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Abstract— Differential Evolution (DE) is a fast and robust
evolutionary algorithm for global optimization. It has been widely
used in many areas. Biogeography-Based Optimization (BBO)
is a new biogeography inspired algorithm. It mainly uses the
biogeography-based migration operator to share the information
among solutions. In this paper, we propose a hybrid DE with
BBO, namely DE/BBO, for the global numerical optimization
problem. DE/BBO combines the exploration of DE with the
exploitation of BBO effectively, and hence it can generate the
promising candidate solutions. To verify the performance of our
proposed DE/BBO, 23 benchmark functions with a wide range of
dimensions and diverse complexities are employed. Experimental
results indicate that our approach is effective and efficient.
Compared with other state-of-the-art DE approaches, DE/BBO
performs better, or at least comparably, in terms of the quality
of the final solutions and the convergence rate. In addition,
the influence of the population size, dimensionality, different
mutation schemes, and the self-adaptive control parameters of
DE are also studied.

Index Terms— Differential evolution, biogeography-based op-
timization, hybridization, global numerical optimization, explo-
ration, exploitation

I. INTRODUCTION

EVOLUTIONARY Algorithms (EAs, including genetic

algorithms, evolution strategies, evolutionary program-

ming, and genetic programming) have received much attention

regarding their potential as global optimization techniques [1],

both in single and in multi-objective optimization. Inspired by

the natural evolution and survival of the fittest, EAs utilize

a collective learning process of a population of individuals.

Descendants of individuals are generated using randomized

operations such as mutation and recombination. Mutation

corresponds to an erroneous self-replication of individuals,

while recombination exchanges information between two or

more existing individuals. According to a fitness measure, the

selection process favors better individuals to reproduce more

often than those that are relatively worse.

Differential Evolution (DE) [2] is a simple yet powerful

population-based, direct search algorithm with the generation-

and-test feature for global optimization problems using real-
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valued parameters. DE uses the distance and direction in-

formation from the current population to guide the further

search. It won the third place at the first International Contest

on Evolutionary Computation on a real-valued function test-

suite [3]. Among DE’s advantages are its simple structure,

ease of use, speed and robustness. Price and Storn [2] gave

the working principle of DE with single scheme. Later on, they

suggested ten different schemes of DE [3], [4]. However, DE

has been shown to have certain weaknesses, especially if the

global optimum should be located using a limited number of

fitness function evaluations (NFFEs). In addition, DE is good

at exploring the search space and locating the region of global

minimum, but it is slow at exploitation of the solution [5].

Biogeography-Based Optimization (BBO), proposed by Si-

mon [6], is a new global optimization algorithm based on the

biogeography theory, which is the study of the geographical

distribution of biological organisms. Similar to GAs, BBO is a

population-based, stochastic global optimizer. In the original

BBO algorithm, each solution of the population is a vector

of integers. BBO adopts the migration operator to share

information between solutions. This feature is similar to other

biology-based algorithms, such as GAs and PSO. It makes

BBO applicable to many of the same types of problems that

GAs and PSO are used for. However, BBO also has several

unique features compared with biology-based algorithms. For

example, it maintains its set of solutions from one iteration

to the next one [6]. Simon compared BBO with seven state-

of-the-art EAs over 14 benchmark functions and a real-world

sensor selection problem. The results demonstrated the good

performance of BBO. With the migration operator, BBO has

a good exploitation ability.

Hybridization of EAs is getting more and more popu-

lar due to their capabilities in handling several real world

problems [7]. In order to balance the exploration and the

exploitation of DE, in this paper, we propose a hybrid DE with

BBO, referred to as DE/BBO, for the global numerical opti-

mization problems. In DE/BBO, a hybrid migration operator

is proposed, which combines the exploration of DE with the

exploitation of BBO effectively. Experiments have been con-

ducted on 23 benchmark functions chosen from the literature.

In addition, five performance criteria are employed to fairly

compare our approach with other algorithms. Furthermore,

the influence of the population size, dimensionality, different

mutation schemes, and the self-adaptive control parameters of

DE are also investigated.

The rest of this paper is organized as follows. Section II
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briefly describes function optimization problem, the DE al-

gorithm, and the BBO algorithm. In Section III, some related

work of DE are presented. Our proposed approach is presented

in detail in Section IV. In Section V, we verify our approach

through 23 benchmark functions. Moreover, the experimental

results are compared with several other approaches. The last

section, Section VI, is devoted to conclusions and future work.

II. PRELIMINARY

A. Problem definition

Global numerical optimization problems are frequently

arisen in almost every field of engineering design, applied

sciences, molecular biology and other scientific applications.

Without loss of generality, the global minimization problem

can be formalized as a pair (S, f) , where S ⊆ RD is a

bounded set on RD and f : S → R is a D-dimensional real-

valued function. The problem is to find a point X∗ ∈ S such

that f(X∗) is the global minimum on S [8]. More specifically,

it is required to find an X∗ ∈ S such that

∀X ∈ S : f(X∗) ≤ f(X) (1)

where f does not need to be continuous but it must be

bounded. In this work, we only consider the unconstrained

function optimization.

In global numerical optimization problems, the major chal-

lenge is that an algorithm may be trapped in the local

optima of the objective function. This issue is particularly

challenging when the dimension is high. Recently, using

the Evolutionary Computation (EC) [1] to solve the global

optimization has been very active, producing different kinds

of EC for optimization in the continuous domain, such as

genetic algorithms [9], evolution strategy [10], evolutionary

programming [8], particle swarm optimization [11], immune

clonal algorithm [12], differential evolution [2], etc.

B. Differential evolution

The DE algorithm [2] is a simple EA that creates new

candidate solutions by combining the parent individual and

several other individuals of the same population. A candidate

replaces the parent only if it has better fitness. This is a rather

greedy selection scheme that often outperforms traditional

EAs. Among DE’s advantages are its simple structure, ease

of use, speed and robustness. Due to these advantages, it has

many real-world applications, such as data mining [13], [14],

pattern recognition, digital filter design, neural network train-

ing, etc. [4], [15], [16]. Most recently, DE has also been used

for the global permutation-based combinatorial optimization

problems [17].

The pseudo-code of the original DE algorithm is shown in

Algorithm 1. Where D is the number of decision variables.

NP is the size of the parent population P . F is the mutation

scaling factor. CR is the probability of crossover operator.

Xi(j) is the j-th variable of the solution Xi. Ui is the

offspring. rndint(1, D) is a uniformly distributed random

integer number between 1 and n. And rndrealj [0, 1) is a

uniformly distributed random real number in [0, 1). Many

schemes of creation of a candidate are possible. We use

the DE/rand/1/bin scheme (see lines 6 - 13 of Algorithm 1)

described in Algorithm 1 (more details on DE/rand/1/bin and

other DE schemes can be found in [3] and [4]).

Algorithm 1 The DE algorithm with DE/rand/1/bin scheme

1: Generate the initial population P
2: Evaluate the fitness for each individual in P
3: while The halting criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 6= r2 6= r3 6= i
6: jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndrealj [0, 1) > CR or j == jrand then

9: Ui(j) = Xr1
(j) + F ×

(

Xr2
(j) − Xr3

(j)
)

10: else
11: Ui(j) = Xi(j)
12: end if
13: end for
14: end for
15: for i = 1 to NP do
16: Evaluate the offspring Ui

17: if Ui is better than Pi then
18: Pi = Ui

19: end if
20: end for
21: end while

From Algorithm 1, we can see that there are only three

control parameters in this algorithm. These are NP , F and

CR. As for the terminal conditions, one can either fix the

maximum NFFEs Max NFFEs or the precision of a desired

solution VTR (value to reach).

Algorithm 2 Habitat migration

1: for i = 1 to NP do
2: Select Xi with probability ∝ λi

3: if rndreal(0, 1) < λi then
4: for j = 1 to NP do
5: Select Xj with probability ∝ µj

6: if rndreal(0, 1) < µj then
7: Randomly select a variable σ from Xj

8: Replace the corresponding variable in Xi with σ
9: end if

10: end for
11: end if
12: end for

C. Biogeography-based optimization

BBO [6] is a new population-based, biogeography inspired

global optimization algorithm. In BBO, each individual is

considered as a “habitat” with a habitat suitability index

(HSI), which is similar to the fitness of EAs, to measure the

individual. A good solution is analogous to an island with a

high HSI, and a poor solution indicates an island with a low

HSI. High HSI solutions tend to share their features with low

HSI solutions. Low HSI solutions accept a lot of new features

from high HSI solutions.

In BBO, each individual has its own immigration rate λ and

emigration rate µ. A good solution has higher µ and lower λ,

vice versa. The immigration rate and the emigration rate are
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functions of the number of species in the habitat. They can be

calculated as follows

λk = I

(

1 −
k

n

)

(2)

µk = E
(k

n

)

(3)

where I is the maximum possible immigration rate; E is

the maximum possible emigration rate; k is the number of

species of the k-th individual; and n is the maximum number

of species. Note that Eqns. 2 and 3 are just one method for

calculating λ and µ. There are other different options to assign

them based on different specie models [6].

Suppose that we have a global optimization problem and a

population of candidate individuals. The individual is repre-

sented by a D-dimensional vector. The population consists

of NP = n parameter vectors. In BBO, there are two

main operators, the migration and the mutation. One option

for implementing the migration operator can be described in

Algorithm 21. Where rndreal(0, 1) is a uniformly distributed

random real number in (0, 1) and Xi(j) is the j-th SIV of

the solution Xi. With the migration operator, BBO can share

the information among solutions. Especially, poor solutions

tend to accept more useful information from good solutions.

This makes BBO be good at exploiting the information of the

current population. More details about the two operators can

be found in [6] and in the Matlab code [18].

III. RELATED WORK TO DE

Some previous researches pointed out that there are three

main drawbacks of the original DE algorithm. First, the pa-

rameters of DE are problem dependent and the choice of them

is often critical for the performance of DE [19], [20]. Second,

choosing the best among different mutation schemes available

for DE is also not easy for a specific problem [27], [28]. Third,

DE is good at exploring the search space and locating the

region of global minimum, but it is slow at exploitation of the

solution [5]. Due to these drawbacks, many researchers are

now working on the improvement of DE, and many variants

are presented.

Adapting the DE’s control parameters is one possible im-

provement. Liu and Lampinen [20] proposed a Fuzzy Adaptive

DE (FADE), which employs fuzzy logic controllers to adapt

the mutation and crossover control parameters. Brest et al. [21]

proposed self-adapting control parameter settings. Their pro-

posed approach encodes the F and CR parameters into the

chromosome and uses a self-adaptive control mechanism to

change them. Salman et al. [22] proposed a self-adaptive DE

(SDE) algorithm that eliminates the need for manual tuning of

control parameters. In SDE, the mutation weighting factor F
is self-adapted by a mutation strategy similar to the mutation

operator of DE. Nobakhti and Wang [23] proposed a Random-

ized Adaptive Differential Evolution (RADE) method, where

a simple randomized self-adaptive scheme was proposed for

the mutation weighting factor F . Das et al. [24] proposed

1Since the mutation operator of BBO is not used in our approach, we do
not describe it here. Interested readers can refer to [6] and [18].

two variants of DE, DERSF and DETVSF, that use varying

scale factors. They concluded that those variants outperform

the original DE. Teo [25] presented a dynamic self-adaptive

populations DE, where the population size is self-adapting.

Through five De Jong’s test functions, they showed that DE

with self-adaptive populations produced highly competitive

results. Brest and Mauěc [26] proposed an improved DE

method, where the population size is gradually reduced. They

concluded that their approach improved efficiency and robust-

ness of DE.

Qin and Suganthan [27] proposed a self-adaptive DE al-

gorithm. The aim of their work was to allow DE to switch

between two schemes: “DE/rand/1/bin” and “DE/best/2/bin”

and also to adapt the F and CR values. The approach

performed well on several benchmark problems. Recently, Qin

et al. [28] extent their previous work [27]. In their SaDE,

four schemes were adopted. And different CR values were

also used for different mutation schemes. Their proposed algo-

rithm outperformed the original DE and some other compared

adaptive/self-adaptive DE variants [28].

Hybridization with other different algorithms is another

direction for the improvement of DE. Fan and Lampinen [29]

proposed a new version of DE that uses an additional muta-

tion operation called trigonometric mutation operation. They

showed that the modified DE algorithm can outperform the

classic DE algorithm for some benchmarks and real-world

problems. Sun et al. [30] proposed a new hybrid algorithm

based on a combination of DE with Estimation of Distribution

Algorithm (EDA). This technique uses a probability model

to determine promising regions in order to focus the search

process on those areas. Gong et al. [31] employed the two level

orthogonal crossover to improve the performance of DE. They

showed that the proposed approach performs better than the

classical DE in terms of the quality, speed, and stability of the

final solutions. Noman and Iba [32] proposed fittest individual

refinement, a crossover-based local search (LS) method DE to

solve the high dimensional problems. Based on their previous

work [32], they incorporated LS into the classical DE in [5].

They presented a LS technique to solve this problem by

adaptively adjusting the length of the search, using a hill-

climbing heuristic. Through the experiments, they showed

that the proposed new version of DE performs better, or at

least comparably, to classic DE algorithm. Kaelo and Ali [33]

adopted the attraction-repulsion concept of electromagnetism-

like algorithm to boost the mutation operation of the original

DE. Yang et al. [34] proposed a neighborhood search based

DE algorithm. Experimental results showed that DE with

neighborhood search has significant advantages over other

existing algorithms on a broad range of different bench-

mark functions [34]. Wang et al. [35] proposed a dynamic

clustering-based DE for global optimization, where a hierar-

chical clustering method is dynamically incorporated in DE.

Experiments on 28 benchmark problems, including 13 high

dimensional functions, showed that the new method is able

to find near optimal solutions efficiently [35]. Rahnamayan

et al. [36] proposed a novel initialization approach which

employs opposition-based learning to generate initial popu-

lation. Through a comprehensive set of benchmark functions
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they showed that replacing the random initialization with the

opposition-based population initialization in DE can accelerate

convergence speed.

IV. OUR APPROACH: DE/BBO

As mentioned above, DE is good at exploring the search

space and locating the region of global minimum. However,

it is slow at exploitation of the solution [5]. On the other

hand, BBO has a good exploitation for global optimization [6].

Based on these considerations, in order to balance the explo-

ration and the exploitation of DE, in this work, we propose

a hybrid DE approach, called DE/BBO, which combines the

exploration of DE with the exploitation of BBO effectively.

Our proposed DE/BBO approach is described as follows.

A. Hybrid migration operator

The main operator of DE/BBO is the hybrid migration

operator, which hybridizes the DE operator with the migration

operator of BBO, described in Algorithm 3. From Algorithm 3

we can see that the offspring Ui is possibly constituted by three

components: the DE mutant, the migration of other solutions,

and its corresponding parent Xi. The core idea of the proposed

hybrid migration operator is based on two considerations. On

the one hand, good solutions would be less destroyed, while

poor solutions can accept a lot of new features from good

solutions. In this sense, the current population can be exploited

sufficiently. On the other hand, the mutation operator of DE

is able to explore the new search space. From the analysis, it

can be seen that the hybrid migration operator can balance the

exploration and the exploitation effectively. It is worth pointing

out that in Algorithm 3 the “DE/rand/1” mutation operator is

illustrated, however, other mutation operators of DE can also

be used in our proposed hybrid migration operator. And the

influence of different mutation schemes will be discussed in

Section V-F.

Algorithm 3 Hybrid migration operator of DE/BBO

1: for i = 1 to NP do
2: Select uniform randomly r1 6= r2 6= r3 6= i
3: jrand = rndint(1, D)
4: for j = 1 to D do
5: if rndreal(0, 1) < λi then
6: if rndrealj [0, 1) > CR or j == jrand then

7: Ui(j) = Xr1
(j) + F ×

(

Xr2
(j) − Xr3

(j)
)

{The

original mutation operator of DE.}
8: else
9: Select Xk with probability ∝ µk

10: Ui(j) = Xk(j)
11: end if
12: else
13: Ui(j) = Xi(j)
14: end if
15: end for
16: end for

B. Boundary constraints

In order to keep the solution of bound-constrained prob-

lems feasible, those trial parameters that violate boundary

constraints should be reflected back from the bound by the

amount of violation. In this work, the following repair rule is

applied

X(i) =

{

li + rndreali[0, 1] × (ui − li) if X(i) < li
ui − rndreali[0, 1] × (ui − li) if X(i) > ui

(4)

where rndreali[0, 1] is the uniform random variable from [0,1]

in each dimension i.

C. Main procedure of DE/BBO

By incorporating the above-mentioned hybrid migration

operator into DE, the DE/BBO approach is developed and

shown in Algorithm 4. Compared with the original DE algo-

rithm described in Algorithm 1, our approach needs only a

small extra computational cost in sorting the population and

calculating the migration rates. In addition, the structure of our

proposed DE/BBO is also very simple. Moreover, DE/BBO

is able to explore the new search space with the mutation

operator of DE and to exploit the population information with

the migration operator of BBO. This feature overcomes the

lack of exploitation of the original DE algorithm.

Algorithm 4 The main procedure of DE/BBO

1: Generate the initial population P
2: Evaluate the fitness for each individual in P
3: while The halting criterion is not satisfied do
4: For each individual, map the fitness to the number of species
5: Calculate the immigration rate λi and the emigration rate µi

for each individual Xi

6: Modify the population with the hybrid migration operator
shown in Algorithm 3

7: for i = 1 to NP do
8: Evaluate the offspring Ui

9: if Ui is better than Pi then
10: Pi = Ui

11: end if
12: end for
13: end while

V. EXPERIMENTAL RESULTS

In order to verity the performance of DE/BBO, twenty-

three benchmark functions are chosen from [8]. Since we do

not make any modification of these functions, they are only

briefly described in Table I. A more detailed description of

these functions can be found in [8], where the functions were

divided into three categories: unimodal functions, multimodal

functions with many local minima, and multimodal functions

with a few local minima.

Functions f01 - f13 are high-dimensional and scalable prob-

lems. Functions f01 - f05 are unimodal. Function f06 is the

step function, which has one minimum and is discontinuous.

Function f07 is a noisy quartic function, where random [0,1)

is a uniformly distributed random variable in [0,1). Functions

f08 - f13 are multimodal functions where the number of local

minima increases exponentially with the problem dimension.

They appear to be the most difficult class of problems for

many optimization algorithms. Functions f14 - f23 are low-

dimensional functions that have only a few local minima.
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TABLE I

BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDIES. MORE DETAILS OF ALL FUNCTIONS CAN BE FOUND IN [8].

Functions Name D S optimal

f01 Sphere Model 30 [−100, 100]D 0

f02 Schwefel’s Problem 2.22 30 [−10, 10]D 0

f03 Schwefel’s Problem 1.2 30 [−100, 100]D 0

f04 Schwefel’s Problem 2.21 30 [−100, 100]D 0

f05 Generalized Rosenbrock’s Functions 30 [−30, 30]D 0

f06 Step Function 30 [−100, 100]D 0

f07 Quartic Function 30 [−1.28, 1.28]D 0

f08 Generalized Schwefel’s Problem 2.26 30 [−500, 500]D -12569.5

f09 Generalized Rastrigin’s Function 30 [−5.12, 5.12]D 0

f10 Ackley’s Function 30 [−32, 32]D 0

f11 Generalized Griewank Function 30 [−600, 600]D 0

f12 Generalized Penalized Function 1 30 [−50, 50]D 0

f13 Generalized Penalized Function 2 30 [−50, 50]D 0

f14 Shekel’s Foxholes Function 2 [−65.536, 65.536]D 1

f15 Kowalik’s Function 4 [−5, 5]D 0.003075

f16 Six-Hump Camel-Back Function 2 [−5, 5]D -1.0316285

f17 Branin Function 2 [−5, 10] × [0, 15] 0.398

f18 Glodstein-Price Function 2 [0, 1]D 3

f19 Hartman’s Function 1 3 [0, 1]D -3.86

f20 Hartman’s Function 2 6 [0, 1]D -3.32

f21 Shekel’s Function 1 4 [0, 10]D -10.1532

f22 Shekel’s Function 2 4 [0, 10]D -10.4029

f23 Shekel’s Function 3 4 [0, 10]D -10.5364

A. Experimental setup

For DE/BBO, we have chosen a reasonable set of value and

have not made any effort in finding the best parameter settings.

For all experiments, we use the following parameters unless a

change is mentioned.

• Population size: NP = 100 [5], [8], [21], [36];

• Habitat modification probability = 1 [6];

• Scaling factor: F = rndreal
(

0.1, 1.0
)

[4], [16];

• Crossover probability: CR = 0.9 [2], [20], [25], [36];

• DE mutation scheme: DE/rand/1/bin [2], [5], [20], [25],

[36];

• Value to reach: VTR = 10−8 [37], except for f07 of VTR

= 10−2;

• Maximum Number of Fitness Function Evaluations

(Max NFFEs): For f01, f06, f10, f12, and f13,

Max NFFEs = 150000; for f03 - f05, Max NFFEs =

500000; for f02 and f11, Max NFFEs = 200000; For f07

- f09, Max NFFEs = 300000; for f14, f16 - f19, f21, and

f22, Max NFFEs = 10000; for f15, Max NFFEs = 40000;

and for f20, Max NFFEs = 20000.

Moreover, in our experiments, each function is optimized

over 50 independent runs. We also use the same set of

initial random populations to evaluate different algorithms in

a similar way done in [5]. All the algorithms are implemented

in standard C++. The source code can be obtained from the

first author upon request.

B. Performance Criteria

Five performance criteria are selected from the litera-

ture [36], [37] to evaluate the performance of the algorithms.

These criteria are described as follows.

• Error [37]: The error of a solution X is defined as

f(X) − f(X∗), where X∗ is the global optimum of

the function. The minimum error is recorded when the

Max NFFEs is reached in 50 runs. Also the average and

standard deviation of the error values are calculated.

• NFFEs [37]: The number of fitness function evaluations

(NFFEs) is also recorded when the VTR is reached. The

average and standard deviation of the NFFEs values are

calculated.

• Number of successful runs (SR) [37]: The number of

successful runs is recorded when the VTR is reached

before the max NFFEs condition terminates the trial.

• Convergence graphs [37]: The convergence graphs show

the mean error performance of the total runs, in the

respective experiments.

• Acceleration rate (AR) [36]: This criterion is used

to compare the convergence speeds between DE/BBO

and other algorithms. It is defined as follows: AR =
NFFEsother

NFFEsDE/BBO

, where AR > 1 indicates DE/BBO is faster

than its competitor.

C. General performance of DE/BBO

In order to show the superiority of our proposed DE/BBO

approach, we compare it with the original DE algorithm and

the BBO algorithm. The parameters used for DE/BBO and

DE are the same as described in Section V-A. The parameters

of BBO are set as in [6], and the mutation operator with

mmax = 0.005 is also used in our experiments. All functions

are conducted for 50 independent runs. Table II shows the best

error values of DE/BBO, DE, and BBO on all test functions.

The average and standard deviation of NFFEs are shown in

Table III. In addition, some representative convergence graphs

of DE/BBO, DE, and BBO are shown in Figure 1.

When compared with DE: From Table II we can see

that DE/BBO is significantly better than DE on 8 functions.

However, DE/BBO is outperformed by DE on two functions

(f03 and f05). For the rest 13 functions, there are no significant
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TABLE II

BEST ERROR VALUES OF DE/BBO, DE, AND BBO ON ALL TEST FUNCTIONS, WHERE “MEAN” INDICATES THE MEAN BEST ERROR VALUES FOUND IN

THE LAST GENERATION, “STD DEV” STANDS FOR THE STANDARD DEVIATION. “1 VS 2” MEANS “DE/BBO VS DE” AND “1 VS 3” MEANS “DE/BBO VS

BBO”. HEREAFTER, A RESULT WITH BOLDFACE MEANS BETTER VALUE FOUND.

F
DE/BBO DE BBO 1 vs 2 1 vs 3

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR t-test t-test

f01 8.66E-28 5.21E-28 50 1.10E-19 1.34E-19 50 8.86E-01 3.26E-01 0 -5.81† -19.21†

f02 0.00E+00 0.00E+00 50 1.66E-15 8.87E-16 50 2.42E-01 4.58E-02 0 -13.24† -37.36†

f03 2.26E-03 1.58E-03 0 8.19E-12 1.65E-11 50 4.16E+02 2.02E+02 0 10.10† -14.58†

f04 1.89E-15 8.85E-16 50 7.83E+00 3.78E+00 0 7.76E-01 1.72E-01 0 -14.65† -31.96†

f05 1.90E+01 7.52E+00 0 8.41E-01 1.53E+00 6 9.14E+01 3.78E+01 0 16.73† -13.28†

f06 0.00E+00 0.00E+00 50 0.00E+00 0.00E+00 50 2.80E-01 5.36E-01 38 0 -3.69†

f07 3.44E-03 8.27E-04 50 3.49E-03 9.60E-04 50 1.90E-02 7.29E-03 4 -0.29 -14.96†

f08 0.00E+00 0.00E+00 50 4.28E+02 4.69E+02 1 5.09E-01 1.65E-01 0 -6.45† -21.78†

f09 0.00E+00 0.00E+00 50 1.14E+01 7.57E+00 0 8.50E-02 3.42E-02 0 -10.61† -17.61†

f10 1.07E-14 1.90E-15 50 6.73E-11 2.86E-11 50 3.48E-01 7.06E-02 0 -16.66† -34.81†

f11 0.00E+00 0.00E+00 50 1.23E-03 3.16E-03 43 4.82E-01 1.27E-01 0 -2.76† -26.93†

f12 7.16E-29 6.30E-29 50 2.07E-03 1.47E-02 49 5.29E-03 5.21E-03 0 -1.00 -7.18†

f13 9.81E-27 7.10E-27 50 7.19E-02 5.09E-01 49 1.42E-01 5.14E-02 0 -1.00 -19.50†

f14 0.00E+00 0.00E+00 50 2.75E-13 1.55E-12 50 8.85E-06 2.74E-05 14 -1.26 -2.28†

f15 3.84E-12 2.70E-11 50 4.94E-19 5.20E-19 50 5.92E-04 2.68E-04 0 1.01 -15.65†

f16 1.15E-12 6.39E-12 50 1.98E-13 4.12E-13 50 6.75E-04 1.09E-03 0 1.05 -4.37†

f17 2.92E-10 1.38E-09 50 7.32E-10 2.21E-09 49 4.39E-04 4.26E-04 0 -1.19 -7.30†

f18 9.15E-13 6.51E-15 50 9.14E-13 5.01E-15 50 7.86E-03 9.57E-03 0 0.70 -5.81†

f19 0.00E+00 0.00E+00 50 1.36E-14 6.40E-15 50 2.51E-04 2.62E-04 0 -15.05† -6.76†

f20 0.00E+00 0.00E+00 50 4.76E-03 2.35E-02 47 1.46E-02 3.90E-02 0 -1.43 -2.64†

f21 3.59E-03 1.44E-02 15 6.83E-06 1.26E-05 0 5.18E+00 3.34E+00 0 1.76 -10.95†

f22 3.14E-07 1.36E-06 29 7.26E-06 4.53E-05 1 3.67E+00 3.40E+00 0 -1.08 -7.63†

f23 2.50E-08 5.37E-08 27 3.70E-06 1.75E-05 0 2.73E+00 3.29E+00 0 -1.49 -5.87†

† The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.

TABLE III

NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THAN V TR. “NA” INDICATES THE ACCURACY LEVEL IS NOT OBTAINED AFTER MAX NFFES.

“1 VS 2” MEANS “DE/BBO VS DE” AND “1 VS 3” MEANS “DE/BBO VS BBO”.

F
DE/BBO DE BBO 1 vs 2 1 vs 3

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR AR AR

f01 59926 745.5 50 79688 1858.8 50 NA NA 0 1.33 NA

f02 82004 983.9 50 119764 1871.2 50 NA NA 0 1.46 NA

f03 NA NA 0 385990 17193.4 50 NA NA 0 NA NA

f04 296572 4969.9 50 NA NA 0 NA NA 0 NA NA

f05 NA NA 0 448583 60428.8 6 NA NA 0 NA NA

f06 21590 573.3 50 28874 2014.5 50 119042 16882.8 38 1.34 5.51

f07 109574 21005.8 50 103136 29677.7 50 205000 23896.2 4 0.94 1.87

f08 95952 3126.7 50 251700 0 1 NA NA 0 2.62 NA

f09 170226 8379.0 50 NA NA 0 NA NA 0 NA NA

f10 91308 922.7 50 122340 2179.6 50 NA NA 0 1.34 NA

f11 62042 1219.6 50 81986 1795.8 43 NA NA 0 1.32 NA

f12 54482 873.3 50 71183 4700.9 49 NA NA 0 1.31 NA

f13 64772 1133.4 50 93298 16916.8 49 NA NA 0 1.44 NA

f14 4532 719.5 50 6768 766.0 50 5757 2351.3 14 1.49 1.27

f15 24028 3279.3 50 12590 977.8 50 NA NA 0 0.52 NA

f16 5676 1012.7 50 5760 632.5 50 NA NA 0 1.01 NA

f17 7138 1404.9 50 7271 1098.7 49 NA NA 0 1.02 NA

f18 5050 374.3 50 4610 292.9 50 NA NA 0 0.91 NA

f19 4808 352.2 50 5434 346.8 50 NA NA 0 1.13 NA

f20 9614 705.1 50 14161 1553.3 47 NA NA 0 1.47 NA

f21 9560 397.9 15 NA NA 0 NA NA 0 NA NA

f22 9527 349.4 29 10000 0 1 NA NA 0 1.05 NA

f23 9533 362.7 27 NA NA 0 NA NA 0 NA NA

difference based on the t-test2. For the multimodal functions

2The paired t-test determines whether two paired sets differ from each
other in a significant way under the assumptions that the paired differences
are independent and identically normally distributed [38].

with many local minima (f08 - f13), DE/BBO can obtain

the V TR = 10−8 over all 50 runs within the Max NFFEs.

However, DE may trap into the local minima for five out of

six functions. This indicates that our approach has the ability
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Fig. 1. Mean error curves of DE/BBO, DE, and BBO for selected functions. (a) f01. (b) f03. (c) f04. (d) f08. (e) f09. (f) f11. (g) f12. (h) f15. (i) f22.

to escape from poor local optima and locate a good near-

global optimum. Apparently, from Table III it can be seen that

DE/BBO requires less NFFEs to reach the VTR than DE on 18

functions. DE is faster than DE/BBO on the rest 5 functions.

Additionally, for the majority of the test functions DE/BBO

converges faster than DE as shown in Figure 1.

When compared with BBO: From Tables II , III and Figure 1,

it is obvious that DE/BBO performs significantly better than

BBO consistently with respect to all five criteria for all test

functions. By carefully looking at Figure 1, we can see that

in the beginning of the evolutionary process BBO converges

faster than DE/BBO while DE/BBO is able to improve its

solution steadily for a long run. The reason might be that BBO

has a good exploitation but lacks the exploration. However, for

DE/BBO with the hybrid migration operator, it can balance the

exploration and the exploitation effectively.

In general, the performance of DE/BBO is highly compet-

itive with DE, especially for the high-dimensional problems.

Moreover, DE/BBO is significantly better than BBO for all

problems. Since for the majority of the low-dimensional

functions (f14 - f23), both DE/BBO and DE have no significant

difference, we will not use these functions in the following

experiments. In addition, we also don’t compare the algorithms

with BBO in the following experiments.

D. Influence of population size

The choice of the best population size of DE is always

critical for different problems [19], [25], [26]. Increasing

the population size will increase the diversity of possible

movements, promoting the exploration of the search space.

However, the probability to find the correct search direction

decreases considerably [39]. The influence of population size

is investigated in this section. For both DE/BBO and DE, all

the parameter settings are the same as mentioned in Section V-

A, only except for NP = 50, NP = 150, and NP = 200.

The results for different population size are shown in
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Table IV. It can be seen that: i) for NP = 50 DE/BBO

is significantly better than DE on 10 functions while it is

outperformed by DE for function f03. For f05, DE/BBO is

sightly better than DE. And for f13, DE/BBO can locate the

near-global optimum over all 50 runs, however, DE traps into

the local minima on 14 out of 50 runs. ii) When the population

increases to NP = 100, DE can obtain higher overall

successful runs than NP = 50. DE/BBO is significantly

better than DE on 8 functions based on the t-test results.

DE is significantly better than DE/BBO for functions f03 and

f05. For the rest 3 functions, DE/BBO is better than DE.

iii) For NP = 150 and NP = 200, DE/BBO is able to

obtain significant better performance than DE on 8 and 9

functions, respectively. Similarly, for f03 and f05, DE/BBO is

outperformed by DE significantly. In addition, from Figure 2

we can see that DE/BBO can obtain higher convergence

speed to different population size for the majority of functions

compared with DE.

In general, the overall performance of DE/BBO is better

than DE to different population size. DE/BBO exhibits higher

overall successful runs, higher convergence velocity, and more

robustness than DE.

E. Effect of dimensionality

In order to investigate the influence of the problem di-

mension on the performance of DE/BBO, we carry out a

scalability study comparing with the original DE algorithm

for the scalable functions in the test suit. For functions f01

- f13, D = 10, 50, 100, and 200. The results are recorded in

Table V after D × 10000 NFFEs, and some representative

convergence graphs are shown in Figure 3. From Table V we

can see that the overall SR is decreasing for both DE/BBO

and DE, since increasing the problem dimension leads to

the algorithms sometimes unable to solve the problem before

reaching the Max NFFEs. However, similarly to D = 30,

on the majority of functions, DE/BBO outperforms DE at

every dimension. By carefully looking at the results, we can

recognize that for f05 DE is better than DE/BBO at D = 10
and D = 30, however, DE is outperformed by DE/BBO

at higher dimension (D = 50, 100, and 200). So, from the

experimental results of this section, we can conclude that the

hybrid migration operator has the ability to accelerate DE in

general, especially the improvements are more significant at

higher dimensionality.

F. Influence of different mutation schemes

There are ten mutation schemes proposed in the orig-

inal DE [3], [4]. Actually, choosing the best among dif-

ferent mutation schemes available for DE is also not easy

for a specific problem [27], [28]. In this section, we per-

form additional experiment to compare the performance of

DE/BBO with that of DE to different schemes. Four schemes,

namely, DE/best/1/bin, DE/rand/2/bin, DE/rand-to-best/1/bin,

and DE/best/2/bin are chosen in these experiments. All re-

maining parameters are the same as mentioned in Section V-

A. Table VI gives the results of DE/BBO and DE for the four

schemes. Based on the t-test, the results can be summarized as

“w/t/l”, which means that DE/BBO wins in w functions, ties

in t functions, and loses in l functions, compared with DE.

From Table VI, for DE/best/1/bin, DE/rand/2/bin, DE/rand-to-

best/1/bin, and DE/best/2/bin, they are 12/1/0, 9/2/2, 8/3/2,

and 10/2/1, respectively. The results indicate that DE/BBO is

able to obtain greater robustness than DE to different mutation

schemes on the majority of functions.

G. Influence of self-adaptive parameter control

As mentioned above, the choice of the control parameters F
and CR is sensitive for different problems [19]. Researchers

have proposed the adaptive parameter control of DE, such

as [20], [21], and so on. In order to show that DE/BBO

can also improve the self-adaptive DE, in this section, we

adopt the self-adaptive parameter control proposed in [21] to

replace F = rndreal(0.1, 1.0) and CR = 0.9 in the previous

experiments. All other parameter settings are kept unchanged.

The results for the self-adaptive DE (SADE) and self-adaptive

DE/BBO (SADE/BBO) are given in Table VII.

According to Table VII, we can see that: first, for the Error

values, both SADE/BBO and SADE can obtain the global

optimum on five functions (f02, f06, f08, f09, and f11) over

50 runs. SADE/BBO is significantly better than SADE on five

functions. SADE outperforms SADE/BBO on two functions

(f03 and f05). Second, with respect to the NFFEs, it is obvious

that SADE/BBO is significantly better than SADE on 11

functions. And the AR values are larger than 1 for these

functions, it means that SADE/BBO is faster than SADE.

For functions f03 and f05, SADE/BBO fails to solve the two

functions over all 50 runs. Overall, integration of the hybrid

migration operator can improve the performance of SADE.

H. Comparison with other DE hybrids

In this section, we make a comparison with other DE

hybrids. Since there are many variants of DE, we only compare

our approach with DEahcSPX proposed in [5], ODE proposed

in [36], and DE/EDA proposed in [30].

1) Comparison with DEahcSPX and ODE: Firstly, we com-

pare our approach with DEahcSPX and ODE. In DEahcSPX,

a crossover-based adaptive local search operation to accelerate

the original DE. The authors concluded that DEahcSPX out-

performs the original DE in items of convergence rate in all

experimental studies. In ODE, the opposition-based learning is

used for the population initialization and generation jumping.

In this section, we compare our proposed CDE with the

original DE, DEahcSPX and ODE. All the parameter settings

are the same as mentioned in Section V-A. For DEahcSPX, the

number of parents in SPX sets to be np = 3 [5]. For ODE, the

jump rate Jr = 0.3 [36]. The results are given in Table VIII.

The selected representative convergence graphs are shown in

Figure 4.

It can be seen that, from Table VIII, DE/BBO is significantly

better than DEahcSPX on 8 functions while it is outperformed

by DEahcSPX on two functions (f03 and f05). For the rest

three functions, there are no significant difference between

DE/BBO and DEachSPX. However, for f12 and f13, DE/BBO

can obtain the near-global optimum over all 50 runs while



9

0 1 2 3 4 5

x 10
5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

NFFEs

E
rr

o
r 

(l
o
g
)

f 05

DE/BBO

DE

(a)

0 0.5 1 1.5 2 2.5 3

x 10
5

0

2000

4000

6000

8000

10000

12000

NFFEs

E
rr

o
r

f 08

DE/BBO

DE

(b)

0 0.5 1 1.5 2

x 10
5

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

NFFEs

E
rr

o
r 

(l
o
g
)

f 02

DE/BBO

DE

(c)

0 5 10 15

x 10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

NFFEs

E
rr

o
r 

(l
o
g
)

f 10

DE/BBO

DE

(d)

0 1 2 3 4 5

x 10
5

10
−5

10
0

10
5

NFFEs

E
rr

o
r 

(l
o
g
)

f 03

DE/BBO

DE

(e)

0 0.5 1 1.5 2 2.5 3

x 10
5

0

50

100

150

200

250

300

350

400

450

NFFEs

E
rr

o
r

f 09

DE/BBO

DE

(f)

Fig. 2. Mean error curves of DE/BBO and DE to different population size for selected functions at D = 30. (a) f05 (NP = 50). (b) f08 (NP = 50). (c)
f02 (NP = 150). (d) f10 (NP = 150). (e) f03 (NP = 200). (f) f09 (NP = 200).
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Fig. 3. Mean error curves to compare the scalability of DE/BBO and DE for selected functions. (a) f13 (D = 10). (b) f09 (D = 50). (c) f05 (D = 100).
(d) f12 (D = 100). (e) f01 (D = 200). (f) f11 (D = 200).
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TABLE IV

INFLUENCE OF THE PERFORMANCE TO DIFFERENT POPULATION SIZE FOR FUNCTIONS f01 − f13 (D = 30). HEREAFTER, (#) INDICATES THE NUMBER

OF SUCCESSFUL RUNS AND [a ± b] DENOTES THE AVERAGED NFFES REQUIRED WHEN THE GLOBAL MINIMUM ACHIEVED BEFORE USING

MAX NFFES FOR ALL ALGORITHMS.

F
NP = 50 NP = 100

DE/BBO DE DE/BBO DE

f01 4.93E-34 ± 2.44E-33 (50) 6.73E-33 ± 9.09E-33 (50)† 8.66E-28 ± 5.21E-28 (50) 1.10E-19 ± 1.34E-19 (50)†

f02 0.00E+00 ± 0.00E+00 (50) 1.55E-17 ± 4.49E-17 (50)† 0.00E+00 ± 0.00E+00 (50) 1.66E-15 ± 8.87E-16 (50)†

f03 7.69E-13 ± 8.68E-13 (50) 3.03E-17 ± 2.10E-16 (50)‡ 2.26E-03 ± 1.58E-03 (0) 8.19E-12 ± 1.65E-11 (50)‡

f04 1.37E-06 ± 6.00E-06 (40) 1.72E+01 ± 5.64E+00 (0)† 1.89E-15 ± 8.85E-16 (50) 7.83E+00 ± 3.78E+00 (0)†

f05 1.10E+01 ± 5.63E+00 (0) 1.27E+01 ± 7.26E+00 (0) 1.90E+01 ± 7.52E+00 (0) 8.41E-01 ± 1.53E+00 (6)‡

f06 [9.39E+03±3.09E+02] (50) [1.95E+04±6.20E+03] (50)† [2.16E+04±5.73E+02] (50) [2.89E+04 ± 2.01E+03] (50)†

f07 1.64E-03 ± 3.67E-04 (50) 4.19E-03 ± 2.05E-03 (50)† 3.44E-03 ± 8.27E-04 (50) 3.49E-03 ± 9.60E-04 (50)

f08 2.37E+01 ± 5.35E+01 (41) 5.57E+02 ± 3.38E+02 (0)† 0.00E+00 ± 0.00E+00 (50) 4.28E+02 ± 4.69E+02 (1)†

f09 5.37E-01 ± 7.84E-01 (31) 1.23E+01 ± 4.17E+00 (0)† 0.00E+00 ± 0.00E+00 (50) 1.14E+01 ± 7.57E+00 (0)†

f10 4.14E-15 ± 0.00E+00 (50) 7.45E-02 ± 2.55E-01 (46)† 1.07E-14 ± 1.90E-15 (50) 6.73E-11 ± 2.86E-11 (50)†

f11 3.45E-04 ± 1.73E-03 (48) 4.83E-03 ± 7.90E-03 (32)† 0.00E+00 ± 0.00E+00 (50) 1.23E-03 ± 3.16E-03 (43)†

f12 1.57E-32 ± 0.00E+00 (50) 4.98E-02 ± 1.26E-01 (41)† 7.16E-29 ± 6.30E-29 (50) 2.07E-03 ± 1.47E-02 (49)

f13 1.36E-32 ± 7.15E-34 (50) 3.61E+00 ± 1.80E+01 (36) 9.81E-27 ± 7.10E-27 (50) 7.19E-02 ± 5.09E-01 (49)

F
NP = 150 NP = 200

DE/BBO DE DE/BBO DE

f01 7.60E-23 ± 3.75E-23 (50) 6.36E-12 ± 4.24E-12 (50)† 1.91E-16 ± 7.51E-17 (50) 7.24E-08 ± 2.98E-08 (0)†

f02 0.00E+00 ± 0.00E+00 (50) 1.12E-09 ± 3.67E-10 (50)† 1.88E-14 ± 4.27E-15 (50) 8.87E-07 ± 2.37E-07 (0)†

f03 8.10E-01 ± 4.63E-01 (0) 1.16E-07 ± 2.24E-07 (2)‡ 1.98E+01 ± 9.76E+00 (0) 3.27E-05 ± 3.17E-05 (0)‡

f04 2.33E-13 ± 1.02E-13 (50) 4.74E+00 ± 3.21E+00 (0)† 6.53E-10 ± 2.04E-10 (50) 2.61E+00 ± 1.95E+00 (0)†

f05 1.99E+01 ± 5.26E-01 (0) 1.84E+00 ± 1.58E+00 (0)‡ 2.11E+01 ± 4.06E-01 (0) 4.85E+00 ± 1.63E+00 (0)‡

f06 [2.56E+04±6.27E+02] (50) [4.27E+04±1.53E+03] (50)† [3.36E+04±6.97E+02] (50) [5.78E+04 ± 1.74E+03] (50)†

f07 3.93E-03 ± 7.69E-04 (50) 4.39E-03 ± 1.10E-03 (50)† 5.03E-03 ± 1.09E-03 (50) 5.55E-03 ± 1.75E-03 (50)

f08 0.00E+00 ± 0.00E+00 (50) 2.35E+03 ± 1.13E+03 (0)† 0.00E+00 ± 0.00E+00 (50) 3.10E+03 ± 1.04E+03 (0)†

f09 0.00E+00 ± 0.00E+00 (50) 3.27E+01 ± 1.43E+01 (0)† 0.00E+00 ± 0.00E+00 (50) 4.86E+01 ± 1.21E+01 (0)†

f10 1.91E-12 ± 5.21E-13 (50) 6.40E-07 ± 1.98E-07 (0)† 3.11E-09 ± 5.76E-10 (50) 7.04E-05 ± 1.68E-05 (0)†

f11 0.00E+00 ± 0.00E+00 (50) 2.22E-18 ± 1.57E-17 (50) 0.00E+00 ± 0.00E+00 (50) 4.93E-04 ± 1.99E-03 (47)

f12 5.13E-24 ± 3.15E-24 (50) 2.07E-03 ± 1.47E-02 (49) 1.17E-17 ± 5.01E-18 (50) 1.58E-09 ± 1.01E-09 (50)†

f13 6.84E-22 ± 5.10E-22 (50) 2.51E-03 ± 1.78E-02 (49) 1.75E-15 ± 8.37E-16 (50) 9.58E-08 ± 7.78E-08 (0)†

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.

DEahcSPX traps into the local minima on one run, respec-

tively. In addition, Figure 4 shows that DE/BBO converges

faster than DEahcSPX on the major functions.

With respect to ODE, the t-test is 9/2/2 in Table VIII. It

means that DE/BBO significantly outperforms ODE on 9 out

of 13 functions. ODE is significantly better than DE/BBO on

two functions (f03 and f07). For f01 and f10, there are no

significant difference between DE/BBO and ODE, however,

DE/BBO is slightly better than ODE. Moreover, on the ma-

jority of functions, DE/BBO exhibits higher convergence rate

than ODE.

2) Comparison with DE/EDA: Secondly, the comparison

between DE/BBO and DE/EDA is conducted in this section.

The reason is that DE/BBO is similar to DE/EDA, i.e.,

both algorithms combine DE with another global optimization

algorithm to improve the performance of DE. DE/EDA com-

bines global information extracted by EDA with differential

information obtained by DE to create promising solutions [30].

DE/BBO integrates the migration operator of BBO into DE

to balance the exploration and the exploitation. In original

DE/EDA algorithm3, the DE mutation scheme is described as

3The source code of DE/EDA is available online at:
http://cswww.essex.ac.uk/staff/qzhang/IntrotoResearch/HybridEDA.htm

follows

Ui(j) =
[

Xr1
(j) + Xi(j)

]

/2+

F ×
[(

Xr1
(j) − Xi(j)

)

+
(

Xr2
(j) − Xr3

(j)
)]

(5)

where Xi is the target vector of DE. In order to make a

fair comparison, all compared algorithms (DE, DE/BBO, and

DE/EDA) adopt the mutation scheme shown in Eqn. 5 to

replace the DE/rand/1/bin scheme. All other parameters are the

same as mentioned in Section V-A. The results are presented in

Table IX. And the selected representative convergence graphs

are shown in Figure 5.

When compared with DE: DE/BBO is significantly better

than DE on 11 functions. For the rest two functions (f06 and

f13), DE/BBO is also better than DE. Additionally, DE/BBO

is able to obtain faster convergence velocity than DE for all

functions.

When compared with DE/EDA: The overall SR of DE/BBO

is better than DE/EDA. On 9 functions, DE/BBO is signifi-

cantly better than DE/EDA. DE/EDA is significantly better

than DE/BBO only on one functions (f03). For the rest three

functions, there are no significant difference. By carefully

looking at the results in Table IX, we can see that DE/BBO is

substantial better than DE/EDA for all multimodal functions
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TABLE V

SCALABILITY STUDY FOR FUNCTIONS f01 − f13 AT Max NFFEs = D × 10000.

F
D = 10 D = 50

DE/BBO DE DE/BBO DE

f01 [1.89E+04 ± 3.63E+02] (50) [3.08E+04 ± 8.41E+02] (50)† 0.00E+00 ± 0.00E+00 (50) 1.87E-32 ± 1.64E-32 (50)†

f02 [2.63E+04 ± 4.19E+02] (50) [4.71E+04 ± 7.61E+02] (50)† 0.00E+00 ± 0.00E+00 (50) 1.44E-17 ± 3.97E-17 (50)†

f03 6.07E-14 ± 9.60E-14 (50) 1.35E-21 ± 2.49E-21 (50)‡ 5.20E+02 ± 2.48E+02 (0) 1.12E-01 ± 8.06E-02 (0)‡

f04 1.58E-16 ± 9.88E-17 (50) 1.39E-13 ± 1.22E-13 (50)† 3.42E-03 ± 2.28E-02 (3) 1.95E+01 ± 4.14E+00 (0)†

f05 3.40E+00 ± 8.03E-01 (0) 3.53E-11 ± 1.24E-10 (50)‡ 4.43E+01 ± 1.39E+01 (0) 5.33E+01 ± 2.89E+01 (0)

f06 [6.62E+03 ± 3.28E+02] (50) [1.06E+04 ± 5.50E+02] (50)† [2.74E+04 ± 6.22E+02] (50) [5.57E+04 ± 1.64E+04] (50)†

f07 1.11E-03 ± 3.96E-04 (50) 1.52E-03 ± 5.97E-04 (50)† 4.05E-03 ± 9.20E-04 (50) 9.49E-03 ± 3.07E-03 (34)†

f08 0.00E+00 ± 0.00E+00 (50) 1.51E-11 ± 1.05E-10 (50) 2.37E+00 ± 1.67E+01 (49) 1.51E+03 ± 9.97E+02 (0)†

f09 0.00E+00 ± 0.00E+00 (50) 3.75E+00 ± 2.72E+00 (5)† 0.00E+00 ± 0.00E+00 (50) 2.33E+01 ± 8.27E+00 (0)†

f10 5.89E-16 ± 0.00E+00 (50) 8.02E-16 ± 8.52E-16 (50) 5.92E-15 ± 1.79E-15 (50) 3.52E-02 ± 1.74E-01 (48)

f11 0.00E+00 ± 0.00E+00 (50) 8.54E-03 ± 1.56E-02 (31)† 0.00E+00 ± 0.00E+00 (50) 5.08E-03 ± 1.62E-02 (9)†

f12 4.71E-32 ± 0.00E+00 (50) 4.71E-32 ± 0.00E+00 (50) 9.42E-33 ± 0.00E+00 (50) 4.51E-02 ± 1.40E-01 (41)†

f13 1.35E-32 ± 0.00E+00 (50) 1.35E-32 ± 0.00E+00 (50) 1.35E-32 ± 0.00E+00 (50) 1.34E-01 ± 5.74E-01 (40)

F
D = 100 D = 200

DE/BBO DE DE/BBO DE

f01 6.16E-34 ± 1.97E-33 (50) 2.30E-31 ± 1.37E-31 (50)† 3.07E-32 ± 2.48E-32 (50) 1.41E-24 ± 3.14E-24 (50)†

f02 0.00E+00 ± 0.00E+00 (50) 7.95E-16 ± 1.05E-15 (50)† 5.83E-17 ± 8.11E-17 (50) 7.38E-09 ± 2.33E-08 (46)†

f03 3.10E+04 ± 1.12E+04 (0) 1.31E+02 ± 5.76E+01 (0)‡ 2.22E+05 ± 5.90E+04 (0) 3.64E+03 ± 7.60E+02 (0)‡

f04 2.71E+00 ± 2.58E+00 (0) 3.05E+01 ± 4.00E+00 (0)† 1.59E+01 ± 3.43E+00 (0) 4.27E+01 ± 4.31E+00 (0)†

f05 1.19E+02 ± 3.38E+01 (0) 1.76E+02 ± 4.22E+01 (0)† 2.95E+02 ± 4.48E+01 (0) 4.39E+02 ± 1.11E+02 (0)†

f06 [4.93E+04 ± 1.11E+03] (50) [3.30E+05 ± 1.34E+05] (50)† 0.00E+00 ± 0.00E+00 (50) 3.00E+00 ± 7.75E+00 (20)

f07 6.87E-03 ± 1.15E-03 (49) 4.84E-02 ± 2.19E-02 (0)† 1.56E-02 ± 2.82E-03 (0) 2.19E-01 ± 7.38E-02 (0)†

f08 7.11E+00 ± 2.84E+01 (47) 6.79E+03 ± 1.07E+03 (0)† 2.01E+02 ± 1.68E+02 (23) 2.47E+04 ± 2.44E+03 (0)†

f09 7.36E-01 ± 8.48E-01 (23) 7.28E+01 ± 1.07E+01 (0)† 1.76E+01 ± 2.89E+00 (0) 2.12E+02 ± 2.12E+01 (0)†

f10 7.84E-15 ± 7.03E-16 (50) 1.87E+00 ± 5.72E-01 (1)† 1.09E-14 ± 1.12E-15 (50) 5.30E+00 ± 8.47E-01 (0)†

f11 0.00E+00 ± 0.00E+00 (50) 8.43E-03 ± 1.71E-02 (36)† 1.11E-16 ± 0.00E+00 (50) 1.33E-01 ± 2.50E-01 (0)

f12 4.71E-33 ± 0.00E+00 (50) 8.07E+03 ± 2.82E+04 (26)† 2.36E-33 ± 0.00E+00 (50) 5.71E+04 ± 7.31E+04 (8)†

f13 1.76E-32 ± 2.68E-32 (50) 1.85E+03 ± 7.38E+03 (12) 8.36E-32 ± 1.44E-31 (50) 1.65E+05 ± 2.91E+05 (0)

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.
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Fig. 4. Mean error curves of DE/BBO, DE, DEahcSPX, and ODE for selected functions. (a) f02. (b) f03. (c) f07. (d) f10. (e) f11. (f) f13.
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TABLE VI

COMPARISON OF DE/BBO AND DE TO DIFFERENT MUTATION SCHEMES FOR FUNCTIONS f01 − f13 (D = 30).

F
DE/best/1/bin DE/rand/2/bin

DE/BBO DE DE/BBO DE

f01 3.71E-32 ± 3.61E-32 (50) 1.25E+02 ± 1.55E+02 (0)† 1.27E-17 ± 6.15E-18 (50) 1.53E-10 ± 8.92E-11 (50)†

f02 5.46E-16 ± 1.81E-15 (50) 4.16E+00 ± 3.02E+00 (0)† 4.70E-15 ± 1.54E-15 (50) 2.02E-08 ± 9.61E-09 (2)†

f03 8.15E-30 ± 2.66E-29 (50) 2.62E+02 ± 3.04E+02 (0)† 1.31E+01 ± 7.15E+00 (0) 7.28E-07 ± 8.90E-07 (0)‡

f04 2.36E+01 ± 5.72E+00 (0) 2.97E+01 ± 6.06E+00 (0)† 2.04E-09 ± 7.53E-10 (50) 5.18E+00 ± 3.41E+00 (0)†

f05 8.72E+00 ± 1.43E+01 (8) 1.14E+04 ± 1.43E+04 (0)† 9.25E+00 ± 1.30E+00 (0) 9.60E-02 ± 5.63E-01 (0)‡

f06 1.56E+01 ± 2.98E+01 (0) 1.17E+03 ± 5.42E+02 (0)† [3.16E+04 ± 8.95E+02] (50) [4.74E+04 ± 1.88E+03] (50)†

f07 4.07E-03 ± 1.39E-03 (50) 9.53E-03 ± 5.73E-03 (43)† 5.21E-03 ± 1.26E-03 (50) 5.41E-03 ± 1.46E-03 (49)

f08 6.58E+02 ± 2.94E+02 (0) 4.84E+03 ± 6.80E+02 (0)† 0.00E+00 ± 0.00E+00 (50) 6.71E+03 ± 2.95E+02 (0)†

f09 1.85E+01 ± 7.55E+00 (0) 7.26E+01 ± 1.51E+01 (0)† 7.60E-05 ± 2.98E-04 (12) 1.16E+02 ± 2.28E+01 (0)†

f10 2.48E+00 ± 1.16E+00 (2) 9.73E+00 ± 1.66E+00 (0)† 8.65E-10 ± 2.00E-10 (50) 3.11E-06 ± 1.04E-06 (0)†

f11 3.22E-02 ± 4.06E-02 (12) 2.13E+00 ± 1.33E+00 (0)† 0.00E+00 ± 0.00E+00 (50) 6.41E-04 ± 2.22E-03 (46)†

f12 6.70E-01 ± 1.15E+00 (20) 2.77E+01 ± 2.24E+01 (0)† 1.31E-18 ± 1.09E-18 (50) 8.03E-12 ± 1.04E-11 (50)†

f13 7.14E-01 ± 1.24E+00 (1) 2.67E+04 ± 1.28E+05 (0) 3.28E-16 ± 3.02E-16 (50) 1.29E-04 ± 9.08E-04 (44)

F
DE/rand-to-best/1/bin DE/best/2/bin

DE/BBO DE DE/BBO DE

f01 0.00E+00 ± 0.00E+00 (50) 1.23E-34 ± 6.10E-34 (50) 1.65E-32 ± 1.37E-32 (50) 1.65E-31 ± 1.93E-31 (50)†

f02 [3.42E+04 ± 3.97E+02] (50) [4.14E+04 ± 3.72E+03] (50)† 3.11E-17 ± 6.65E-17 (50) 7.88E-15 ± 3.26E-14 (50)

f03 3.71E-25 ± 8.69E-25 (50) 5.63E-32 ± 2.72E-32 (50)‡ 3.28E-30 ± 5.47E-30 (50) 1.07E-30 ± 8.69E-31 (50)‡

f04 2.63E+00 ± 1.35E+00 (0) 2.95E+00 ± 1.31E+00 (0) 2.31E-06 ± 6.77E-06 (3) 3.64E-02 ± 4.42E-02 (0)†

f05 1.28E+01 ± 3.24E+00 (0) 1.04E+00 ± 1.77E+00 (37)‡ 1.10E+01 ± 5.63E+00 (0) 1.27E+01 ± 7.26E+00 (0)

f06 2.00E-02 ± 1.41E-01 (49) 3.42E+00 ± 4.13E+00 (5)† 2.20E-01 ± 4.65E-01 (40) 1.34E+01 ± 1.95E+01 (2)†

f07 8.43E-04 ± 2.62E-04 (50) 2.17E-03 ± 7.98E-04 (50)† 2.20E-03 ± 7.68E-04 (50) 5.33E-03 ± 2.81E-03 (46†

f08 4.97E+01 ± 7.60E+01 (33) 3.15E+03 ± 5.79E+02 (0)† 2.61E+01 ± 5.50E+01 (40) 4.60E+03 ± 5.21E+02 (0)†

f09 3.98E-02 ± 1.97E-01 (48) 2.37E+01 ± 7.13E+00 (0)† 1.11E+00 ± 1.25E+00 (19) 5.71E+01 ± 1.48E+01 (0)†

f10 6.13E-15 ± 1.78E-15 (50) 1.69E+00 ± 7.01E-01 (0)† 1.77E-01 ± 4.19E-01 (42) 3.99E+00 ± 1.14E+00 (0)†

f11 1.23E-03 ± 3.24E-03 (43) 1.35E-02 ± 1.52E-02 (12)† 6.74E-03 ± 8.82E-03 (23) 2.60E-02 ± 4.33E-02 (16)†

f12 2.07E-03 ± 1.47E-02 (49) 7.06E-02 ± 1.71E-01 (34)† 6.43E-02 ± 1.63E-01 (40) 1.54E+00 ± 2.35E+00 (8)†

f13 2.20E-04 ± 1.55E-03 (49) 2.71E+00 ± 1.05E+01 (16) 5.47E-03 ± 1.93E-02 (41) 1.99E+01 ± 2.41E+01 (0)†

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.

TABLE VII

INFLUENCE OF SELF-ADAPTIVE PARAMETER CONTROL TO DE/BBO AND DE FOR FUNCTIONS f01 − f13 (D = 30).

F
Error NFFEs

SADE/BBO SADE SADE/BBO SADE AR

f01 0.00E+00 ± 0.00E+00 (50) 1.75E-27 ± 1.57E-27 (50)† 3.91E+04 ± 8.15E+02 6.11E+04 ± 1.12E+03† 1.56

f02 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 5.12E+04 ± 8.17E+02 8.45E+04 ± 1.40E+03† 1.65

f03 2.10E-01 ± 2.85E-01 (0) 4.03E-13 ± 6.20E-13 (50)‡ NA 3.57E+05 ± 1.84E+04 NA

f04 4.11E-16 ± 1.10E-15 (50) 3.44E-14 ± 1.83E-13 (50) 2.25E+05 ± 3.57E+04 3.09E+05 ± 4.54E+03† 1.38

f05 4.05E+01 ± 2.30E+01 (0) 9.99E-02 ± 1.23E-01 (1)‡ NA 4.81E+05 ± 0.00E+00 NA

f06 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 1.46E+04 ± 4.91E+02 2.30E+04 ± 7.05E+02† 1.57

f07 1.98E-03 ± 4.35E-04 (50) 3.46E-03 ± 9.00E-04 (50)† 6.33E+04 ± 1.32E+04 1.11E+05 ± 2.23E+04† 1.75

f08 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 4.87E+04 ± 1.26E+03 9.58E+04 ± 2.27E+03† 1.97

f09 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 6.45E+04 ± 3.23E+03 1.19E+05 ± 4.08E+03† 1.85

f10 4.14E-15 ± 0.00E+00 (50) 1.54E-14 ± 5.48E-15 (50)† 5.92E+04 ± 8.21E+02 9.31E+04 ± 1.63E+03† 1.57

f11 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 4.04E+04 ± 7.94E+02 6.47E+04 ± 3.14E+03† 1.60

f12 1.57E-32 ± 0.00E+00 (50) 1.15E-28 ± 1.15E-28 (50)† 3.56E+04 ± 8.09E+02 5.52E+04 ± 1.28E+03† 1.55

f13 1.35E-32 ± 0.00E+00 (50) 3.92E-26 ± 5.22E-26 (50)† 4.22E+04 ± 8.62E+02 6.71E+04 ± 1.45E+03† 1.59

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.

(f08 - f13). DE/BBO can locate the near-global optimum over

all 50 runs for all these functions. However, DE/EDA traps

into the local minima many times. Especially, for f08 and f09,

DE/EDA fails to solve the two functions. In addition, Figure 5

shows that DE/BBO converges faster than DE/EDA on the

major functions.

I. Discussions

The DE algorithm is a fast, robust, and simple global

optimization algorithm. However, it may lack the exploitation.

BBO is novel optimization algorithm for global optimization.

BBO has a good exploitation with the migration operator.

Therefore, in this work, we hybridize DE with BBO and

propose a hybrid migration operator to generate the promis-
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TABLE VIII

COMPARISON THE PERFORMANCE OF DE/BBO WITH DE, DEACHSPX, AND ODE FOR FUNCTIONS f01 − f13 (D = 30).

F DE/BBO DE DEahcSPX ODE

f01 8.66E-28 ± 5.21E-28 (50) 1.10E-19 ± 1.34E-19 (50)† 2.90E-20 ± 2.28E-20 (50)† 4.33E-25 ± 1.86E-24 (50)

f02 0.00E+00 ± 0.00E+00 (50) 1.66E-15 ± 8.87E-16 (50)† 4.47E-16 ± 3.66E-16 (50)† 2.81E-13 ± 1.74E-13 (50)†

f03 2.26E-03 ± 1.58E-03 (0) 8.19E-12 ± 1.65E-11 (50)‡ 5.11E-12 ± 9.27E-12 (50)‡ 2.50E-11 ± 3.91E-11 (50)‡

f04 1.89E-15 ± 8.85E-16 (50) 7.83E+00 ± 3.78E+00 (0)† 7.79E+00 ± 3.18E+00 (0)† 9.44E-02 ± 2.33E-01 (14)†

f05 1.90E+01 ± 7.52E+00 (0) 8.41E-01 ± 1.53E+00 (6)‡ 1.24E+00 ± 1.67E+00 (5)‡ 2.80E+01 ± 9.24E+00 (0)†

f06 [2.16E+04 ± 5.73E+02] (50) [2.89E+04 ± 2.01E+03] (50)† [2.81E+04 ± 1.50E+03] (50)† [2.29E+04 ± 1.81E+03] (50)†

f07 3.44E-03 ± 8.27E-04 (50) 3.49E-03 ± 9.60E-04 (50) 3.52E-03 ± 1.20E-03 (50) 1.03E-03 ± 3.38E-04 (50)‡

f08 0.00E+00 ± 0.00E+00 (50) 4.28E+02 ± 4.69E+02 (1)† 4.98E+02 ± 8.42E+02 (5)† 1.63E+03 ± 1.27E+03 (1)†

f09 0.00E+00 ± 0.00E+00 (50) 1.14E+01 ± 7.57E+00 (0)† 1.30E+01 ± 8.11E+00 (0)† 1.65E+01 ± 1.17E+01 (0)†

f10 1.07E-14 ± 0.00E+00 (50) 6.73E-11 ± 2.86E-11 (50)† 3.89E-11 ± 1.97E-11 (50)† 5.34E-07 ± 3.77E-06 (49)

f11 0.00E+00 ± 0.00E+00 (50) 1.23E-03 ± 3.16E-03 (43)† 1.82E-03 ± 5.09E-03 (42)† 2.12E-03 ± 4.66E-03 (39)†

f12 7.16E-29 ± 6.30E-29 (50) 2.07E-03 ± 1.47E-02 (49) 6.22E-03 ± 2.49E-02 (47) 3.44E-18 ± 1.95E-17 (50)†

f13 9.81E-27 ± 7.10E-27 (50) 7.19E-02 ± 5.09E-01 (49) 3.22E-02 ± 2.26E-01 (46) 2.05E-22 ± 1.44E-21 (50)†

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.

TABLE IX

COMPARISON THE PERFORMANCE OF DE/BBO WITH DE, AND DE/EDA FOR FUNCTIONS f01 − f13 (D = 30).

F DE/BBO DE DE/EDA

f01 0.00E+00 ± 0.00E+00 (50) 2.20E-08 ± 2.91E-08 (22)† 4.68E-25 ± 1.33E-24 (50)†

f02 0.00E+00 ± 0.00E+00 (50) 8.46E-11 ± 8.62E-11 (50)† 8.33E-16 ± 2.85E-16 (50)†

f03 1.97E-06 ± 2.14E-06 (0) 3.93E-03 ± 5.06E-03 (0)† 5.27E-16 ± 1.17E-15 (50)‡

f04 1.46E+00 ± 1.01E+00 (0) 1.14E+01 ± 3.05E+00 (0)† 6.58E+00 ± 1.65E+00 (0)†

f05 2.08E+01 ± 7.69E+00 (0) 3.53E+01 ± 2.64E+01 (0)† 1.97E+01 ± 1.72E+01 (0)
f06 0.00E+00 ± 0.00E+00 (50) 2.00E-02 ± 1.41E-01 (49) 0.00E+00 ± 0.00E+00 (50)

f07 1.09E-03 ± 3.31E-04 (50) 1.04E-02 ± 3.70E-03 (23)† 3.10E-03 ± 1.31E-03 (50)†

f08 0.00E+00 ± 0.00E+00 (50) 6.53E+03 ± 4.96E+02 (0)† 7.81E+03 ± 2.77E+02 (0)†

f09 4.57E-12 ± 2.91E-11 (50) 2.48E+01 ± 2.32E+01 (0)† 7.72E+00 ± 2.52E+00 (0)†

f10 4.07E-15 ± 5.02E-16 (50) 1.09E+00 ± 7.27E-01 (0)† 1.26E+00 ± 6.31E-01 (7)†

f11 0.00E+00 ± 0.00E+00 (50) 1.28E-02 ± 1.70E-02 (24)† 1.67E-02 ± 1.91E-02 (16)†

f12 1.57E-32 ± 0.00E+00 (50) 3.73E-02 ± 9.54E-02 (31)† 3.73E-02 ± 9.07E-02 (38)†

f13 1.35E-32 ± 0.00E+00 (50) 1.18E+02 ± 7.77E+02 (0) 6.53E-01 ± 4.17E+00 (39)

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed DE/BBO method.

ing candidate solution. And then, the DE/BBO algorithm is

proposed based on the hybrid migration operator. From the

experimental results we can summarize that

• Our proposed DE/BBO approach is effective and effi-

cient. It can obtain the global, or near-global, optimum

for the test functions.

• The overall performance of DE/BBO is superior to or

highly competitive with BBO and other compared state-

of-the-art DE algorithms.

• DE/BBO and DE were compared for different population

sizes. On the majority of functions, DE/BBO is substan-

tial better than DE.

• The scalability studies show that DE/BBO is able to

accelerate DE in general, especially the improvements

are more significant at higher dimensionality.

• Comparison of DE/BBO and DE to different mutation

schemes, the overall performance of DE/BBO is more

robust than that of DE.

• The self-adaptive parameter control can enhance the

performance of DE/BBO and DE. Our proposed hybrid

migration operator shows the potential to accelerate the

self-adaptive variants of DE.

• For function f03, DE/BBO is worse than DE with

DE/rand/1/bin scheme. However, from Tables VI and IX,

we can see that DE/BBO is better than DE for

DE/best/1/bin and scheme described in Eqn. 5. So, we

can expect that the strategy adaptation as proposed in [28]

may be used to make DE/BBO more robust.

VI. CONCLUSIONS AND FUTURE WORK

In order to balance the exploration and the exploitation of

DE, in this paper, we propose a hybrid DE approach, called

DE/BBO, which combines the exploration of DE with the

exploitation of BBO. In DE/BBO, a new hybrid migration

operator is proposed to generate the promising solutions.

Since the hybrid migration operator has a good trade-off

between the exploration and the exploitation, it makes our

proposed DE/BBO approach be very effective and efficient. To

verify the performance of DE/BBO, 23 benchmark functions

chosen from literature are employed. Experimental results
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Fig. 5. Mean error curves of DE/BBO, DE, and DE/EDA for selected functions. (a) f03. (b) f05. (c) f06. (d) f08. (e) f10. (f) f12.

demonstrate the good performance of our approach. Compared

with BBO, DE, DEahcSPX, ODE, and DE/EDA, the results

show that DE/BBO is superior to or at least highly compet-

itive with them. Moreover, the influence of the population

size, dimensionality, different mutation schemes, and the self-

adaptive control parameters of DE/BBO and DE are also

investigated. And the results confirm that DE/BBO exhibits

a higher convergence rate and greater robustness compared

with DE.

In this work, we only consider the unconstrained function

optimization. Our future work consists on adding the diversity

rules into DE/BBO for constrained optimization problems.
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