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Artificial Bee Colony (ABC) algorithm is one of the most recently introduced swarm-based
algorithms. ABC simulates the intelligent foraging behaviour of a honeybee swarm. In this
work, ABC is used for optimizing a large set of numerical test functions and the results pro-
duced by ABC algorithm are compared with the results obtained by genetic algorithm, par-
ticle swarm optimization algorithm, differential evolution algorithm and evolution
strategies. Results show that the performance of the ABC is better than or similar to those
of other population-based algorithms with the advantage of employing fewer control
parameters.
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1. Introduction

Population-based optimization algorithms find near-optimal solutions to the difficult optimization problems by motivation
from nature. A common feature of all population-based algorithms is that the population consisting of possible solutions to the
problem is modified by applying some operators on the solutions depending on the information of their fitness. Hence, the pop-
ulation is moved towards better solution areas of the search space. Two important classes of population-based optimization
algorithms are evolutionary algorithms [1] and swarm intelligence-based algorithms [2]. Although Genetic Algorithm (GA)
[3], Genetic Programming (GP) [4], Evolution Strategy (ES) [5,6] and Evolutionary Programming (EP) [7] are popular evolution-
ary algorithms, GA is the most widely used one in the literature. GA is based on genetic science and natural selection and it at-
tempts to simulate the phenomenon of natural evolution at genotype level while ES and EP simulate the phenomenon of natural
evolution at phenotype level. One of the evolutionary algorithms which has been introduced recently is Differential Evolution
(DE) algorithm [8–10]. DE has been particularly proposed for numerical optimization problems. In the basic GA, a selection
operation is applied to the solutions evaluated by the evaluation unit. At this operation the chance of a solution being selected
as a parent depends on the fitness value of that solution. One of the main differences between the GA and the DE algorithm is
that, at the selection operation of the DE algorithm, all solutions have an equal chance of being selected as parents, i.e. the
chance does not depend on their fitness values. In DE, each new solution produced competes with its parent and the better
one wins the competition. In recent years, swarm intelligence has also attracted the interest of many research scientists of re-
lated fields. Bonabeau has defined the swarm intelligence as ‘‘. . .any attempt to design algorithms or distributed problem-solv-
ing devices inspired by the collective behaviour of social insect colonies and other animal societies. . .” [11]. Bonabeau et al.
focused their viewpoint on social insects alone such as termites, bees, wasps and different ant species. However, a swarm
can be considered as any collection of interacting agents or individuals. An ant colony can be thought of as a swarm whose indi-
vidual agents are ants; a flock of birds is a swarm of birds. An immune system [12] can be considered as a swarm of cells and
molecules as well as a crowd is a swarm of people. A popular swarm-intelligence-based algorithm is the Particle Swarm Opti-
mization (PSO) algorithm which was introduced by Eberhart and Kennedy in 1995 [13]. PSO is also a population-based stochas-
tic optimization technique and is well adapted to the optimization of nonlinear functions in multidimensional space. It models
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the social behaviour of bird flocking or fish schooling. PSO has received significant interest from researchers studying in differ-
ent research areas and has been successfully applied to several real-world problems [14].

The classical example of a swarm is bees’ swarming around their hive but it can be extended to other systems with a similar
architecture. Some approaches have been proposed to model the specific intelligent behaviours of honeybee swarms and they
have been applied for solving combinatorial type problems [15–23]. Tereshko considered a bee colony as a dynamical system
gathering information from an environment and adjusting its behaviour in accordance to it [15]. Tereshko and Loengarov
established a robot idea on foraging behaviour of bees. Usually, all these robots are physically and functionally identical, so
that any robot can replace any other robot. The swarm possesses a significant tolerance; the failure of a single agent does
not stop performance of the whole system. Like insects, the robots individually have limited capabilities and limited knowl-
edge of the environment. On the other hand, the swarm develops collective intelligence. The experiments showed that insect-
like robots are successful in real robotic tasks. Tereshko and Loengarov also developed a minimal model of forage selection
that leads to the emergence of collective intelligence which consists of three essential components: food sources, employed
foragers, and unemployed foragers, and defines two leading modes of the behaviour: recruitment to a nectar source and aban-
donment of a source [16,17]. Teodorović suggested to use bee swarm intelligence in the development of artificial systems
aimed at solving complex problems in traffic and transportation [19,18]. Once more Teodorović proposed the Bee Colony Opti-
mization (BCO) Metaheuristic which is capable of solving deterministic combinatorial problems, as well as combinatorial
problems characterized by uncertainty [20]. Drias et al. introduced a new intelligent approach or meta-heuristic called Bees
Swarm Optimization (BSO) and adapted it to the features of the maximum weighted satisfiability (max-sat) problem [21].
Similarly, Benatchba et al. introduced a metaheuristic based on the process of bees’ reproduction to solve a 3-sat problem
[22]. Wedde et al. presented a novel routing algorithm, called BeeHive, which was the inspiration gained from communicative
and evaluative methods and procedures of honeybees [23]. In BeeHive algorithm, bee agents travel through network regions
called foraging zones. On their way their information on the network state is delivered for updating the local routing tables.

The works mentioned in the previous paragraph introduced the algorithms of bees proposed for the combinatorial type
problems. There are three continuous optimization algorithms based on intelligent behaviour of honeybee swarm [24–26] in
the literature. Yang developed a Virtual Bee Algorithm (VBA) [24] to optimize only two-dimensional numeric functions. A
swarm of virtual bees is generated and started to move randomly in two-dimensional search space. Bees interact when they
find some target nectar and the solution of the problem is obtained from the intensity of these bee interactions. Pham et al.
introduced the Bees Algorithm in 2005, which employs several control parameters [25]. For optimizing multi-variable and
multi-modal numerical functions, Karaboga described an Artificial Bee Colony (ABC) algorithm [26] in 2005. Basturk and
Karaboga compared the performance of ABC algorithm with those of GA [27], PSO and PS-EA [28]; and DE, PSO and EA
[29] on a limited number of test problems. They have extended ABC algorithm for constrained optimization problems in
[30] and applied ABC for training neural networks [31,32]. ABC algorithm was used for designing IIR filters in [33] and for
the leaf-constrained minimum spanning tree problem in [34].

In this work, a comprehensive comparative study on the performances of well-known evolutionary and swarm-based
algorithms for optimizing a very large set of numerical functions is presented. In Section 2, ES, GA, PSO and DE algorithms
are briefly summarized. In Section 3, the foraging behaviour of real bees and then ABC algorithm simulating this behaviour
are described. Finally, in Section 4 and Section 5, the simulation results obtained are presented and discussed, respectively.
2. Evolution strategies, genetic algorithm, differential evolution algorithm, particle swarm optimization algorithm

2.1. Evolution strategies

Evolution Strategy has been proposed for numerical optimization problems and it is one of the oldest evolutionary algo-
rithms. Evolution Strategy produces n-dimensional real-valued vector by mutating its parent with identical standard devia-
tions to each vector element. The produced individual is evaluated and a selection scheme is applied to determine which
one will survive in the next generation and the other one will be discarded. This simple selection mechanism is expressed as
(1 + 1)-selection. In a ðlþ 1Þ-ES, which is a multi-membered evolution strategy, l parent individuals recombine to form
one offspring, which after being mutated eventually replaces the worst parent individuals, if it is better [35]. The canonical ver-
sions of the ES (CES) are denoted by ðl=q; kÞ-ES and ðl=qþ kÞ-ES. Here l indicates the number of parents, q 6 l is the number
of parents involved in the generation of an offspring, and k is the number of offspring produced. The parents are deterministi-
cally chosen from the set of either the offspring (referred to as comma-selection and l < k must hold) or both the parents and
offspring (referred to as plus-selection). Selection is based on the fitness of individuals. The main steps of ES are given below:

1: Initialize Population
2: repeat
3: Recombination
4: Mutation
5: Evaluation
6: Selection
7: until requirements are met
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Mutation is carried out by adding a normally distributed random term to each vector. Evolution strategies using Cauchy
mutation operators are called Fast Evolution Strategies (FES) [36]. Another mutation operator is Self-Organising Maps
(SOM)-based mutation operator which is continuously trained on successful offspring only, thus reflecting the evolution
path in away that allows for selection of further successful candidates with high probability [37]. Kohonen’s Self-Organ-
ising Mapping Evolution Strategy (KSOM-ES) is based on this adaptation for the mutation operator [38]. Neural Gas net-
works Evolution Strategy (NG-ES) has been used to overcome bad scaling property of KSOM-ES [39]. In Covariance
Matrix Adaptation Evolution Strategies (CMA-ES) devised for optimal exploitation of local information, the step size can
be selected by self-adaptation or by covariance matrix adaptation [40]. Evolution Strategies Learned with Automatic
Termination (ESLAT) criterion is another Evolution Strategy which uses an automatic termination criterion based on a gene
matrix [41].

2.2. Genetic algorithm

A basic GA consists of five components. These are a random number generator, a fitness evaluation unit and genetic oper-
ators for reproduction; crossover and mutation operations. The basic algorithm is summarized below:

1: Initialize Population
2: repeat
3: Evaluation
4: Reproduction
5: Crossover
6: Mutation
7: until requirements are met

The initial population required at the start of the algorithm, is a set of number strings generated by the random gener-
ator. Each string is a representation of a solution to the optimization problem being addressed. Binary strings are commonly
employed. Associated with each string is a fitness value computed by the evaluation unit. A fitness value is a measure of the
goodness of the solution that it represents. The aim of the genetic operators is to transform this set of strings into sets with
higher fitness values. The reproduction operator performs a natural selection function known as seeded selection. Individual
strings are copied from one set (representing a generation of solutions) to the next according to their fitness values, the
higher the fitness value, the greater the probability of a string being selected for the next generation. The crossover operator
chooses pairs of strings at random and produces new pairs. The simplest crossover operation is to cut the original parent
strings at a randomly selected point and to exchange their tails. The number of crossover operations is governed by a
crossover rate. The mutation operator randomly mutates or reverses the values of bits in a string. The number of muta-
tion operations is determined by a mutation rate. A phase of the algorithm consists of applying the evaluation, reproduc-
tion, crossover and mutation operations. A new generation of solutions is produced with each phase of the algorithm
[42].

2.3. Differential evolution algorithm

The DE algorithm is a population-based algorithm like genetic algorithms using the similar operators; crossover, muta-
tion and selection. The main difference in constructing better solutions is that genetic algorithms rely on crossover while DE
relies on mutation operation. This main operation is based on the differences of randomly sampled pairs of solutions in the
population. The algorithm uses mutation operation as a search mechanism and selection operation to direct the search to-
ward the prospective regions in the search space. The DE algorithm also uses a non-uniform crossover that can take child
vector parameters from one parent more often than it does from others. By using the components of the existing population
members to construct trial vectors, the recombination (crossover) operator efficiently shuffles information about successful
combinations, enabling the search for a better solution space. In DE, a population of solution vectors is randomly created at
the start. This population is successfully improved by applying mutation, crossover and selection operators. In the DE algo-
rithm, each new solution produced competes with a mutant vector and the better one wins the competition. DE has received
significant interest from researchers studying in different research areas and has been applied to several real-world prob-
lems [8,43]. The main steps of the DE algorithm are presented below:

1: Initialize Population
2: Evaluation
3: repeat
4: Mutation
5: Recombination
6: Evaluation
7: Selection
8: until requirements are met
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Mutation: Each of the N parameter vectors undergoes mutation. Mutation operation expands the search space. A mutant
solution vector x̂i is produced by (1):
x̂i ¼ xr1 þ Fðxr3 � xr2 Þ; ð1Þ
where F is the scaling factor having values in the range of [0,1] and solution vectors xr1; xr2 and xr3 are randomly chosen and
must satisfy (2):
xr1 ; xr2 ; xr3 r1 – r2 – r3 – ij ; ð2Þ
where i is the index of current solution.
Crossover: The parent vector is mixed with the mutated vector to produce a trial vector by (3):
yj
i ¼

x̂j
i Rj 6 CR;

xj
i Rj > CR;

(
ð3Þ
where CR is crossover constant and Rj is a randomly selected real number between [0,1] and j denotes the jth component of
the corresponding array.

All solutions in the population have the same chance of being selected as parents without dependence of their fitness
value. The child produced after the mutation and crossover operations is evaluated. Then, the performance of the child vector
and its parent is compared and the better one wins the competition. If the parent is still better, it is retained in the
population.

2.4. Particle swarm optimization

In PSO, a population of particles starts to move in search space by following the current optimum particles and changing
the positions in order to find out the optima. The position of a particle refers to a possible solution of the function to be opti-
mized. Evaluating the function by the particle’s position provides the fitness of that solution. In every iteration, each particle
is updated by following the best solution of current particle achieved so far (~pðtÞ, particle best) and the best of the population
(~gðtÞ, global best). When a particle takes part of the population as its topological neighbours, the best value is a local best. The
particles tend to move to good areas in the search space by the information spreading to the swarm. The particle is moved to
a new position calculated by the velocity updated at each time step t. This new position is calculated as the sum of the pre-
vious position and the new velocity by (4):
~xðt þ 1Þ ¼~xðtÞ þ~tðt þ 1Þ: ð4Þ
The velocity update is performed as indicated in Eq. (5):
~tðt þ 1Þ ¼ x~tðtÞ þ /1randð0;1Þð~pðtÞ �~xðtÞÞ þ /2randð0;1Þð~gðtÞ �~xðtÞÞ: ð5Þ
The parameter x is called the inertia weight and controls the magnitude of the old velocity~tðtÞ in the calculation of the new
velocity, whereas /1 and /2 determine the significance of ~pðtÞ and~gðtÞ, respectively. Furthermore, ti at any time step of the
algorithm is constrained by the parameter tmax. The swarm in PSO is initialized by assigning each particle to a uniformly and
randomly chosen position in the search space. Velocities are initialized randomly in the range ½tmin; tmax�. Main steps of the
procedure are:

1: Initialize Population
2: repeat
3: Calculate fitness values of particles
4: Modify the best particles in the swarm
5: Choose the best particle
6: Calculate the velocities of particles
7: Update the particle positions
8: until requirements are met

Particles’ velocities on each dimension are clamped to a maximum velocity tmax. If the sum of accelerations would cause
the velocity on that dimension to exceed tmax, which is a parameter specified by the user, then the velocity on that dimension
is limited to tmax.

3. Artificial Bee Colony (ABC) algorithm

3.1. Behaviour of real bees

Tereshko developed a model of foraging behaviour of a honeybee colony based on reaction–diffusion equations [15–17].
This model that leads to the emergence of collective intelligence of honeybee swarms consists of three essential
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components: food sources, employed foragers, and unemployed foragers, and defines two leading modes of the honeybee
colony behaviour: recruitment to a food source and abandonment of a source. Tereshko explains the main components of
his model as below:

1. Food Sources: In order to select a food source, a forager bee evaluates several properties related with the food source such
as its closeness to the hive, richness of the energy, taste of its nectar, and the ease or difficulty of extracting this energy.
For the simplicity, the quality of a food source can be represented by only one quantity although it depends on various
parameters mentioned above.

2. Employed foragers: An employed forager is employed at a specific food source which she is currently exploiting. She car-
ries information about this specific source and shares it with other bees waiting in the hive. The information includes the
distance, the direction and the profitability of the food source.

3. Unemployed foragers: A forager bee that looks for a food source to exploit is called unemployed.It can be either a scout
who searches the environment randomly or an onlooker who tries to find a food source by means of the information given
by the employed bee. The mean number of scouts is about 5–10%.

The exchange of information among bees is the most important occurrence in the formation of collective knowledge.
While examining the entire hive it is possible to distinguish some parts that commonly exist in all hives. The most important
part of the hive with respect to exchanging information is the dancing area. Communication among bees related to the qual-
ity of food sources occurs in the dancing area. The related dance is called waggle dance. Since information about all the cur-
rent rich sources is available to an onlooker on the dance floor, probably she could watch numerous dances and chooses to
employ herself at the most profitable source. There is a greater probability of onlookers choosing more profitable sources
since more information is circulating about the more profitable sources. Employed foragers share their information with
a probability which is proportional to the profitability of the food source, and the sharing of this information through waggle
dancing is longer in duration. Hence, the recruitment is proportional to profitability of a food source [17].

In order to better understand the basic behaviour characteristics of foragers, let us examine Fig. 1. Assume that there
are two discovered food sources: A and B. At the very beginning, a potential forager will start as unemployed forager.
That forager bee will have no knowledge about the food sources around the nest. There are two possible options for such
a bee:

i. It can be a scout and starts searching around the nest spontaneously for food due to some internal motivation or pos-
sible external clue (S on Fig. 1).

ii. It can be a recruit after watching the waggle dances and starts searching for a food source (R on Fig. 1).
Fig. 1. Behaviour of honeybee foraging for nectar.



D. Karaboga, B. Akay / Applied Mathematics and Computation 214 (2009) 108–132 113
After finding the food source, the bee utilizes its own capability to memorize the location and then immediately starts
exploiting it. Hence, the bee will become an employed forager. The foraging bee takes a load of nectar from the source
and returns to the hive, unloading the nectar to a food store. After unloading the food, the bee has the following options:

i. It might become an uncommitted follower after abandoning the food source (UF).
ii. It might dance and then recruit nest mates before returning to the same food source (EF1).

iii. It might continue to forage at the food source without recruiting bees (EF2).

It is important to note that not all bees start foraging simultaneously. The experiments confirmed that new bees begin
foraging at a rate proportional to the difference between the eventual total number of bees and the number of bees presently
foraging.
3.2. Artificial Bee Colony (ABC) algorithm

In ABC algorithm, the position of a food source represents a possible solution to the optimization problem and the nectar
amount of a food source corresponds to the quality (fitness) of the associated solution. The number of the employed bees or
the onlooker bees is equal to the number of solutions in the population. At the first step, the ABC generates a randomly dis-
tributed initial population PðC ¼ 0Þ of SN solutions (food source positions), where SN denotes the size of employed bees or
onlooker bees. Each solution xiði ¼ 1;2; . . . ; SNÞ is a D-dimensional vector. Here, D is the number of optimization parameters.
After initialization, the population of the positions (solutions) is subject to repeated cycles, C ¼ 1;2; . . . ;MCN, of the search
processes of the employed bees, the onlooker bees and the scout bees. An employed bee produces a modification on the po-
sition (solution) in her memory depending on the local information (visual information) and tests the nectar amount (fitness
value) of the new source (new solution). If the nectar amount of the new one is higher than that of the previous one, the bee
memorizes the new position and forgets the old one. Otherwise she keeps the position of the previous one in her memory.
After all employed bees complete the search process, they share the nectar information of the food sources and their position
information with the onlooker bees. An onlooker bee evaluates the nectar information taken from all employed bees and
chooses a food source with a probability related to its nectar amount. As in the case of the employed bee, she produces a
modification on the position in her memory and checks the nectar amount of the candidate source. If the nectar is higher
than that of the previous one, the bee memorizes the new position and forgets the old one.

The main steps of the algorithm are as below:

1: Initialize Population
2: repeat
3: Place the employed bees on their food sources
4: Place the onlooker bees on the food sources depending on their nectar amounts
5: Send the scouts to the search area for discovering new food sources
6: Memorize the best food source found so far
7: until requirements are met

In ABC algorithm, each cycle of the search consists of three steps: sending the employed bees onto their food sources and
evaluating their nectar amounts; after sharing the nectar information of food sources, the selection of food source regions by
the onlookers and evaluating the nectar amount of the food sources; determining the scout bees and then sending them ran-
domly onto possible new food sources. At the initialization stage, a set of food sources is randomly selected by the bees and
their nectar amounts are determined. At the first step of the cycle, these bees come into the hive and share the nectar infor-
mation of the sources with the bees waiting on the dance area. A bee waiting on the dance area for making decision to choose
a food source is called onlooker and the bee going to the food source visited by herself just before is named as employed bee.
After sharing their information with onlookers, every employed bee goes to the food source area visited by herself at the
previous cycle since that food source exists in her memory, and then chooses a new food source by means of visual infor-
mation in the neighbourhood of the one in her memory and evaluates its nectar amount. At the second step, an onlooker
prefers a food source area depending on the nectar information distributed by the employed bees on the dance area. As
the nectar amount of a food source increases, the probability of that food source chosen also increases. After arriving at
the selected area, she chooses a new food source in the neighbourhood of the one in the memory depending on visual infor-
mation as in the case of employed bees. The determination of the new food source is carried out by the bees based on the
comparison process of food source positions visually. At the third step of the cycle, when the nectar of a food source is aban-
doned by the bees, a new food source is randomly determined by a scout bee and replaced with the abandoned one. In our
model, at each cycle at most one scout goes outside for searching a new food source, and the number of employed and on-
looker bees is selected to be equal to each other. These three steps are repeated through a predetermined number of cycles
called Maximum Cycle Number ðMCNÞ or until a termination criterion is satisfied.

An artificial onlooker bee chooses a food source depending on the probability value associated with that food source, pi,
calculated by the following expression (6):
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pi ¼
fitiPSN

n¼1fitn

; ð6Þ
where fiti is the fitness value of the solution i which is proportional to the nectar amount of the food source in the position i
and SN is the number of food sources which is equal to the number of employed bees or onlooker bees.

In order to produce a candidate food position from the old one in memory, the ABC uses the following expression (7):
v ij ¼ xij þ /ijðxij � xkjÞ; ð7Þ
where k 2 f1;2; . . . ; SNg and j 2 f1;2; . . . ;Dg are randomly chosen indexes. Although k is determined randomly, it has to be
different from i. /i;j is a random number between [�1,1]. It controls the production of neighbour food sources around xi;j and
represents the comparison of two food positions visually by a bee. As can be seen from (7), as the difference between the
parameters of the xi;j and xk;j decreases, the perturbation on the position xi;j gets decreased, too. Thus, as the search ap-
proaches the optimum solution in the search space, the step length is adaptively reduced.

If a parameter value produced by this operation exceeds its predetermined limit, the parameter can be set to an accept-
able value. In this work, the value of the parameter exceeding its limit is set to its limit value.

The food source of which the nectar is abandoned by the bees is replaced with a new food source by the scouts. In ABC,
this is simulated by producing a position randomly and replacing it with the abandoned one. In ABC, if a position cannot be
improved further through a predetermined number of cycles, then that food source is assumed to be abandoned. The value of
predetermined number of cycles is an important control parameter of the ABC algorithm, which is called ‘‘limit” for aban-
donment. Assume that the abandoned source is xi and j 2 f1;2; . . . ;Dg, then the scout discovers a new food source to be re-
placed with xi. This operation can be defined as in (8)
xj
i ¼ xj

min þ rand½0;1� xj
max � xj

min

� �
: ð8Þ
After each candidate source position v i;j is produced and then evaluated by the artificial bee, its performance is compared
with that of its old one. If the new food source has an equal or better nectar than the old source, it is replaced with the
old one in the memory. Otherwise, the old one is retained in the memory. In other words, a greedy selection mechanism
is employed as the selection operation between the old and the candidate one.

Totally, ABC algorithm employs four different selection processes: (1) a global probabilistic selection process, in which the
probability value is calculated by (6) used by the onlooker bees for discovering promising regions, (2) a local probabilistic
selection process carried out in a region by the employed bees and the onlookers depending on the visual information such
as the color, shape and fragrance of the flowers (sources) (bees will not be able to identify the type of nectar source until they
arrive at the right location and discriminate among sources growing there based on their scent) for determining a food source
around the source in the memory in a way described by (7), (3) a local selection called greedy selection process carried out by
onlooker and employed bees in that if the nectar amount of the candidate source is better than that of the present one, the
bee forgets the present one and memorizes the candidate source produced by (7). Otherwise, the bee keeps the present one
in the memory. (4) a random selection process carried out by scouts as defined in (8).

It is clear from the above explanation that there are three control parameters in the basic ABC: The number of food sources
which is equal to the number of employed or onlooker bees ðSNÞ, the value of limit and the maximum cycle number ðMCNÞ.

In the case of honeybees, the recruitment rate represents a measure of how quickly the bee colony finds and exploits a
newly discovered food source. Artificial recruiting could similarly represent the measurement of the speed with which the
feasible solutions or the good quality solutions of the difficult optimization problems can be discovered. The survival and pro-
gress of the bee colony are dependent upon the rapid discovery and efficient utilization of the best food resources. Similarly;
the successful solution of difficult engineering problems is connected to the relatively fast discovery of good solutions espe-
cially for the problems that need to be solved in real time. In a robust search process, exploration and exploitation processes
must be carried out together. In the ABC algorithm, while onlookers and employed bees carry out the exploitation process in
the search space, the scouts control the exploration process. Detailed pseudo-code of the ABC algorithm is given below:

1: Initialize the population of solutions xi; i ¼ 1; . . . ; SN
2: Evaluate the population
3: cycle = 1
4: repeat
5: Produce new solutions ti for the employed bees by using (7) and evaluate them
6: Apply the greedy selection process for the employed bees
7: Calculate the probability values Pi for the solutions xi by (6)
8: Produce the new solutions ti for the onlookers from the solutions xi selected depending on Pi and evaluate them
9: Apply the greedy selection process for the onlookers

10: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced solution xi

by (8)
11: Memorize the best solution achieved so far
12: cycle = cycle + 1
13: until cycle = MCN
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4. Experiments 1: ABC vs. GA, DE and PSO

4.1. Settings

In all experiments in this section, the values of the common parameters used in each algorithm such as population size
and total evaluation number were chosen to be the same. Population size was 50 and the maximum evaluation number was
500.000 for all functions. The other specific parameters of algorithms are given below:

GA Settings: In our experiments, we employed a binary coded standard GA having evaluation, fitness scaling,
seeded selection, random selection, crossover, mutation and elite units. Single point crossover operation with the rate
of 0.8 was employed. Mutation operation restores genetic diversity lost during the application of reproduction and
crossover. Mutation rate in our experiments was 0.01. Stochastic uniform sampling technique was our selection meth-
od. Generation gap is the proportion of the population to be replaced. Chosen generation gap value in experiments
was 0.9.

DE Settings: In DE, F is a real constant which affects the differential variation between two solutions and set to 0.5 in our
experiments. Value of crossover rate, which controls the change of the diversity of the population, was chosen to be 0.9 as
recommended in [43].

PSO Settings: Cognitive and social components (/1 and /2 in (5)) are constants that can be used to change the weighting
between personal and population experience, respectively. In our experiments cognitive and social components were both
set to 1.8. Inertia weight, which determines how the previous velocity of the particle influences the velocity in the next iter-
ation, was 0.6 as recommended in [44].
Table 1
Benchmark functions used in experiments 1. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Range D C Function Formulation

1 [�5.12,5.12] 5 US Stepint f ðxÞ ¼ 25þ
P5

i¼1bxic

2 [�100,100] 30 US Step f ðxÞ ¼
Pn

i¼1ðbxi þ 0:5cÞ2

3 [�100,100] 30 US Sphere f ðxÞ ¼
Pn

i¼1x2
i

4 [�10,10] 30 US SumSquares f ðxÞ ¼
Pn

i¼1ix2
i

5 [�1.28,1.28] 30 US Quartic f ðxÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ

6 [�4.5,4.5] 5 UN Beale f ðxÞ ¼ ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x2
2Þ

2 þ ð2:625� x1 þ x1x3
2Þ

2

7 [�100,100] 2 UN Easom f ðxÞ ¼ � cosðx1Þ cosðx2Þ expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ
8 [�10,10] 2 UN Matyas f ðxÞ ¼ 0:26ðx2

1 þ x2
2Þ � 0:48x1x2

9 [�10,10] 4 UN Colville f20ðxÞ ¼ 100ðx2
1 � x2Þ2 þ ðx1 � 1Þ2 þ ðx3 � 1Þ2 þ 90ðx2

3 � x4Þ2 þ 10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ
þ19:8ðx2 � 1Þðx4 � 1Þ

10 ½�D2;D2� 6 UN Trid6 f ðxÞ ¼
Pn

i¼1ðxi � 1Þ2 �
Pn

i¼2xixi�1

11 ½�D2;D2� 10 UN Trid10 f ðxÞ ¼
Pn

i¼1ðxi � 1Þ2 �
Pn

i¼2xixi�1

12 [�5,10] 10 UN Zakharov f ðxÞ ¼
Pn

i¼1x2
i þ

Pn
i¼10:5ixi

� �2 þ
Pn

i¼10:5ixi
� �4

13 [�4,5] 24 UN Powell f ðxÞ ¼
Pn=k

i¼1ðx4i�3 þ 10x4i�2Þ2 þ 5ðx4i�1 � x4iÞ2 þ ðx4i�2 � x4i�1Þ4 þ 10ðx4i�3 � x4iÞ4

14 [�10,10] 30 UN Schwefel 2.22 f ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij

15 [�100,100] 30 UN Schwefel 1.2 f ðxÞ ¼
Pn

i¼1
Pi

j¼1xj

� �2

16 [�30,30] 30 UN Rosenbrock f ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2�

17 [�10,10] 30 UN Dixon-Price f ðxÞ ¼ ðx1 � 1Þ2 þ
Pn

i¼2ið2x2
i � xi�1Þ2

18 [�65.536,65.536] 2 MS Foxholes f ðxÞ ¼ 1
500þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6

� ��1

19 [�5,10]x[0,15] 2 MS Branin f ðxÞ ¼ x2 � 5:1
4p2 x2

1 þ 5
p x1 � 6

� �2
þ 10 1� 1

8p
� �

cos x1 þ 10

20 [�100,100] 2 MS Bohachevsky1 f ðxÞ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7

21 [�10,10] 2 MS Booth f ðxÞ ¼ ðx1 þ 2x2 � 7Þ2 þ ð2x1 þ x2 � 5Þ2

22 [�5.12,5.12] 30 MS Rastrigin f ðxÞ ¼
Pn

i¼1½x2
i � 10 cosð2pxiÞ þ 10�

23 [�500,500] 30 MS Schwefel f ðxÞ ¼
Pn

i¼1 � xi sin
ffiffiffiffiffiffiffi
jxij

p� �
24 ½0;p� 2 MS Michalewicz2 f ðxÞ ¼ �

Pn
i¼1 sinðxiÞðsinðix2

i =pÞÞ
2m

m ¼ 10

25 ½0;p� 5 MS Michalewicz5 f ðxÞ ¼ �
Pn

i¼1 sinðxiÞðsinðix2
i =pÞÞ

2m

m ¼ 10

26 ½0;p� 10 MS Michalewicz10 f ðxÞ ¼ �
Pn

i¼1 sinðxiÞðsinðix2
i =pÞÞ

2m

m ¼ 10
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ABC Settings: Except common parameters (population number and maximum evaluation number), the basic ABC used in
this study employs only one control parameter, which is called limit. A food source will not be exploited anymore and is
Table 2
Benchmark functions used in experiments 1. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Range D C Function Formulation

27 [�100,100] 2 MN Schaffer f ðxÞ ¼ 0:5þ sin2
ffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p
ð Þ�0:5

ð1þ0:001ðx2
1þx2

2ÞÞ
2

28 [�5,5] 2 MN Six Hump Camel Back f ðxÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3 x6

1 þ x1x2� 4x2
2 þ 4x4

2

29 [�100,100] 2 MN Bohachevsky2 f ðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1Þð4px2Þ þ 0:3

30 [�100,100] 2 MN Bohachevsky3 f ðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1 þ 4px2Þ þ 0:3

31 [�10,10] 2 MN Shubert f ðxÞ ¼
P5

i¼1i cosððiþ 1Þx1 þ iÞ
� � P5

i¼1i cosððiþ 1Þx2 þ iÞ
� �

32 [�2,2] 2 MN GoldStein-Price
f ðxÞ ¼ 1þ ðx1 þ x2 þ 1Þ2

ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ

� �
30þ ð2x1 � 3x2Þ2

ð18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2Þ

� �

33 [�5,5] 4 MN Kowalik f ðxÞ ¼
P11

i¼1 ai � x1ðb2
i þbi x2Þ

b2
i þbi x3þx4

	 
2

34 [0,10] 4 MN Shekel5 f ðxÞ ¼ �
P5

i¼1½ðx� aiÞðx� aiÞT þ ci��1

35 [0,10] 4 MN Shekel7 f ðxÞ ¼ �
P7

i¼1½ðx� aiÞðx� aiÞT þ ci��1

36 [0,10] 4 MN Shekel10 f ðxÞ ¼ �
P10

i¼1½ðx� aiÞðx� aiÞT þ ci��1

37 [�D,D] 4 MN Perm f ðxÞ ¼
Pn

k¼1
Pn

i¼1ði
k þ bÞððxi=iÞk � 1Þ

h i2

38 [0,D] 4 MN PowerSum f ðxÞ ¼
Pn

k¼1
Pn

i¼1xk
i

� �
� bk

� �2
39 [0,1] 3 MN Hartman3 f ðxÞ ¼ �

P4
i¼1ci exp �

P3
j¼1aijðxj � pijÞ

2
h i

40 [0,1] 6 MN Hartman6 f ðxÞ ¼ �
P4

i¼1ci exp �
P6

j¼1aijðxj � pijÞ
2

h i

41 [�600,600] 30 MN Griewank f ðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1

42 [�32,32] 30 MN Ackley f ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e

43 [�50,50] 30 MN Penalized

f ðxÞ ¼ p
n

10 sin2ðpy1Þ
þ
Pn�1

i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ�
þðyn � 1Þ2

8><
>:

9>=
>;

þ
Pn

i¼1uðxi;10;100;4Þ

yi ¼ 1þ 1
4 ðxi þ 1Þ

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi > a
0; �a 6 xi 6 a
kð�xi � aÞm; xi < �a

8<
:

44 [�50,50] 30 MN Penalized2
f ðxÞ ¼ 0:1

sin2ðpx1ÞþPn�1
i¼1
ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ�þ
ðxn � 1Þ2½1þ sin2ð2pxnÞ�

8><
>:

9>=
>;þPn

i¼1uðxi;5;100;4Þ

Table 3
Benchmark functions used in experiments 1. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Range D C Function Formulation

45 [0,10] 2 MN Langerman2 f ðxÞ ¼ �
Pm

i¼1ci exp � 1
p
Pn

j¼1ðxj � aijÞ2
� �

cos p
Pn

j¼1ðxj � aijÞ2
� �� �

46 [0,10] 5 MN Langerman5 f ðxÞ ¼ �
Pm

i¼1ci exp � 1
p
Pn

j¼1ðxj � aijÞ2
� �

cosðp
Pn

j¼1ðxj � aijÞ2Þ
� �

47 [0,10] 10 MN Langerman10 f ðxÞ ¼ �
Pm

i¼1ci exp � 1
p
Pn

j¼1ðxj � aijÞ2
� �

cos p
Pn

j¼1ðxj � aijÞ2
� �� �

48 ½�p;p� 2 MN FletcherPowell2
f ðxÞ ¼

Pn
i¼1ðAi � BiÞ2

Ai ¼
Pn

j¼1ðaij sin aj þ bij cos ajÞ
Bi ¼

Pn
j¼1ðaij sin xj þ bij cos xjÞ

49 ½�p;p� 5 MN FletcherPowell5
f ðxÞ ¼

Pn
i¼1ðAi � BiÞ2

Ai ¼
Pn

j¼1ðaij sin aj þ bij cos ajÞ
Bi ¼

Pn
j¼1ðaij sin xj þ bij cos xjÞ

50 ½�p;p� 10 MN FletcherPowell10
f ðxÞ ¼

Pn
i¼1ðAi � BiÞ2

Ai ¼
Pn

j¼1ðaij sin aj þ bij cos ajÞ
Bi ¼

Pn
j¼1ðaij sin xj þ bij cos xjÞ
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assumed to be abandoned when limit is exceeded for the source. This means that the solution of which ‘‘trial number” ex-
ceeds the limit value cannot be improved anymore. We defined a relation (9) for the limit value using the dimension of the
problem and the colony size:
Table 4
a and c

i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Table 5
A param

i A

1 �
2 9
3 �
4 �
5 �
6 3
7 5
8 8
9 5
10 �
11 2
12 �
13 5
14 8
15 �
16 3
17 �
18 5
19 8
20 5
limit ¼ ðSN � DÞ ð9Þ
where D is the dimension of the problem and SN is the number of food sources or employed bees.
parameters of Langerman function.

aij; j ¼ 1; . . . ;10 ci

9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 0.806
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 1.5
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426 0.908
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 0.965
7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208 0.669
1.256 3.605 8.623 6.905 0.584 8.133 6.071 6.888 4.187 5.448 0.524
8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762 0.902
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637 0.531
7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247 0.876
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016 0.462
2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789 0.491
8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109 0.463
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564 0.714
4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670 0.352
8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826 0.869
8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591 0.813
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740 0.811
2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675 0.828
6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258 0.964
0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070 0.789
5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234 0.360
3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027 0.369
8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064 0.992
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224 0.332
0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644 0.817
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229 0.632
4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506 0.883
9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732 0.608
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500 0.326

eter of Fletcher–Powell function.

ij; j ¼ 1; . . . ;20

79 56 �62 �9 92 48 �22 �34 �39 �40 �95 �69 �20 �66 �98 �66 �67 37 �83 �45
1 �9 �18 �59 99 �45 88 �14 �29 26 71 �65 19 45 88 18 �11 �81 �10 42
38 8 �12 �73 40 26 �64 29 �82 �32 �89 �3 88 98 53 58 45 �39 34 �23
78 �18 �49 65 66 �40 88 �95 �57 10 �98 �11 �16 �55 33 84 21 �43 45 100
1 �43 93 �18 �76 �68 �42 22 46 �14 69 27 �12 �26 57 �13 0 1 56 17
4 �96 26 �56 �36 �85 �62 13 93 78 �43 96 77 65 �34 �52 82 18 �59 �55
2 �46 �69 99 �47 �72 �11 55 �55 91 �30 7 �35 23 �20 55 61 �39 �58 13
1 47 35 55 67 �13 33 14 83 �42 8 �45 �44 12 100 �9 �33 �11 21 14

�43 �45 46 56 �94 �62 52 66 55 �86 �29 �52 �71 �91 �46 27 �27 6 67
50 66 �47 �75 89 �16 82 6 �85 �62 �30 31 �7 �75 �26 �24 46 �95 �71 �57
4 98 �50 68 �97 �64 �24 81 �59 �7 85 �92 2 61 52 �59 �91 74 �99 �95
30 �63 �32 �90 �35 44 �64 57 27 87 �70 �39 �18 �89 99 40 14 �58 �5 �42
6 3 88 38 �14 �15 84 �9 65 �20 �75 �37 74 66 �44 72 74 90 �83 �40
4 1 73 43 84 �99 �35 24 �78 �58 47 �83 94 �86 �65 63 �22 65 50 �40
21 �8 �48 68 �91 17 �52 �99 �23 43 �8 �5 �98 �17 �62 �79 60 �18 54 74
5 93 �98 �88 �8 64 15 69 �65 �86 58 �44 �9 �94 68 �27 �79 �67 �35 �56
91 73 51 68 96 49 10 �13 �6 �23 50 �89 19 �67 36 �97 0 3 1 39
3 66 23 10 �33 62 �73 22 �65 37 �83 �65 59 �51 �56 98 �57 �11 �48 88
3 48 67 27 91 �33 �90 �34 39 �36 �68 17 �7 14 11 �10 96 98 �32 56
2 �52 �5 19 �25 15 �1 �11 8 �70 �4 �7 �4 �6 48 88 13 �56 85 �65
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4.2. Benchmark functions

In the field of evolutionary computation, it is common to compare different algorithms using a large test set, especially
when the test involves function optimization. Attempting to design a perfect test set where all the functions are present in
order to determine whether an algorithm is better than another for every function, is a fruitless task. That is the reason why,
when an algorithm is evaluated, we must look for the kind of problems where its performance is good, in order to charac-
terize the type of problems for which the algorithm is suitable [45]. We used 50 benchmark problems in order to test the
performance of the GA, DE, PSO and the ABC algorithms. This set is large enough to include many different kinds of problems
such as unimodal, multimodal, regular, irregular, separable, non-separable and multidimensional. Initial range, formulation,
characteristics and the dimensions of these problems are listed in Tables 1–3.

If a function has more than one local optimum, this function is called multimodal. Multimodal functions are used to test the
ability of algorithms getting rid of local minima. If the exploration process of an algorithm is poor that it cannot search whole
space efficiently, this algorithm gets stuck at the local minima. Functions having flat surfaces are difficult for algorithms as
well as multimodal functions since the flatness of the function does not give the algorithm any information to direct the
search process towards the minima (Stepint, Matyas, PowerSum). Another group of test problems is separable/nonseparable
functions. A p-variable separable function can be expressed as the sum of p functions of one variable. Non-separable functions
Table 6
B parameter of Fletcher–Powell function.

i Bij; j ¼ 1; . . . ;21

1 �65 �11 76 78 30 93 �86 �99 �37 52 �20 �10 �97 �71 16 9 �99 �84 90 �18 �94
2 59 67 49 �45 52 �33 �34 29 �39 �80 22 7 3 �19 �15 7 �83 �4 84 �60 �4
3 21 �23 �80 86 86 �30 39 �73 �91 5 83 �2 �45 �54 �81 �8 14 83 73 45 32
4 �91 �75 20 �64 �15 17 �89 36 �49 �2 56 �6 76 56 2 �68 �59 �70 48 2 24
5 �79 99 �31 �8 �67 �72 �43 �55 76 �57 1 �58 3 �59 30 32 57 29 66 50 �80
6 �89 �35 �55 75 15 �6 �53 �56 �96 87 �90 �93 52 �86 �38 �55 �53 94 98 4 �79
7 �76 45 74 12 �12 �69 2 71 75 �60 �50 23 0 6 44 �82 37 91 84 �15 �63
8 �50 �88 93 68 10 �13 84 �21 65 14 4 92 11 67 �18 �51 4 21 �38 75 �59
9 �23 �95 99 62 �37 96 27 69 �64 �92 �12 87 93 �19 �99 �92 �34 �77 17 �72 29
10 �5 �57 �30 �6 �96 75 25 �6 96 77 �35 �10 82 82 97 �39 �65 �8 34 72 65
11 85 �9 �14 27 �45 70 55 26 �87 �98 �25 �12 60 �45 �24 �42 �88 �46 �95 53 28
12 80 �47 38 �6 43 �59 91 �41 90 �63 11 �54 33 �61 74 96 21 �77 �58 �75 �9
13 �66 �98 �4 96 �11 88 �99 5 5 58 �53 52 �98 �97 50 49 97 �62 79 �10 �80
14 80 �95 82 5 �68 �54 64 �2 5 10 85 �33 �54 �30 �65 58 40 �21 �84 �66 �11
15 94 85 �31 37 �25 60 55 �13 48 �23 �50 84 �71 54 47 18 �67 �30 5 �46 53
16 �29 54 �10 �68 �54 �24 �16 21 32 33 �27 48 37 �61 97 45 �90 87 �95 85 67
17 76 �11 �48 38 �7 86 �55 51 26 8 �96 99 69 �84 41 78 �53 4 29 38 16
18 �8 48 95 47 39 �11 �72 �95 �17 33 65 96 �52 �17 �22 �15 �91 �41 �16 23 14
19 92 87 63 �63 �80 96 �62 71 �58 17 �89 �35 �96 �79 7 46 �74 88 93 �44 52
20 �21 35 16 �17 54 �22 �93 27 88 0 �67 94 �24 �30 �90 �5 �48 45 �90 32 �81
21 �86 31 �80 �79 �5 11 �20 9 52 �38 67 64 �49 23 �86 39 �97 76 10 81 20

Table 7
a parameter of Fletcher–Powell function.

aj; j ¼ 1; . . . ;20

�2.7910
2.5623
�1.0429

0.5097
�2.8096

1.1883
2.0771
�2.9926

0.0715
0.4142
�2.5010

1.7731
1.6473
0.4934
2.1038
�1.9930

0.3813
�2.2144
�2.5572

2.9449
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cannot be written in this form. These functions have interrelation among their variables. Therefore, non-separable functions
are more difficult than the separable functions. The dimensionality of the search space is an important issue with the problem
[45]. In some functions, global minima is very small when compared to whole search space (Easom, Michalewicz ðm ¼ 10Þ,
Powell) or global minimum is very close to the local ones (Perm, Kowalik and Schaffer). As for multimodal functions, if the
algorithm cannot explore the search space properly and cannot keep up the direction changes in the functions having narrow
curving valley (Beale, Colville, Rosenbrock), it fails in these kinds of problems. Another problem that algorithms suffer is scal-
ing problem with a difference of many magnitude orders between the domain and the function hypersurface [46] (Goldstein-
Price, Trid). Fletcher-Powell and Langerman functions are non-symmetrical and their local optima are randomly distributed.
In this way, the objective function has no implicit symmetry advantages that might simplify optimization for certain algo-
rithms. Fletcher–Powell function achieves the random distribution of the optima choosing the values of the matrixes [45].
Quartic function is padded with noise. Expected fitness depends on the random noise generator (gaussian or uniform). The
random noise makes sure that the algorithm never gets the same value on the same point. Algorithms that do not do well
on this test function will do poorly on noisy data. Step has one minimum and it is a discontinuous function. Penalized func-
tions are difficult due to the combinations of different periods of the sine function [47]. In Tables 1–3 characteristics of each
function are given under the column titled C. In this column, M means that the function is multimodal, while U means that the
function is unimodal. If the function is separable, abbreviation S is used to indicate this specification. Letter N refers that the
function is non-separable. In our set, as seen from Tables 1–3, 33 functions are multimodal, 17 functions are unimodal, 14
functions are separable and 36 functions are non-separable. The increment in the dimension of function increases the diffi-
culty. Dimensions of the problems we used can be found in Tables 1 and 3 under the column titled D.
Table 8
a parameter of FoxHoles function.

j aij; i ¼ 1;2

1 �32 �32
2 �16 �32
3 0 �32
4 16 �32
5 32 �32
6 �32 �16
7 �16 �16
8 0 �16
9 16 �16
10 32 �16
11 �32 0
12 �16 0
13 0 0
14 16 0
15 32 0
16 �32 16
17 �16 16
18 0 16
19 16 16
20 32 16
21 �32 32
22 �16 32
23 0 32
24 16 32
25 32 32

Table 9
a and b parameters of Kowalik function.

i ai b�1
i

1 0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.1600 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16
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Table 4 presents a and c parameters of Langerman function, Tables 5–7 present a; b and a parameters of Fletcher–Powell
function and Tables 8–12 present the parameters in Foxholes, Kowalik, Shekel family, Hartman3 and Hartman6 functions,
respectively.

4.3. Results

In Experiments 1, we compared the GA, PSO, DE and ABC algorithms on a large set of functions described in the previous
section and are listed in Tables 1–3. Each of the experiments in this section was repeated 30 times with different random
seeds and the mean best values produced by the algorithms have been recorded. In order to make comparison clear, the val-
ues below 10�12 are assumed to be 0. The mean best values, standard deviations and standard errors of means are given in
Tables 13–15.

In order to analyze the results whether there is significance between the results of each algorithm, we performed t-test on
pairs of algorithms. We calculated p-values on each function but did not directly compare this p-value to a to determine the
significance because probabilistic algorithms can produce significantly different results even if they start to run random val-
ues coming from the same distribution [48]. Hence, we adopted Modified Bonferroni Correction in order to address this issue.
Modified Bonferroni Correction ranks the calculated p-values ascending and significance level a is gathered by dividing 0.05
level by the inverse rank. If p > a, it is said to be significantly difference between algorithms on the function. These statistical
tests are given in Tables 16–18.

From the results in Tables 13–15, on functions lying on flat surfaces such as Stepint and Matyas, all algorithms have
equal performance, since all algorithms have operators providing diversity and variable step sizes. For producing mutant
vector, the DE algorithm uses difference of randomly selected solution vectors as in (1), the PSO algorithm uses random
coefficients as multiplier for calculating different vectors as in (5), for the GA, crossover operator provides this perturba-
tion. In the ABC algorithm, an operator as in (7) is employed to perform the perturbation. Among these flat functions,
on PowerSum function none of the algorithms have produced the optima but the result of the DE algorithm is better than
that of others.

From Tables 16–18, for all algorithms, there is no significance on Goldstein-Price, Stepint, Beale, Easom, Matyas, Foxholes,
Branin, Bohachevsky1, Booth, Six Hump Camel Back, Bohachevsky3, Shubert, and Fletcher-Powell2 functions. From Table 16,
Table 10
a and c parameters of Shekel functions.

i aij; j ¼ 1; . . . ;6 ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Table 11
a; c and p parameters of 3-parameter Hartman function.

i aij; j ¼ 1;2;3 ci pij; j ¼ 1;2;3

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.8828

Table 12
a; c and p parameters of 6-parameter Hartman function.

i aij; j ¼ 1; . . . ;6 ci pij; j ¼ 1; . . . ;6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 .0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



Table 13
Statistical results of 30 runs obtained by GA, PSO, DE and ABC algorithms. D: Dimension, Mean: Mean of the Best Values, StdDev: Standard Deviation of the Best
Values, SEM: Standard Error of Means.

No Range D Function Min. GA PSO DE ABC

1 [�5.12,5.12] 5 Stepint 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

2 [�100,100] 30 Step 0 Mean 1.17E+03 0 0 0
StdDev 76.561450 0 0 0
SEM 13.978144 0 0 0

3 [�100,100] 30 Sphere 0 Mean 1.11E+03 0 0 0
StdDev 74.214474 0 0 0
SEM 13.549647 0 0 0

4 [�10,10] 30 SumSquares 0 Mean 1.48E+02 0 0 0
StdDev 12.4092893 0 0 0
SEM 2.265616 0 0 0

5 [�1.28,1.28] 30 Quartic 0 Mean 0.1807 0.00115659 0.0013633 0.0300166
StdDev 0.027116 0.000276 0.000417 0.004866
SEM 0.004951 5.04E–05 7.61E–05 0.000888

6 [�4.5,4.5] 2 Beale 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

7 [�100,100] 2 Easom �1 Mean �1 �1 �1 �1
StdDev 0 0 0 0
StdDev 0 0 0 0

8 [�10,10] 2 Matyas 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

9 [�10,10] 4 Colville 0 Mean 0.014938 0 0.0409122 0.0929674
StdDev 0.007364 0 0.081979 0.066277
SEM 0.001344 0 0.014967 0.012100

10 ½�D2;D2� 6 Trid6 �50 Mean �49.9999 �50 �50 �50
StdDev 2.25E–5 0 0 0
StdDev 4.11E–06 0 0 0

11 ½�D2;D2� 10 Trid10 �210 Mean �209.476 �210 �210 �210
StdDev 0.193417 0 0 0
SEM 0.035313 0 0 0

12 [�5,10] 10 Zakharov 0 Mean 0.013355 0 0 0.0002476
StdDev 0.004532 0 0 0.000183
SEM 0.000827 0 0 3.34E–05

13 [�4,5] 24 Powell 0 Mean 9.703771 0.00011004 2.17E–07 0.0031344
StdDev 1.547983 0.000160 1.36E–7 0.000503
SEM 0.282622 2.92E–05 2.48E–08 9.18E–05

14 [�10,10] 30 Schwefel 2.22 0 Mean 11.0214 0 0 0
StdDev 1.386856 0 0 0
SEM 0.253204 0 0 0

15 [�100,100] 30 Schwefel 1.2 0 Mean 7.40E+03 0 0 0
StdDev 1.14E+03 0 0 0
SEM 208.1346 0 0 0

16 [�30,30] 30 Rosenbrock 0 Mean 1.96E+05 15.088617 18.203938 0.0887707
StdDev 3.85E+04 24.170196 5.036187 0.077390
SEM 7029.106155 4.412854 0.033333 0.014129

17 [�10,10] 30 Dixon-Price 0 Mean 1.22E+03 0.66666667 0.6666667 0
StdDev 2.66E+02 E–8 E–9 0
SEM 48.564733 1.8257e–009 1.8257e–0010 0

18 [�65.536,65.536] 2 Foxholes 0.998 Mean 0.998004 0.99800393 0.9980039 0.9980039
StdDev 0 0 0 0
SEM 0 0 0 0

19 [�5,10] � [0,15] 2 Branin 0.398 Mean 0.397887 0.39788736 0.3978874 0.3978874
StdDev 0 0 0 0
SEM 0 0 0 0

20 [�100,100] 2 Bohachevsky1 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0
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on 20 functions there is no significant difference between GA and ABC algorithms but on 28 functions ABC is better than GA
while GA is better than ABC on only 2 functions. From Table 17, on 22 functions ABC and PSO algorithms show equal per-
formance. On 4 of the remaining 28 functions, PSO performs better than ABC while ABC performs better on 24 functions.
From Table 18, DE and ABC algorithms show equal performance on 37 functions. On 5 functions DE is better than ABC, while
on 8 functions ABC performs better.



Table 14
Table 13 continued. Statistical results of 30 runs obtained by GA, PSO, DE and ABC algorithms. D: Dimension, Mean: Mean of the Best Values, StdDev: Standard
Deviation of the Best Values, SEM: Standard Error of Means.

No Range D Function Min. GA PSO DE ABC

21 [�10,10] 2 Booth 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

22 [�5.12,5.12] 30 Rastrigin 0 Mean 52.92259 43.9771369 11.716728 0
StdDev 4.564860 11.728676 2.538172 0
SEM 0.833426 2.141353 0.463405 0

23 [�500,500] 30 Schwefel �12569.5 Mean �11593.4 �6909.1359 �10266 �12569.487
StdDev 93.254240 457.957783 521.849292 0
SEM 17.025816 83.611269 95.276209 0

24 ½0; p� 2 Michalewicz2 �1.8013 Mean �1.8013 �1.5728692 �1.801303 �1.8013034
StdDev 0 0.119860 0 0
SEM 0 0.021883 0 0

25 ½0;p� 5 Michalewicz5 �4.6877 Mean �4.64483 �2.4908728 �4.683482 �4.6876582
StdDev 0.097850 0.256952 0.012529 0
SEM 0.017865 0.046913 0.002287 0

26 ½0;p� 10 Michalewicz10 �9.6602 Mean �9.49683 �4.0071803 �9.591151 �9.6601517
StdDev 0.141116 0.502628 0.064205 0
SEM 0.025764 0.091767 0.011722 0

27 [�100,100] 2 Schaffer 0 Mean 0.004239 0 0 0
StdDev 0.004763 0 0 0
SEM 0.000870 0 0 0

28 [�5,5] 2 6Hump CamelBack �1.03163 Mean �1.03163 �1.0316285 �1.031628 �1.0316285
StdDev 0 0 0 0
SEM 0 0 0 0

29 [�100,100] 2 Bohachevsky2 0 Mean 0.06829 0 0 0
StdDev 0.078216 0 0 0
SEM 0.014280 0 0 0

30 [�100,100] 2 Bohachevsky3 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

31 [�10,10] 2 Shubert �186.73 Mean �186.731 �186.73091 �186.7309 �186.73091
StdDev 0 0 0 0
SEM 0 0 0 0

32 [�2,2] 2 GoldStein-Price 3 Mean 5.250611 3 3 3
StdDev 5.870093 0 0 0
SEM 1.071727 0 0 0

33 [�5,5] 4 Kowalik 0.00031 Mean 0.005615 0.00049062 0.0004266 0.0004266
StdDev 0.008171 0.000366 0.000273 6.04E–5
SEM 0.001492 6.68E–05 4.98E–05 1.10E–05

34 [0,10] 4 Shekel5 �10.15 Mean �5.66052 �2.0870079 �10.1532 �10.1532
StdDev 3.866737 1.178460 0 0
SEM 0.705966 0.215156 0 0

35 [0,10] 4 Shekel7 �10.4 Mean �5.34409 �1.9898713 �10.40294 �10.402941
StdDev 3.517134 1.420602 0 0
SEM 0.642138 0.259365 0 0

36 [0,10] 4 Shekel10 �10.53 Mean �3.82984 �1.8796753 �10.53641 �10.53641
StdDev 2.451956 0.432476 0 0
SEM 0.447664 0.078959 0 0

37 [�D,D] 4 Perm 0 Mean 0.302671 0.03605158 0.0240069 0.0411052
StdDev 0.193254 0.048927 0.046032 0.023056
SEM 0.035283 0.008933 0.008404 0.004209

38 [0,D] 4 PowerSum 0 Mean 0.010405 11.3904479 0.0001425 0.0029468
StdDev 0.009077 7.355800 0.000145 0.002289
SEM 0.001657 1.342979 2.65E–05 0.000418

39 [0,1] 3 Hartman3 �3.86 Mean �3.86278 �3.6333523 �3.862782 �3.8627821
StdDev 0 0.116937 0 0
SEM 0 0.021350 0 0

40 [0,1] 6 Hartman6 �3.32 Mean �3.29822 �1.8591298 �3.226881 �3.3219952
StdDev 0.050130 0.439958 0.047557 0
SEM 0.009152 0.080325 0.008683 0

122 D. Karaboga, B. Akay / Applied Mathematics and Computation 214 (2009) 108–132
On Beale function having a curving shape in the vicinity of minimum, all algorithms show equal performance, but on
Colville function,a kind of these functions, only the PSO algorithm produces the minimum of the function. On Rosenbrock
function extended to 30 parameters, the ABC algorithm shows the highest performance compared to others. On the other
hand, these functions are non-separable functions having interdependence among the variables as well as Griewank
function.



Table 15
Table 13 continued. Statistical results of 30 runs obtained by GA, PSO, DE and ABC algorithms. D: Dimension, Mean: Mean of the Best Values, StdDev: Standard
Deviation of the Best Values, SEM: Standard Error of Means.

No Range D Function Min. GA PSO DE ABC

41 [�600,600] 30 Griewank 0 Mean 10.63346 0.01739118 0.0014792 0
StdDev 1.161455 0.020808 0.002958 0
SEM 0.212052 0.003799 0.000540 0

42 [�32,32] 30 Ackley 0 Mean 14.67178 0.16462236 0 0
StdDev 0.178141 0.493867 0 0
SEM 0.032524 0.090167 0 0

43 [�50,50] 30 Penalized 0 Mean 13.3772 0.0207338 0 0
StdDev 1.448726 0.041468 0 0
SEM 0.2645 0.007571 0 0

44 [�50,50] 30 Penalized2 0 Mean 125.0613 0.00767535 0.0021975 0
StdDev 12.001204 0.016288 0.004395 0
SEM 2.191110 0.002974 0.000802 0

45 [0,10] 2 Langerman2 �1.08 Mean �1.08094 �0.679268 �1.080938 �1.0809384
StdDev 0 0.274621 0 0
SEM 0 0.050139 0 0

46 [0,10] 5 Langerman5 �1.5 Mean �0.96842 �0.5048579 �1.499999 �0.938150
StdDev 0.287548 0.213626 0 0.000208
SEM 0.052499 0.039003 0 3.80E–05

47 [0,10] 10 Langerman10 NA Mean �0.63644 �0.0025656 �1.0528 �0.4460925
StdDev 0.374682 0.003523 0.302257 0.133958
SEM 0.068407 0.000643 0.055184 0.024457

48 ½�p;p� 2 FletcherPowell2 0 Mean 0 0 0 0
StdDev 0 0 0 0
SEM 0 0 0 0

49 ½�p;p� 5 FletcherPowell5 0 Mean 0.004303 1457.88344 5.988783 0.1735495
StdDev 0.009469 1269.362389 7.334731 0.068175
SEM 0.001729 231.752805 1.339133 0.012447

50 ½�p;p� 10 FletcherPowell10 0 Mean 29.57348 1364.45555 781.55028 8.2334401
StdDev 16.021078 1325.379655 1048.813487 8.092742
SEM 2.925035 1325.379655 241.980111 1.477526
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On non-symmetrical Langerman functions, for the 2-parameter case ABC and DE show equal performance, while for 5 and
10-parameter cases, the DE algorithm performs the best.

Another conclusion that can be drawn is that the efficiency of ABC becomes much more clearer as the number of variables
increases. As seen from Tables 1–3, in the experiments, there are 14 functions with 30 variables. ABC outperforms DE on 6,
PSO on 8 and GA on 14 of these 14 functions. Four of the functions on which ABC and DE are unsuccessful are unimodal
(Colville, Zakharov, Powell, Quartic for ABC, Colville, Quartic, Rosenbrock, Dixon-Price for DE). ABC is unsuccessful on 5
multimodal functions, while DE is unsuccessful on 9 multimodal functions. Consequently, ABC is more successful and the
most robust on multimodal functions included in the set respect to DE, PSO and GA.

As mentioned in Section 4, in the experiments, a GA using binary representation was employed. It should be noted that a
GA using floating point representation could be faster and more consistent from run to run and could provide higher preci-
sion for some specific problems [49].

As seen from Fig. 2, overall evaluation can be made by using the mean absolute error values produced by the algorithms.
In the calculation of mean absolute errors, firstly the absolute differences between the values found by the algorithms and
the optimum of the corresponding functions were computed. Secondly, the total absolute errors were found for each algo-
rithm. Finally, the mean absolute error was calculated by dividing the total absolute error by the number of test functions.
The minimum of the Langerman10 function is not available. Therefore, the mean absolute error was calculated for 49 func-
tions. Since there is a big difference between the mean absolute error value of the ABC algorithm and the other algorithms,
the graph in Fig. 2 demonstrates the logarithmic error values obtained for the algorithms. It is clear that the ABC has the
smallest mean absolute error. It means that when the results of all functions are evaluated together, the ABC algorithm is
the most successful algorithm.
5. ABC vs. evolution strategies

5.1. Experiments 2

5.1.1. Settings of Experiments 2
The experiments in this section constitute the comparison of the ABC algorithm versus Evolution Strategies. The versions

of the Evolution Strategies include CES, FES, CMA-ES and ESLAT of which the results were taken from the work presented in
[41]. For each experiment, ABC algorithm was run 50 times and it was terminated when it reached the maximum number



Table 16
Significance test for GA and ABC. t: t-value of student t-test, SED: Standard Error of Difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: Inverse
Rank of p-value, Sign: Significance.

No Function t SED p R. I.R. New a Sign.

42 Ackley 451.107 0.033 0 1 50 0.001 ABC
2 Step 83.7021 13.978 0 2 49 0.00102 ABC
3 sphere 81.921 13.55 0 3 48 0.001042 ABC
4 SumSquares 65.3244 2.266 0 4 47 0.001064 ABC
22 Rastrigin 63.5001 0.833 0 5 46 0.001087 ABC
23 Schwefel 57.3298 17.026 0 6 45 0.001111 ABC
44 Penalized2 57.0767 2.191 0 7 44 0.001136 ABC
43 Penalized 50.5754 0.264 0 8 43 0.001163 ABC
41 Griewank 50.1456 0.212 0 9 42 0.00119 ABC
14 Schwefel2.22 43.5277 0.253 0 10 41 0.00122 ABC
15 Schwefel1.2 35.5539 208.135 0 11 40 0.00125 ABC
13 Powell 34.3237 0.283 0 12 39 0.001282 ABC
5 Quartic 29.9584 0.005 0 13 38 0.001316 ABC
16 Rosenbrock 27.884 7029.106 0 14 37 0.001351 ABC
17 Dixon-Price 25.1211 48.565 0 15 36 0.001389 ABC
10 Trid6 24.3432 0 0 16 35 0.001429 ABC
12 Zakharov 15.8047 0.001 0 17 34 0.001471 ABC
36 Shekel10 14.9813 0.448 0 18 33 0.001515 ABC
11 Trid10 14.8387 0.035 0 19 32 0.001563 ABC
49 FletcherPowell5 13.4681 0.013 0 20 31 0.001613 GA
35 Shekel7 7.8781 0.642 0 21 30 0.001667 ABC
37 Perm 7.683 0.036 0 22 29 0.001724 ABC
50 FletcherPowell10 6.512 3.277 0 23 28 0.001786 ABC
34 Shekel5 6.3639 0.706 0 24 27 0.001852 ABC
26 Michalewicz10 6.3391 0.026 0 25 26 0.001923 ABC
27 Schaffer 5.1869 0.008 0.000003 26 25 0.002 ABC
29 Bohachevsky2 4.7821 0.014 0.000001 27 24 0.002083 ABC
38 PowerSum 4.3638 0.002 0.000053 28 23 0.002174 ABC
9 Colville 4.3138 0.018 0.000063 29 22 0.002273 GA
33 Kowalik 3.4778 0.001 0.000965 30 21 0.002381 ABC
47 Langerman10 2.6201 0.073 0.011202 31 20 0.0025 –
40 Hartman6 2.5977 0.009 0.011876 32 19 0.002632 –
25 Michalewicz5 2.3973 0.018 0.019758 33 18 0.002778 –
32 GoldStein-Price 2.1 1.072 0.040089 34 17 0.002941 –
46 Langerman5 0.5766 0.052 0.5644 35 16 0.003125 –
1 Stepint �Inf 0 1 36 15 0.003333 –
6 Beale �Inf 0 1 37 14 0.003571 –
7 Easom �Inf 0 1 38 13 0.003846 –
8 Matyas �Inf 0 1 39 12 0.004167 –
18 Foxholes �Inf 0 1 40 11 0.004545 –
19 Branin �Inf 0 1 41 10 0.005 –
20 Bohachevsky1 �Inf 0 1 42 9 0.005556 –
21 Booth �Inf 0 1 43 8 0.00625 –
24 Michalewicz2 �Inf 0 1 44 7 0.007143 –
28 6HumpCamelBack �Inf 0 1 45 6 0.008333 –
30 Bohachevsky3 �Inf 0 1 46 5 0.01 –
31 Shubert �Inf 0 1 47 4 0.0125 –
39 Hartman3 �Inf 0 1 48 3 0.016667 –
45 Langerman �Inf 0 1 49 2 0.025 –
48 FletcherPowell2 �Inf 0 1 50 1 0.05 –
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of evaluations or when it reached the global minima within a gap of 10�3 as used in [41]. Settings of the algorithms CES, FES,
CMA-ES and ESLAT can be found in [41,36]. In ABC algorithm, the colony size was 20 and the maximum evaluation number
was 100.000 for all functions. Value of the limit parameter was determined by (9) as in the experiments in Section 4.

5.1.2. Benchmark functions
In Experiments 2, the functions listed in Table 19 were employed. Sphere, Schwefel 1.2, Schwefel 2.21, Schwefel 2.22,

Rosenbrock, Step and Quartic functions are unimodal and high dimensional problems. Schwefel, Rastrigin, Ackley, Griewank,
Penalized and Penalized 2 are multimodal and high dimensional functions. Foxholes, Kowalik, Six Hump Camel Back, Branin,
Goldstein-Price, Hartman family and Shekel Family functions are multimodal and low dimensional functions as mentioned
before in Section 4.2.

5.1.3. Results of Experiments 2
In Experiments 2, the performance of ABC algorithm has been compared to those of the Evolution Strategies: CES, FES,

CMA-ES and ESLAT. The results of these algorithms, in terms of both solution quality and solution costs, were taken from



Table 17
Significance test for PSO and ABC. t: t-value of student t-test, SED: Standard Error of Difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: Inverse
Rank of p-value, Sign: Significance.

No Function t SED p R. I.R. New a Sign.

17 Dixon-Price 3.65E+08 0 0 1 50 0.001 ABC
23 Schwefel 67.6984 83.611 0 2 49 0.00102 ABC
26 Michalewicz10 61.6014 0.092 0 3 48 0.001042 ABC
25 Michalewicz5 46.827 0.047 0 4 47 0.001064 ABC
34 Shekel5 37.4899 0.215 0 5 46 0.001087 ABC
36 Shekel10 33.3766 0.259 0 6 45 0.001111 ABC
35 Shekel7 32.4372 0.259 0 7 44 0.001136 ABC
5 Quartic 32.433 0.001 0 8 43 0.001163 PSO
13 Powell 31.3832 0 0 9 42 0.00119 PSO
22 Rastrigin 20.5371 2.141 0 10 41 0.00122 ABC
40 Hartman6 18.2118 0.08 0 11 40 0.00125 ABC
47 Langerman10 18.1285 0.024 0 12 39 0.001282 ABC
46 Langerman5 11.1093 0.03 0 13 38 0.001316 ABC
39 Hartman3 10.7463 0.021 0 14 37 0.001351 ABC
24 Michalewicz2 10.4387 0.022 0 15 36 0.001389 ABC
38 PowerSum 8.4793 1.343 0 16 35 0.001429 ABC
45 Langerman2 8.0112 0.05 0 17 34 0.001471 ABC
9 Colville 7.683 0.012 0 18 33 0.001515 PSO
12 Zakharov 7.4107 0 0 19 32 0.001563 PSO
49 FletcherPowell5 6.2899 231.753 0 20 31 0.001613 ABC
50 FletcherPowell10 5.6046 241.985 0 21 30 0.001667 ABC
41 Griewank 4.5778 0.004 0.000025 22 29 0.001724 ABC
16 Rosenbrock 3.3991 4.413 0.001228 23 28 0.001786 ABC
43 Penalized 2.7386 0.008 0.008182 24 27 0.001852 –
44 Penalized2 2.581 0.003 0.012403 25 26 0.001923 –
42 Ackley 1.8257 0.09 0.073045 26 25 0.002 –
33 Kowalik 0.9453 0 0.34843 27 24 0.002083 –
37 Perm 0.5118 0.001 0.61073 28 23 0.002174 –
1 Stepint �Inf 0 1 29 22 0.002273 –
2 Step �Inf 0 1 30 21 0.002381 –
3 sphere �Inf 0 1 31 20 0.0025 –
4 SumSquares �Inf 0 1 32 19 0.002632 –
6 Beale �Inf 0 1 33 18 0.002778 –
7 Easom �Inf 0 1 34 17 0.002941 –
8 Matyas �Inf 0 1 35 16 0.003125 –
10 Trid6 �Inf 0 1 36 15 0.003333 –
11 Trid10 �Inf 0 1 37 14 0.003571 –
14 Schwefel2.22 �Inf 0 1 38 13 0.003846 –
15 Schwefel1.2 �Inf 0 1 39 12 0.004167 –
18 Foxholes �Inf 0 1 40 11 0.004545 –
19 Branin �Inf 0 1 41 10 0.005 –
20 Bohachevsky1 �Inf 0 1 42 9 0.005556 –
21 Booth �Inf 0 1 43 8 0.00625 –
27 Schaffer �Inf 0 1 44 7 0.007143 –
28 6HumpCamelBack �Inf 0 1 45 6 0.008333 –
29 Bohachevsky2 �Inf 0 1 46 5 0.01 –
30 Bohachevsky3 �Inf 0 1 47 4 0.0125 –
31 Shubert �Inf 0 1 48 3 0.016667 –
32 GoldStein-Price �Inf 0 1 49 2 0.025 –
48 FletcherPowell2 �Inf 0 1 50 1 0.05 –
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[41], as mentioned above. Each experiment was repeated 50 times. Mean values and the standard deviations of the function
values found after 50 runs are presented in Table 20. When the value found by the algorithm reached the global minima
within gap of 10�3, the algorithm was terminated. If the algorithm cannot find the global minima in this precision through
the maximum evaluation number, the value found in the last cycle is recorded. Solution costs of these runs are given in Table
21. From the results in this table, it is clear that CMA-ES costs less on 12 functions and CES and ESLAT cost less on 2 functions
while ABC costs less on 8 functions. Generally speaking, the cost of CMA-ES is lower than those of ESLAT, CES and ABC for the
unimodal functions. This is because CMA-ES is a local method devised for optimal exploitation of local information [38].
When we focus on the success rates given in Table 22, it is seen that the performance of CMA-ES gets worse on multimodal
functions. ESLAT has better performance on low dimensional functions than CMA-ES, but on high dimensional and multi-
modal functions, the performance of ESLAT deteriorates as that of CMA-ES. ABC algorithm achieved best success rate on
20 functions; and on sixteen of these 20 functions it achieved 100% success rate. ABC is successful on both unimodal and
multimodal functions. Both CMA-ES and ESLAT have achieved best success rates on 9 functions. On two functions (Rosen-
brock, Schewfel 2.21), CMA-ES has better performance than ABC. ABC outperforms CMA-ES on 13 functions (Step, Schewfel,



Table 18
Significance test for DE and ABC. t: t-value of student t-test, SED: Standard Error of Difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: Inverse
Rank of p-value, Sign: Significance.

No Function t SED p R. I.R. New a Sign.

17 Dixon-Price 3651483719 0 0 1 50 0.001 ABC
46 Langerman5 14795.0659 0 0 2 49 0.00102 DE
13 Powell 34.1285 0 0 3 48 0.001042 DE
5 Quartic 32.1347 0.001 0 4 47 0.001064 DE
22 Rastrigin 25.284 0.463 0 5 46 0.001087 ABC
23 Schwefel 24.1769 95.276 0 6 45 0.001111 ABC
16 Rosenbrock 19.6993 0.92 0 7 44 0.001136 ABC
40 Hartman6 10.9545 0.009 0 8 43 0.001163 ABC
47 Langerman10 10.0513 0.06 0 9 42 0.00119 DE
38 PowerSum 6.6968 0 0 10 41 0.00122 DE
26 Michalewicz10 5.8863 0.012 0 11 40 0.00125 ABC
49 FletcherPowell5 4.3424 1.339 0.000057 12 39 0.001282 ABC
50 FletcherPowell10 4.0384 191.492 0.00016 13 38 0.001316 ABC
41 Griewank 2.739 0.001 0.008173 14 37 0.001351 –
44 Penalized2 2.7386 0.001 0.008182 15 36 0.001389 –
9 Colville 2.7046 0.019 0.008961 16 35 0.001429 –
25 Michalewicz5 1.8257 0.002 0.073045 17 34 0.001471 –
37 Perm 1.8191 0.009 0.074059 18 33 0.001515 –
33 Kowalik 0 0 1 19 32 0.001563 –
1 Stepint �Inf 0 1 20 31 0.001613 –
2 Step �Inf 0 1 21 30 0.001667 –
3 sphere �Inf 0 1 22 29 0.001724 –
4 SumSquares �Inf 0 1 23 28 0.001786 –
6 Beale �Inf 0 1 24 27 0.001852 –
7 Easom �Inf 0 1 25 26 0.001923 –
8 Matyas �Inf 0 1 26 25 0.002 –
10 Trid6 �Inf 0 1 27 24 0.002083 –
11 Trid10 �Inf 0 1 28 23 0.002174 –
12 Zakharov �Inf 0 1 29 22 0.002273 –
14 Schwefel2.22 �Inf 0 1 30 21 0.002381 –
15 Schwefel1.2 �Inf 0 1 31 20 0.0025 –
18 Foxholes �Inf 0 1 32 19 0.002632 –
19 Branin �Inf 0 1 33 18 0.002778 –
20 Bohachevsky1 �Inf 0 1 34 17 0.002941 –
21 Booth �Inf 0 1 35 16 0.003125 –
24 Michalewicz2 �Inf 0 1 36 15 0.003333 –
27 Schaffer �Inf 0 1 37 14 0.003571 –
28 SixHumpCamelBack �Inf 0 1 38 13 0.003846 –
29 Bohachevsky2 �Inf 0 1 39 12 0.004167 –
30 Bohachevsky3 �Inf 0 1 40 11 0.004545 –
31 Shubert �Inf 0 1 41 10 0.005 –
32 GoldStein-Price �Inf 0 1 42 9 0.005556 –
34 Shekel5 �Inf 0 1 43 8 0.00625 –
35 Shekel7 �Inf 0 1 44 7 0.007143 –
36 Shekel10 �Inf 0 1 45 6 0.008333 –
39 Hartman3 �Inf 0 1 46 5 0.01 –
42 Ackley �Inf 0 1 47 4 0.0125 –
43 Penalized �Inf 0 1 48 3 0.016667 –
45 Langerman2 �Inf 0 1 49 2 0.025 –
48 FletcherPowell2 �Inf 0 1 50 1 0.05 –
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Rastrigin, Griewank, Penalized, Penalized 2, Foxholes, Kowalik, Goldstein-Price, Hartman 6, Shekel 5, Shekel 7, and Shekel
10). On 7 functions, they have equal performance. On 9 functions, ESLAT has 100% success rate. On 1 function (Rosenbrock),
ESLAT shows better performance than ABC while ABC is better than ESLAT on 11 functions (Step, Schwefel, Rastrigin,
Griewank, Penalized 2, Foxholes, Kowalik, Hartman 6, Shekel 5, Shekel 7, and Shekel 10). On 9 functions, they perform
equally. ABC algorithm has a higher success rate than CMA-ES and ESLAT since it does exploration and exploitation processes
together efficiently.

5.2. Experiments 3

5.2.1. Settings
In the experiments of this section, the performance of ABC algorithm has been compared to those of SOM-ES, NG-ES and

CMA-ES algorithms. The results of SOM-ES, NG-ES and CMA-ES algorithms were taken from the study described in [38]. The
thresholds for satisfactory convergence were fixed to 40, 0.001 and 0.001 for functions 1, 2, and 3, respectively. Maximum



Fig. 2. Mean absolute errors of algorithms in Experiments 1.

Table 19
Benchmark functions used in experiments 2. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Range D C Function Formulation

1 [�100,100] 30 US Sphere f ðxÞ ¼
Pn

i¼1x2
i

2 [�10,10] 30 UN Schwefel 2.22 f ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij

3 [�100,100] 30 UN Schwefel 1.2 f ðxÞ ¼
Pn

i¼1
Pi

j¼1xj

� �2

4 [�100,100] 30 UN Schwefel 2.21 f ðxÞ ¼
5 [�30,30] 30 UN Rosenbrock f ðxÞ ¼

Pn�1
i¼1 ½100ðxiþ1 � x2

i Þ
2 þ ðxi � 1Þ2�

6 [�100,100] 30 US Step f ðxÞ ¼
Pn

i¼1ðbxi þ 0:5cÞ2

7 [�1.28,1.28] 30 US Quartic f ðxÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ

8 [�500,500] 30 MS Schwefel f ðxÞ ¼
Pn

i¼1 � xi sin
ffiffiffiffiffiffiffi
jxij

p� �
9 [�5.12,5.12] 30 MS Rastrigin f ðxÞ ¼

Pn
i¼1½x2

i � 10 cosð2pxiÞ þ 10�

10 [�32,32] 30 MN Ackley f ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e

11 [�600,600] 30 MN Griewank f ðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1

12 [�50,50] 30 MN Penalized

f ðxÞ ¼ p
n

10 sin2ðpy1Þ
þ
Pn�1

i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ�
þðyn � 1Þ2

8><
>:

9>=
>;

þ
Pn

i¼1uðxi;10;100;4Þ
yi ¼ 1þ 1

4 ðxi þ 1Þ

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi > a
0; �a 6 xi 6 a
kð�xi � aÞm; xi < �a

8<
:

13 [�50,50] 30 MN Penalized2
f ðxÞ ¼ 0:1

sin2ðpx1ÞþPn�1
i¼1
ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ�þ
ðxn � 1Þ2½1þ sin2ð2pxnÞ�

8><
>:

9>=
>;þPn

i¼1uðxi;5;100;4Þ

14 [�65.536,65.536] 2 MS Foxholes f ðxÞ ¼ 1
500þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6

� ��1

15 [�5,5] 4 MN Kowalik f ðxÞ ¼
P11

i¼1 ai � x1ðb2
i þbi x2Þ

b2
i þbi x3þx4

	 
2

16 [�5,5] 2 MN Six Hump Camel Back f ðxÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3 x6

1 þ x1x2� 4x2
2 þ 4x4

2

17 [�5,10]x[0,15] 2 MS Branin f ðxÞ ¼ x2 � 5:1
4p2 x2

1 þ 5
p x1 � 6

� �2

þ10 1� 1
8p

� �
cos x1 þ 10

18 [�2,2] 2 MN GoldStein-Price

f ðxÞ ¼ 1þ ðx1 þ x2 þ 1Þ2
ð19� 14x1 þ 3x2

1 � 14x2 þ 6x1x2 þ 3x2
2Þ

� �

30þ ð2x1 � 3x2Þ2
ð18� 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2Þ

� �

19 [0,1] 3 MN Hartman 3 f ðxÞ ¼ �
P4

i¼1ci exp �
P3

j¼1aijðxj � pijÞ
2

h i
20 [0,1] 6 MN Hartman 6 f ðxÞ ¼ �

P4
i¼1ci exp �

P6
j¼1aijðxj � pijÞ

2
h i

21 [0,10] 4 MN Shekel 5 f ðxÞ ¼ �
P5

i¼1½ðx� aiÞðx� aiÞT þ ci��1

22 [0,10] 4 MN Shekel 7 f ðxÞ ¼ �
P7

i¼1½ðx� aiÞðx� aiÞT þ ci��1

23 [0,10] 4 MN Shekel 10 f ðxÞ ¼ �
P10

i¼1½ðx� aiÞðx� aiÞT þ ci��1
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Table 20
Results obtained by CES [41], FES [36], ESLAT [41], CMA-ES [41] and ABC algorithms. D: Dimension, SD: Standard Deviation.

No Function Range D CES FES ESLAT CMA-ES ABC

Mean SD Mean SD Mean SD Mean SD Mean SD

1 Sphere �100,100 30 1.7e–26 1.1e–
25

2.5e–4 6.8e–
5

2.0e–17 2.9e–17 9.7e–23 3.8e–
23

7.57E–04 2.48E–
04

2 Schwefel
2.22

�10,10 30 8.1e–20 3.6e–
19

6.0e–2 9.6e–
3

3.8e–5 1.6e–5 4.2e–11 7.1e–
23

8.95E–04 1.27E–
04

3 Schwefel
1.2

�100,100 30 337.62 117.14 1.4e–3 5.3e–
4

6.1e–6 7.5e–6 7.1e–23 2.9e–
23

7.01E–04 2.78E–
04

4 Schwefel
2.21

�100,100 30 2.41 2.15 5.5e–3 6.5e–
4

0.78 1.64 5.4e–12 1.5e–
12

2.72E+00 1.18E+
00

5 Rosenbrock �30,30 30 27.65 0.51 33.28 43.13 1.93 3.35 0.4 1.2 9.36E–01 1.76E+
00

6 Step �100,100 30 0 0 0 0 2.0e–2 0.14 1.44 1.77 0.00E+00 0.00E+
00

7 Quartic �1.28,1.28 30 4.7e–2 0.12 1.2e–2 5.8e–
3

0.39 0.22 0.23 8.7e–
2

9.06E–02 1.89E–
02

8 Schwefel �500,500 30 �8.00E+93 4.9e+94 �12556.4 32.53 �2.3e+15 5.70E+15 �7637.14 895.6 �12563.67335 2.36E+
01

9 Rastrigin �5.12,5.12 30 13.38 43.15 0.16 0.33 4.65 5.67 51.78 13.56 4.66E–04 3.44E–
04

10 Ackley �32,32 30 6.0e–13 1.7e–
12

1.2e–2 1.8e–
3

1.8e–8 5.4e–9 6.9e–12 1.3e–
12

7.81E–04 1.83E–
04

11 Griewank �600,600 30 6.0e–14 4.2e–
13

3.7e–2 5.0e–
2

1.4e–3 4.7e–3 7.4e–4 2.7e–
3

8.37E–04 1.38E–
03

12 Penalized �50,50 30 1.46 3.17 2.8e–6 8.1e–
7

1.5e–12 2.0e–12 1.2e–4 3.4e–
2

6.98E–04 2.78E–
04

13 Penalized 2 �50,50 30 2.40 0.13 4.7e–5 1.5e–
5

6.4e–3 8.9e–3 1.7e–3 4.5e–
3

7.98E–04 2.13E–
04

14 Foxholes �65.536,65.536 2 2.20 2.43 1.20 0.63 1.77 1.37 10.44 6.87 9.98E–01 3.21E–
04

15 Kowalik �5,5 4 1.3e–3 6.3e–4 9.7e–4 4.2e–
4

8.1e–4 4.1e–4 1.5e–3 4.2e–
3

1.18E–03 1.45E–
04

16 SixHump �5,5 2 �1.0310 1.2e–3 �1.0316 6.0e–
7

�1.0316 9.7e–14 �1.0316 7.7e–
16

�1.031 3.04E–
04

17 Branin (-5,10), (0,15) 2 0.401 3.6e–3 0.398 6.0e–
8

0.398 1.0e–13 0.398 1.4e–
15

0.3985 3.27E–
04

18 Goldstein-
Price

�2,2 2 3.007 1.2e–2 3.0 0 3 5.8e–14 14.34 25.05 3.000E+00 3.09E–
04

19 Hartman 3 0,1 3 �3.8613 1.2e–3 �3.86 4.0e–
3

�3.8628 2.9e–13 �3.8628 4.8e–
16

�3.862E+00 2.77E–
04

20 Hartman 6 0,1 6 �3.24 5.8e–2 �3.23 0.12 �3.31 3.3e–2 �3.28 5.8e–
2

�3.322E+00 1.35E–
04

21 Shekel 5 0,10 4 �5.72 2.62 �5.54 1.82 �8.49 2.76 �5.86 3.60 �10.151 1.17E–
02

22 Shekel 7 0,10 4 �6.09 2.63 �6.76 3.01 �8.79 2.64 �6.58 3.74 �10.402 3.11E–
04

23 Shekel 10 0,10 4 �6.42 2.67 �7.63 3.27 �9.65 2.06 �7.03 3.74 �10.535 2.02E–
03
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number of function evaluations was 5000 for each run. Totally, runs were repeated 10.000 times per test function for ABC. All
settings were tuned as in [38] to make fair comparison.

5.2.2. Benchmark functions
In Experiments 3, functions given in Table 23 were employed. Functions in the set are low dimensional. Rastrigin and

Griewank functions are the same in Experiments 1 and Experiments 2 while a Gaussian bump in (�1,1) is added to Rosen-
brock function used in other experiments. This modification causes a local minimum in (1,1) and a global minimum in
(�1,�1). This modification makes the problem harder because local minimum basin is larger than global minimum basin [38].

5.2.3. Results
Table 24 presents the mean and the standard deviation of function evaluation numbers of the algorithms tested, and the

mean and the standard deviations of success rates which is the percent of converged runs over 100 optimization runs. From
the results, on Rosenbrock function, SOMES and NG-ES are more successful in terms of both solution and cost qualities. How-
ever, on the other multimodal functions (Griewank and Rastrigin), ABC outperforms SOM-ES, NG-ES and CMA-ES algorithms.
On three functions, ABC shows better performance in terms of success rate than CMA-ES. As in Experiments 2, while ABC has
slower convergence rate than CMA-ES which uses local information to converge quickly, ABC has better performance in
terms of global optimization.



Table 21
Solution costs in terms of evaluation number of CES [41], FES [36], ESLAT [41], CMA-ES [41] and ABC algorithms.

No Function CES FES ESLAT CMA-ES ABC

Mean Mean Mean Mean Mean StdFE

1 Sphere 69,724 150,000 69,724 10,721 9264 1481
2 Schwefel 2.22 60,859 200,000 60,859 12,145 12,991 673
3 Schwefel 1.2 72141 500,000 72,141 21,248 12,255 1390
4 Schwefel 2.21 69,821 500,000 69,821 20,813 100,000 0
5 Rosenbrock 66,609 1,500,000 66,609 55,821 100,000 0
6 Step 57,064 150,000 57,064 2184 4853 1044
7 Quartic 50,962 300,000 50,962 667,131 100,000 0
8 Schwefel 61,704 900,000 61,704 6621 64,632 23,897
9 Rastrigin 53,880 500,000 53,880 10,079 26,731 9311
10 Ackley 58,909 150,000 58,909 10,654 16,616 1201
11 Griewank 71,044 200,000 71,044 10,522 36,151 17,128
12 Penalized 63,030 150,000 63,030 13,981 7340 2020
13 Penalized 2 65,655 150,000 65,655 13,756 8454 1719
14 Foxholes 1305 10,000 1305 540 1046 637
15 Kowalik 2869 400,000 2869 13,434 6120 4564
16 SixHump 1306 10,000 1306 619 342 109
17 Branin 1257 10,000 1257 594 530 284
18 Goldstein-Price 1201 10,000 1201 2052 15,186 13,500
19 Hartman 3 1734 10,000 1734 996 4747 16,011
20 Hartman 6 3816 20,000 3816 2293 1583 457
21 Shekel 5 2338 10,000 2338 1246 6069 13,477
22 Shekel 7 2468 10,000 2468 1267 7173 9022
23 Shekel 10 2410 10,000 2410 1275 15,392 24,413

Table 23
Benchmark functions used in experiments 3. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Range D C Function Formulation

1 [�2,2] 2 UN Modified Rosenbrock f ðx; yÞ ¼ 74þ 100ðy� x2Þ2 þ ð1� xÞ2 � 400e�ððxþ1Þ2þðyþ1Þ2=0:1Þ

2 [�100,100] 2 MN Griewank f ðx; yÞ ¼ 1þ 1
200 ðx2 þ y2Þ � cosðxÞ cos yffiffi

2
p
� �

3 [�5.12,5.12] 2 MS Rastrigin f ðxÞ ¼
Pn

i¼1½x2
i � 10 cosð2pxiÞ þ 10�

Table 22
Success rates (%) of ESLAT [41], CMA-ES [41] and ABC algorithms. Result in boldface indicates that it is the best success rate achieved in all of the algorithms.

No Function ESLAT CMA-ES ABC

1 Sphere 100 100 100
2 Schwefel 2.22 100 100 100
3 Schwefel 1.2 100 100 100
4 Schwefel 2.21 0 100 0
5 Rosenbrock 70 90 0
6 Step 98 36 100
7 Quartic 0 0 0
8 Schwefel 0 0 86
9 Rastrigin 40 0 100
10 Ackley 100 100 100
11 Griewank 90 92 96
12 Penalized 100 88 100
13 Penalized 2 60 86 100
14 Foxholes 60 0 100
15 Kowalik 94 88 100
16 SixHump 100 100 100
17 Branin 100 100 100
18 Goldstein-Price 100 78 100
19 Hartman 3 100 100 100
20 Hartman 6 94 48 100
21 Shekel 5 72 40 98
22 Shekel 7 72 48 100
23 Shekel 10 84 52 96

Total: 9 9 20
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Table 24
Statistical results of SOM-ES [38], NG-ES [38], CMA-ES [38] and ABC algorithms.

Method Modified Rosenbrock Griewank Rastrigin

Mean Evals Succ. (%) Mean Evals Succ. (%) Mean Evals Succ. (%)

5 � 5 SOM-ES 1600� 200 70� 8 130� 40 90� 7 180� 50 90� 7
7x7 SOM-ES 750� 90 90� 5 100� 40 90� 8 200� 50 90� 8
NG-ES (m=10) 1700� 200 90� 7 180� 50 90� 10 210� 50 90� 8
NG-ES (m=20) 780� 80 90� 9 150� 40 90� 8 180� 40 90� 7
CMA-ES 70� 40 30� 10 210� 50 70� 10 100� 40 80� 9
ABC 1371� 2678 52� 5 1121� 960 99� 1 1169� 446 100� 0
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6. Discussion and conclusion

In this work, the performance of ABC algorithm was compared with those of GA, PSO, DE and ES optimization algorithms.
Although there are several improved versions of GA, DE and PSO in the literature, their standard versions were used since the
ABC algorithm presented in this work is its first version i.e. its standard version. Although the performance of ABC algorithm
can be improved by integrating useful heuristics, in this work our purpose was to compare the performance of standard ver-
sion of ABC with those of other well-known population-based algorithms. In Experiments 1, we used the same population
number and the maximum evaluation number for all problems although it is a known fact that these control parameters
affect the performance of algorithms significantly. However, in most comparative studies these parameter values are varied
with respect to the dimension of the problems or to their other characteristics. The reason is that we assumed the users of an
algorithm do not know much about the recommended values of these parameters for their problems to be optimized.

While GA and DE employ crossover operators to produce new or candidate solutions from the present ones, ABC algo-
rithm does not. ABC algorithm produces the candidate solution from its parent by a simple operation based on taking the
difference of randomly determined parts of the parent and a randomly chosen solution from the population. This process
increases the convergence speed of search into a local minimum. In GA, DE and PSO the best solution found so far is always
kept in the population and it can be used for producing new solutions in the case of DE and GA, new velocities in the case of
PSO. However, in ABC, the best solution discovered so far is not always held in the population since it might be replaced with
a randomly produced solution by a scout. Therefore, it might not contribute to the production of trial solutions. Both DE and
ABC employ a greedy selection process between the candidate and the parent solutions. In ABC, on ‘‘employed bees” stage a
trial solution is produced for each solution in the population as in the case of DE without depending on the quality of solu-
tions. On ‘‘onlooker bees” stage, the solutions with the higher fitness value are used more often than those with less fitness
values to produce trial solutions. It means that the promising regions of the search space are searched in shorter time and in
detail. This selection process is similar to the natural selection or to the seeded selection employed in GA.

In GA or DE, mutation process creates a modification on a randomly selected part of a solution to provide required diver-
sity in the population. In ABC, there are two types of mechanisms to control the diversity in the population: (a) As in DE or
GA, a randomly chosen part of a parent is modified with a magnitude determined randomly to obtain a trail solution. This
modification is relatively small and useful for local search and fine tuning. (b) Rather than changing a part of a solution, a
whole solution in the population is removed and then a new one produced randomly is inserted into the population by a
scout. This mechanism provides the ABC algorithm a global search ability and prevents the search from premature conver-
gence problem. This feature weakens the dependency of the algorithms’ performance on the population size, too. Hence,
there is a good balance between the local search process carried out by artificial onlooker and employed bees and the global
search process managed by artificial scouts. Therefore, the ABC algorithm produces better results on multimodal and
multivariable problems than other algorithms considered in this paper.

Apart from the maximum evaluation number and population size, a standard GA has three more control parameters
(crossover rate, mutation rate, generation gap), a standard DE has at least two control parameters (crossover rate, scaling
factor) and a basic PSO has three control parameters (cognitive and social factors, inertia weight). Also, limit values for
the velocities tmax have a significant effect on the performance of PSO. The ABC algorithm has only one control parameter
(limit) apart from Colony Size and Maximum Cycle Number. In the present work, we described an expression for determin-
ing the value of ‘‘limit” depending on population (colony size) and dimension of problem. Therefore, now ABC has only two
common control parameters: maximum cycle number ðMCNÞ and colony size ðSNÞ. Consequently, ABC is as simple and flex-
ible as DE and PSO; and also employs less control parameters.

ESs used in Experiments 2 and 3 employ recombination and mutation operators to produce offsprings (new individuals)
while ABC uses only mutation operator. Although the basic version of ES is as simple as ABC, the improved versions used for
comparison in this work are more complex than ABC. Moreover, all of them employ more control parameters than ABC.

This work compared the performance of ABC algorithm with those of GA, DE, PSO and ES algorithms on a large set of
unconstrained test functions. From the results obtained in this work, it can be concluded that the performance of ABC algo-
rithm is better than or similar to that of these algorithms although it uses less control parameters and it can be efficiently
used for solving multimodal and multidimensional optimization problems.
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