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Abstract Reservoir Computing (RC) is a paradigm of

understanding and training Recurrent Neural Networks

(RNNs) based on treating the recurrent part (the reser-

voir) differently than the readouts from it. It started

ten years ago and is currently a prolific research area,

giving important insights into RNNs, practical machine

learning tools, as well as enabling computation with

non-conventional hardware. Here we give a brief intro-

duction into basic concepts, methods, insights, current

developments, and highlight some applications of RC.

Keywords Reservoir computing · Recurrent neural
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1 Introduction

About ten years ago a new trend of understanding,

training, and using Recurrent Neural Networks (RNNs)

has been started with Echo State Networks (ESNs) [19,

21] and Liquid State Machines (LSMs) [34]. While the

former came from the field of Machine Learning (ML)

and the latter from computational neuroscience, both

approaches share the same basic idea. It stems from the

observation that, as long as an RNN possessed certain

generic properties, supervised adaptation of all inter-

connection weights is not necessary, and only training

a memoryless supervised readout from it is enough to
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obtain excellent performance in many tasks. The RNN

is called a reservoir in this context.

This was a welcome discovery, since training RNNs

has always been much more difficult than training feed-

forward neural networks. Cyclic dependencies in RNNs

lead to bifurcations during training: infinitesimally small

changes to RNN parameters can lead to drastic discon-

tinuous changes in its behavior. This phenomenon may

render classical gradient descent RNN training meth-

ods (like [52,53]) non converging [11]. Even if they do

converge, this process is typically slow, computationally

expensive, requires careful selection of learning param-

eters, and ends in a local minimum. Learning long-term

dependencies in the data is hard [2] (but see [15] for an

RNN architecture specialized on learning such depen-

dencies, and [35] for recent progress in generic RNNs).

Because of the complexity and computational costs, the

number of neurons used in so-trained RNNs has typi-

cally been in the order of tens, which in turn limits their

expressive capacity.

The approach started by ESNs and LSMs reinvig-

orated interest in RNN research and applications, a

stream which became collectively known as Reservoir

Computing (RC) [49]. It now has many more related

methods and extensions of the original idea (see [30]

for an extensive overview; www.reservoir-computing.

org is a web portal collectively maintained by leading

RC groups). We will mention a choice of variants here,

but let us start with the original basic ESN RC ap-

proach.

2 The basic ESN approach

Here are the update equations of a typical RNN used

in ML with leaky-integrated discrete-time continuous-

www.reservoir-computing.org
www.reservoir-computing.org


2 Mantas Lukoševičius et al.
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Fig. 1 The difference between a full gradient descent training
of RNN (A.) and the ESN training (B.).

value units:

x̃(n) = tanh
(
Win[1; u(n)] + Wx(n− 1)

)
, (1)

x(n) = (1− α)x(n− 1) + αx̃(n), (2)

where n is discrete time, u(n) ∈ RNu is the input signal,

x(n) ∈ RNx is a vector of reservoir neuron activations

and x̃(n) ∈ RNx is its update, all at time step n, tanh(·)
is applied element-wise, [·; ·] stands for a vertical vector

concatenation, Win and W are the input and recur-

rent weight matrices respectively, and α ∈ (0, 1] is the

leaking rate. The model is also frequently used without

the leaky integration, which is a special case obtained

by setting α = 1 and thus x̃(n) ≡ x(n). The linear

readout layer is defined as

y(n) = Wout[1; u(n); x(n)], (3)

where y(n) ∈ RNy is network output, and Wout the

output weight matrix. An additional nonlinearity can

be applied to y(n) in (3), as well as feedback connec-

tions Wfb from y(n− 1) to x̃(n) in (1).

The original method of RC introduced with ESNs

[19] was to:

– generate a large random reservoir RNN (Wout,W, α);

– run it using the training input u(n) and collect the

corresponding reservoir activation states x(n);

– compute the linear readout weights Wout from the

reservoir using linear regression, optimizing the mean

square error of the network output w.r.t. the train-

ing target signal ytarget(n);

– use the trained network on new input data u(n)

by computing y(n) employing the trained output

weights Wout.

Let us look at these steps in more detail.

For the approach to work, the reservoir must pos-

sess the echo state property, which can roughly be de-

scribed as fading memory of the input: trajectories of

the reservoir state should converge given the same in-

put, irrespective of the previous history. This is typ-

ically ensured by appropriately scaling recurrent con-

nection weights W [19]. A few other parameters, most

importantly the input weight Win scaling and leaking

rate α, should also be adjusted for an optimal validation

performance in a given task.

While running the generated model with training

data, the vectors [1; u(n); x(n)] as in (3) are collected

into a matrix X and the desired teacher targets ytarget(n)

into a matrix Ytarget, both having a column for every

training time step n. The training is typically done by

computing the output weights via ridge regression

Wout = YtargetX
T

(XX
T

+ γ2I)−1, (4)

where I is the identity matrix and γ is a regulariza-

tion parameter. For optimal results γ should also be se-

lected through validation; note that the network needs

no rerunning with a different γ to recompute Wout. By

avoiding training of RNN connections W, the learn-

ing is done in a single pass through training data and

the optimal output weights Wout are computed with

a high precision using a closed-form solution (4). This

also enables a practical use of reservoirs with size of

thousands or even tens of thousands of units on con-

temporary computers [46]. Also note, that YtargetX
T

and XX
T

in (4) can be computed incrementally and

stored in the memory, instead of Ytarget and X, for

arbitrary long training data sequences. Alternatively,

Wout can be continuously adapted by an online learn-

ing algorithm [19].

Such simple and efficient RNN training was demon-

strated to outperform fully-trained RNNs in many bench-

mark tasks, e.g., [22,23,50,17,46]. Some examples of

applications are presented in Section 7.

3 Perspectives on RC

The principles of RC can be perceived from several dif-

ferent perspectives.

There are certain parallels between RC and kernel

methods in ML. The reservoir can be seen as a nonlin-

ear high-dimensional expansion x(n) of the input signal

u(n). For classification tasks, input data u(n) which are

not linearly separable in the original space RNu , often

become linearly separable in the expanded space RNx of

x(n) where they are separated by Wout. At the same

time, the reservoir serves as a memory, providing the

temporal context. The “kernel trick” is typically not

used in RC, however it is possible to do so by defining

recursive temporal context-sensitive kernels that inte-

grate over a continuum of Win and W, which can be

used as in regular Support Vector Machines (SVMs),

but for sequence data [13]. SVM-style readouts can also

be trained from the reservoirs [41].

The separation between the fixed reservoir and the

adaptive readout can also be arrived at when analyzing
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the dynamics of a full gradient descent RNN training,

and optimizing it. In an efficient version of gradient

descent RNN training introduced by Atiya and Parlos

[1] the output weights Wout are adapted much more

than W and Win [38], which led to a further optimiza-

tion where they remain constant, an RC method called

BackPropagation-DeCorrelation (BPDC) [43]. BPDC

is an online RNN learning algorithm which runs with

O(Nx) time complexity.

From a biological perspective, RC gives a simple

and yet powerful interpretation of how generic cortical

circuits with no well-understood supervised adaptation

can be utilized for purposeful computation [34]. Reser-

voirs also correspond well to how temporal information

is spatially encoded in the brain and provides a con-

text for interpreting current inputs [6]. Fixed RNNs

for modeling parts of sensory-motor sequence [8] and

speech [10] learning architectures have been employed

even before the original ESN and LSM publications.

Another advantage or RC is that the same reser-

voir can be used as a generic computational substrate

for multiple tasks concerning the same input. For each

task a new readout can be learned independently and

without interfering with what has been learned before.

This might have a potential in aiming for a general pur-

pose artificial intelligence mechanisms and corresponds

well to a natural one.

4 Other RC approaches

Despite the success of the original ESN approach de-

picted in Section 2, there are many extensions, modifi-

cations and improvements possible. For example, there

should be something better than a random reservoir. In-

tuitively, the probability of a random RNN being glob-

ally, or even locally, optimal in the parameter space for

a given task is zero. The linear readout is also quite

limited in its expressive power.

Guided by such intuitions the modern field of RC

substantially widened up and differentiated. It has moved

away from the initial paradigm of having a fixed RNN

and training only the output. However, what still sets

the RC paradigm apart from other RNN training meth-

ods is that the recurrent part (the reservoir) is generated

or trained differently than the readout. This has become

the modern paradigm of RC.

The RC paradigm of separating the reservoir and

readout training allows for these two research directions

to be pursued virtually independently, and the best re-

sults from both to be combined. There are numerous

different methods proposed in the literature for both of

the directions.

Output training is in essence a standard ML prob-

lem, where virtually any method capable of learning an

input-to-output mapping can be employed with their

respective strengths and weaknesses.

For the reservoir part, there has been also a large

number of proposals in the literature. They can roughly

be classified into three categories:

– Generic methods for generating RNNs with different

neuron models, connectivity patterns and dynamics;

– Unsupervised adaptation of the reservoir, based on

the input data u(n), but not ytarget(n);

– Supervised, or semi-supervised like reinforcement learn-

ing, adaptation of the reservoir, using task-specific

information from both u(n) and ytarget(n), but ex-

ploiting it differently than for the readout training.

Since the readout training can be very efficiently, the

quality of a reservoir for a particular task can be tested

quickly by measuring the error of the readout. This

makes RC a convenient and popular testing ground for

many types of RNN models, topologies, unsupervised,

reinforcement, and biologically inspired adaptation al-

gorithms.

Almost all of these different approaches are reviewed

in [30] and updated in [29]. For the sake of brevity only

a few of those have been mentioned here.

The numerous proposed RC modification introduced

multiple improvements, often case-specific, extending

the power of RC to new domains, and offering new in-

sights into the workings of RNNs. The original ESN

approach of Section 2, however, still holds its ground

for its combination of simplicity and power.

5 Beyond neural networks

The RC principle can also be seen as a strategy to im-

plement useful computations on generic dynamical sys-

tems, either in simulations or even in physical instan-

tiations. Thus RC has spread well beyond the world

of artificial neural networks. In particular, it enables

useful computation on hardware platforms where it is

hard to implement, e.g., basic electronic equivalents of

logic gates and memory cells. Potential and function-

ing examples include analog electronics [40,39], ran-

domly crystallized nonlinear electronic networks [44],

opto-electronic [26,36] and optical [47] systems, or just

a bucket filled with water [12].

Many of these directions are very active research ar-

eas. In the long run such non-neural, physical reservoirs

might significantly complement or even, for some do-

mains, replace the omni-present digital electronic com-

puters.
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6 Training of the dynamics

Even if the reservoir is kept fixed, for some tasks the

trained readouts are fed back to the reservoir and thus

the training process changes its dynamics. In other words,

a recurrence exists between the reservoir and the read-

out. This is either realized by feedback connections Wfb

from the trained output y(n− 1) to the reservoir x̃(n),

or by looping the output y(n− 1) as an input u(n) for

the next update step n in a predictive generator mode in

(1). Note, that these two options are equivalent and just

a matter of notation: u(n) and Win instead of y(n−1)

and Wfb. In some cases, however, both external input

and output feedback can be present.

This extends the power of RC, because it no longer

relies on fixed random input-driven dynamics to con-

struct the output, but the dynamics are adapted to the

task. This power has its price, because there arise sta-

bility issues. In order to avoid falling prey to the same

difficulties as with full RNN training algorithms, two

strategies are used.

The first strategy is to disengage the recurrent re-

lationship between the reservoir and the readout using

teacher forcing and treat output learning as a feedfor-

ward task. This is done by feeding the desired output

ytarget(n−1) through the feedback connections Wfb (or

Win) instead of the real output y(n−1) while learning.

The target signal ytarget(n) “bootstraps” the learning

process and if the output is learned with high preci-

sion (i.e., y(n) ≈ ytarget(n)), the recurrent system runs

much the same way with the real y(n) in feedbacks after

training as it did with ytarget(n) during training.

There are some caveats here. The approach works

very well if the output can be learned precisely [19].

However, if this is not the case, the distorted feedback

leads to an even more distorted output and feedback

at the next time step, and so on, with the actual gen-

erated output y(n) quickly diverging from the desired

ytarget(n). Even with well-learned outputs the dynami-

cal stability of the autonomous running system is often

an issue. In both cases the problem is alleviated by some

kind of regularization of the weights or “immunization”

of the state and/or the feedbacks with noise.

The second strategy is using specialized RC learn-

ing algorithm to train the outputs Wout while the real

feedbacks are present. The before-mentioned BPDC al-

gorithm is an efficient online option with an optimal

time complexity [43]. A recent approach named FORCE

learning uses a powerful 2nd-order online learning algo-

rithm to vigorously adapt Wout in the presence of the

real feedbacks [45]. By the initial fast and strong adap-

tation of Wout the feedbacks y(n) are kept close to

the desired ytarget(n) already from the beginning of the

learning process, similar to teacher forcing. It appears

that FORCE learning is well suited to yield very stable

and accurate neural pattern generators.

7 Applications

RC methods have been widely employed in more or

less academic applications. The nature of these appli-

cations spans all kinds that are amenable to supervised

modeling of temporal systems, e.g., temporal pattern

classification, temporal pattern generation, time series

prediction, timing, routing, memorizing, or controlling

nonlinear systems. We refrain from giving an ad hoc se-

lection here; googling “echo state” network application

will retrieve a few hundreds of relevant instances.

Useful hints for setting up RC learning systems for

practical tasks are given in [20,48]. It should be clearly

appreciated that, like always in machine learning, achiev-

ing very good results requires experience, experimenta-

tion, and insight into the nature of the respective task.

Furthermore, an understanding of basic principles of

machine learning is a necessary precondition. Specifi-

cally, an insightful use of cross-validation and regular-

ization is key for good performance. RC is not a miracle

method that can be used out-of-the-box and then be

expected to excel.

Instead of attempting a comprehensive overview, we

will highlight a number of applications in which the

authors have been (or still are) personally involved.

Speech recognition. One of the textbook examples of

temporal sequence recognition is speech recognition.

ESNs and LSMs have already early on been applied
to this domain. The first approaches focused specifi-

cally on isolated recognition of Japanese vowels [20]

and digits [51,49]. The first attempt to continuous

speech recognition was based on a rather atypical

setup: a large committee of predictive classifiers us-

ing ESNs [42]. It showed good results on a bench-

mark dataset, but due to the use of a custom acous-

tic front-end, it is not trivial to compare to state-

of-the-art work. More recently, in the European FP7

project ORGANIC (reservoir-computing.org/organic)

which set out to establish neurodynamical archi-

tectures as viable alternative to statistical meth-

ods for speech and handwriting recognition, differ-

ent approaches to speech recognition have been ap-

plied. In [46] it was demonstrated that competitive

phoneme recognition rates can be achieved using

straightforward application of the ESN setup on a

hard benchmark dataset. Based on this front-end,

ESN-HMM hybrids are currently being investigated

to realize word recognition with excellent results.

reservoir-computing.org/organic
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Research on noise-robust recognition using ESNs

[24] also demonstrate that they perform better than

classic HMM approaches.

Handwriting recognition. Handwriting recognition is in

many respects very similar to speech recognition,

and traditionally similar computational approaches

have been employed [5]. Therefore it is no coinci-

dence that the Organic project also hosts an in-

dustrial partner who develops text recognition so-

lutions, e.g., for car number plate reading (easy)

or address recognition in automated postal parcel

sorting plants (difficult). This partner, Planet in-

telligent systems GmbH, has been developing ESN-

based recognition modules in a long-standing co-

operation with the Machine Learning group at Ja-

cobs University. Important customers of Planet’s

parcel sorting technology are FedEx and the US

Postal Services. ESN-based offline text recognition

functions by scanning the text with a virtual lin-

ear camera from left to right, obtaining a time se-

ries of pixel vectors, which is passed to a hierarchi-

cal reservoir recognizer architecture. On subsequent

layers, increasingly aggregate “chunks” are recog-

nized (e.g., letters → words). Importantly, no ex-

plicit segmentation routine is necessary (“segmenta-

tion-free” processing). The different layers are trained

individually in a supervised way, which requires train-

ing data that are teacher-annotated on each rep-

resentational level. Planet seeks collaboration with

academic partners, and – quite remarkably – allows

scientific results which emerge from such collabo-

rations to be published (e.g., [31,23]). Planet fur-

thermore has made its very large annotated train-

ing dataset available to the scientific community as a

benchmark (http://organic.elis.ugent.be/organic/

benchmarks/294).

Robot motor control. ESNs can be conveniently trained

as deadbeat controllers for nonlinear plants. The

setup for such controllers is detailed in the origi-

nal ESN patent document [18] and had first been

employed in practice for the tracking control of om-

niwheel Robocup robots at Fraunhofer AIS (now

Fraunhofer IAIS) [37]. The training principle is to

feed the controller ESN with the current plant out-

put observation and a n-timestep-delayed version of

the same, which enables the ESN to acquire an nth

order model of the plant. In exploitation, the di-

rect plant output feedback channel is replaced by

the reference signal while the input which in train-

ing received the delayed output observation now

receives the direct observations. In a very differ-

ent way, ESNs are currently being explored as neu-

ral pattern generators for the humanoid iCub robot

(www.icub.org) within the European FP7 project

AMARSi (www.amarsi-project.eu). Here, the ob-

jective is to obtain neural pattern generators which

can be modulated by higher-level control input, e.g.,

in order to adapt frequency, amplitude, offset, phase,

or waveform of the generated pattern. Modulatable

neural pattern generation is an extensive field of re-

search [16]. The innovation offered by ESNs is to

obtain a generic learning mechanism by which an

existing neural pattern generator can acquire essen-

tially arbitrary novel modes of modulatability by

learning [28].

Financial forecasting. Here is an episode worth telling.

In a graduate seminar held at Jacobs University in

2007, a group of five students with no previous ex-

posure to machine learning engaged in an interna-

tional financial time series prediction contest (http:

//www.neural-forecasting-competition.com/NN3/

index.htm). The competition data consisted in a

set of 111 time series of very diverse nature (it was

part of the challenge to develop versatile predictors).

Within 3 months, the students acquired the basic

knowledge of standard data preprocessing methods

used in the field, applied them to the raw data,

developed ESN predictors, implemented them, sub-

mitted their predictions - and won the contest, against

competitors with years of professional experience in

financial forecasting [17]. An informal account of

this story is given at http://minds.jacobs-university.

de/teaching/highlights. The predictions were ob-

tained by combining the outputs of ensembles of 500

independently created reservoirs whose sizes ranged

around 100 units. This episode underlines the sim-

plicity of RC modeling and its motivational capacity

in education as much as it illustrates its modeling

performance.

Medical. Ghent University has been actively pursuing

the use of ESNs in bio-medical applications with

great success. It has been applied to real-time de-

tection of epileptic seizures, and this with very low

latency and high accuracy, outperforming the state-

of-the-art [7]. This technology would enable treat-

ments for epilepsy that are based on closing-the-

loop: rapidly detecting the seizure and actively counter-

acting it using, e.g., medication or brain stimula-

tion. Based on the good results on seizure detec-

tion, we also started investigating various forms of

Brain Computer Interfaces (BCIs). The most overt

result here was that ESNs are very good at detect-

ing the so called “rest state”: the interval between

specific thoughts. Combining ESNs with Common

Spatial Patterns lead to state-of-the-art results in

motor imagery BCI [25].

http://organic.elis.ugent.be/organic/benchmarks/294
http://organic.elis.ugent.be/organic/benchmarks/294
www.icub.org
www.amarsi-project.eu
http://www.neural-forecasting-competition.com/NN3/index.htm
http://www.neural-forecasting-competition.com/NN3/index.htm
http://www.neural-forecasting-competition.com/NN3/index.htm
http://minds.jacobs-university.de/teaching/highlights
http://minds.jacobs-university.de/teaching/highlights
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Here we mentioned only applications in engineering

and machine learning. This is one of two main direc-

tions of utilizing RC, the other being to model biologi-

cal phenomena in the cognitive and neurosciences. This

is often done with more biologically plausible reservoirs

made up from spiking neurons, and is mostly associated

with the “liquid state machine” flavor of RC. Pioneers

in this area are Peter F. Dominey and Wolfgang Maass.

Dominey actually was the first to explicitly spell out the

RC principle as early as 1995 [8], and ever since he has

continued to extend and refine his models of the cortico-

striatal processing loop for temporal sequence learning

(e.g., [10,9,14]). Maass et al. widely explored the RC

principle to understand generic computational proper-

ties of cortical microcircuits (e.g., [34,33,32]). Recently

he and his group have added reinforcement learning [27]

and Bayesian inferencing [4] to the picture of microcir-

cuit adaptation. RC principles have been taken up by

other leading researchers in computational neuroscience

(e.g., [45,3]).

8 Resources

Leading European RC groups jointly maintain an RC

web portal at www.reservoir-computing.org. Here

potential users can find introductory tutorials, an ex-

tensive bibliography, an option to subscribe to an RC

mailing list, and links to a choice of RC tools. Among

the latter we want to point out the OGER engine, a very

comprehensive Python-based toolbox with interfaces to

a number of standard (spiking) neural simulators (sup-

porting the computational neuroscience branch of RC)

and numerous pre-installed validation, regularization,

and optimization methods supporting the machine learn-

ing side of RC. This engine has been developed within

the Organic FP7 project.
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