
D

M
D

a

A
R
R
A
A

K
B
A
S
D
U

1

c
c
c
b
a
u
m
t
r
c
s
b
t
c
f
b
d
s

(

1
d

Applied Soft Computing 12 (2012) 342–352

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

isABC: A new artificial bee colony algorithm for binary optimization

ina Husseinzadeh Kashan, Nasim Nahavandi ∗, Ali Husseinzadeh Kashan
epartment of Industrial Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14117-13116, Tehran, Iran

 r t i c l e i n f o

rticle history:
eceived 25 November 2010
eceived in revised form 12 May 2011
ccepted 5 August 2011
vailable online 22 August 2011

eywords:
inary optimization
rtificial bee colony algorithm

a b s t r a c t

Artificial bee colony (ABC) algorithm is one of the recently proposed swarm intelligence based algorithms
for continuous optimization. Therefore it is not possible to use the original ABC algorithm directly to opti-
mize binary structured problems. In this paper we introduce a new version of ABC, called DisABC, which is
particularly designed for binary optimization. DisABC uses a new differential expression, which employs
a measure of dissimilarity between binary vectors in place of the vector subtraction operator typically
used in the original ABC algorithm. Such an expression helps to maintain the major characteristics of the
original one and is respondent to the structure of binary optimization problems, too. Similar to original
ABC algorithm, DisABC’s differential expression works in continuous space while its consequence is used
warm intelligence
issimilarity measure of binary structures
ncapacitated facility location problem

in a two-phase heuristic to construct a complete solution in binary space. Effectiveness of DisABC algo-
rithm is tested on solving the uncapacitated facility location problem (UFLP). A set of 15 benchmark test
problem instances of UFLP are adopted from OR-Library and solved by the proposed algorithm. Results
are compared with two other state of the art binary optimization algorithms, i.e., binDE and PSO algo-
rithms, in terms of three quality indices. Comparisons indicate that DisABC performs very well and can
be regarded as a promising method for solving wide class of binary optimization problems.
. Introduction

Several heuristic algorithms have been developed for solving
ombinatorial optimization problems. These algorithms can be
lassified into different groups depending on the criteria being
onsidered, such as population based, trajectory based, iterative
ased, stochastic, deterministic, etc. An algorithm working with

 group of solutions and trying to improve them, is called pop-
lation based [16]. One of the most recently population based
ethods is artificial bee colony (ABC) algorithm which belongs

o a family of algorithms called swarm intelligence based algo-
ithms. ABC was first introduced by Karaboga in 2005 for solving
ontinuous optimization problems. To optimize over a continuous
pace, ABC simulates the intelligent foraging behaviour of honey
ee swarm. In this algorithm a colony of artificial bees, including
hree groups of: employed bees, onlooker bees and scout bees, are
onsidered. ABC performs based on sharing nectar information of
ood sources between two groups of bees, namely the employed
ee and onlooker bee. When the nectar of a food source is aban-

oned by the bees, a new food source is randomly determined by a
cout bee and is replaced with that abandoned one.

∗ Corresponding author.
E-mail addresses: n nahavandi@modares.ac.ir, nasim nahavandi@yahoo.com

N. Nahavandi).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.08.038
© 2011 Elsevier B.V. All rights reserved.

To model the intelligent behaviour of honey bee swarms sev-
eral approaches have been proposed and implemented for solving
various types of optimization problems. Karaboga and Basturk [17]
compared the performance of artificial bee colony with differential
evolution (DE), particle swam optimization (PSO) and evolution-
ary algorithm (EA) on multi-dimensional numerical optimization
problems. Bao and Zeng [2] introduced three selection strategies,
such as disruptive selection strategy, tournament selection strat-
egy and rank selection strategy to improve the population diversity
and avoid the premature convergence of ABC. Through improving
the exploration capacity of ABC, Tsai et al., [23] proposed an Inter-
active Artificial Bee Colony (IABC) algorithm based on employing
the Newtonian law of universal gravitation. Pan et al., [19] pro-
posed a discrete artificial bee colony (DABC) algorithm to solve the
lot-streaming flow shop scheduling problem with total weighted
earliness and tardiness penalties criterion. Their algorithm uses
a self adaptive strategy for generating neighbouring food sources
based on insert and swap operators applied on a food source rep-
resented as a discrete job permutation. Zhang et al., [25] developed
an artificial bee colony clustering algorithm to optimally partition
N objects into K clusters. For this problem Karaboga and Ozturk [18]
proposed an ABC algorithm and tested it with the results of a PSO
based algorithm. Their results indicate that ABC can efficiently be

used for multivariate data clustering.

As mentioned earlier, the original version of ABC algo-
rithm is only able to optimize continuous problems. Therefore,
we cannot use it directly for optimization in binary spaces. In

dx.doi.org/10.1016/j.asoc.2011.08.038
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:n_nahavandi@modares.ac.ir
mailto:nasim_nahavandi@yahoo.com
dx.doi.org/10.1016/j.asoc.2011.08.038

oft Co

s
r
v
v
t
s
o
a
c
o
c
a
t
d
s
a
o
D
d
t
l
i
o
i
A
u
o
a
s

d
l
h
e
t
l
s
f
a
h
t
w

t
t
I
o
s

2

h
i
T
o
c
t
w
o
p
e
s
t
t

M.H. Kashan et al. / Applied S

pite of the wide application of binary optimization problems in
eal word engineering and the ability of ABC algorithm in solving
arious problems, there is no effort put on developing the binary
ersions of ABC algorithm. To our knowledge, this paper presents
he first effort on making the use of ABC algorithm applicable for
olving binary optimization problems. Using dissimilarity measure
f binary structures in place of the arithmetic subtraction operator,

 differential expression is proposed which maintains the major
haracteristics of the original ABC’s expression. The main feature
f this new operator is that it works in continuous space while the
onsequences are used in discrete space. One of the main benefits
long with our approach is that it enables us to utilize the struc-
ural knowledge of the problem through using general or problem
ependent heuristic procedures, during the construction of the new
olution. This feature could be so crucial to an evolutionary search
nd may facilitate steering the search quickly toward the global
ptimum. Another advantage of our algorithm, which is called
isABC is that in contrary with transformation based methods or
iscretization methods [7], etc., which may cause some informa-
ion to be lost (because for example we have to search a much
arger solution space) or may fail to refine solutions (which is an
ndication of the lack of exploration ability), or may cause the lost
f information on good substrings that should be remained together
n a good solution, there is no information lost through enforcing
BC’s differential expression to work in continuous space, while
sing the consequences in binary space. Unlike other approaches,
ur approach does not map the problem space into another space
nd then transforming back the obtained solution into the original
pace in order to solve the problem.

To verify effectiveness of our algorithm, experiments are con-
ucted on the benchmarked suites of the uncapacitated facility

ocation problem (UFLP), collected from OR-Library. In UFLP, we
ave to select a set of facilities to be set up and a set of clients for
ach facility to service so as to minimize the total cost of setting up
he facilities and servicing the clients [10]. UFLP forms the under-
ying model in several combinatorial problems like set covering,
et partitioning, airline crew scheduling, etc., and is a sub-problem
or various location analysis. Extensive computational experiments
re carried out to find out the behaviour of DisABC algorithm,
ybridized with a single local search module, under various set-
ing of control parameters and also to measure how it competes
ith other state of the art binary optimization algorithms.

The paper is organized as follows. The following section reviews
he basic preliminaries of ABC. Section 3 goes toward developing
he new binary version of ABC algorithm called DisABC algorithm.
n Section 4, the UFLP problem is introduced. Section 5 gives details
n the effectiveness comparisons and suggestions on the parameter
etting. Finally, Section 6 gives the concluding remarks.

. Artificial bee colony (ABC) algorithm

The artificial bee colony algorithm is a population-based meta-
euristic developed by Karaboga and Basturk [16,17] which is

nspired by the intelligent foraging behaviour of honeybee swarm.
he foraging bees are classified into three categories of employed,
nlookers and scouts. All bees that are exploiting a food source are
lassified as “employed”. The employed bees bring loads of nec-
ar from the food source and share information with onlooker bees
hich are waiting in the hive for information to be shared by dance

f employed bees about the food sources. The duration of a dance is
roportional to the fruitfulness of the food source currently being

xploited by the dancing bee. Onlooker bees tend to choose a food
ource according to the probability proportional to the quality of
hat food source. Therefore, good food sources attract more bees
han the bad ones. Scout bees search for new food sources in the
mputing 12 (2012) 342–352 343

vicinity of the hive. Whenever a scout or onlooker bee finds a food
source, it becomes employed. Whenever a food source is exploited
fully, all the employed bees associated with it abandon it, and may
again become scouts or onlookers. Scout bees perform the job of
exploration, whereas employed and onlooker bees perform the job
of exploitation.

In ABC algorithm, the position of a food source is a possible
solution of the optimization problem and nectar amount of a food
source corresponds to the fitness of associated solution. In ABC, the
first half of the colony consists of employed bees and the other half
includes onlookers [17]. The number of employed bees (Nb) is equal
to the number of food sources (SN) because it is assumed that for
every food source, there is only one employed bee [17]. Moreover,
the number of employed or onlooker bees is equal to solutions in
the population [16]. After generating a randomly distributed ini-
tial population of size SN of solutions, each of the employed and
onlooker bees exerts a probabilistically modification on the solu-
tion (the position of a food source) for finding a new solution (new
food source position) and tests the fitness (nectar) amount of this
new solution (new food source). Suppose each solution consists
of D parameters and let Xt

i
= (xt

i1, xt
i2, ..., xt

iD
) denotes to the ith

solution generated in cycle t with parameter values xt
i1, xt

i2, ..., xt
iD

.
In ABC algorithm, every employed bee produces a new solution
Vt

i
= (vt

i1, vt
i2, ..., vt

iD
), in a D dimensional search space, from the old

one (Xt
i
) using a differential expression as follows:

vt
ij = xt

ij + ϕt
ij(x

t
ij − xt

kj) (1)

where j ∈ {1, 2, ..., D}, and k is selected randomly from {1, 2, ..., Nb}
such that k /= i. ϕt

ij
is a random variate scaling factor. If the fitness

value of the new generated solution be better than the old one
(the nectar amount of the new food source be higher than the old
one) the bee forgets the old solution and memorizes the new one.
Otherwise she keeps the position of the old solution.

When all employed bees have finished their searching pro-
cess, they share the fitness (nectar) information of their solution
(food sources) with the onlookers, each of whom selects a solution
according to a probability proportional to the fitness value of that
solution. Eq. (1) is employed again to generate a new solution by
an onlooker bee based on the old solution in her memory and the
selected one. If the fitness amount of the new solution is better than
the old one, the bee memorizes the new position and forgets the
old one. The probability value, pi by which an onlooker bee chooses
a food source is calculated as follows [16]:

pi =
fiti∑SN
j=1fitj

(2)

where fiti is the fitness value of the solution i and SN is the num-
ber of food sources. To calculate a fitness value for a minimization
problem, the following expression is employed:

fiti =

⎧⎨
⎩

1
1 + f (Xi)

if f (Xi) ≥ 0

1 + abs(f (Xi)) if f (Xi) < 0

⎫⎬
⎭ (3)

where f(Xi) is the cost value associated to Xi. The scout bees replace
the food source whose nectar is abandoned by employed bees, with
a new one. In ABC algorithm, if the quality of a solution cannot be
improved after a predetermined number of cycles called “limit”,
the scout bee replaces the abandoned solution with a new random
one. In such a condition, the new solution is constructed as follows
[16]:
xij = xj
min + rand(0, 1) × (xj

max − xj
min) (4)

where xj
min and xj

max are the lower and upper bounds on the value
of the jth parameter, respectively.

3 oft Co

3

o
a
p
t
m
e

w
m
e
e
h
s

3

p
o
c
b
o
t
t
i
t
s
v
v
a

b
o
r
v

s

•

•

•

•

c
b
a

S

c

44 M.H. Kashan et al. / Applied S

. A novel ABC algorithm for binary optimization (DisABC)

In this section, we propose a new approach to deal with binary
ptimization problems using ABC. In order to use ABC algorithm as

 solution method for pure binary optimization problems, it is not
ossible to use the differential expression (Eq. (1)), directly. Because
his expression works in the continuous space, while binary opti-

ization problems are discrete. Therefore, we must adapt this
quation such that it becomes applicable for binary search spaces.

To propose our binary version of ABC, called DisABC algorithm,
e apply the concept of dissimilarity between binary vectors as a
easure to quantify how far the two binary vectors are apart from

ach other. This measure can be used as an alternative to differential
xpression. Before giving the rationale of our approach, we need to
ave a brief introduction on the way of quantifying the degree of
imilarity/dissimilarity between binary structures.

.1. Measuring similarity of binary structures

The binary feature vector is one of the most common ways of
atterns representation, and measuring the similarity/dissimilarity
f binary structures play a critical role in many problems such as
lustering and classification [4]. Quantifying the degree of similarity
etween two objects, it can be found how similar they are to each
ther or how far apart they are from each other. There are several
echniques for measuring similarity of objects with binary struc-
ures. A popular group of these measures applicable for binary data
s known collectively as matching coefficients [6]. There are several
ypes of matching coefficients, all of which take their goal as mea-
uring similarity between any two structures composed of binary
alued bits. The underlying logic is that two structures should be
iewed as similar to the degree that they share a common pattern
mong their bits [9].

Let Xi = (xi1, xi2, ..., xiD) and Xj = (xj1, xj2, ..., xjD) represent two
inary vectors for which we are interested to measure the degree
f similarity between them (recall that xid and xjd ∀d = 1, 2, ...D, rep-
esent the dth bit in Xi and Xj, respectively and can take only 0 or 1
alues).

To measure the similarity between Xi and Xj, their bit values
hould be compared. There are four possible cases:

xid = xjd = 1
xid = 0, xjd = 1
xid = 1, xjd = 0
xid = xjd = 0

Let define:

M11 represents the total number of bits where both Xi and Xj have

a value of 1 (M11 =
∑D

d=1I(xid = xjd = 1)).
M01 represents the total number of bits where the bit value for Xi

is 0 and for Xj is 1 (M01 =
∑D

d=1I(xid = 0, xjd = 1)).
M10 represents the total number of bits where the bit value for Xi

is 1 and for Xj is 0 (M10 =
∑D

d=1I(xid = 1, xjd = 0))
M00 represents the total number of bits where both Xi and Xj have

a value of 0 (M00 =
∑D

d=1I(xid = 0, xjd = 0))

Obviously we have M11 + M01 + M10 + M00 = D. One of the most
ommonly used measures to identify the degree of similarity
etween Xi and Xj is the Jaccard’s coefficient of similarity defined
s follows [21]:
imilarity(Xi, Xj) = M11

M01 + M10 + M11
(5)

The value of this measure belongs to interval [0,1]. Taking Jac-
ard’s coefficient of similarity, an intuitive measure of dissimilarity
mputing 12 (2012) 342–352

between Xi and Xj, which quantifies how far apart Xi and Xj are from
each other, can be defined as follows:

Dissimilarity(Xi, Xj) = 1 − Similarity(Xi, Xj) = 1 − M11

M01 + M10 + M11

(6)

Clearly 0 ≤ Dissimilarity(Xi, Xj) ≤ 1. While there are a number
of similarity metrics available for dichotomous variables [11], the
Jaccard’s coefficient of similarity is one of most widely used metric
discussed in the literature. Therefore, without loss of generality,
only this measure will be included in our study.

3.2. Generating a new solution in DisABC

As mentioned before, Eq. (1) in ABC algorithm has been designed
for optimization in continuous space and cannot work with binary
vectors. Therefore, to deal with pure binary optimization prob-
lems we should reconstruct (1) to obtain the one working with
binary vectors instead of real valued vectors. To do this, some
appropriate operators must be used in place of the arithmetic
operators used in (1). Specially, we substitute “−” operator with
a dissimilarity measure of binary vectors. Similar to “−” oper-
ator that quantifies the magnitude of difference between two
scalars, a dissimilarity measure quantifies the magnitude of dis-
tance/dissimilarity between two binary vectors. One of the main
characteristics of such a measure is that in spite of working in con-
tinuous space, its outcome can be used for construction of the new
solution vector in binary space. We use “Dissimilarity” to address
such measure.

Reshaping (1) in form of Vt
i
− Xt

i
= ϕ(Xt

i
− Xt

k
) and replacing “−”

by “Dissimilarity”, the new differential expression in DisABC algo-
rithm can be defined as follows:

Dissimilarity(Vt
i , Xt

i) ≈ ϕ.Dissimilarity(Xt
i , Xt

k) (7)

Recall that Vt
i
, Xt

i
and Xt

k
are binary vectors and ϕ is a

positive random scaling factor. In (7), “≈” implies “almost
equal”. We use this symbol, instead of “=”, because it may
not be possible to construct the new solution Vt

i
, in such a

way that the value of Dissimilarity(Vt
i
, Xt

i
) becomes equal to

the value of ϕ.Dissimilarity(Xt
i
, Xt

k
), exactly. Let us define A =

ϕ.Dissimilarity(Xt
i
, Xt

k
), and assume that the value of A has been

determined using (6).
Eq. (7) tells us that the construction of the new binary solu-

tion Vt
i

is in such a way that its degree of dissimilarity with Xt
i

is
around the value of A. In other words, to produce the new binary
solution Vt

i
, the value of the following three variables must be

determined:

• M11: the number of bits with value 1 in both Vt
i

and Xt
i• M10: the number of bits with value 1 in Vt

i
and 0 in Xt

i• M01: the number of bits with value 0 in Vt
i

and 1 in Xt
i

This work must be done in such a way that the value of
Dissimilarity(Vt

i
, Xt

i
) obtained by 1 − M11/(M01 + M10 + M11) gets

equal or the closest value to A. To determine the best possible value
for M11, M10 and M01, the following integer programming model is
used. As soon as these values are determined, the binary solution
Vt

i
can be constructed, accordingly. Let n1 be the total number of

bits with value 1 and n0 be the total number of bits with value 0 in

Xt

i
, respectively.

min
∣∣∣ 1 − M11

M11 + M10 + M01
− A

∣∣∣ (8)

M.H. Kashan et al. / Applied Soft Co

n1

M10

n0

n1 M11

M01

M

M

M

D
b
a
m
o
t
m
a
(
a
s
T{
(
n
f
i

(

f
o

t
S
V
t
V
f
v
n
s

p
v
c

dom selection logic, we employ them in a probabilistic manner.
Fig. 1. The feasible space of the system (8)–(11).

st:

11 + M01 = n1 (9)

10 ≤ n0 (10)

11, M10, M01 ≥ 0 : and integer (11)

Objective (8) tries to minimize the gap between the value of
issimilarity(Vt

i
, Xt

i
) and A. In other words, it tries to keep (7) in

alance. Since M11 + M01 counts the number of bits where Xt
i

has
 value equal to 1, therefore constraint (9) enforces that this value
ust be equal to n1. Constraint (10) ensures that the total number

f bits where the bit value for Vt
i

is 1 and for Xt
i

is 0, is less than the
otal number of zeros in Xt

i
, i.e., n0. Solving the above mathematical

odel optimally, we can decide on the bit values of Vt
i
. Therefore,

 computationally advisable way should be devised to solve model
8)–(11) optimally. Fortunately, the structure of the above model
llows us to solve it optimally through a total enumeration (TE)
cheme by only (n1 + 1)(n0 + 1) evaluations of the objective (8). This
E scheme requires at most O(D2) time.

With respect to constraint (9), the feasible set is (M11, M01) =
(i, n1 − i)|i = 0, 1, ..., n1

}
with n1 + 1 pairs. Taking each pair values

fixed values of M11 and M01), the value of M10 can vary from 0 to
0 (thus, there are n0 + 1 different values for M10). Therefore, the
easible state space of the system of (8)–(11) (the lattice in Fig. 1)
s formed with (n1 + 1)(n0 + 1) triplets as follows:

M11, M01, M10) =
{

(i, n1 − i, j)|i = 0, 1, ..., n1, j = 0, 1, ..., n0
}

Each triplet is represented by a black point in Fig. 1. There-
ore, there would be required at most (n1 + 1)(n0 + 1) evaluations
f objective (8) to find the optimal solution of the model (8)–(11).

The new solution vector Vt
i

can be simply constructed after get-
ing the optimal value of M11, M01 and M10 through TE scheme.
tarting with a vector of size 1 by D of zeroes, the candidate solution
t
i

is obtained by: 1) choosing M11 number of zero bits for which
he corresponding value in Xt

i
takes 1 and changing their value in

t
i

from 0 to 1 and 2) choosing M10 number of zero bits within Vt
i

or which the corresponding value in Xt
i

takes 0 and changing their
alue in Vt

i
from 0 to 1. Since Vt

i
is initialized by zero vector, we just

eed to decide about the number of variables (bits) that their value
hould change to 1. The number of these bits is equal to M10 + M11.

t
The complete vector V
i

which is obtained based on the out-
ut of mathematical model (8)–(11) is the one whose dissimilarity
alue with Xt

i
, in terms of Jaccard’s coefficient of dissimilarity, is the

losest possible value to A.
mputing 12 (2012) 342–352 345

The following algorithm describes the required steps for gener-
ating the candidate solution Vt

i
, via the parameter vectors Xt

i
and

Xt
k
.
Algorithm NBSG (new binary solution generator)

Step 1. Compute the value of A through A = ϕ.Dissimilarity(Xt
i
, Xt

k
)

and use it in the mathematical programming model (8)–(11) with
outputs M11, M01 and M10. Apply the total enumeration (TE) scheme
to solve the mathematical programming problem optimally. Initialize
Vt

i
by a 1 × D zero vector.

Step 2-1 (Inheritance phase). Based on any logic, select M11 number
of zero bits from Vt

i
which their corresponding value in Xt

i
is 1. Change

the value of the selected bits from 0 to 1.
Step 2-2 (Disinheritance phase). Based on any logic, select M10 num-
ber of zero bits from Vt

i
which their corresponding value in Xt

i
is 0.

Change the value of the selected bits from 0 to 1. Then, report the new
binary solution Vt

i
as an output.

At steps 2-1 and 2-2 of NBSG, general/problem-dependent
heuristics can be employed. In step 2-1 of NBSG, one may do selec-
tion in a greedy fashion; for example based on the contribution that
each bit (variable) might have in the cost function. Here is where we
can use the structural knowledge of the problem to generate pos-
sibly better solutions. Indeed, the selected bits are one of the parts
that the new solution Vt

i
inherits from Xt

i
. Usually DROP methods

are applicable at step 2-1 of NBSG algorithm. Such methods would
keep dropping the bit with value equal to 1 in Xt

i
that gives the

maximum decrease in the total cost, and would stop whenever the
number of remained ones is equal to M11. A similar situation is held
for step 2-2 of NBSG algorithm, but here the selected elements are
the parts that Vt

i
disinherits. For this phase, ADD methods seem

suitable. Such methods would keep adding the bit results in the
maximum decrease in the total cost, and would stop whenever the
number of added bits reaches M10. The added bits will take 1 in
Vt

i
.
However, it should be remind that DROP/ADD methods per-

form on the basis of dropping/adding a variable after a variable and
this may make the use of them computationally expensive. In our
implementation of DisABC, to fulfil the inheritance and disinher-
itance steps in NBSG algorithm, we use one of random selection
or selection based on the pattern observed in the best solution
found so far (Xt

Global
), in a probabilistic manner. Following the ran-

dom selection logic, for the inheritance phase, M11 number of zero
variables which their corresponding values in Xt

i
is 1, are selected

randomly from Vt
i

(initialized by a 1 × D zero vector) and their val-
ues are changed to 1. For the disinheritance phase, M10 number
of zero variables which their corresponding values in Xt

i
takes 0,

are selected randomly from Vt
i

and their values are changed to 1.
To bias the search toward the components of Xt

Global
, the second

selection logic called greedy selection logic performs as follows:
for the inheritance phase, M11 number of zero variables which
their corresponding values in both Xt

i
and Xt

Global
are equal to 1,

are selected from Vt
i

(initialized by a 1 × D zero vector) and their
values are changed to 1. Let k be the number of variables with
value 1 in both Xt

i
and Xt

Global
. If M11 > k then the extra M11− k vari-

ables are selected based on the random selection logic described
above. The disinheritance phase is done in a similar fashion but
this time M10 number of zero variables which their correspond-
ing values in both Xt

i
and Xt

Global
are equal to 0, are selected from

Vt
i
. The extra variables are selected based on the random selec-

tion logic, accordingly. To address both exploitation preserved by
the greedy selection logic and exploration supported by the ran-
In this way, a random number in [0,1] is generated. If the value
of random number be less than a predetermined value (ps) the
random selection logic is followed, otherwise the greedy logic is
employed.

3 oft Co

E
i
(
ϕ

o
m
h

M

=
p

3

B
e
o
o

r

3

I
i
e
t
[

b
e
v
o
h
h

46 M.H. Kashan et al. / Applied S

xample. To show how the candidate solution Vt
i

is generated
n DisABC algorithm, let us consider two parameter vectors Xt

i
=

1011010100) and Xt
k
= (1000101101). Let us also assume that

 = 0.7.

Step 1. Comparing Xt
i

and Xt
k

bit by bit, we find that M11 = 2, M01 = 3
and M10 = 3. Therefore we have:

A = ϕ.Dissimilarity(Xt
i , Xt

k) = 0.7
(

1 − 2
2 + 3 + 3

)
= 0.525

Thus, Vt
i

should be constructed in such a way that the value
f Dissimilarity(Vt

i
, Xt

i
) becomes around 0.525. The mathematical

odel of (8)–(11) can be given as follows. Recall that from Xt
i

we
ave n1 = 5 and n0 = 5.

min z =
∣∣∣ 1 − M11

M11 + M10 + M01
− 0.525

∣∣∣
st :

M11 + M01 = 5
M10 ≤ 5

M11, M10, M01 ≥ 0 : and integer

The optimal output of the model is as follows: M11 = 3, M01 = 2,
10 = 1 and z = 0.025. Initialize Vt

i
by a 1 × 10 zero bit array.

Step 2-1. Let us define PXt
i
= {d|xt

id
= 1}. We should select M11 = 3

bits among PXt
i
= {1, 3, 4, 6, 8}. Assume that following the random

selection, the first, the middle and the last member of PXt
i

are

selected. Thus we have Vt
i
= (1001000100).

Step 2-2. Let us define QXt
i
= {d|xt

id
= 0}. We should select M10 = 1

variable among QXt
i
= {2, 5, 7, 9, 10}. Assume that following the

random selection, the forth member of QXt
i

is selected. Thus we

set vt
i9 = 1 which yields the final solution as Vt

i
= (1001000110).

It is easy to check that Dissimilarity (Vt
i
, Xt

i
) = 1 − (3/(3 + 1 + 2))

 0.5 which its difference with the value of A is the minimum
ossible value, i.e., 0.025.

.3. Initialization in DisABC

The initial population in DisABC is generated randomly using a
ernoulli process. In this way, for each variable of an initial param-
ter vector, a random number within [0,1] is generated. If the value
f this number is less than 0.5, the corresponding variable gets 0,
therwise it gets 1.

It is worth noting that the scot bee’s solution is also generated
andomly using the above procedure.

.4. Hybridizing DisABC with a local search module

A local search is often a simple neighbourhood search method.
t starts with an initial solution as the current solution and checks
ts neighbourhood for finding a better solution. If such solutions
xist, then the local search designates the best solution found in
he neighbourhood as the current solution and repeats the process
10].

A simple local search method using a neighbourhood structure
ased on swap moves is hybridized with DisABC algorithm and is
mployed after the onlooker phase. The swap move changes the

alue of a zero bit to 1 and simultaneously changes a bit with value
f 1 to 0. This kind of move does not change the number of bits
aving value equal to 1 in the solution. The local search module
as two input parameters, namely plocal and Nlocal. plocal controls
mputing 12 (2012) 342–352

the rate of recalling the local search module in DisABC algorithm.
Also, Nlocal determines the number of generated and evaluated
solutions in the local search module. The sketch of the local search
module is as follows:

Local search method
Initialize input parameters
If r ≤ plocal % %r is a random number in [0,1]

For i = 1 to Nlocal

S ← Xt
i
;

Do a swap move on S;
If f (S) < f (Xt

i
)

Xt
i
← S;

End if
End for

End if

The following algorithm describes the pseudo code of DisABC
algorithm for minimizing a binary optimization problem with
cost function f. We use f(X) to denote the cost value associated
with X.

DisABC Algorithm
Initialize the input parameters
t ← 1;
For i = 1 to SN

Create a random solution Xt
i

and evaluate it;
End for
While stopping criteria are not true

For i = 1 to SN %% employed bee phase
Generate a new solution Vt

i
from Xt

i
(and based on Xt

k
(k /= i))

via NBSG algorithm; Evaluate the new solution;
If f (Vt

i
) < f (Xt

i
)

Xt
i
← Vt

i
Else

Remember Xt
i
;

End if
End for
For i = 1 to SN %% onlooker bee phase

Calculate the probability value pi using (2);
Produce a new solution Vt

i
from Xt

i
(and based on Xt

k
(k /= i) selected depending on pi) via NBSG
algorithm; Evaluate the new solution;

If f (Vt
i
) < f (Xt

i
)

Xt+1
i
← Vt

i
Else

Xt+1
i
← Xt

i
End if

End for
Apply the local search module;
If necessary, select the abandoned solution and replace it
with a new random solution generated in a manner similar
to the procedure explained in Section 3.3; %% scot bee phase
t ← t + 1;

End While

4. The uncapacitated facility location problem

This section gives a brief description on a concrete binary prob-
lem which is used to verify the effectiveness of DisABC algorithm.
The problem is the uncapacitated facility location problem (UFLP).
UFLP which has been extensively considered in the literature can
be described as follows.

In UFLP, there is a set of customer locations with known demands
and a set of candidate facility locations. If we select to locate a
facility at a candidate location, a known fixed set up cost will
be incurred. Moreover, there is a known shipment cost between
each candidate facility location and each customer location. The
problem is to find the optimal locations for setting up facilities
and assignment of customers to located facilities in such a way

that the sum of total opening costs and total shipment costs be
minimize. It is assumed that the located facilities have sufficient
capacity to meet all demands of the customer(s) connected to them
[5]. Taking n and m to represent the potential number of facilities

oft Co

a
f

l

y

a

x

o
o
o

o
e
s

y
s
a
d
S
a

t
s
a
m
m
b
m
t
s
[

i
i
o
p
o
s
t
s
o

5

t
m
i
t
a

M.H. Kashan et al. / Applied S

nd customers, respectively, UFLP can be mathematically stated as
ollows:

min f =
n∑

i=1

m∑
j=1

cijyij +
n∑

i=1

fixi

st :
n∑

i=1

yij = 1, j = 1, ..., m

yij ≤ xi, i = 1, ..., n, j = 1, ..., m
yij, xi = 0, 1, i = 1, ..., n, j = 1, ..., m

where cij is the shipment cost from facility location i to customer
ocation j; fi is the opening cost of a facility at location i;

ij =
{

1 if customer j is served by the facility
opened at location i
0 otherwise

nd

i =
{

1 if facility is opened at location i
0 otherwise

Since the demand of each customer location is fulfilled by only
ne facility (i.e., no fractional fulfilment is allowed) the variable yij is
f binary type. Variable xi is also binary. xi = 1, indicates the opening
f a facility at candidate location i by incurring a fixed opening cost.

When the location of facilities to be opened is determined, the
ptimal allocation of customers will be obtained easily. Indeed,
ach customer j is fulfilled by the facility opened at location k whose
hipment cost ckj is minimal (k = arg min

i=1,...,n
{cij}). Then ykj = 1 and

ij = 0, ∀i = 1, ..., n ; i /= k. Therefore, this is the location decision that
hould be done optimally. In this regard, by a “solution” we address

 vector X = (x1, x2, ..., xn) of n variables, where each variable (bit) xi
emonstrates that whether a facility is opened at location i or not.
uch a binary vector plays the role of a parameter vector in DisABC
lgorithm.

UFLP is probably the most important NP-hard problem in loca-
ion theory [5] and a rich literature has been devoted to it. Various
olution methodologies have been emerged over the time for UFLP;
mong them the branch-and-bound method [12], linear program-
ing and Lagrangian relaxation [3] and dual approach [8] are exact
ethods which ensure optimality. However, these methods may

e computationally prohibited. Other methods are approximate
ethods which facilitate getting optimum or near optimum solu-

ions in a reasonable time. Examples of these methods are tabu
earch [1,22], genetic algorithm [15], particle swarm optimization
20,24], neighbourhood search [10], etc.

To the best of our knowledge, this is the first effort investigat-
ng the application of an ABC type algorithm for solving UFLP test
nstances. Our main motivation to test the performance of DisABC
n the UFLP test instances is due to the three facts: 1) UFLP is a
ure binary optimization problem without having any continuous
r integer decision variables, 2) any arbitrary binary vector X con-
titutes a feasible solution with respect to problem constraints. So,
here is no need to consider penalties to eliminate infeasibilities, 3)
everal test problem instances of UFLP together with their known
ptimal solution are available.

. Computational experiments

In this section vast computational experiments are conducted
o test the performance of DisABC algorithm to solve the bench-
arked instances of UFLP. One of the widely used set of test problem
nstances of UFLP, for which the optimal solutions are known, is
he set of 15 test problems available in OR-Library [2]. Almost
ll methods developed for UFLP are tested first on these 15 test
mputing 12 (2012) 342–352 347

problem instances [22,20,24]. Among these test problems, 4 prob-
lems (Cap71–Cap74) are small size, 8 problems (Cap101–Cap104,
Cap131–Cap134) are medium size and the other three problems
(Capa–Capc) are large size problems. It is worth to mention that
the problem titles are same as those originally used in OR-Library.

DisABC has a number of control parameters that affect its perfor-
mance. These parameters are: ϕ, Nb, tmax, ps, limit, Nlocal and plocal
which have been already introduced in different parts of the paper.
It is common that the value of the “limit” parameter be controlled
by the number of employed bees (Nb) and the search dimension
[17]. In our experiments, the value of “limit” parameter is defined
by 2.5 × Nb × n, where n is the number of potential facility loca-
tions. Therefore, if the suitable size of the population of employed
bees is determined, the proper value of the “limit” parameter will
be obtained, accordingly.

The effect that different levels of control parameters have on
the behaviour of DisABC algorithm, when solving 15 benchmark
problems of UFLP, is investigated thoroughly during the next sub-
sections. Results are summarized in Tables 1–6. In these tables, the
effectiveness of DisABC algorithm under different settings for con-
trol parameters is measured by three indices. Columns captioned
by “Gap (%)” report the average gap between the best cost values
have been founded by DisABC (fDisABC) and the optimal cost value
(fOptimal). The value of this index is calculated by:

GAP (%) = AVG

(
f DisABC − f Optimal

f Optimal
× 100

)
(12)

where AVG() is the simple averaging function. Each cell in the “Gap
(%)” column reports the average percentage of the gap observed
among 30 runs of the algorithm on the related instance.

Columns under the caption of “#EVL” report the average number
of solutions generated and evaluated by DisABC algorithm, among
30 times execution. The algorithm stops when reaching the opti-
mum cost (fOptimal). Such a measure can gives an indication on the
quality of DisABC convergence. The smaller the average number
of solutions generated and evaluated by DisABC algorithm, indi-
cates the faster convergence. Finally, columns under the caption
of “#OPT” report the number of times that the optimal solution
is reached by DisABC algorithm, among 30 replications. In the fol-
lowing subsections we try to find a proper value for the control
parameters which led to a good performance of the algorithm.

5.1. On the choice of the value of ϕ

Our preliminary experiments show that choosing a dynamic
setting for updating the value of ϕ such that it changes linearly
throughout the search process is more appropriate than a fixed
value. Hence, we allow the value of ϕ decreases linearly from an
upper level (ϕmax) to a lower level (ϕmin) as follows:

ϕt = ϕmax −
(

ϕmax − ϕmin

tmax

)
t (13)

In which, t and tmax are the current cycle and the maximum
number of cycles, respectively. Two levels are considered for ϕmax

(i.e., 0.5 and 0.9) and three levels are considered for ϕmin (i.e., 0.1,
0.5 and 0.9). Thus, we have five different combinations of ϕmax

and ϕmin such that ϕmax ≥ ϕmin. These combinations are: ϕmax = 0.5
and ϕmin = 0.1; ϕmax = 0.5 and ϕmin = 0.5; ϕmax = 0.9 and ϕmin = 0.1;
ϕmax = 0.9 and ϕmin = 0.5; ϕmax = 0.9 and ϕmin = 0.9.

Table 1 reports the results obtained by DisABC algorithm under
above combinations of ϕmax and ϕmin. Other control parameters
are set as follows: Nb = 10; tmax = 2000; ps = 0.5; plocal = 0.01 and

Nlocal = 50.

From the results of Table 1 it can be perceived that for
small size problems, i.e., Cap71–Cap74, there is no significant
difference between various combinations of ϕmax and ϕmin, and

348 M.H. Kashan et al. / Applied Soft Computing 12 (2012) 342–352

Ta
b

le

1
R

es
u

lt
s

ob
ta

in
ed

by

D
is

A
BC

u
n

d
er

d
if

fe
re

n
t

le
ve

ls

of

ϕ
m

ax
an

d

ϕ
m

in
.

Pr
ob

le
m

n
am

e

Pr
ob

le
m

si
ze

ϕ
m

ax
=

0.
5

ϕ
m

ax
=

0.
9

ϕ
m

in
=

0.
1

ϕ
m

in
=

0.
5

ϕ
m

in
=

0.
1

ϕ
m

in
=

0.
5

ϕ
m

in
=

0.
9

G
A

P

(%
)

#
EV

L
#

O
PT

G
A

P

(%
)

#
EV

L

#
O

PT

G
A

P

(%
)

#
EV

L

#
O

PT

G
A

P

(%
)

#
EV

L

#
O

PT

G
A

P

(%
)

#
EV

L
#

O
PT

C
ap

71

16

×

50

0

67
2.

6

30

0

12
64

.2

30

0

16
01

.7

30

0

31
92

.8

30

0

25
38

.8

30
C

ap
72

16

×

50

0

10
20

.7

30

0

16
02

.4

30

0

32
50

.0

30

0

27
91

.8

30

0

32
60

.7

30
C

ap
73

16

×

50

0

29
27

.1

30

0

19
78

.9

30

0

65
91

.4

30

0

74
18

.1

30

0

10
06

2.
0

30
C

ap
74

16

×

50

0

68
6.

5

30

0

67
6.

9

30

0

90
2.

8

30

0

10
37

.8

30

0
11

99
.3

30
C

ap
10

1

21

×

50

0

84
80

30

0

67
52

.6

30

0

62
71

.1

30

0

88
43

.9

30

3.
60

E−
3

12
84

8.
6

29
C

ap
10

2

21

×

50

0

21
55

.6

30

0

41
82

.4

30

0

59
95

.9

30

0

88
06

.2

30

0
13

60
1.

1

30
C

ap
10

3
21

×
50

5.
49

E−
3

15
46

1.
1

28

0

96
49

.2

30

0

68
52

.5

30

0

74
92

.5

30

0

49
91

.8

30
C

ap
10

4

21

×

50

0

11
10

.5

30

3.
73

E−
3

63
00

.4

28

3.
72

E−
3

62
89

.1

28

7.
45

E−
3

82
71

.0

26

3.
73

E−
3

71
91

.4

28
C

ap
13

1
50

×
50

6.
20

E−
2

31
99

1.
3

13

3.
70

E−
2

20
86

1.
9

21

1.
44

E−
2

18
76

4.
0

26

7.
22

E−
3

16
00

4.
5

28

6.
38

E−
2

35
87

4.
2

16
C

ap
13

2

50

×

50

0

60
16

.6

30

0

48
60

.2

30

8.
43

E−
3

11
05

1.
7

28

4.
21

E−
3

14
01

3.
2

29

1.
26

E−
2

23
14

3.
8

23
C

ap
13

3

50

×

50

7.
35

E−
2

34
62

5.
2

10

1.
12

E−
1

39
44

6.
2

7

4.
48

E−
2

31
35

1.
2

13

3.
27

E−
2

25
08

6.
0

18

5.
32

E−
2

34
57

9.
9

12
C

ap
13

4

10
0

×

10
00

0

21
87

30

1.
86

E−
3

44
80

.1

29

0

35
84

.3

30

1.
86

E−
3

44
78

.9

29

2.
64

E−
2

15
46

9.
9

23
C

ap
a

10
0

×

10
00

0

62
66

.6

30

0

11
75

6.
8

30

0

63
01

.5

30

0

98
66

.8

30

0

10
50

4.
8

30
C

ap
b

10
0

×

10
00

6.
11

E−
1

32
22

1.
7

13

4.
52

E−
1

32
13

3.
6

13

3.
51

E−
1

37
43

7.
5

14

3.
67

E−
1

35
53

7.
7

17

9.
92

E−
1

48
77

2.
1

1
C

ap
c

10
0

×

10
00

2.
73

E−
1

43
58

4.
4

5

2.
18

E−
1

48
73

4.
3

2

2.
36

E−
1

45
06

5.
1

6

1.
49

E−
1

46
15

8.
4

4

3.
53

E−
1

48
68

1.
7

3

A
ve

ra
ge

6.
83

E−
2

12
62

7.
1

24
.6

5.
50

E−
2

12
97

8.
7

24
.7

4.
39

E−
2

12
75

4.
0

25
.7

3.
79

E−
2

13
26

6.
7

26
.1

1.
01

E−
1

18
18

1.
3

23

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-3

10-2

10-1

100

101

102

phi-max=0.5;phi-min=0.1
phi-max=0.5;phi-min=0.5
phi-max=0.9;phi-min=0.1
phi-max=0.9;phi-min=0.5
phi-max=0.9;phi-min=0.9
Fig. 2. Plot of the mean of gap values evolved by DisABC under different combina-
tions for upper and lower bound of ϕ.

DisABC can reach the optimum in all of 30 runs. However, as the
value of ϕmax and ϕmin becomes larger, the required number of
solutions generated to reach the optimum (#EVL) almost becomes
large.

Analyzing the results of solving medium size benchmark
instances (Cap101–Cap104), we can see that in general there is
not a bold difference between different combinations. Since each
combination fails to ensures optimality for at least one run. On
Cap131–Cap134 the average pattern indicates that as the value of
ϕmax and ϕmin becomes larger (except for ϕmax = 0.9 and ϕmin = 0.9),
The average #EVL and #OPT values improves. However, ϕmax = 0.5
and ϕmin = 0.1 is the only combination which yields optimum in all
runs for both Cap132 and Cap134. For these problems, ϕmax = 0.9
and ϕmin = 0.9 provides the worst, and the combination of ϕmax = 0.9
and ϕmin = 0.5 provides the best average results. On Capa–Capc, the
algorithm is more effective under combination of ϕmax = 0.9 and
ϕmin = 0.1 and ϕmax = 0.9 and ϕmin = 0.5.

In conclusion, from the “Average” row in Table 1 it can be
inferred that, the greatest rate of getting optimal solutions (26.1
out of 30) and the lowest gap values (0.0388%) are achieved by Dis-
ABC under ϕmax = 0.9 and ϕmin = 0.5 combination. Considering the
above illustrations, the combination of ϕmax = 0.9 and ϕmin = 0.5 is
chosen for the rest of computations.

To visualize how DisABC converges to the global optimum, the
evolution of the mean of gap values during the searches is depicted
in Fig. 2 for Cap131 under different combinations of ϕmax and ϕmin
values.

5.2. On the choice of the value of Nb and tmax

In this section the effect of the size of population of
employed bees and/or the maximum number of cycles (tmax)
on the quality of solutions obtained by DisABC algorithm is
investigated.

Three levels of 10, 20 and 30 are considered for Nb (conse-
quently, the size of population is 2 × 10, 2 × 20 and 2 × 30). Initial
investigations show that DisABC algorithm is not very sensitive to
different values of tmax. Therefore, instead of considering differ-
ent values, only one reasonable level is considered for tmax, i.e.,
2000. The other control parameters are set as follows: ϕmax = 0.9
ϕmin = 0.5; ps = 0.5; Nlocal = 50 and plocal = 0.01. Results are summa-
rized in Table 2.
As expected, increasing the number of individuals results in
increasing the chance of getting the optimal solution by the algo-
rithm. But this is at the expense of increasing the number of
evaluations. Almost for all problems, choosing a greater number

M.H. Kashan et al. / Applied Soft Computing 12 (2012) 342–352 349

Table 2
Results obtained by DisABC under different levels of Nb.

Problem name Problem size Nb = 10 Nb = 20 Nb = 30

GAP (%) #EVL #OPT GAP (%) #EVL #OPT GAP (%) #EVL #OPT

Cap71 16 × 50 0 3192.8 30 0 2816 30 0 1791.3 30
Cap72 16 × 50 0 2791.8 30 0 5353.2 30 0 6621.9 30
Cap73 16 × 50 0 7418.1 30 0 12604.7 30 0 19311.9 30
Cap74 16 ×50 0 1037.8 30 0 695.2 30 0 848.3 30
Cap101 21 × 50 0 8843.9 30 0 15421.4 30 0 22723.1 30
Cap102 21 × 50 0 8806.2 30 0 16576.3 30 0 17784.2 30
Cap103 21 × 50 0 7492.5 30 0 9309.0 30 0 5503.7 30
Cap104 21 × 50 7.45E−3 8271.0 26 0 1529.2 30 0 1487.3 30
Cap131 50 × 50 7.22E−3 16004.5 28 0 23628.3 30 0 34544.9 30
Cap132 50 ×50 4.21E−3 14013.2 29 0 14169.1 30 0 21930.5 30
Cap133 50 ×50 3.27E−2 25086.0 18 3.22E−2 51670.6 17 1.84E−2 53659.9 23
Cap134 50 × 50 1.86E−3 4478.9 29 0 4963.3 30 0 3183.4 30
Capa 100 × 1000 0 9866.8 30 0 11471.5 30 0 12295.3 30
Capb 100 × 1000 3.67E−1 35537.7 17 2.98E−1 72900.8 16 2.51E−1 84505.4 19
Capc 100 × 1000 1.49E−1 46158.4 4 1.01E−1 87067.6 7 5.95E−2 139156.7 3

Average 3.79E−2 13266.7 26.1 2.87E−2 22011.7 26.7 2.19E−2 28356.5 27

Table 3
Results obtained by DisABC under different levels of ps .

Problem name Problem size ps = 0.5 ps = 1

GAP (%) #EVL #OPT GAP (%) #EVL #OPT

Cap71 16 ×50 0 1791.3 30 0 9201.3 30
Cap72 16 × 50 0 6621.9 30 0 3476 30
Cap73 16 × 50 0 19311.9 30 0 3476.1 30
Cap74 16 × 50 0 848.3 30 0 1149.4 30
Cap101 21 × 50 0 22723.1 30 0 17246.2 30
Cap102 21 ×50 0 17784.2 30 0 11794.7 30
Cap103 21 × 50 0 5503.7 30 0 8655.2 30
Cap104 21 × 50 0 1487.3 30 0 3526.0 30
Cap131 50 × 50 0 34544.9 30 0 56667.9 30
Cap132 50 × 50 0 21930.5 30 0 44876.9 30
Cap133 50 × 50 1.84E−2 53659.9 23 0 39470.4 30
Cap134 50 × 50 0 3183.4 30 0 8175.1 30
Capa 100 ×1000 0 12295.3 30 0 34148.9 30
Capb 100 × 1000 2.51E−1 84505.4 19 3.54E−1 137507.4 9

56.7

56.5

o
o
#
a
F
v

T
R

Capc 100 × 1000 5.95E−2 1391

Average 2.19E−2 283

f employed bees, results in improving the quality of solutions
btained by DisABC. This issue can be indicated by the GAP (%) and

OPT values. To guarantee a reasonable quality under a reason-
ble amount of searches, we use Nb = 30 in rest of our experiments.
ig. 3 depicts the evolution of the mean of gap values under different
alues of Nb for Cap133.

able 4
esults obtained by DisABC under different levels of plocal and Nlocal .

Problem name Problem size plocal = 0.01; Nlocal = 50

GAP (%) #EVL

Cap71 16 × 50 0 9201.3
Cap72 16 × 50 0 3476

Cap73 16 × 50 0 3476.1
Cap74 16 × 50 0 1149.4
Cap101 21 × 50 0 17246.2
Cap102 21 × 50 0 11794.7
Cap103 21 × 50 0 8655.2
Cap104 21 × 50 0 3526.0
Cap131 50 ×50 0 56667.9
Cap132 50 × 50 0 44876.9
Cap133 50 × 50 0 39470.4
Cap134 50 × 50 0 8175.1
Capa 100 × 1000 0 34148.9
Capb 100 × 1000 3.54E−1 137507.4
Capc 100 × 1000 7.40E−2 140530.4

Average 2.85E−2 34660.1
3 7.40E−2 140530.4 11

27 2.85E−2 34660.1 27.3

5.3. On the choice of the value of ps
To preserve both exploration and exploitation, random and
greedy selection logics are used in the inheritance and disin-
heritance steps of NBSG algorithm. To make a balance between
these strategies, a tunable parameter ps, which affects the rate of

plocal = 0.02; Nlocal = 100

#OPT GAP (%) #EVL #OPT

 30 0 2254.9 30
30 0 1458.8 30

 30 0 3113.4 30
 30 0 1255.3 30
 30 0 11274.1 30
 30 0 7159.9 30
 30 0 5678.2 30

 30 0 3240.4 30
 30 0 45257.4 30
 30 0 30261.6 30
 30 0 23778.2 30
 30 0 7195.8 30
 30 0 21340.3 30
 9 0 87574.3 30
 11 1.86E−2 185759.5 13

27.3 1.24E−3 29106.8 28.9

350 M.H. Kashan et al. / Applied Soft Computing 12 (2012) 342–352

Table 5
Results obtained by DisABC in comparison with binDE.

Problem name Problem size DisABC binDE

GAP (%) #EVL # OPT Time (s) GAP (%) # EVL # OPT Time (s)

Cap71 16 × 50 0 2254.9 30 3.1 0 2379.1 30 2.5
Cap72 16 × 50 0 1458.8 30 1.8 0 2046 30 2.2
Cap73 16 × 50 0 3113.4 30 3.6 0 2500.0 30 2.7
Cap74 16 ×50 0 1255.3 30 1.3 0 2737.3 30 2.9
Cap101 21 × 50 0 11274.1 30 17.7 0 8298.1 30 9.5
Cap102 21 × 50 0 7159.9 30 9.7 0 8192.5 30 9.2
Cap103 21 × 50 0 5678.2 30 7.2 0 8170.9 30 9.3
Cap104 21 × 50 0 3240.4 30 4.0 0 5910.7 30 6.6
Cap131 50 × 50 0 45257.4 30 73.6 0 37290.7 30 48.0
Cap132 50 ×50 0 30261.6 30 42.3 0 37727.5 30 47.5
Cap133 50 ×50 0 23778.2 30 30.5 0 44593.7 30 54.2
Cap134 50 × 50 0 7195.8 30 9.4 0 19002.7 30 23.5
Capa 100 × 1000 0 21340.3 30 86.8 7.32E−01 100784.4 18 402.1
Capb 100 × 1000 0 87574.3 30 378.3 1.77 120120 0 524.0
Capc 100 × 1000 1.86E−2 185759.5 13 886.4 1.71 120120 0 555.9

Average 1.24E−3 29106.8 28.9 103.7 0.2 34658.2 25.2 113.3

Table 6
Results obtained by DisABC in comparison with PSO.

Problem name Problem size DisABC PSO PSO + Local search

GAP (%) #OPT GAP (%) #OPT GAP (%) #OPT

Cap71 16 × 50 0 30 0.05 26 0 30
Cap72 16 × 50 0 30 0.07 24 0 30
Cap73 16 ×50 0 30 0.06 19 0 30
Cap74 16 × 50 0 30 0.07 22 0 30
Cap101 21 × 50 0 30 0.14 16 0 30
Cap102 21 × 50 0 30 0.15 12 0 30
Cap103 21 × 50 0 30 0.16 6 0 30
Cap104 21 × 50 0 30 0.18 21 0 30
Cap131 50 × 50 0 30 0.75 2 0 30
Cap132 50 ×50 0 30 0.78 0 0 30
Cap133 50 × 50 0 30 0.73 0 0 30
Cap134 50 × 50 0 30 0.89 3 0 30
Capa 100 × 1000 0 30 22.01 0 0 30
Capb 100 × 1000 0 30 10.75 0 0 30

3

8.9

a
r
p
(
o

F
f

Capc 100 × 1000 1.86E−2 1

Average 1.24E−3 2

pplying the two selection strategies, is introduced. In DisABC algo-

ithm, two levels for value of ps, namely 0.5 and 1 are considered.
s = 0.5 puts equal weight on the greedy (exploitation) and random
exploration) selection strategy, while ps = 1 puts entire weight
n the random selection strategy (exploration). Other control

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-2

10-1

100

101

102

t

G
ap

 (
%

)

Nb=10;tmax=2000

Nb=20;tmax=2000
Nb=30;tmax=2000

ig. 3. Plot of the mean of gap values evolved by DisABC under different values
or Nb.
9.72 0 0.02 15

3.1 10.0 1.33E−03 29

parameters are set as follows: Nb = 30; tmax = 2000; ϕmax = 0.9;
ϕmin = 0.5; Nlocal = 50 and plocal = 0.01. Results are presented in
Table 3.

From the results of Table 3 it can be observed that, ps = 1 ensures
optimality for 13 out of 15 (87%) problems, while this record for
ps = 0.5 is 12 out of 15 (80%). However there is no direct surpassing
relation between these settings on large problems. Effectiveness of
algorithm on Capb, under ps = 0.5 seems better in comparison with
ps = 1. But on Capc, choosing ps = 1 provides more fruitful results.
In the absence of any significant evidence of superiority between
the two considered schemes for ps, we use ps = 1 for the reminder
of computations. Fig. 4 shows the evolution of the mean of gap
values under different levels of ps for Cap74. As it is expected, due
to the nature of greedy selection which utilizes the information
along with the best solution found so far, the convergence under
ps = 0.5 is faster than the pure random selection preserved by ps = 1.
The lower value of #EVL also indicates this conclusion.

5.4. On the choice of the value of Nlocal and plocal

In this section we will investigate the effect of setting differ-
ent levels for the input parameters of local search module on the

performance of DisABC algorithm. Two schemes are considered for
Nlocal and plocal namely, plocal = 0.01 and Nlocal = 50 (the first scheme);
and plocal = 0.02 and Nlocal = 100 (the second scheme). In the sec-
ond scheme, both of the recalling rate of local search module

M.H. Kashan et al. / Applied Soft Co

0 5 10 15 20 25 30 35 40
10-3

10-2

10-1

100

101

t

G
ap

 (
%

)

ps=0.5

ps=1

F
p

(
s
t
ϕ

m
a
r
a
o
u
F
s
o
t
u

t

5

a
T
t

F
N

ig. 4. Plot of the mean of gap values evolved by DisABC under different values for
s .

plocal) and the number of generated and evaluated neighbourhood
olutions (Nlocal) are twice to bold the role of local search. Other con-
rol parameters are set as follows: Nb = 30, tmax = 2000, ϕmax = 0.9,
min = 0.5 and ps = 1. Results are tabulated in Table 4.

From Table 4 it can be observed that the benefits along with
ore highlighting the role of the local search module in DisABC

lgorithm, in terms of reducing the Gaps, increasing the success
ate and speeding up the convergence (see Fig. 5 for an example)
re meaningful. On Capb, the percentage of success in reaching the
ptimum under first scheme is less than 30% (9 out of 30). However,
nder second scheme the success rate hits 100% (30 out of 30).
or Capc, both of Gap (%) and #OPT indices are improved under
econd scheme. However there is an increment in the total number
f solutions evaluated by the algorithm. In general, effectiveness of
he algorithm in solving large scale problems will be better supplied
nder second scheme.

Fig. 5 visualizes the evolution of the mean of gap values under
wo settings of local search input parameters for Cap133.

.5. Comparing DisABC with binDE

The binDE algorithm [7] uses the floating-point component of

 solution vector to determine a probability for each component.
hese probabilities are then used to generate a bit-string solu-
ion from the floating-point vector. This bit string is used by the

0 100 200 300 400 500 600 700 800 900
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

t

G
ap

 (
%

)

N-local=50;P-local=0.01
N-local=100;P-local=0.02

ig. 5. Plot of the mean of gap values evolved by DisABC under different values for
local and Plocal .
mputing 12 (2012) 342–352 351

fitness function to determine its quality. The resulting fitness is
then associated with floating point representation of the individu-
als [7].

To have a fair comparison between DisABC and binDE algo-
rithms, the size of population and maximum number of cycles
are considered equal. Moreover, we use a decreasing strategy to
update the value of F (the scaled factor used in DE) same as that
of used for updating the value of ϕ in DisABC. The value of CR
(the crossover rate used in DE) is also set at 0.1 as it is typically
suggested in DE. However, we have tried other levels of CR (e.g.,
0.05 and 0.15) to possibly obtain better results. From the prelim-
inary computations we found out that CR = 0.1 provides the best
results.

The performance of DisABC and binDE algorithms, in solving 15
benchmark test instances of the UFLP, are compared in Table 5.

Comparing the results obtained by DisABC and binDE it can be
inferred that both of them are quite successful in reaching the opti-
mum of small and medium size problems (Cap71–Cap134). In most
cases (except for Cap73, Cap 101 and Cap131) the convergence rate
of DisABC is faster than binDE. This issue can be evidenced by the
value of #EVL index obtained by the algorithms. On Capa, the num-
ber of optimum solutions obtained by binDE is 18 out of 30 (60%)
while DisABC reaches the optimum in all of 30 runs. On Capb and
Capc, the difference between performance of DisABC and binDE is
very egregious. Percentage of success of DisABC in getting the opti-
mum of these problems is 100 and 43 respectively, while binDE
could never reach the optimum. In conclusion, superiority of Dis-
ABC over binDE in solving large size test problem instances of UFLP
is quite tangible. This issue can be confirmed by the value of all
indices in “Average” row of Table 5.

Due to the representational restriction, we cannot use our local
search module in the body of binDE to improve its performance. In
order to improve a floating-point vector generated in an iteration
of binDE, first the vector should be transformed to its correspond-
ing bit-string vector and then the local search should be applied
on it. Now the improved bit-string should be encoded into the
floating-point vector corresponding to it (because binDE applies the
evolutionary operators on the floating-point vectors). The restric-
tion is due to the fact that we cannot determine the corresponding
real vector of a given bit-string vector.

5.6. Comparing DisABC with PSO

Similar to binDE, the PSO algorithm [20] uses the floating point
vector representation. The only difference between binDE and PSO
is in conversion of a continuous component to a binary one. Unlike
binDE, PSO uses each floating-point component of a solution vector
to identify the opening or closing a facility in a deterministic man-
ner. In this algorithm each continuous component x is converted to
binary value y using the formula y =

⌊∣∣xmod2
∣∣⌋.

We adopt the results of PSO algorithm and its hybridized version
(PSO + Local search) directly from [20] and reported them in Table 6.
Results obtained by DisABC algorithm have been also restated in the
same table.

From Table 6 we can infer that PSO produces premature results
and does not offer satisfactory performance. The gap value for PSO
on Capa, Capb and Capc is very high and none of its attempts yields
the optimum. The average gap value for PSO is 3.1% while for DisABC
this value is 0.001%. Besides, the average #OPT values tell us that
DisABC is more dependable than PSO in hitting the optimum. The

performance of PSO + Local search algorithm looks very impressive
compared to PSO with respect to the two indices of solution quality.
However, almost for all problems the performance of PSO + Local
search and DisABC algorithms are comparable.

3 oft Co

6

i
s
W
a
o
m
v

t
t
o
l
a
a
c

u
l
i
a
a

e
p
k
s
[

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

52 M.H. Kashan et al. / Applied S

. Conclusion

Many real world engineering problems are stated mathemat-
cally as a binary optimization problem. Therefore, devising a
uitable solution method for these problems seems noteworthy.

e introduced a new binary version of Artificial Bee Colony (ABC)
lgorithm, which is called DisABC algorithm and uses a measure
f dissimilarity between binary structures in place of the arith-
etic vector subtraction operation, typically used in the continuous

ersion of ABC.
One of the most important characteristics of our algorithm is

hat it works in continuous space, while the consequences are used
o construct the new solution in the binary space. The effectiveness
f the proposed approach was tested on benchmark test prob-
em instances of the uncapacitated facility location problem (UFLP),
nd compared with two binary optimization algorithms, e.g., binDE
nd PSO, where the results demonstrate that our approach is
ompetitive.

One of the main advantages of DisABC algorithm is that,
nlike transformation based method, it does not map the prob-

em space into another space and therefore, there is no lost of
nformation. Ease of implementation and preserving the main char-
cteristics of ABC algorithm are the other advantages of DisABC
lgorithm.

For future research, the effectiveness of our approach could be
xamined on other binary problems, e.g., knapsack problem, bin
acking problem, etc. Developing the binary version of other well-
nown algorithms, which use differential operation, e.g., particle
warm optimization algorithm and league championship algorithm
13,14] is particularly encouraged.

eferences

[1] K.S. Al-Sultan, M.A. Al-Fawzan, A tabu search approach to the uncapaci-
tated facility location problem, Annals of Operations Research 86 (1999) 91–
103.

[2] L. Bao, J-c. Zeng, Comparison and analysis of the selection mechanism in the

artificial bee colony Algorithm, Ninth International Conference on Hybrid Intel-
ligent Systems (2009) 411–416.

[3] J. Barcelo, A. Hallefjord, E. Fernandez, K. Jrnsten, Lagrangian relaxation and
constraint generation procedures for capacitated plant location problems with
single sourcing, OR Spectrum 12 (1990) 78–79.

[

[

mputing 12 (2012) 342–352

[4] S.-S. Choi, S.-H. Cha, C. Tappert, A survey of binary similarity and distance mea-
sures, Journal of Systematics, Cybernetics and Informatics 8 (1) (2010) 43–48.

[5] M.S. Daskin, L.V. Snyder, R.T. Berger, Facility Location in Supply Chain Design,
Lehigh University, 2003, working paper No. 03-010.

[6] W.R. Dillon, M. Goldstein, Multivariate Analysis: Methods and Applications,
John Wiley and Sons, 1984.

[7] A.P. Engelbrecht, G. Pampara, Binary differential evolution Strategies, IEEE
Congress on Evolutionary Computation (2007) 1942–1947.

[8] D. Erlenkotter, A dual-based procedure for uncapacitated facility location,
Operations Research 26 (6) (1978) 992–1009.

[9] H. Finch, Comparison of distance measures in cluster analysis with dichoto-
mous data, Journal of Data Science 3 (1) (2005) 85–100.

10] D. Ghosh, Neighborhood search heuristics for the uncapacitated facility location
problem, European Journal of Operational Research 150 (1) (2003) 150–162.

11] S. Hands, B. Everitt, A Monte Carlo study of the recovery of cluster structure
in binary data by hierarchical clustering techniques, Multivariate Behavioral
Research 22 (2) (1987) 235–243.

12] K. Holmberg, Exact solution methods for uncapacitated location problems with
convex transportation costs, European Journal of Operational Research 114 (1)
(1999) 127–140.

13] A. Husseinzadeh Kashan, League Championship Algorithm: a new algorithm
for numerical function optimization, in: IEEE International Conference of Soft
Computing and Pattern Recognition, SoCPaR 2009, 2009, pp. 43–48.

14] A. Husseinzadeh Kashan, An efficient algorithm for constrained global
optimization and application to mechanical engineering design:
League championship algorithm (LCA), Computer-Aided Design (2011),
doi:10.1016/j.cad.2011.07.003.

15] J.H. Jaramillo, J. Bhadury, R. Batta, On the use of genetic algorithms to solve
location problems, Computers & Operations Research 29 (6) (2002) 761–779.

16] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, Journal of Global
Optimization 39 (3) (2007) 459–471.

17] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algo-
rithm, Applied Soft computing 8 (1) (2008) 687–697.

18] D. Karaboga, C. Ozturk, A novel clustering approach: artificial bee colony (ABC)
algorithm, Applied Soft Computing 11 (1) (2011) 652–657.

19] Q.K. Pan, M. Fatih Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee
colony algorithm for the lot-streaming flow shop scheduling problem, Infor-
mation Sciences 181 (12) (2011) 2455–2468.

20] M. Sevkli, A.R. Guner, A continuous particle swarm optimization algorithm for
uncapacitated facility location problem, ANTS 2006 (2006) 316–323.

21] P.H.A. Sneath, Some thoughts on bacterial classification, Journal of General
Microbiology 17 (1) (1957) 184–200.

22] M. Sun, Solving the uncapacitated facility location problem using tabu search,
Computers & Operations Research 33 (9) (2006) 2563–2589.

23] P.-W. Tsai, J.-S. Pan, B.-Y. Liao, S.-C. Chu, Enhanced artificial bee colony opti-
mization, International Journal of Innovative 5 (12B) (2009) 5081–5092.
24] D. Wang, C.H. Wu, A. Ip, D. Wang, Y. Yan, Parallel multi-population particle
swarm optimization algorithm for the uncapacitated facility location problem
using openMP, IEEE Congress on Evolutionary Computation (2008) 1214–1218.

25] C. Zhang, D. Ouyang, J. Ning, An artificial bee colony approach for clustering,
Expert Systems with Applications 37 (7) (2010) 4761–4767.

	DisABC: A new artificial bee colony algorithm for binary optimization
	1 Introduction
	2 Artificial bee colony (ABC) algorithm
	3 A novel ABC algorithm for binary optimization (DisABC)
	3.1 Measuring similarity of binary structures
	3.2 Generating a new solution in DisABC
	3.3 Initialization in DisABC
	3.4 Hybridizing DisABC with a local search module

	4 The uncapacitated facility location problem
	5 Computational experiments
	5.1 On the choice of the value of φ
	5.2 On the choice of the value of Nb and tmax
	5.3 On the choice of the value of ps
	5.4 On the choice of the value of Nlocal and plocal
	5.5 Comparing DisABC with binDE
	5.6 Comparing DisABC with PSO

	6 Conclusion
	References

