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ABSTRACT
Hybrid metaheuristics have shown their capabilities to solve
NP-hard problems. However, they exhibit significantly higher
execution times in comparison to deterministic approaches.
Parallel techniques are usually leveraged to overcome the
execution time bottleneck for various metaheuristics. Re-
cently, GPUs have emerged as general purpose parallel pro-
cessors and have been harnessed to reduce the execution
time of these algorithms. In this work, we propose a novel
parallel memetic algorithm which is fully offloaded onto GPUs.
In addition, we propose an adaptive sorting strategy in order
to achieve maximum possible speedups for discrete optimiza-
tion problems on GPUs. In order to show the efficacy of our
algorithm, a task scheduling problem for heterogeneous en-
vironments is chosen as a case study. The output of this
problem can have a tangible impact on overall performance
of parallel heterogeneous platforms. The achieved results of
our approach are promising and show up to 696x speedup in
comparison to the sequential approach for various versions
of this problem. Moreover, the effects of key parameters of
memetic algorithms in terms of execution time and solution
quality are investigated.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Parallel algorithms;
F.2.2 [Analysis OF Algorithms And Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Sequenc-
ing and scheduling

General Terms
Algorithms
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1. INTRODUCTION
Metaheuristic algorithms have been increasingly used to

solve NP-hard problems. This is mainly because of the flex-
ibility and effectiveness of these algorithms in comparison
to heuristic methods. There are two main classes of meta-
heuristics: the trajectory and population-based classes. Tra-
jectory methods only use a single solution to find the prob-
lem’s answer while the population-based ones deal with a set
of solutions in each iteration of the algorithm. Hybridization
of these approaches has provided more powerful search tech-
niques called Memetic Algorithms (MAs). The efficacy of
hybrid algorithms has been demonstrated in many practical
academic optimization problems [8]. These approaches usu-
ally deliver better solution qualities compared to heuristic
methods. Nevertheless, their execution times remain lim-
iting factors to using them in practical applications. One
proper solution for tackling the execution time problem is
to use parallel computing. Therefore, we have chosen the
GPU architecture to propose a parallel memetic algorithm.

In order to evaluate the effectiveness of our parallel algo-
rithm, a multiprocessor task scheduling problem is chosen
as a case study. Given a set of tasks and a set of proces-
sors in a parallel computing system, the main objective of
this problem is to map these tasks to the processors in such
a way that the entire tasks complete at the earliest time.
In general, there exist two types of task scheduling: static
and dynamic[3]. In a static scheduling, a scheduler assigns
tasks to available processors with prior knowledge of the
tasks processing times, their precedence relationships, and
their related communication costs. On the other hand, in a
dynamic scheduling the states of the tasks are only known
during the execution. In this paper, only the static schedul-
ing problem is addressed.

The task scheduling problem remains to be NP-hard[17].
Several heuristic-based methods (e.g., Heterogeneous Earliest-
Finish-Time (HEFT) [15] etc) have been proposed to solve
this problem instantly. However, as these solutions lack high
qualities, metaheuristic algorithms such as Ant Colony Opti-
mization [16], Artificial Immune System [20], Genetic Algo-
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rithm (GA) [19], MA [18] and other evolutionary algorithms
have been increasingly leveraged to reach high quality solu-
tions, but the execution times of these methods remain chal-
lenging concerns in comparison to heuristic methods. The
execution time of any algorithm to find an effective schedul-
ing is an important efficiency metric, which means the one
with a minimum running time could be the most practical
implementation [15]. The proposed approach in this paper
is mainly inspired by the fact that parallel MAs might find
high quality solutions in a reasonable and practical time.
The main contribution of this paper is to propose a novel

and efficient parallel MA on GPU architectures to solve a
combinatorial optimization problem, that is, task schedul-
ing. To the best of our knowledge, there is no any result
in the literature regarding parallelizing the heterogeneous
multiprocessors task scheduling problem on GPUs. The key
features of our work include: first, running the whole search
process of the MA on the GPU side; therefore, it does not
require any computation on the CPU side. Thus, unneces-
sary data transfers between CPU and GPU are eliminated.
Second, it speeds up the search process considering the ex-
istence of fast GPU’s memories. Third, it proposes an ef-
ficient problem representation that is specially designed for
the task scheduling problem. Finally, it introduces an adap-
tive sorting strategy based on population sizes in order to
achieve higher speedups for small instances of the problem.
The achieved results of our method are promising and re-
veal that higher quality solutions for the task scheduling
problem could be reached in a reasonable amount of time as
compared to deterministic methods.
The remainder of this paper is organized as follows. Sec-

tion 2 surveys the literature. The task scheduling prob-
lem and its sequential hybrid evolutionary solution along-
side GPU programming are provided in Section 3. Section
4 describes our proposed parallel method for accelerating
MAs. The results are presented and discussed in Section 5.
Finally, we conclude the paper in Section 6.

2. RELATED WORK
Nesmachnow et. al. [9] proposed GPU implementations of

two heuristics for solving the scheduling of the independent
tasks problem. Pinel et. al. [13] also proposed a parallel
cellular genetic algorithm and a heuristic method for solv-
ing the same problem on GPUs. The selected problem and
approaches of these two papers are different from our work.
Luong et. al. [6] proposed and implemented several schemes

for island GA on GPUs. Although, they claimed consid-
erable speedup in comparison to a single CPU implemen-
tation for continuous optimization problems, the proposed
approaches could not be applicable for combinatorial opti-
mization problems such as task scheduling due to shortage
of shared memory space on GPUs. Luong et. al. [7] also
proposed a cooperative CPU-GPU model to implement a
hybrid genetic algorithm for solving Quadratic Assignment
Problem (QAP). The major bottleneck in this model is the
communication between the CPU and GPU, which degrades
the performance of the algorithm. Kruger et. al. [5] im-
plement a MA which is a combination of an evolutionary
algorithm and a simple deterministic local search. They did
not consider the efficiency of algorithm in finding the best
solution. In this approach the evolutionary engine is kept
on the CPU and the evaluation function and local search
operations are transferred to the GPU for execution. How-

ever, to overcome the overhead of data transfers between the
CPU and GPU large population sizes are required. On the
contrary to these approaches, our proposed parallel MA is
fully offloaded onto a GPU and as a result no inter-processor
data transfer is necessary. Furthermore, we show that it is
possible to reach orders of magnitude speedup even for small
populations by using an efficient algorithm.

3. BACKGROUND
In this section we provide the required background on the

problem description and GPU programming.

3.1 Problem Description
In this part, we provide a formal description of the static

multiprocessor scheduling problem. In this problem, we are
given m heterogeneous processors (j=1,. . . ,m), which are
fully connected through a network. Furthermore, a parallel
program, decomposed into n smaller tasks with dependen-
cies representing the precedence constraints (i=1,. . . ,n), is
also provided. These dependencies are usually shown by Di-
rected Acyclic Graphs (DAGs), which we call them as Task
Precedence Graphs (TPGs). A TPG consists of a set of
nodes (V) as tasks and a set of edges (E) as the precedence
constraints among the tasks. In this graph, the starting
node of an edge is called predecessor and the ending node
of the edge is called successor. The precedence constraints
between two tasks mean that the result of the predecessor
task must be transferred to the successor task before start-
ing its execution. When two dependent tasks are assigned
to two different processors, communication cost should be
paid to transfer the required data from the predecessor to
the successor task. The ultimate goal is to run tasks on
available processors in parallel with focus on minimizing the
makespan.

As we are dealing with heterogeneous systems, there are
various types of processing elements with different computa-
tional capabilities. In our representation, the computation
costs of tasks on processors are stored in a matrix called
W. This matrix has dimensions of n ×m and the value of
Wij represents the computation cost of task Ti on proces-
sor Pj . The weights associated with edges of the TPG are
also stored in a communication cost matrix (C ). The ma-
trix C has dimensions of n × n and the value of Cij is the
communication cost between task Ti and task Tj . Consider
an instance with n=10 tasks, and m=4 processors, compu-
tation costs are presented in Table 1, and a sample TPG,
representing associated communication costs to its edges, is
shown in Figure 1. A possible schedule is also illustrated in
Figure 2.

In order to solve the task scheduling problem several at-
tributes should be defined. First, the earliest time when a
processor will be available for executing a new task is called
Earliest Start Time (EST), which can be measured by (1).

EST (Ti, Pj) = max{ max
Tk∈run(Pj)

{AFT (Tk)} ,

max
Tl∈Pred(Ti)

{AFT (Tl + Cli)}}
(1)

In the first step, the maximum of Actual Finish Time (AFT)
for all tasks that have already been assigned to processor Pj

(run(Pj)) is found. This value shows when processor Pj

is available to execute a new task Ti. Next, in order to
execute Ti on processor Pj , the maximum time needed for

1182



Table 1: Computation cost matrix

P1 P2 P3 P4

T1 33 47 42 31
T2 33 44 32 38
T3 33 39 31 30
T4 40 43 34 51
T5 44 31 41 35
T6 35 38 57 38
T7 41 38 36 40
T8 42 37 41 42
T9 31 31 37 57
T10 38 37 44 43
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Figure 1: TPG graph
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Figure 2: Sample schedule

transferring all required data from the predecessors of Ti to
processor Pj is calculated. As mentioned before, this time is
equal to 0 if both tasks are assigned to the same processor.
Earliest Finish Time (EFT) of task Ti is equal to the time
that the execution of task Ti on processor Pj is finished and
is defined as follow:

EFT (Ti, Pj) = EST (Ti, Pj) +Wij (2)

When task Ti is explicitly allocated to processor Pj the EFT
of all tasks are assigned to AFT. The makespan of the sched-
ule is the largest AFT among all tasks and defined by (3).

makespan = max
Ti∈V

{AFT (Ti)} (3)

In the next section, a sequential hybrid metaheuristic for
solving the task scheduling problem will be briefly surveyed.

3.2 Sequential Algorithm
In order to evaluate our proposed parallel algorithm for

MAs, a hybrid metaheuristic method proposed by Wen et.
al. [18] for solving task scheduling problem is selected. This
hybrid algorithm combines two metaheuristics: GA and VNS.
GAs are population-based and stochastic search techniques
in order to model the natural evolution. These algorithms
are powerful in exploration of the search space, but their
exploitation of found solutions are weak. In order to tackle
this problem, a VNS metaheuristic is integrated with GA,
which has a desirable exploitation feature. VNS is a single-
point metaheuristic designed to search for an optimal point
by swapping different neighborhood structures around a sin-
gle solution.
This algorithm starts by initializing a population of ran-

domly generated individuals. Each individual is an encoded
version of a candidate schedule. Afterward, it generates new
solutions by applying a crossover operator on selected indi-
viduals from the current generation as parents. Then, the
mutation operator is applied on these newly created solu-
tions with certain probabilities. To evaluate the completion
time of each solution, the existing precedence constraints
among scheduled tasks create challenges that should be ad-
dressed. Therefore, an upward-rank heuristic has been uti-
lized to prioritize the assignments of tasks in TPG to pro-
cessors [20]. The rank calculation of each task is defined as

follow:

rank(Ti) =


Wij if succ(Ti) = ∅
Wij + max

Tk∈succ(Ti)

{rc(Ti, Tk) + rank(Tk)} if succ(Ti) ̸= ∅
(4)

where succ(Ti) is a list containing the successors of task Ti,
and rc(Ti, Tk) represents the communication cost between
task Ti and task Tk. If both tasks are scheduled on the
same processor (Pj), this value is equal to 0; otherwise, it is
equal to Cik. In the evaluation function, in order to calcu-
late the AFT of all tasks, the assignment order of each task
to a processor in a schedule is chosen based on the rank of
the task. Thereafter, the makespan of each solution is eval-
uated based on Sect 3.1 as its fitness value. After offspring
production, only a subset of the population is selected for
use by the VNS procedure because the VNS operation is
time consuming . The size of this sub population is equal to
the sampling rate parameter of the whole population. If an
offspring’s makespan is improved during the VNS process, it
will be replaced. At the final stage, the algorithm combines
the offspring with the current population, sorts them in an
increasing order, and selects the first set of solutions, which
are equal to the population size, to create the next popu-
lation. This process continues until a desired termination
criterion is satisfied.

3.3 GPU Programming
GPUs are processors with hundreds of processing cores

which provide high throughput and high memory-bandwidth.
The CUDA programming model [12] is developed by NVIDIA
in order to run sequential programs on GPUs. The basic
component of the CUDA programming model is a thread. A
group of these basic elements creates a Thread Block (TB).
Threads within the same TB can cooperate with each other
to execute a piece of code on different data. There is a
well-defined memory hierarchy in CUDA. Threads within
a thread block can share data among themselves using a
shared memory. TBs within a grid can also share data
through a memory space called global memory. There are
also data caches in the Fermi architecture to reduce the la-
tency of accesses to the global memory [10]. In the follow-
ing, we propose our parallel memetic algorithm based on
the CUDA programming model, focusing both on design
and implementation aspects.
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4. PROPOSED PARALLEL ALGORITHM
The execution time of MAs is a challenging barrier to

leveraging them in practical applications. As they have iter-
ative identical operations on different individuals (that can
be considered as different data), the realization of a parallel
approach seems promising in achieving real-time solutions.
In addition, the execution flow of these algorithms fits Sin-
gle Instruction Multiple Data (SIMD) processors like GPUs,
which are capable of executing the same instruction on dif-
ferent data.
Figure 3 illustrates the general scheme of the proposed

parallel algorithm for MAs and the interactions between a
CPU and a GPU. The main reasons for presenting this algo-
rithm include: first, to accelerate the search process of MAs
while having no adverse impact on the semantics of the al-
gorithm itself; second, to take best advantage of these pro-
cessors without becoming so bogged down in communication
time between CPU and GPU by executing the whole process
of evolution and local search on the GPU; third, to remove
the restriction on the problem size; finally, to utilize effi-
ciently the GPU’s high-bandwidth memory subsystem and
its computation power. As the heart of the selected MA is a
GA, we describe the proposed parallel GA algorithm step by
step in the following section. Afterward, the parallel VNS
approach will be presented.

4.1 Parallel Genetic Algorithms
In a rough classification, parallel GAs can be classified

into master-slave, island, and cellular models [4]. These
models have different approaches in running GAs in order
to accustom to different parallel executing platforms. We
describe these models in the following.
The first model in this category is the master-slave model.

The main objective of this approach concerns parallelizing
the most time consuming operation, which is the evaluation
of individuals. A master processor stores the population,
executes the evolution engine, and divides the evaluation of
individuals among several slave processors. However, the
data transfer between CPU and GPU is the main bottle-
neck, which makes this model an unattractive choice. The
second model is the island model in which a population is
divided into multiple sub-populations (islands). The islands
are evolved mostly isolated from each other and occasionally
exchange individuals, which is called migration. This model
is usually implemented on distributed systems. The main
idea behind this model is to improve the search diversity
along with the acceleration of the GA process. Neverthe-
less, the main bottleneck in front of porting this model to
GPUs is the lack of sufficient shared memory for storing
islands, especially in combinatorial optimization problems
that need a large amount of memory [6]. Moreover, as local
search is often used in MA to overcome the shortcoming of
GA exploitation, improving the solution quality by apply-
ing this model seems to be unnecessary. The cellular model
is the last parallel approach which considers a large num-
ber of small populations. Each of these small populations
is assigned to a processor, and the crossover operator is re-
stricted to use the neighborhood individuals. This model is
a natural fit for massively parallel computers. However, this
model is not naturally suitable to be used in the proposed
parallel MA. To overcome the above-mentioned limitations
as much as possible, a single population GA is selected to
implement the proposed parallel algorithm. We have also

decided to fully offload the GA operations onto the GPU
side.

4.1.1 Problem Encoding
In this section, we elaborate the problem representation

in our parallel algorithm. A solution is encoded in an ar-
ray called schedule list. As shown in Figure 4 the cell index
represents task number and its value determines the corre-
sponding processor number. Along with this representation,
all solutions in a population are also stored consecutively
in the GPU’s global memory, as shown in Figure 4. This
strategy provides an efficient usage of the GPU’s memory
bandwidth through allowing coalesced accesses to the global
memory. In coalesced accesses, consecutive memory blocks
are fetched using one memory transaction. Furthermore, as
the TPG is a sparse matrix, we propose a novel represen-
tation for storing TPG in the GPU’s memory as efficiently
as possible. In this encoding, the successors of all tasks are
stored consecutively into the successor array. Then, the to-
tal number of successors of each task, equal to the out-degree
of the task, is stored in count array. This allows retrieving
the appropriate successors of a task. The same representa-
tion is used to store predecessors. Figure 4 shows this repre-
sentation for TPG in Figure 1. This method enables storing
large TPGs along with W and C matrices inside Fermi’s
small caches which consequently reduces the retrieval time
of this read-only data.

4.1.2 Initialization
After allocating the required memory on the GPU and

transferring the prerequisite data, a kernel initializes the
population of the first generation. The Generate Popula-
tion kernel is run with PopSize×Tasks number of threads.
Each thread of a TB initializes one cell in a schedule list by
assigning a randomly generated processor number to a task
with a uniform distribution. A device RNG function from
curand [11] library produces the required random numbers.
This library provides the host and device sides with high
quality random number generators.

4.1.3 Evaluation
Evaluation of candidate solutions is one of the most time

consuming operations and requires to be parallelized. First,
the Task Priority kernel calculating the ranks based on Sec-
tion 3.2 is executed with PopSize number of threads. Here,
each thread in a TB is responsible for calculation of all tasks
in a schedule list, and precedence constraints among tasks
avoids any further parallelism. As the rank calculation is
a recursive operation, a kernel is implemented to find the
ranks of the tasks of TPG in a bottom-up manner. Next, the
Evaluation kernel is run with PopSize number of threads. A
thread in a TB calculates the makespan of each solution of
the population. This approach results in better GPU uti-
lization by enlarging the population size.

4.1.4 Selection, Crossover and Mutation
In our implementation, genetic operators are also exe-

cuted on the GPU to improve the performance by removing
data transfers between the two processors (i.e., CPU and
GPU). In addition, the selection and crossover operations
could be integrated into a single GPU kernel. This integra-
tion decreases the overhead of costly global memory accesses
because the selected solutions as parents are stored in the
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GPU’s shared memory. The Selection and CX kernel is run
with PopSize number of threads. Each thread in TB selects
one parent from the population and copies it into the shared
memory. Having selected all required parents, the thread
selects two of them and applies crossover between them to
generate a new solution. Finally, all the new generated solu-
tions will be transferred into the global memory. After that,
a mutation operator with a predefined probability (i.e., mu-
tation rate) is applied on these solutions. The mutation op-
erator assigns a random processor to a task. The expected
number of mutations per solution is equal to the mutation
rate multiplied by the Tasks. The Mutation kernel is run
with PopSize number of threads. Each thread in a TB is
responsible for applying the mutation operator on one solu-
tion. At this stage, the new solutions are ready for the next
operation in the MA process which is VNS. This operation
is explained in Section 4.2.

4.1.5 Survival Selection
The last stage of GA is the replacement of the current pop-

ulation with the new solutions. In this phase, the current
population and new solutions are merged and sorted based
on their makespans. For solving many discrete optimization
problems small-size populations are sufficient; on the other
hand, increasing the population size results in a better solu-
tion quality for complex ones. In our experiments, we have
learned that the time elapsed in the sorting section, which
is proportional to the population size, has a profound im-
pact on the whole execution time of the parallel algorithm.
Therefore, the selection of an efficient GPU-based sorting
algorithm is vital to improve the execution time. Conse-
quently, we use an adaptive sorting strategy to choose sort-
ing mechanism based on the input population size. In this
strategy, a single-TB bitonic sort algorithm is selected when
the population size is less than a specific threshold, which
is half of the TB size. Moreover, a multi-TB merge sort al-
gorithm is leveraged to address the large populations. This
adaptive approach makes it possible to achieve noticeable
speedups even for small-size populations.

4.2 Parallel Variable Neighborhood Search
One of the most time consuming sections of the hybrid

algorithm is VNS which makes the parallel execution of
this part important to reaching a high performance algo-
rithm. The kernel’s algorithm is shown in Algorithm 1. The
VNS kernel is run with PopSize * sampling rate number of
threads. The sampling rate parameter is a criterion for se-
lecting candidate solutions for the VNS operation. As shown
in Algorithm 1, the VNS kernel has a complex control flow;
therefore, this kernel is run by many TBs that each of them
has few number of threads. As a result of this approach, we
reduced adverse effects of thread divergence which decreases
the performance of the parallel algorithms on GPUs. In the
VNS kernel a set of neighborhood structures is chosen in the
initialization step. Here, we have two neighborhood struc-
tures. Then, a certain number of solutions from the newly
generated ones in the global memory are randomly selected
and transferred to the shared memory, and the index of the
neighborhood structure (k) is set. Each thread in a TB
executes four device kernels: Shaking, Local Search, Task
Priority, and Evaluation. These kernels are executed iter-
atively on the GPU for a single solution which is resided
in the shared memory until a termination condition is met.
This explains why we call this approach massively parallel
VNS (MPVNS). In the Shaking device kernel, a new solu-

tion x
′
is randomly generated based on the selected neigh-

borhood of the x solution. In literature, different strate-
gies exist for neighborhood structures of the task scheduling
problem, from fully randomized [2] to problem-specific [18].
We use two neighborhood structures which are proposed in
[18]. One of the neighborhood structures is used to improve
the load balancing of processors. First, the computational
load of each processor should be calculated:

comp(Pj) =
∑

Ti∈run(Pj)

Wij (5)

where run(Pj) denotes the set of tasks that have been sched-
uled on processor Pj . Afterward, the processor with maxi-
mum computational load is found (Pmaxcomp). Then, a task

is selected randomly from the solution x
′
which is sched-

uled on this processor. Finally, the task is assigned to a new
randomly generated processor number other than Pmaxcomp.
The goal of the second neighborhood structure is to reduce
communication costs. First, the communication costs for all
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Algorithm 1 Massively Parallel Variable Neighborhood
Search (MPVNS)

Select a set of neighborhood structures Nk, for k =
1, . . . , kmax

Move solutions from global memory to shared memory, do
(x← xglobal)
for all threads in a thread block do

repeat

function Shaking(x
′
,x,k) Generate a solution x

′

at random from the kth neighborhood of x
end function
function Local search(x

′′
,x

′
,k) Apply local

search method with x
′
as initial point; denote x” the so

obtained local optimum
end function
function Task Priority(x

′′
) Apply upward-

ranking heuristic on x
′′
solution.

end function
function Evaluation(x

′′
) Calculate the

makespan of the x
′′
solution.

end function
if x” makespan is less than x makespan then

x← x”

k ← 1
else

k ← k + 1
end if

until k ≤ kmax

end for
xglobal ← x

processors are calculated as follow:

comm(Pj) = max
Ti∈run(Pj)

AFT (Ti)− comp(Pj) (6)

where the AFT (Ti) denotes when the task Ti actually fin-
ishes its execution on processor Pj . After that, a processor
with a maximum communication cost is selected (Pmaxcomm).
Then, the predecessors of all assigned tasks on this proces-
sor (Ti ∈ run(Pj) which are scheduled on other processors
are found. Finally, a task randomly is chosen from this pre-
decessors set and assigned to the Pmaxcomm processor.
The Local Search device kernel starts to proceed by us-

ing solution x
′
as its starting point and generating a new

solution x
′′
. This solution is used by Task Priority and

Evaluation device kernels in order to calculate its makespan.
Finally, if the makespan of solution x” is less than that of x,
it replaces x in shared memory and the algorithm continues
with current neighborhood structure. Otherwise, k is incre-
mented by one for using the next neighborhood structure.
Due to existing dependencies between consequent phases of
VNS there are no more rooms for extra parallelisms. How-
ever, this approach will be efficient on GPUs because of us-
ing the shared memory for storing solutions, intermediate
results, and caches for prerequisite data such as W and C
matrices. The final solution and its makespan will be stored
back to the global memory for next operations.

5. EXPERIMENTAL WORK
In this section, we present a comparative evaluation be-

tween sequential and parallel versions of GVNS execution

Table 2: Parameters

Parameter Name Value
Generations Count 100

Population Size (PopSize) 128-8192
Crossover Rate 1
Mutation Rate 0.1
Sampling Rate 0.1
TPG Kind GJ,FFT,L

Tasks (21,45)(15)(16,36)
Processors Count 8

times. To show the effectiveness of our parallel algorithm,
Gauss-Jordan elimination (GJ) with 15 and 21 tasks, Fast
Fourier Transformation (FFT) with 15 tasks, and Laplace
equation solver (L) with 16 and 36 tasks are chosen as the
benchmarks [18]. Figure 1 shows a TPG of GJ as a well-
known parallel application for 10 tasks. We randomly gener-
ate 10 computation cost matrices for each benchmark graph.
The values of matrix entries are driven by Poisson distri-
bution with an average computation time of 40 [20]. The
value of all required parameters is shown in Table 2. The
communication to computation ratio (CCR) is set to 0.25
for all tests, and the data transfer time between dependent
tasks on different processors are the same, which is equal to
40 ∗ 0.25 = 10 in our experiments. The sequential algorithm
has been executed on a system which is equipped by an Intel
Xeon processor with 8 cores and 8 GBs of RAM. The GPU
card used in our experiments is a GTX480 with 480 CUDA
cores.

5.1 Performance Evaluation Metrics
The metrics to measure performance of parallel meta-

heuristics involve both computational effort and solution
quality. The first and the most important metric is the rela-
tive computational speedup (speedupc). The relative speedup
is the ratio of serial execution time (Ts) to parallel execu-
tion time (Tp) of a program [1]. We have tried to satisfy
two conditions in order to make fair comparisons: first, the
serial code should be the most efficient one; second, the par-
allel time should include any overhead such as data transfers
since the objective of parallelism is to reduce the real time
of execution. As the execution times of non-deterministic
algorithms vary for different runs, the average of execution
times of 50 runs for each of 10 different configurations are
considered as the expected execution time of the algorithm.
The relative computational speedup is defined as follow:

speedupc =
E [Ts]

E [Tp]
(7)

After measuring the efficiency of our approach; the last
important metric to evaluate is the quality of the obtained
solutions. As explained, the goal of the algorithm is to find a
schedule of tasks that its parallel execution time (makespanp)
is less than the serial execution time of all tasks’ (makespans).
By serial execution we mean to execute all tasks on a sin-
gle processor instead of multiple processors. The ratio of
these two values is the quality metric of the algorithm and
is denoted by speedupq:

speedupq =
makespans

makespanp
(8)
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As the optimum makespanp is unknown, the mean of the
makespans of the best solutions over all predefined number
of algorithm runs is measured. The makespans is also com-
puted as:

makespans = min
Pj∈P

 ∑
Ti∈V

Wij

 (9)

In the context of discrete optimization, the overall goal
is not full GPU utilization but to develop powerful par-
allel algorithms to find better solutions in a shorter time
[14]. As the scheduling problem is a combinatorial optimiza-
tion problem, the speedupq is increasing until the algorithm
reaches a convergence point and after that no further im-
provement is observed and higher GPU utilization is not use-
ful. Therefore, it would not be fair to report the speedupc of
the parallel algorithm below and above of this certain point.
Hence, we define effective speedupc as the measured compu-
tational speedup when the algorithm achieves the maximum
speedupq for the first time with no further improvement af-
ter that.

5.2 Results and Discussion
In this part, we provide our experimental results for the

sequential and parallel implementations. For the sequential
algorithm, as we expect the increase in number of iterations
results in better solution qualities but causes longer execu-
tion times as illustrated in Figure 5(a). Therefore, finding
a solution with less number of iterations with a reasonable
quality is a desirable goal. However, enlarging population
size provides the same or better quality solutions while keep-
ing a small number of iterations with much less execution
time, as shown in Figure 5(b). Therefore, we choose the lat-
ter paradigm to achieve better qualities for 100 iterations in
our parallel experiments.
As shown in Table 3, increasing the population size im-

proves the solution quality of the algorithm. The maximum
speedupc for GJ-21, GJ-45, FFT-15, L-16, and L-36 are 343,
696, 254, 272, and 568 respectively for population size of 512.
However, this speedup may not be the effective speedupc of
the parallel algorithm. Hence, we continue the execution of
the algorithm by enlarging the population size in order to
achieve the maximum speedupq. As explained earlier, we
have employed a multi-TB merge sort algorithm when the
population size is more than 512. By changing the sorting
algorithm the speedupc of the algorithm suddenly falls to
much lower values, as shown in Table 3. However, when
the population size becomes sufficiently large the overhead
of sorting algorithm is amortized and large computational
speedups are observed. The effective speedupc for GJ-21,
GJ-45, FFT-15, L-16, and L-36 are 181, 40, 220, 13, and 42
for population sizes of 8192, 8192, 8192, 1024, and 4096 re-
spectively. It is obvious that the effective speedupc depends
on the problem size and complexity.
Table 3 shows speedups of 568 for L-36 and 696 for GJ-45

in population size of 512. The reason for this superlinear
speedup is the fact that sequential algorithm requires more
memory access in comparison to parallel one. As mentioned,
we use a single-TB bitonic sort to remove memory accesses
to global memory for population sizes of less than 1024. By
increasing the size of the population more memory accesses
are required; therefore, the execution times of the sequential
algorithms increase while the execution times of the parallel

Table 3: The average execution time and solution quality for
parallel and sequential algorithms on different benchmarks
for various population sizes.

Avg. Time (Sec.)
TPG Pop. Par. Seq. Speedupq Speedupc

128 0.003 0.183 3.30 61
256 0.003 0.415 3.35 138
512 0.003 1.028 3.38 343

GJ-21 1024 0.238 2.832 3.39 12
2048 0.289 8.758 3.39 30
4096 0.384 29.899 3.39 78
8192 0.603 109.268 3.40 181
128 0.003 0.447 4.32 149
256 0.003 0.948 4.40 316
512 0.003 2.088 4.47 696

GJ-45 1024 0.798 4.993 4.53 6
2048 0.945 13.243 4.58 14
4096 1.183 39.558 4.61 33
8192 3.247 131.446 4.64 40
128 0.003 0.118 2.77 39
256 0.003 0.287 2.78 96
512 0.003 0.763 2.79 254

FFT-15 1024 0.166 2.268 2.80 14
2048 0.209 7.539 2.80 36
4096 0.286 27.059 2.80 95
8192 0.464 102.022 2.81 220
128 0.003 0.131 2.20 44
256 0.003 0.306 2.20 102
512 0.003 0.815 2.20 272

L-16 1024 0.178 2.379 2.21 13
2048 0.226 7.763 2.21 34
4096 0.307 27.49 2.21 90
8192 0.495 102.879 2.21 208
128 0.003 0.335 3.03 110
256 0.003 0.728 3.05 233
512 0.003 1.646 3.08 568

L-36 1024 0.564 4.089 3.09 7
2048 0.673 11.444 3.10 17
4096 0.844 35.85 3.12 42
8192 1.883 123.422 3.12 66

implementations remain unchanged due to usage of single-
TB sort.

Sampling rate is one of the most important parameters in
the VNS algorithm. For example, higher sample rates are
appropriate for complex search spaces to reach better solu-
tion quality. On the other hand, higher sample rates increase
the execution time dramatically [18]. However, as shown in
Figure 5(c), increasing sampling rate for improving the so-
lution quality has a minimum impact on the execution time
of the proposed algorithm because our parallel algorithm is
highly scalable with regards to population size.

6. CONCLUSION
In this work, a parallel memetic algorithm has been pro-

posed and implemented on GPUs. The proposed algorithm
has been used to solve a task scheduling problem for het-
erogeneous multiprocessor systems as a case study. Fur-
thermore, an especial encoding method has been designed
for this case study to utilize the GPU’s memory efficiently.
In addition, we have shown that different sorting strategies
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Figure 5: The effect of parameters on time and quality for GJ-21 : (a)different iterations for population of 256 individuals;
(b)various population sizes for 100 iterations; (c)different sampling rates in parallel algorithm for population of 256 individuals

could be beneficial in terms of running times for various
population sizes. As a result, an adaptive sorting policy
has been proposed in our parallel algorithm. By using this
method, we have achieved up to 696 computational speedup
even for small populations. In the future, we plan to ex-
tend this algorithm into a general framework that can be
leveraged by users in parallelizing different kinds of hybrid
metaheuristics on GPUs with minimum effort.
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