the problematic classes.
In all GA subsets, metrics that cover Halstead complexity,
coupling, cohesion, and size are used, as well as program
readability metrics such as comment to code ratios and the
average length of method names.

This study is extremely interesting as it ties known
software metrics to human expertise and compares how
metrics perform when trying to correctly classify objects.
It is noteworthy that from 63 different metrics the optimal
outcome was achieved with 24–32 metrics, which is less
than half of all metrics available. Although there is naturally
overlap between different metrics, it is interesting to see
that many of them do not seem to correctly evaluate
the program. The found metrics cohesion, coupling and
complexity support the current fitness function choices
to a certain points. However, many fitness functions only
calculate 2–5 different metrics, while the optimum was
reached with over 20. In addition, several metrics need the
source code, and thus make them unsuitable for more high-
level problems.

244 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
6.3. Summarizing remarks

The presented studies on software quality estimation show
that correctly evaluating software is anything but easy.
However, although the number of studies is small, they are
all very recent, and thus shows promise that search-based
approaches can also be used in this sub-area of software
design. Finding a search algorithm for quality estimation can
also be seen as a developed way of tackling the problem of
finding an optimal fitness function. In other words, in the
future it might be possible to use a fitness function (i.e., a
search algorithms) to find an optimal fitness function for each
individual software design problem. Using search algorithms
for quality estimations, the current fitness function, is the
first step in this direction.

7. Future work

From the search-based approaches presented here, software
clustering and software refactoring (i.e., re-design) appear to
be at the most advanced stage. Thus, most work is needed
with actual architecture design, starting from requirements
and not a ready-made system. Also, search-based application
of, e.g., design patterns, should be investigatedmore. Another
branch of research should be focused on quality metrics.
So far the quality of a software design has mostly been
measured with cohesion and coupling, whichmostly conform
to the quality factors of efficiency and modifiability. However,
there are many more quality factors, and if an overall stable
software system is desired, more factors should be taken
into account in evaluation, such as reliability and stability.
Also, as demonstrated with the MQ metric in Section 4,
metrics that have seemed good in the beginning may prove
to be inadequate when investigated further. Fortunately, it
seems that most of the work presented here is the result
of developing research that is still continuing. The following
research questions should and could very well be answered
in the foreseeable future:

– What kind of architectural decisions are feasible to do
with search-based techniques?

Research with search-based software architecture design
is at an early stage, and not all possible architecture styles
and design patterns have been tested. Some architectural
decisions are more challenging to implement automatically
than others, and in some cases it may not be possible at all.
The possibilities should be mapped to effectively research the
extent of search-based designs capabilities.

– What is a sufficient starting point for software
architecture design with search-based techniques?

So far requirements with a limited set of parameters have
been used to build software architecture, or a ready system
has been improved. Some design choices need very detailed
information regarding the system in order to effectively
evaluate the change in quality after implementing a certain
design pattern or architecture style. The question of what
information is needed for correct quality evaluation is by no
means easily answered.

– What would be optimal representation, crossover and
mutation operators regarding the software modularization
problem?
Much work has been done with software modularization,
and the chromosome encoding, crossover and mutation
operators vary greatly. Optimal solutions would be interesting
to find. As discussed throughout the survey, the chosen
encoding significantly affects the result of mutation and
crossover operations and also has a big impact on run time
for the algorithm. There are also several options for crossover,
where some maintain building blocks better than others.

– What would be optimal representation, crossover
and mutation operators regarding the software refactoring
problem?

Much research has been done with software refactoring,
and the chromosome encoding, crossover and mutation
operators vary greatly. Especially the set of mutations is
interesting, as they define how greatly the software can be
refactored. An optimal encoding might enable a larger set of
mutations, thus giving the search-based algorithm a larger
space to search for optimal solutions.

– What metrics could be seen as a “standard” for
evaluating software quality?

The evaluation of quality, i.e., the fitness function,
is a crucial part of evolutionary approaches to software
engineering. Some metrics, e.g., coupling and cohesion,
have been widely used to measure quality improvements
at different levels of design. However, these metrics only
evaluate a small portion of quality factors, and there are
several versions of even some very “standard” metrics.
Metrics by, e.g., Briand [83] and Chidamber and Kemerer [45]
can be considered as some kind of standards. However, all
software metrics are constantly subjected to criticism, as
their correctness is challenged. Thus, in the author’s view, as
there are several versions of even the most common metrics
and there is no agreement that metrics even measure the
right things at the moment, no metric set can currently be
seen as standard. Thus, a well-validated metric set would be
extremely beneficial, if it is possible to conduct such a set.
It very well may be that the present metrics simply don’t
suffice, and in that case other directions must be taken to
evaluate quality, as has already been demonstrated in some
of the work covered in this survey.

– How can metrics be grouped to achieve more
comprehendible quality measures?

Metrics achieve clear values, but if a human designer
attempts to use a tool in the design process, notions such
as “efficiency” and “modifiability” are more comprehendible
than “coupling” and “cohesion”. Thus, being able to group
sets of metrics to correspond to certain real-world quality
values would be beneficial when making design tools
available for common use.

8. Conclusions

This survey has presented on-going research in the sub-
fields of search-based software design. There has been much
progress in the sub-fields of software modularization and
refactoring, and very promising results have been achieved.
A more complex problem is automatically designing software
architecture from requirements, but some initial steps have
already been taken in this direction as well. Fig. 2 shows

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 245
Fig. 2 – Timeline for studies in search-based design.
the timeline of the presented studies, and it very effectively
demonstrates the increasing interest in the area during very
recent years. There has been immense increase in the area of
OO design and refactoring, while clustering, the first applica-
tion in the area, has not sparked new research interest.

The surveyed research shows that metrics, such as
cohesion and coupling can accurately evaluate some quality
factors, as the achieved, automatically improved designs,
have been accepted by human designers. However, many
authors also report problems: the quality of results is not
as high as wished or expected, and many times the blame
is placed on less than optimal encoding and crossover
operators. Extensive testing of different encoding options is
practically infeasible, and thus inspiration could be found
in those solutions that have produced the most promising
results. As a whole, software (re-)design seems to be an
appropriate field for the application of meta-heuristic search
algorithms, and there is much room for further research.

Acknowledgements

The author would like to thank Professor Erkki Mäkinen for
his helpful comments when writing this survey. This work
was partially done for the Darwin project, funded by the
Academy of Finland.

R E F E R E N C E S

[1] SSBSE, 2010, http://www.ssbse.org, checked 17.2.2010.
[2] M. Harman, The current state and future of search based

software engineering, in: Proceedings of the 2007 Future of
Software Engineering, FOSE’07, 2007, pp. 342–357.

[3] J. Clarke, J.J. Dolado, M. Harman, R.M. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
M. Shepperd, Reformulating software engineering as a
search problem, IEE Proceedings - Software 150 (3) (2003)
161–175.
[4] M. Harman, B.F. Jones, Search based software engineering,
Information and Software Technology 43 (14) (2001) 833–839.

[5] P. McMinn, Search-based software test data generation: a
survey. Software Testing, Verification and Reliability 14 (2)
(2004) 105–156.

[6] T. Mantere, J.T. Alander, Evolutionary software engineering:
a review, Applied Soft Computing 5 (3) (2005) 315–331.

[7] W. Afzal, R. Torkar, R. Feldt, A systematic mapping
study on non-functional search-based software testing, in:
Proceedings of SEKE 2008, 2008, pp. 488–493.

[8] W. Afzal, R. Torkar, R. Feldt, A systematic review of
search-based testing for non-functional system properties,
Information and Software Technology 51 (6) (2009) 57–83.

[9] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, M. Roper, Testability transformation, IEEE
Transactions on Software Engineering 30 (1) (2004) 3–16.

[10] S.S. Yau, J.-P. Tsai, A survey of software design techniques,
IEEE Transactions on Software Engineering 12 (6) (1986)
713–721.

[11] R.J. Wirfs-Brock, R.E. Johnson, Surveying current research in
object-oriented design, Communications of the ACM 33 (9)
(1990) 104–124.

[12] D. Budgen, Software Design, Pearson, 2003.
[13] M. Harman, S.A. Ansouri, J. Zhang, Search based software

engineering: a comprehensive review, Technical report TR-
09-03, King’s College, London, United Kingdom, 2009.

[14] M. Harman, J. Wegener, Getting results with search-based
approaches to software engineering, in: Proceedings of the
ICSE’04, 2004, pp. 728–729.

[15] J.H. Holland, Adaption in Natural and Artificial Systems, MIT
Press, Ann Arbor, 1975.

[16] J.R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[17] M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, 1996.

[18] S.N. Sivanandam, S.N. Deepa, Introduction to Genetic
Algorithms, Springer, 2007.

[19] C.R. Reeves (Ed.), Modern Heuristic Techniques for Combi-
natorial Problems, McGraw-Hill, 1995.

[20] F.W. Glover, G.A. Kochenberger (Eds.), Handbook of Meta-
heuristics, International Series in Operations Research &
Management Science, vol. 57, Springer, 2003.

http://www.ssbse.org

246 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
[21] K. Deb, Evolutionary algorithms for multicriterion optimiza-
tion in engineering design, in: Proc. Evolutionary Algo-
rithms in Engineering and Computer Science, EUROGEN’99,
pp. 135–161.

[22] C. Fonseca, P. Fleming, An overview of evolutionary
algorithms in multi-objective optimization, Evolutionary
Computation 3 (1) (1995) 1–16.

[23] M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo, Model-based
search for combinatorial optimization: a critical survey,
Annals of Operations Research 131 (2004) 373–395.

[24] M. Shaw, D. Garlan, Software Architecture — Perspectives
on an Emerging Discipline, Prentice Hall, 1996.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[26] F. Losavio, L. Chirinos, A. Matteo, N. Lévy, A. Ramdane-
Cherif, ISO quality standards for measuring architectures,
The Journal of Systems and Software 72 (2004) 209–223.

[27] L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, Addison-Wesley, 1998.

[28] M. Bowman, L.C. Briand, Y. Labiche, Solving the class re-
sponsibility assignment problem in object-oriented analy-
sis withmulti-objective genetic algorithms, Technical report
SCE-07-02, Carleton University, 2008.

[29] C.L. Simons, I.C. Parmee, (a) Single and multi-objective
genetic operators in object-oriented conceptual software
design, in: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO’07, 2007, pp. 1957–1958.

[30] C.L. Simons, I.C. Parmee, (b) A cross-disciplinary technology
transfer for search-based evolutionary computing: from en-
gineering design to software engineering design, Engineer-
ing Optimization 39 (5) (2007) 631–648.

[31] C.L. Simons, I.C. Parmee, User-centered, evolutionary search
in conceptual software design, in: Proceedings of the
IEEE Congress on Evolutionary Computarion, CEC’08, 2008,
pp. 869–876.

[32] M. Amoui, S. Mirarab, S. Ansari, C. Lucas, A genetic algo-
rithm approach to design evolution using design pattern
transformation, International Journal of Information Tech-
nology and Intelligent Computing 1 (1–2) (2006) 235–245.

[33] O. Räihä, K. Koskimies, E. Mäkinen, (a) Genetic synthesis
of software architecture, in: Proceedings of the 7th
International Conference on Simulated Evolution and
Learning, SEAL’08, Australia, in: LNCS, vol. 5361, 2008,
pp. 565–574.

[34] O. Räihä, K. Koskimies, E. Mäkinen, T. Systä, (b) Pattern-
based genetic model refinements in MDA, Nordic Journal of
Computing 14 (4) (2008) 338–355.

[35] O. Räihä, K. Koskimies, E. Mäkinen, Scenario-based genetic
synthesis of software architecture, in: Proceedings of the
4th International Conference on Software Engineering
Advances, ICSEA’09, Portugal, IEEE Computer Society Press,
2009, pp. 437–445.

[36] M. Kessentini, H. Sahraoui, M. Boukadoum, Model transfor-
mation as an optimization problem, in: Proceedings of the
ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems, MODELS’08, 2008,
pp. 159–173.

[37] D. Kim, S. Park, Dynamic architectural selection: a genetic
algorithm approach, in: Proceedings of the 1st Symposium
on Search-Based Software Engineering, 2009, pp. 59–68.

[38] T. Bodhuin, M. Di Penta, L. Troiano, A search-based approach
for dynamically re-packaging downloadable applications,
in: Proceedings of the Conference of the Center for
Advanced Studies on Collaborative Research, CASCON’07,
2007, pp. 27–41.
[39] N. Gold, M. Harman, Z. Li, K. Mahdavi, A search
based approach to overlapping concept boundaries, in:
Proceedings of the 22nd International Conference on
Software Maintenance, ICSM 06, USA, 2006, pp. 310–319.

[40] H. Goldsby, B.H.C. Chang, Avida-mde: a digital evolution
approach to generating models of adaptive software
behavior, in: Proceedings of the Genetic Evolutionary
Computation Conference, GECCO’08, 2008, pp. 1751–1758.

[41] H. Goldsby, B.H.C. Chang, P.K McKinley, D. Knoester, C.A.
Ofria, Digital evolution of behavioral models for autonomic
systems, in: Proceedings of 2008 International Conference
on Autonomic Computing, 2008, pp. 87–96.

[42] R. Lutz, Evolving good hierarchical decompositions of
complex systems, Journal of Systems Architecture 47 (2001)
613–634.

[43] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence
through Simulated Evolution, Wiley, 1966.

[44] R.C. Martin, Design Principles and Design Patterns, 2000,
available at: http://www.objectmetor.com.

[45] S.R. Chidamber, C.F. Kemerer, A metrics suite for object
oriented design, IEEE Transactions on Software Engineering
20 (6) (1994) 476–492.

[46] O. Räihä, Genetic Synthesis of Software Architecture,
University of Tampere, Department of Computer Sciences,
Lic. Phil. Thesis, 2008.

[47] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in:
Proceedings of the IEEE International Conference on Neural
Networks, 1995, pp. 1942–1948.

[48] N. Gold, Hypothesis-based concept assignment to support
software maintenance, in: Proceedings of the 22nd Interna-
tional Conference on Software Maintenance, ICSM 01, 2001,
pp. 545–548.

[49] C.E. Shannon, The mathematical theory of communica-
tions. Bell System, Technical Journal 27 (379–423) (1948)
623–656.

[50] M. Huhns, M. Singh, Service-oriented computing: key
concepts and principals, IEEE Internet Computing (2005)
75–81.

[51] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, (a),
An approach for qoS-aware service composition based
on genetic algorithms, in: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO, 2005,
pp. 1069–1075.

[52] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, (b)
QoS-aware replanning of composite web services, in:
Proceedings of IEEE International Conference on Web
Services, ICWS’05, 2005, pp. 121–129.

[53] M.C. Jaeger, G. Mühl, QoS-based selection of services:
the implementation of a genetic algorithm, in: T. Braun,
G. Carle, B. Stiller (Eds.), Kommunikation in Verteilten Sys-
temen (KiVS) 2007 Workshop: Service-Oriented Architec-
tures und Service-Oriented Computing, VDE Verlag, 2007,
pp. 359–371.

[54] C. Zhang, S. Su, J. Chen, A novel genetic algorithm for
qos-aware web services selection, in: LNCS, vol. 4055, 2006,
pp. 224–235.

[55] S. Su, C. Zhang, J. Chen, An improved genetic algorithm for
web services selection, in: LNCS, vol. 4531, 2007, pp. 284–295.

[56] L. Cao, M. Li, J. Cao, (a) Cost-driven web service
selection using genetic algorithm, in: LNCS, vol. 3828, 2005,
pp. 906–915.

[57] L. Cao, J. Cao, M. Li, (b) Genetic algorithm utilized in cost-
reduction driven web service selection, in: LNCS, vol. 3802,
2005, pp. 679–686.

[58] R. Garfinkel, G.L. Nemhauser, Integer Programming, John
Wiley and Sons, 1972.

http://www.objectmetor.com

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 247
[59] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, A
lightweight approach for QoS-aware service composition,
in: Proceedings of the ICSOC 2004–short papers. IBM
Technical Report, New York, USA, 2004.

[60] S. Wadekar, S. Gokhale, Exploring cost and reliability
tradeoffs in architectural alternatives using a genetic
algorithm, in: Proceedings of the 10th International
Symposium on Software Reliability Engineering, 1999,
pp. 104–113.

[61] Y. Che, Z. Wang, X. Li, Optimization parameter selection by
means of limited execution and genetic algorithms, in: APPT
2003, in: LNCS, vol. 2834, 2003, pp. 226–235.

[62] T.N. Bui, B.R. Moon, Genetic algorithm and graph partition-
ing, IEEE Transactions on Computers 45 (7) (1996) 841–855.

[63] S. Shazely, H. Baraka, A. Abdel-Wahab, Solving graph
partitioning problem using genetic algorithms, in: Midwest
Symposium on Circuits and Systems, 1998, pp. 302–305.

[64] S. Mancoridis, B.S. Mitchell, C. Rorres, Y.-F. Chen, E.R.
Gansner, Using automatic clustering to produce high-level
system organizations of source code, in: Proceedings of
the International Workshop on Program Comprehension,
IWPC’98, USA, 1998, pp. 45–53.

[65] D. Doval, S. Mancoridis, B.S. Mitchell, Automatic clustering
of software systems using a genetic algorithm, in:
Proceedings of the Software Technology and Engineering
Practice, 1999, pp. 73–82.

[66] S. Mancoridis, B.S. Mitchell, Y.-F. Chen, E.R. Gansner, Bunch:
A clustering tool for the recovery and maintenance of
software system structures, in: Proceedings of the IEEE
International Conference on Software Maintenance, 1999,
pp. 50–59.

[67] B.S. Mitchell, S. Mancoridis, Using heuristic search tech-
niques to extract design abstractions from source code, in:
Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO’02, USA, July 2002, pp. 1375–1382.

[68] B.S. Mitchell, S. Mancoridis, On the automatic modulariza-
tion of software systems using the Bunch tool, IEEE Trans-
actions on Software Engineering 32 (3) (2006) 193–208.

[69] B.S. Mitchell, S. Mancoridis, On the evaluation of the
Bunch search-based software modularization algorithm,
Soft Computing 12 (1) (2008) 77–93.

[70] B.S. Mitchell, S. Mancoridis, Modeling the search landscape
of metaheuristic software clustering algorithms, in: Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO’03, 2003, pp. 2499–2510.

[71] B.S. Mitchell, S. Mancoridis, M. Traverso, Search based re-
verse engineering, in: Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engi-
neering, SEKE’02, 2002, pp. 431–438.

[72] K. Mahdavi, M. Harman, R. Hierons, (a) A multiple hill
climbing approach to software module clustering, in:
Proceedings of ICSM 2003, pp. 315–324.

[73] K. Mahdavi, M. Harman, R. Hierons, (b) Finding building
blocks for software clustering, in: LNCS, vol. 2724, 2003,
pp. 2513–2514.

[74] M. Harman, R. Hierons, M. Proctor, A new representation
and crossover operator for search-based optimization of
software modularization, in: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO’02, 2002,
pp. 1351–1358.

[75] M. Harman, S. Swift, K. Mahdavi, An empirical study of the
robustness of two module clustering fitness functions, in:
Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO, USA, 2005, pp. 1029–1036.

[76] G. Antoniol, M. Di Penta, M. Neteler, Moving to smaller li-
braries via clustering and genetic algorithms, in: Proceed-
ings of the Seventh European Conference on Software Main-
tenance and Reengineering, CSMR’03, 2003, pp. 307–316.
[77] M. Di Penta, M. Neteler, G. Antoniol, E. Merlo, A language-
independent software renovation framework, The Journal of
Systems and Software 77 (2005) 225–240.

[78] S. Huynh, Y. Cai, An Evolutionary approach to softwaremod-
ularity analysis, in: Proceedings of the First international
workshop on Assessment of Contemporary Modularization
Techniques ACoM’07, ICSE Workshops, 2007, pp. 1–6.

[79] R. Salomon, Short notes on the schema theorem and
the building block hypothesis in genetic algorithms,
in: Evolutionary Programming VII, in: LNCS, vol. 1447, 1998,
pp. 113–122.

[80] A. Tucker, S. Swift, X. Liu, Grouping multivariate time series
via correlation, IEEE Transactions on Systems, Man, and
Cybernetics. Part B: Cybernetics 31 (2) (2001) 235–245.

[81] L. Kaufman, P. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, 1990.

[82] O. Seng, M. Bauyer, M. Biehl, G. Pache, Search-based
improvement of subsystem decomposition, in: Proceedings
of the Genetic and Evolutionary Computation Conference,
GECCO’05, 2005, pp. 1045–1051.

[83] O. Seng, J. Stammel, D. Burkhart, Search-based determi-
nation of refactorings for improving the class structure
of object-oriented systems, in: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO’06, 2006,
pp. 1909–1916.

[84] M. O’Keeffe, M. Ó Cinnéide, Towards automated design im-
provements through combinatorial optimization, in: Work-
shop on Directions in Software Engineering Environments
(WoDiSEE2004), W2S Workshop -26th International Confer-
ence on Software Engineering, 2004, pp. 75–82.

[85] M. O’Keeffe, M. Ó Cinnéide, Search-based software mainte-
nance, in: Proceedings of CSMR’06, 2006, pp. 249–260.

[86] M. O’ Keeffe, M. Ó Cinnéide, (a) Search-based refactoring for
software maintenance, Journal of Systems and Software 81
(4) (2008) 502–516.

[87] J. Bansiya, C.G. Davis, A hierarchical model for object-
oriented design quality assessment, IEEE Transactions on
Software Engineering 28 (1) (2002) 4–17.

[88] M. O’Keeffe, M. Ó Cinnéide, Getting the most from search-
based refactoring, in: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO’07, 2007,
pp. 1114–1120.

[89] F. Quaum, R. Heckel, Local search-based refactoring as graph
transformation, in: Proceedings of the 1st Symposium on
Search-Based Software Engineering, 2009, pp. 43-46.

[90] T. Jiang, N. Gold, M. Harman, L. Zheng, (a) Locating depen-
dence structures using search-based slicing, Information
and Software Technology 50 (2008) 1189–1209.

[91] T. Jiang, M. Harman, Y. Hassoun, (b) Analysis of Procedure
Splittability, in: Proceedings of the 15th Workshop on
Reverse Engineering, 2008, pp. 247–256.

[92] D. Fatiregun, M. Harman, R. Hierons, Evolving transforma-
tion sequences using genetic algorithms, in: Proceedings of
the 4th International Workshop on Source Code Analysis
and Manipulation, SCAM 04, 2004, pp. 65–74.

[93] K. Williams, Evolutionary algorithms for automatic paral-
lelization, Ph.D. Thesis, Department of Computer Science,
University of Reading, UK. 1998.

[94] C. Ryan, L. Ivan, Automatic parallelization of arbitrary
programs, in: Proceedings of EUROGP’99, in: LNCS, vol. 1598,
1999, pp. 244–254.

[95] M. Harman, L. Tratt, Pareto optimal search based refactoring
at the design level, in: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO’07, 2007,
pp. 1106–1113.

[96] E. Falkenaur, Genetic Algorithms and grouping problems,
Wiley, 1998.

248 C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9
[97] L. Briand, J. Wüst, J. Daly, V. Porter, Exploring the
relationships between design measures and software
quality in object oriented systems, Journal of Systems and
Software 51 (2000) 245–273.

[98] M. O’ Keeffe, M. Ó Cinnéide, (b) Search-based refactoring:
an empirical study, Journal of Software Maintenance and
Evolution: Research and Practice 20 (2008) 345–364.

[99] M. Dorigo, Optimization, Learning and Natural Algorithms,
Ph.D. thesis, Dipartimento di Elettronica, Politecnico di
Milano, 1992.

[100] S. Horwitz, T. Reps, D.W. Binkley, Interprocedural slicing
using dependence graphs, in: Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design
and Implementation, 1988, pp. 35–46.

[101] H. Naeimi, A. DeHon, A greedy algorithm for tolerating
defective crosspoints in NanoPLA design, in: Proceedings
of the International Conference on Field-Programmable
Technology, ICFPT2004, 2004, pp. 49–56.

[102] H.A. Sahraoui, R. Godin, T. Miceli, Can metrics help bridging
the gap between the improvement of OO design quality
and its automation? in: Proceedings of the International
Conference on Software Maintenance, ICSM’00, 2000,
pp. 154–162.

[103] T. Mens, S. Demeyer, Future trends in evolution metrics, in:
Proceeding of the International. Workshop on Principles of
Software Evolution, 2001, pp. 83–86.

[104] M. Harman, J. Clark, Metrics are fitness functions too, in:
10th International Software Metrics Symposium, METRICS
2004, USA 2004, pp. 58–69.

[105] S. Bouktif, B. Kégl, H. Sahraoui, Combining software
quality predictive models: an evolutionary approach, in:
Proceedings of the International Conference on Software
Maintenance, ICSM’02, 2002, pp. 385–392.

[106] S. Bouktif, D. Azar, H. Sahraoui, B. Kégl, D. Precup, Improving
rule set based software quality prediction: a genetic
algorithm-based approach, Journal of Object Technology 3
(4) (2004) 227–241.

[107] S. Bouktif, H. Sahraoui, G. Antoniol, Simulated annealing
for improving software quality prediction, in: Proceedings
of the Genetic and Evolutionary Computation Conference,
GECCO’06, 2006, pp. 1893–1900.

[108] R.A. Vivanco, D. Jin, Selecting object-oriented source code
metrics to improve predictive models using a parallel
genetic algorithm, in: Proceedings of OOPSLA’07, 2007,
pp. 769–770.

[109] W.J. Youden, How to evaluate accuracy, in: Materials
Research and Standards, ASTM, 1961.

[110] W. Miller, D.L. Spooner, Automatic generation of floating-
point test data, IEEE Transactions on Software Engineering
2 (3) (1976) 223–226.

[111] K.F. Fischer, A test case selection method for the validation
of software maintenance modifications, in: Proceedings
of International Computer Software and Applications
Conference, COMPSAC’77, 1977, pp. 421–426.

[112] K.F. Fischer, F. Raji, A. Chruscicki, A methodology for
retesting modified software, in: Proceedings of National
Telecommuncations Conference, NTC’81, 1981, pp. 1–6.

[113] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by
simulated annealing, Science 220 (1983) 671–680.

[114] N. Cramer, A representation for the adaptive generation
of simple sequential programs, in: Proceedings of the
International Conference on Genetic Algorithms and their
Applications, Carnegie-Mellon University, pp. 183–187.

[115] F. Glover, Future paths for Integer Programming and Links to
Artificial Intelligence, Computers and Operations Research
5 (1986) 533–549.

[116] J. Hartmann, D.J. Robson, Revalidation during the software
maintenance phase, in: Proceedings of the 1989 Conference
on Software Maintenance, EEE Press, 1981, pp. 70–80.
[117] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas,
S. Karapoulis, Application of genetic algorithm to soft-
ware testing, in: Proceedings of the 5th International Con-
ference on Software Engineering and Applications, 1992,
pp. 625–636.

[118] M. Schoehauer, S. Xanthakis, Constrained GA optimization,
in: Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA’93, 1993, pp. 573–580.

[119] C. Chao, J. Komada, Q. Liu, M. Muteja, Y. Alsalgan, C. Chang,
An application of genetic algorithms to software project
management, in: Proceedings of the 9th International
Conference on Advanced Science and Technology, 1993,
pp. 247–252.

[120] M. Pei, E.D. Goodman, Z. Gao, K. Zhong, Automated software
test data generation using a genetic algorithm, 1994, avail-
able at: www.egr.msu.edu/~pei/paper/GApaper94-02.ps.

[121] T. Minohara, Y. Tohma, Parameter estimation of hyper-
geometric distribution software reliability growth model by
genetic algorithms, in: Proceedings of the 6th Symposium
on Software Reliability Engineering, 1995, pp. 324–329.

[122] R. Ferguson, B. Korel, Software test data generation
using the chaining approach, in: Proceedings of the IEEE
International Test Conference on Driving Down the Cost of
Test, 1995, pp. 703–709.

[123] B. Jones, H-H. Sthamer, D.E. Eyres, Automatic structural
testing using genetic algorithms, Software Engineering
Journal 11 (5) (1996) 299–306.

[124] E. Alba, J.M. Troya, Genetic algorithms for protocol valida-
tion, in: Proceedings of the 4th International Conference
on Parallel Problem Solving from Nature, PPSN’96, 1996,
pp. 870–879.

[125] J.T. Alander, T. Mantere, G. Moghadampour, Testing software
response times using a genetic algorithm, in: Proceedings of
the 3rd Nordic Workshop on Genetic Algorithms and their
Applications, 3NWGA, 1997, pp. 293–298.

[126] M.C. Sinclair, S.H. Shami, Evolving simple software agents:
comparing genetic algorithm and genetic progrraming
performance, in: Proceedings of the 2nd International Con-
ference on Genetic Algorithms in Engineering Systems: In-
novations and Applications, GALESIA’97, 1997, pp. 421–426.

[127] R. Feldt, Generating multiple diverse software versions
with genetic programming, in: Proceedings of the 24th
EUROMICRO Conference, 1998, pp. 387–394.

[128] N. Tracey, J. Clark, K. Mander, Automated program flaw
findign using simulated annealing, in: Proceedings of the
1998 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA’98, 1998, pp. 73–81.

[129] J.J. Dolado, L. Fernandez, Genetic programming, neural
networks and linear programming in software project
estimation, in: Proceedings of International Conference on
Software Process Improvement, Research, Education and
Training, INSPIRE III, 1998, pp. 157–171.

[130] A. Nisbet, GAPS: a compiler framework for genetic
algorithm (GA) optimised parallelisation, in: Proceedings
of the International Conference and Exhibition on High-
Performance Computing and Networking, HPCN’98, 1998,
pp. 987–989.

[131] Y. Monnier, J-P. Beauvais, A.-M. Déplanche, A genetic
algorithm for, scheduling tasks in real-time distributed
system, in: Proceedings of the 24th EUROMICRO Conference,
EUROMICRO’98, 1998, pp. 20708–20714.

[132] C. Ryan, Automatic Re-engineering of Software Using
Genetic Programming, Kluwer Academic Publishers, 1999.

[133] M.P. Evett, T.M. Khoshgoftaar, P-D. Chien, E.B. Allen, Using
genetic programming to deterine software quality, in:
Proceedings of the 12th International Floridy Artificial
Intelligence Research Society Conference, FLAIRS’99, 1999,
pp. 113–117.

http://www.egr.msu.edu/~pei/paper/GApaper94-02.ps

C O M P U T E R S C I E N C E R E V I E W 4 (2 0 1 0) 2 0 3 – 2 4 9 249
[134] K.D. Cooper, P.J. Schielke, D. Subramanian, Optimizing
for reduced code space using genetic algorithms, in:
Proceedings of the ACM SIGPLAN 1999 Woskhop on
Languages, Compilers and Tools for Embedded Systems,
LCTES’99, 1999, pp. 1–9.

[135] N. Mansour, K. El-Fakih, Simulated annealing and genetic
algorithms for optimal regression testing, Journal of
Software Maintenance: Research and Practice 11 (1) (1999)
19–34.

[136] K. El-Fakih, H. Yamaguchi, G.V. Bochmann, A method and
a genetic algorithm for deriving protocols for distributed
applications with minimum communication cost, in:
Proceedings of the 11th International Conference on Parallel
and Distributed Computing and Systems, PDCS’99, 1999,
pp. 863–868.

[137] J.A. Clark, J.J. Jacob, Searching for a solution: engineering
tradeoffs and the evolution of provably secure protocols, in:
Proceedings of the 2000 IEEE Symposium on Security and
Privacy, 2000, pp. 82–95.

[138] A.J. Bagnall, V.J. Rayward-Smith, I.M. Whittley, The next
release problem, Information and Software Technology 43
(14) (2001) 883–890.

[139] B. Mitchell, A Heuristic Search Approach to Solving
the Software Clustering Problem, Ph. D. Thesis, Drexel
University, Philadelphia, 2002.

[140] Y. Shan, R.I. McKay, C.J. Lokan, D.L. Essam, Software
project effort estimation using genetic programming, in:
Proceedings of the 2002 IEEE International Conference on
Communications, Circuits and Systems and West Sino
Expositions, 2002, pp. 1108–1112.

[141] D. Fatiregun, M. Harman, R. Hierons, Search based
transformations, in: Proceedings of the 2003 Conference
on Genetic and Evolutionary Computation, GECCO’03, 2003,
pp. 2511–2512.

[142] M.B. Cohen, C.J. Colbourn, A.C.H. Ling, Augmenting
simulated annealing to build interaction test suites, in:
Proceedings of the 14th International Symposium on
Software Reliability Engineering, 2003, pp. 394–405.

[143] B.S. Mitchell, S. Mancoridis, M. Traverso, Using interconnec-
tion style rules to infer software architecture relations, in:
Proceedings of the 2004 Conference Genetic and Evolution-
ary Computation, GECCO’04, 2004, pp. 1375–1387.

[144] G. Antoniol, M. Di Penta, M. Harman, Search-based tech-
niques for optimizing software project resource allocation,
in: Proceedings of the 2004 Conference on Genetic and Evo-
lutionary Computation, GECCO’04, 2004, pp. 1425–1426.

[145] D. Fatiregun, M. Harman, R. Hierons, Search-based amor-
phous slicing, in: Proceedings of the 124th International
Working Conference on Reverse Engineering, WCRE’05,
2005, pp. 3–12.
[146] H. Li, C.P. Lam, An ant colony optimization approach to
test sequence generation for statebased software testing, in:
Proceedings of the 5th International Conference on Quality
Software, QSIC’05, 2005, pp. 255–264.

[147] L. Yang, B.F. Jones, S.-H. Yang, Genetic algorithm based soft-
ware integration with minimum software risk, Information
and Software Technology 48 (3) (2006) 133–141.

[148] Y. Zhang, M. Harman, S.A. Mansouri, The multi-objective
next release problem, in: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation,
GECCO’07, 2007, pp. 1129–1137.

[149] E. Alba, F. Chicano, Ant colony optimization for model
checking, in: Proceedings of the 11th International Confer-
ence on Computer Aided Systems Theory, EUROCAST 2007,
2007, pp. 523–530.

[150] C. Johnson, Genetic programming with fitness based on
model checking, in: Proceedings of the 10th European
Conference on Genetic Programming, 2007, pp. 114–124.

[151] S. Yoo, M. Harman, Pareto efficient multi-objective test
case selection, in: Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA’07,
2007, pp. 140–150.

[152] R. Lange, S. Mancoridis, Using code metric histograms
and genetic algorithms to perform author identification
for software forensics, in: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation,
GECCO’07, 2007, pp. 2082–2089.

[153] W. Shyang, C. Lakos, Z. Michalewicz, S. Schellenberg, Ex-
periments in applying evolutionary algorithms to software
verification, in: Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC’08, 2008, pp. 3531–3536.

[154] A. Arcuri, X. Yao, A novel co-evolutionary approach to
automatic software bug fixing, in: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC’08, 2008,
pp. 162–168.

[155] Y. Zhang, A. Finkelstein, M. Harman, Search based require-
ments optimisation: existing work & challenges, in: Pro-
ceedings of the 14th International Working Conference,
Requirements Engineering: Foundation for Software Qual-
ity, REFSQ’08, 2008, pp. 88–94.

[156] E. Díaz, J. Tuya, R. Blanco, J. Dolado, A tabu search algorithm
for structural testing, Computers & Operations Research 35
(10) (2008) 3052–3072.

[157] A.J. Ramirez, D.B. Knoester, B.H.C. Cheng, P.K. McKinley, Ap-
plying genetic algorithms to decision making in autonomic
computing systems, in: Proceedings of the 6th International
Conference on Autonomic Computing, ICAC’09, 2009, pp.
97–106.

	A survey on search-based software design
	Introduction
	Search algorithms
	Genetic algorithms
	Simulated annealing
	Hill climbing

	Software architecture design
	Object-oriented architecture design
	Background
	Approaches
	Summarizing remarks

	Service-oriented architecture design
	Background
	Approaches
	Summarizing remarks

	Other
	Background
	Approaches

	Software clustering
	Background
	Approaches
	Summarizing remarks

	Software refactoring
	Background
	Approaches
	Summarizing remarks

	Software quality
	Background
	Approaches
	Summarizing remarks

	Future work
	Conclusions
	Acknowledgements
	References

