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Swarm intelligence is a research field that models the collective intelligence in swarms of
insects or animals. Many algorithms that simulates these models have been proposed in
order to solve a wide range of problems. The Artificial Bee Colony algorithm is one of
the most recent swarm intelligence based algorithms which simulates the foraging behav-
iour of honey bee colonies. In this work, modified versions of the Artificial Bee Colony algo-
rithm are introduced and applied for efficiently solving real-parameter optimization
problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The collective intelligent behaviour of insect or animal groups in nature such as flocks of birds, colonies of ants, schools of
fish, swarms of bees, and termites have attracted the attention of researchers. The aggregate behaviour of insects or animals
is called swarm behaviour. Entomologists have studied this collective behaviour to model biological swarms, and engineers
applied these models as a framework for solving complex real-world problems. This branch of artificial intelligence which
deals with the collective behaviour of swarms through complex interaction of individuals without supervision, is referred to
as swarm intelligence. Bonabeau defined swarm intelligence as ‘‘any attempt to design algorithms or distributed problem-
solving devices inspired by the collective behaviour of the social insect colonies and other animal societies” [8]. Swarm intel-
ligence has some advantages such as scalability, fault tolerance, adaptation, speed, modularity, autonomy, and parallelism
[29].

The key components of swarm intelligence are self-organization and division of labour. In a self-organising system, each
of the covered units may respond to local stimuli individually and act together to accomplish a global task via division of
labour without a centralized supervision. The entire system can adapt to internal and external changes efficiently. Bonabeau
et al. have characterized four basic properties on which self-organization relies: positive feedback, negative feedback, fluc-
tuations and multiple interactions [8]. Positive feedback means that an individual recruits other individuals by some direc-
tive, such as dancing of bees in order to lead some other bees onto a specific food source site. Negative feedback avoids all
individuals accumulating on the same task by counterbalancing the attraction negatively, such as abandoning the exhausted
food source. Fluctuations are random behaviours of individuals in order to explore new states, such as random flights of
scouts in a bee swarm. Multiple interactions are the basis of the tasks to be carried out by certain rules.

Bee swarms exhibit many intelligent behaviours in their tasks such as nest site building, marriage, foraging, navigation
and task selection. There is an efficient task selection mechanism in a bee swarm that can be adaptively changed by the state
of the hive and the environment. Foraging is another crucial task for bees. Forage selection depends on recruitment for and
abandonment of food sources. There are three types of bees associated with the foraging task with respect to their selection
mechanisms. Employed bees fly onto the sources which they are exploiting; onlooker bees choose the sources by watching
. All rights reserved.

32578; fax: +90 352 437 57 84.
y), karaboga@erciyes.edu.tr (D. Karaboga).

araboga, A modified Artificial Bee Colony algorithm for real-parameter optimization, Inform.

http://dx.doi.org/10.1016/j.ins.2010.07.015
mailto:bahriye@erciyes.edu.tr
mailto:karaboga@erciyes.edu.tr
http://dx.doi.org/10.1016/j.ins.2010.07.015
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
http://dx.doi.org/10.1016/j.ins.2010.07.015


2 B. Akay, D. Karaboga / Information Sciences xxx (2010) xxx–xxx
the dances performed by employed bees, and scouts choose sources randomly by means of some internal motivation or pos-
sible external clue. The exchange of information among bees is the most important occurrence in the formation of the col-
lective knowledge. The most important part of the hive in terms of exchanging information is the dancing area.
Communication among bees related to the quality of food sources takes place in the dancing area. Various dances are per-
formed on the dancing area, such as waggle, round, tremble depending on the distance of the discovered source.

Although the Ant Colony Optimization (ACO) algorithm [11] simulating the behaviour of ant colonies and Particle
Swarm Optimization (PSO) algorithm [30] mimicking flocks of birds are the most popular intelligence based optimization
algorithms, there are some algorithms presented in the literature based on the foraging behaviour of a bee swarm
[55,36,57,58,18,42,15,12,9,3,46,35,31]. Tereshko developed a model of foraging behaviour of a honeybee colony based
on reaction–diffusion equations [55]. Lucic and Teodorovic developed the Bee System based on the foraging behaviour
of a bee colony for solving difficult combinatorial optimization problems [36]. Another algorithm is BeeAdHoc proposed
by Wedde and Farooq, which is a routing algorithm for energy efficient routing in mobile ad hoc networks [57]. BeeAdHoc
is also inspired by the foraging principles of honey bees. Yang presented a virtual bee algorithm (VBA) to solve numerical
optimization problems [58]. Karaboga introduced a bee swarm algorithm called the Artificial Bee Colony (ABC) algorithm
that simulates the foraging behaviour of bees [18] for multimodal and multi-dimensional numerical optimization
problems. Pham et al. also described the Bees Algorithm which mimics the foraging behaviour of honey bees [42]. Ghosh
and Marshall proposed a model of learning and collective decision-making in honey bees engaged in foraging [15]. They
employed their model for a swarm of robots. Drias and Yahi introduced a meta-heuristic named Bees Swarm Optimization
(BSO) based on the behaviour of real bees for solving maximum weight satisfiability problems [12]. Chong et al. described
a bee colony optimization algorithm based on the foraging bahaviour and the waggle dance. The algorithm was applied to
job shop scheduling [9]. Baig and Rashid presented Honey Bee Foraging (HBF) algorithm which simulates the foraging
behaviour of the honey bees and performs swarm-based collective foraging in promising neighborhoods with individual
scouting searches in other areas [3]. Quijano and Passino introduced a foraging model of honey bees for solving a
class of optimal resource allocation problems [46]. Lu and Zhou developed Bee Collecting Pollen Algorithm (BCPA) by
simulating the honeybees’ pollen collecting behaviour for solving the travelling salesman problem [35]. Ko et al. proposed
a self-adaptive grid computing protocol called HoneyAdapt which is based on adaptive bee foraging behaviour in nature
[31].

In this work, some modifications to the standard ABC algorithm are introduced, and the performance of the modified
ABC algorithm is investigated for real-parameter optimization on both basic and composite functions presented at the
Congress of Evolutionary Computation 2005 (CEC05). Effects of the perturbation rate that controls the frequency of param-
eter change, the scaling factor (step size) that determines the magnitude of change in parameters while producing a neigh-
boring solution, and the ‘‘limit” parameter on the performance of the ABC algorithm are investigated on real-parameter
optimization.

The rest of the paper is organized as follows. In Section 2, the ABC Algorithm is described. In Section 3, the works related
to the ABC algorithm are summarized and then the modifications to the basic ABC algorithm are introduced in Section 4. In
Section 5, experiments are presented and the results are discussed and in Section 6, a thorough comparative analysis includ-
ing the algorithms considered in this study is presented.
2. Artificial Bee Colony algorithm

In a real bee colony, some tasks are performed by specialized individuals. These specialized bees try to maximize the nec-
tar amount stored in the hive using efficient division of labour and self-organization. The Artificial Bee Colony (ABC) algo-
rithm, proposed by Karaboga in 2005 for real-parameter optimization, is a recently introduced optimization algorithm
which simulates the foraging behaviour of a bee colony [18]. The minimal model of swarm-intelligent forage selection in
a honey bee colony which the ABC algorithm simulates consists of three kinds of bees: employed bees, onlooker bees and
scout bees. Half of the colony consists of employed bees, and the other half includes onlooker bees. Employed bees are
responsible for exploiting the nectar sources explored before and giving information to the waiting bees (onlooker bees)
in the hive about the quality of the food source sites which they are exploiting. Onlooker bees wait in the hive and decide
on a food source to exploit based on the information shared by the employed bees. Scouts either randomly search the envi-
ronment in order to find a new food source depending on an internal motivation or based on possible external clues [52].

This emergent intelligent behaviour in foraging bees can be summarized as follows:

1. At the initial phase of the foraging process, the bees start to explore the environment randomly in order to find a food
source.

2. After finding a food source, the bee becomes an employed forager and starts to exploit the discovered source. The
employed bee returns to the hive with the nectar and unloads the nectar. After unloading the nectar, she can go back
to her discovered source site directly or she can share information about her source site by performing a dance on the
dance area. If her source is exhausted, she becomes a scout and starts to randomly search for a new source.

3. Onlooker bees waiting in the hive watch the dances advertising the profitable sources and choose a source site depending
on the frequency of a dance proportional to the quality of the source.
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In the ABC algorithm proposed by Karaboga, the position of a food source represents a possible solution to the optimiza-
tion problem, and the nectar amount of a food source corresponds to the profitability (fitness) of the associated solution.
Each food source is exploited by only one employed bee. In other words, the number of employed bees is equal to the num-
ber of food sources existing around the hive (number of solutions in the population). The employed bee whose food source
has been abandoned becomes a scout.

Using the analogy between emergent intelligence in foraging of bees and the ABC algorithm, the units of the basic ABC
algorithm can be explained as follows:

2.1. Producing initial food source sites

If the search space is considered to be the environment of the hive that contains the food source sites, the algorithm starts
with randomly producing food source sites that correspond to the solutions in the search space. Initial food sources are pro-
duced randomly within the range of the boundaries of the parameters.
Please
Sci. (2
xij ¼ xmin
j þ randð0;1Þðxmax

j � xmin
j Þ; ð1Þ
where i = 1. . .SN, j = 1. . .D. SN is the number of food sources and D is the number of optimization parameters. In addition,
counters which store the numbers of trials of solutions are reset to 0 in this phase.

After initialization, the population of the food sources (solutions) is subjected to repeat cycles of the search processes of
the employed bees, the onlooker bees and the scout bees. Termination criteria for the ABC algorithm might be reaching a
maximum cycle number (MCN) or meeting an error tolerance (�).

2.2. Sending employed bees to the food source sites

As mentioned earlier, each employed bee is associated with only one food source site. Hence, the number of food source
sites is equal to the number of employed bees. An employed bee produces a modification on the position of the food source
(solution) in her memory depending on local information (visual information) and finds a neighboring food source, and then
evaluates its quality. In ABC, finding a neighboring food source is defined by (2)
tij ¼ xij þ /ijðxij � xkjÞ: ð2Þ
Within the neigbourhood of every food source site represented by xi, a food source ti is determined by changing one param-
eter of xi. In Eq. (2), j is a random integer in the range [1,D] and k 2 {1,2, . . .SN} is a randomly chosen index that has to be
different from i./ij is a uniformly distributed real random number in the range [�1,1].

As can be seen from Eq. (2), as the difference between the parameters of the xi,j and xk,j decreases, the perturbation on the
position xi,j decreases. Thus, as the search approaches to the optimal solution in the search space, the step length is adap-
tively reduced.

If a parameter value produced by this operation exceeds its predetermined boundaries, the parameter can be set to an
acceptable value. In this work, the value of the parameter exceeding its boundary is set to its boundaries. If xi > xmax

i then
xi ¼ xmax

i ; If xi < xmin
i then xi ¼ xmin

i .
After producing ti within the boundaries, a fitness value for a minimization problem can be assigned to the solution ti by (3).
fitnessi ¼
1=ð1þ fiÞ if f i P 0
1þ absðfiÞ if f i < 0

� �
; ð3Þ
where fi is the cost value of the solution ti. For maximization problems, the cost function can be directly used as a fitness
function. A greedy selection is applied between xi and ti; then the better one is selected depending on fitness values repre-
senting the nectar amount of the food sources at xi and ti. If the source at ti is superior to that of xi in terms of profitability,
the employed bee memorizes the new position and forgets the old one. Otherwise the previous position is kept in memory. If
xi cannot be improved, its counter holding the number of trials is incremented by 1, otherwise, the counter is reset to 0.

2.3. Calculating probability values involved in probabilistic selection

After all employed bees complete their searches, they share their information related to the nectar amounts and the posi-
tions of their sources with the onlooker bees on the dance area. This is the multiple interaction feature of the artificial bees of
ABC. An onlooker bee evaluates the nectar information taken from all employed bees and chooses a food source site with a
probability related to its nectar amount. This probabilistic selection depends on the fitness values of the solutions in the pop-
ulation. A fitness-based selection scheme might be a roulette wheel, ranking based, stochastic universal sampling, tourna-
ment selection or another selection scheme. In basic ABC, roulette wheel selection scheme in which each slice is
proportional in size to the fitness value is employed (4):
pi ¼
fitnessiPSN
i¼1fitnessi

: ð4Þ
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In this probabilistic selection scheme, as the nectar amount of food sources (the fitness of solutions) increases, the number of
onlookers visiting them increases, too. This is the positive feedback feature of ABC.

2.4. Food source site selection by onlookers based on the information provided by employed bees

In the ABC algorithm, a random real number within the range [0,1] is generated for each source. If the probability value (pi

in Eq. (4)) associated with that source is greater than this random number then the onlooker bee produces a modification on
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Fig. 1. Flowchart of the Artificial Bee Colony algorithm.
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the position of this food source site by using Eq. (2) as in the case of the employed bee. After the source is evaluated, greedy
selection is applied and the onlooker bee either memorizes the new position by forgetting the old one or keeps the old one. If
solution xi cannot be improved, its counter holding trials is incremented by 1, otherwise, the counter is reset to 0. This pro-
cess is repeated until all onlookers are distributed onto food source sites.
2.5. Abandonment criteria: Limit and scout production

In a cycle, after all employed bees and onlooker bees complete their searches, the algorithm checks to see if there is any
exhausted source to be abandoned. In order to decide if a source is to be abandoned, the counters which have been updated
during search are used. If the value of the counter is greater than the control parameter of the ABC algorithm, known as the
‘‘limit”, then the source associated with this counter is assumed to be exhausted and is abandoned. The food source aban-
doned by its bee is replaced with a new food source discovered by the scout, which represents the negative feedback mech-
anism and fluctuation property in the self-organization of ABC. This is simulated by producing a site position randomly and
replacing it with the abandoned one. Assume that the abandoned source is xi, then the scout randomly discovers a new food
source to be replaced with xi. This operation can be defined as in (1). In basic ABC, it is assumed that only one source can be
exhausted in each cycle, and only one employed bee can be a scout. If more than one counter exceeds the ‘‘limit” value, one of
the maximum ones might be chosen programmatically.

All these units and interactions between them are shown as a flowchart on Fig. 1.
3. Previous work on the ABC algorithm

The ABC algorithm was first applied to numerical optimization [18]. Performance of the ABC algorithm was compared to
those of the Genetic Algorithm (GA), Particle Swarm Inspired Evolutionary Algorithm (PS-EA) [5,24]; and to those of Differ-
ential Evolution (DE), PSO and Evolutionary Algorithm (EA) on a limited number of basic test problems [25,21]. The effect of
region scaling on algorithms including ABC, DE and PSO algorithms was studied in [20]. The ABC algorithm was extended for
constrained optimization problems in [23] and was applied to train neural networks [19,22], to medical pattern classification
and clustering problems [26,37], to solve TSP problems [13]. Fenglei et al. also studied the control mechanism of local opti-
mal solution in order to improve the global search ability of the algorithm [13]. Singh used the Artificial Bee Colony algo-
rithm for the leaf-constrained minimum spanning tree (LCMST) problem called ABC-LCMST and compared the approach
against GA, ACO and tabu search (TS) [53]. In [53], it is reported that ABC-LCMST outperforms the other approaches in terms
of the best and average solution qualities and computational time. Rao et al. applied the ABC algorithm to network recon-
figuration problem in a radial distribution system in order to minimize the real power loss, improve voltage profile and bal-
ance feeder load subject to the radial network structure in which all loads must be energized. The results obtained by the
ABC algorithm were better than the other methods compared in the study in terms of quality of the solution and computa-
tion efficiency [47]. Bendes and Ozkan used the ABC algorithm for solving direct linear transformation (DLT) which is one of
the camera calibration methods by establishing a relation between 3D object coordinate and 2D image plane linearly. Results
produced by the ABC algorithm were compared against those of the DE algorithm [7]. Karaboga used the ABC algorithm in
the signal processing area for designing digital IIR filters [27]. Qingxian and Haijun proposed a modification in the initiali-
zation scheme by making the initial group symmetrical, and the Boltzmann selection mechanism was employed instead of
roulette wheel selection for improving the convergence ability of the ABC algorithm [44]. Hemamalini and Simon proposed
an economic load dispatch with valve-point effect by using the ABC algorithm [16]. Quan and Shi integrated a search iter-
ation operator based on the fixed point theorem of contractive mapping in Banach spaces with the ABC algorithm in order to
improve convergence rate [45]. Pawar et al. applied the ABC algorithm to some problems in mechanical engineering includ-
ing multi-objective optimization of electro–chemical machining process parameters, optimization of process parameters of
the abrasive flow machining process and the milling process [38–40]. In order to maximize the exploitation capacity of the
onlooker stage, Tsai et al. introduced the Newtonian law of universal gravitation in the onlooker phase of the basic ABC algo-
rithm in which onlookers are selected based on a roulette wheel (Interactive ABC, IABC) [56]. Baykasoglu et al. incorporated
the ABC algorithm with shift neighborhood searches and greedy randomized adaptive search heuristic and applied it to the
generalized assignment problem [6].
4. Modified Artificial Bee Colony algorithm

The basic version of the Artificial Bee Colony algorithm has only one control parameter ‘‘limit” apart from the common
control parameters of the population-based algorithms such as population size or colony size (SN) and maximum generation
number or maximum cycle number (MCN). The basic version of the ABC algorithm is very efficient for multimodal and multi-
dimensional basic functions. However, the convergence rate of the algorithm is poorer when working with constrained prob-
lems, composite functions and some non-separable functions.

This issue arises from the stochastic variation process in which new solutions are produced from the parent solutions. In
this process, some search parameters such as perturbation frequency or magnitude of the perturbation are important since
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they affect the distribution of new solutions. In order to improve the convergence rate, some modifications have been intro-
duced in the perturbation process of the basic ABC algorithm.
4.1. Frequency of the perturbation

One of the modifications in the ABC algorithm is controlling the frequency of perturbation. In the basic version of ABC, this
frequency is fixed. In basic ABC, while producing a new solution, ti, changing only one parameter of the parent solution xi

results in a slow convergence rate. In order to overcome this issue, the ABC algorithm is modified by introducing a control
parameter, modification rate (MR). By means of this modification, for each parameter xij, an uniformly distributed random
Table 1
Basic unimodal and multimodal test functions employed in the first part of the experiments.

f f(x*) Search range Initialization
range

Formulae

Sphere f ð~0Þ ¼ 0 [�100,100]D [�100,50]D
f ðxÞ ¼

PD
i¼1x2

i

Rosenbrock f ð~1Þ ¼ 0 [�2.048,2.048]D [�2.048,2.048]D
f ðxÞ ¼

PD�1
i¼1 ½100ðxiþ1 � x2

i Þ
2 þ ðxi � 1Þ2�

Ackley f ð~0Þ ¼ 0 [�32.768,32.768]D [�32.768,16]D

f ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1x2

i

q� �
� exp 1

D

PD
i¼1 cosð2pxiÞ

� �
þ 20þ e

Griewank f ð~0Þ ¼ 0 [�600,600]D [�600,200]D
f ðxÞ ¼ 1

4000

PD
i¼1x2

i �
QD

i¼1 cos xiffi
i
p
� �

þ 1

Weierstrass f ð~0Þ ¼ 0 [�0.5,0.5]D [�0.5,0.2]D
f ðxÞ ¼

PD
i¼1

Pk max
k¼0 ak cos 2pbkðxi þ 0:5Þ

� �h i� �
�D
Pk max

k¼0 ½ak cosð2pbk0:5Þ�; a ¼ 0:5; b ¼ 3; k max ¼ 20

Rastrigin f ð~0Þ ¼ 0 [�5.12,5.12]D [�5.12,2]D
f ðxÞ ¼

PD
i¼1½x2

i � 10 cosð2pxiÞ þ 10�

Noncontinuous
Rastrigin

f ð~0Þ ¼ 0 [�5.12,5.12]D [�5.12,2]D
f ðxÞ ¼

PD
i¼1ðy2

i � 10 cosð2pyiÞ þ 10Þ

yi ¼
xi jxij < 1

2
roundð2xiÞ

2 jxijP 1
2

(
Schwefel f ð~420:96Þ ¼ 0 [�500,500]D [�500,500]D

f ðxÞ ¼ 418:9829xD�
PD

i¼1 � xi sin
ffiffiffiffiffiffiffi
jxij

p� �

Table 2
Mean of best results obtained through 30 independent runs on basic functions, D:10, Max. Eval.: 30,000, MM:Multimodal,UM:Unimodal.

UM UM MM MM
1 Sphere Rosenbrock Ackley Griewank

PSO-w 7.96e�051 ± 3.56e�050 3.08e+000 ± 7.69e�001 1.58e�014 ± 1.60e�014 9.69e�002 ± 5.01e�002
PSO-cf 9.84e�105 ± 4.21e�104 6.98e�001 ± 1.46e+000 9.18e�001 ± 1.01e+000 1.19e�001 ± 7.11e�002
PSO-w-local 2.13e�035 ± 6.17e�035 3.92e+000 ± 1.19e+000 6.04e�015 ± 1.67e�015 7.80e�002 ± 3.79e�002
PSO-cf-local 1.37e�079 ± 5.60e�079 8.60e�001 ± 1.56e+000 5.78e�002 ± 2.58e�001 2.80e�002/6.34e�002
UPSO 9.84e�118 ± 3.56e�117 1.40e+000 ± 1.88e+000 1.33e+000 ± 1.48e+000 1.04e�001 ± 7.10e�002
FDR 2.21e�090 ± 9.88e�090 8.67e�001 ± 1.63e+000 3.18e�014 ± 6.40e�014 9.24e002 ± 5.61e�002
FIPS 3.15e�030 ± 4.56e�030 2.78e+000 ± 2.26e�001 3.75e�015 ± 2.13e�014 1.31e�001 ± 9.32e�002
CPSO-H 4.98e�045 ± 1.00e�044 1.53e+000 ± 1.70e+000 1.49e�014 ± 6.97e�015 4.07e�002 ± 2.80e�002
CLPSO 5.15e�029 ± 2.16e�028 2.46e+000 ± 1.70e+000 4.32e�10 ± 2.55e�014 4.56e�003 ± 4.81e�003

ABC MR, SF:1, Limit = 200 0 (basic) 7.09E�017 ± 4.11E�017 2.08E+000 ± 2.44E+000 4.58E� 016 ± 1.76E�016 1.57E�002 ± 9.06E�003
0.1 1.00E�016 ± 4.88E�017 1.96E+000 ± 2.22E+000 3.79E�016 ± 9.68E�017 2.17E�002 ± 1.78E�002
0.3 1.01E�016 ± 5.29E�017 3.16E+000 ± 2.35E+000 3.65E�016 ± 1.84E�016 1.93E�002 ± 1.30E�002
0.5 9.63E�017 ± 5.01E�017 3.20E+000 ± 1.81E+000 3.32E�016 ± 1.84E�016 2.94E�002 ± 2.47E�002
0.7 7.92E�017 ± 4.87E�017 5.06E+000 ± 1.69E+000 5.13E�016 ± 6.56E�016 4.00E�002 ± 3.52E�002
0.9 7.04E�017 ± 4.55E�017 3.66E+000 ± 1.97E+000 4.21E�013 ± 2.04E�012 5.65E�002 ± 3.05E�002
1 8.28E�017 ± 4.95E�017 3.97E+000 ± 2.24E+000 4.29E�010 ± 2.31E�009 5.61E�002 ± 3.26E�002

SF, MR:0, Limit = 200 0.7 1.05E�016 ± 5.26E�017 2.77E+000 ± 2.26E+000 3.41E�014 ± 1.12E�013 2.00E�002 ± 1.59E�002
0.5 1.44E�016 ± 3.72E�017 3.22E+000 ± 2.05E+000 2.93E�008 ± 1.53E�007 3.87E�002 ± 2.64E�002
0.3 1.77E�016 ± 5.48E�017 3.79E+000 ± 1.99E+000 4.59E�002 ± 2.10E�001 7.15E�002 ± 5.92E�002
0.1 1.89E�010 ± 6.60E�010 3.89E+000 ± 1.49E+000 3.05E+000 ± 4.29E+000 6.81E�001 ± 8.39E�001
ASF 3.00E�012 ± 5.48E�012 4.42E�001 ± 8.67E�001 2.70E�006 ± 1.46E�005 1.14E�001 ± 1.25E�001

Limit, MR:, SF 10 2.00E�001 ± 3.24E�001 5.28E+000 ± 1.49E+000 1.82E+000 ± 5.62E�001 4.25E�001 ± 1.43E�001
200 9.68E�017 ± 5.08E�017 1.61E+000 ± 1.93E+000 4.03E�016 ± 1.25E�016 1.52E�002 ± 1.28E�002
500 8.33E�017 ± 4.99E�017 2.38E+000 ± 2.59E+000 3.92E�016 ± 1.07E�016 2.10E�002 ± 1.32E�002
1000 9.04E�017 ± 4.81E�017 2.15E+000 ± 2.46E+000 4.39E�016 ± 2.22E�016 2.36E�002 ± 1.98E�002
3000 9.08E�017 ± 4.99E�017 2.60E+000 ± 2.61E+000 5.11E�016 ± 1.78E�016 2.50E�002 ± 1.46E�002
5000 1.21E�016 ± 6.66E�017 2.08E+000 ± 2.54E+000 5.87E�001 ± 1.36E+000 2.59E�002 ± 2.01E�002
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Table 3
Mean of best results obtained through 30 independent runs on basic functions, D: 10, Max. Eval.: 30,000, MM: Multimodal,UM: Unimodal.

MM MM MM MM
5 Weierstrass 6Rastrigin 7 NCRastrigin 8 schwefel

PSO-w 2.28e�003 ± 7.04e�003 5.82e+000 ± 2.96e+000 4.05e+000/ ± 2.58e+000 3.20e+002 ± 1.85e+002
PSO-cf 6.69e�001 ± 7.17e�001 1.25e+001 ± 5.17e+000 1.20e+001 ± 4.99e+000 9.87e+002 ± 2.76e+002
PSO-w-local 1.41e�006 ± 6.31e�006 3.88e+000 ± 2.30e+000 4.77e+000 ± 2.84e+000 3.26e+002 ± 1.32e+002
PSO-cf-local 7.85e�002 ± 5.16e�002 9.05e+000 ± 3.48e+000 5.95e+000 ± 2.60e+000 8.78e+002 ± 2.93e+002
UPSO 1.14e+000 ± 1.17e+000 1.17e+001 ± 6.11e+000 5.85e+000 ± 3.15e+000 1.08e+003 ± 2.68e+002
FDR 3.01e�003 ± 7.20e�003 7.51e+000 ± 3.05e+000 3.35e+000 ± 2.01e+000 8.51e+002 ± 2.76e+002
FIPS 2.02e�003 ± 6.40e�003 2.12e+000 ± 1.33e+000 4.35e+000 ± 2.80e+000 7.10e+001 ± 1.50e+002
CPSO-H 1.07e�015 ± 1.67e�015 0 ± 0 2.00e�001 ± 4.10e�001 2.13e+002 ± 1.41e+002
CLPSO 0 ± 0 0 ± 0 0 ± 0 0 ± 0

ABC MR, SF: 1,Limit = 200 0 (basic) 9.01E�006 ± 4.61E�005 1.61E�016 ± 5.20E�016 6.64E�017 ± 3.96E�017 7.91E+000 ± 2.95E+001
0.1 1.15E�007 ± 6.17E�007 2.54E�013 ± 1.37E�012 1.58E� 011 ± 7.62E�011 3.96E+000 ± 2.13E+001
0.3 1.17E�005 ± 4.90E�005 9.61E�006 ± 5.17E�005 7.84E�002 ± 2.54E�001 1.97E+001 ± 4.41E+001
0.5 8.80E�004 ± 2.94E�003 3.38E�001 ± 6.44E�001 8.00E�001 ± 7.02E�001 2.25E+001 ± 4.45E+001
0.7 4.45E�004 ± 1.69E�003 7.31E�001 ± 7.23E�001 1.59E+000 ± 9.59E�001 5.13E+001 ± 8.31E+001
0.9 1.34E�003 ± 5.62E�003 2.68E+000 ± 1.95E+000 4.21E+000 ± 1.37E+000 1.78E+002 ± 1.25E+002
1 1.92E�003 ± 6.63E�003 3.71E+000 ± 1.58E+000 5.89E+000 ± 1.69E+000 3.69E+002 ± 1.52E+002

SF, MR: 0, Limit = 200 0.7 1.18E�016 ± 6.38E�016 1.29E+000 ± 8.95E�001 9.00E�001 ± 7.00E�001 3.20E+002 ± 1.36E+002
0.5 6.33E�001 ± 7.00E�001 1.73E+000 ± 1.18E+000 1.37E+000 ± 6.57E�001 3.59E+002 ± 1.16E+002
0.3 2.89E+000 ± 1.26E+000 1.17E+001 ± 4.71E+000 3.17E+000 ± 1.42E+000 9.49E+002 ± 2.19E+002
0.1 6.08E+000 ± 1.46E+000 3.94E+001 ± 1.41E+001 2.77E+001 ± 8.45E+000 1.40E+003 ± 2.61E+002
ASF 3.24E�008 ± 3.06E�008 1.94E�001 ± 3.85E�001 6.80E�001 ± 7.80E�001 1.09E+002 ± 8.49E+001
10 3.10E�001 ± 1.54E�001 6.97E+000 ± 1.69E+000 7.33E+000 ± 1.65E+000 5.16E+002 ± 8.75E+001

Limit, MR: 1, SF: 1 200 9.41E�007 ± 5.07E�006 1.14E�007 ± 6.16E�007 1.12E�005 ± 6.04E�005 1.65E+001 ± 4.01E+001
500 0.00E+000 ± 0.00E+000 3.33E�002 ± 1.79E�001 1.17E�006 ± 5.19E�006 8.39E+000 ± 2.95E+001
1000 1.88E�006 ± 1.01E�005 3.32E�002 ± 1.79E�001 7.22E�004 ± 3.89E�003 1.30E+001 ± 3.55E+001
3000 2.37E�016 ± 1.28E�015 6.63E�002 ± 2.48E�001 1.67E�001 ± 4.53E�001 4.08E+001 ± 6.42E+001
5000 1.15E�001 ± 3.79E�001 2.02E+000 ± 3.35E+000 1.17E+000 ± 3.01E+000 1.53E+002 ± 1.20E+002
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Fig. 2. Mean of best function values for different control parameter settings.
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number, (0 6 Rij 6 1), is produced and if the random number is less than MR, then the parameter xij is modified as in the Eq.
(5).
Please
Sci. (2
tij ¼
xij þ /ijðxij � xkjÞ; if Rij < MR;

xij; otherwise;

�
ð5Þ
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Fig. 3. Convergence graphs of the ABC algorithm on basic functions.

Table 4
Mean and standard deviations of error values obtained from the ABC algorithm with different colony sizes (CS) for basic functions with different dimensions
(D).

CS Functions D

10 50 100

10 Sphere 6.83E�017 ± 4.03E�017 1.40E�014 ± 4.13E�014 4.36E�005 ± 9.15E�005
Rosenbrock 2.66E+000 ± 2.48E+000 6.22E+001 ± 2.65E+001 2.12E+002 ± 4.52E+001
Ackley 4.56E�016 ± 1.69E�016 5.64E�001 ± 5.86E�001 1.13E+000 ± 7.01E�001
Griewank 1.57E�002 ± 1.34E�002 1.49E�002 ± 2.91E�002 3.01E�001 ± 1.49E+000
Weierstrass 0.00E+000 ± 0.00E+000 8.36E�001 ± 1.33E+000 1.12E+000 ± 1.32E+000
Rastrigin 2.39E�011 ± 1.29E�010 6.30E+000 ± 3.92E+000 3.22E+001 ± 7.10E+000
NCRastrigin 3.33E�002 ± 1.80E�001 9.11E+000 ± 4.81E+000 3.36E+001 ± 6.10E+000
Schwefel 2.02E�003 ± 1.01E�002 1.13E+003 ± 3.34E+002 3.68E+003 ± 5.80E+002

20 Sphere 4.97E�017 ± 2.20E�017 7.60E�016 ± 1.30E�016 8.89E�007 ± 1.79E�006
Rosenbrock 1.22E+000 ± 1.75E+000 4.68E+001 ± 2.31E+001 1.80E+002 ± 3.49E+001
Ackley 2.69E�016 ± 6.59E�017 7.75E�011 ± 1.04E�010 2.22E�003 ± 2.25E�003
Griewank 5.60E�003 ± 6.78E�003 4.84E�003 ± 7.14E�003 2.90E�003 ± 7.55E�003
Weierstrass 0.00E+000 ± 0.00E+000 6.79E�010 ± 2.70E�009 1.53E�002 ± 3.42E�003
Rastrigin 4.92E�017 ± 1.99E�017 2.19E�001 ± 4.03E�001 1.33E+001 ± 3.06E+000
NCRastrigin 5.63E�017 ± 3.40E�017 7.37E�001 ± 6.79E�001 1.84E+001 ± 3.68E+000
Schwefel 1.27E�004 ± 4.43E�008 3.61E+002 ± 1.60E+002 2.73E+003 ± 3.46E+002

50 Sphere 4.86E�017 ± 6.71E�018 6.43E�016 ± 7.59E�017 5.53E�008 ± 4.56E�008
Rosenbrock 1.07E�001 ± 1.71E�001 3.08E+001 ± 1.15E+001 1.45E+002 ± 3.01E+001
Ackley 2.30E�016 ± 4.96E�017 8.22E�012 ± 4.82E�012 3.08E�004 ± 1.98E�004
Griewank 1.04E�003 ± 3.02E�003 4.44E�012 ± 2.22E�011 1.36E�004 ± 7.27E�004
Weierstrass 0.00E+000 ± 0.00E+000 6.86E�013 ± 7.70E�013 8.39E�003 ± 1.71E�003
Rastrigin 4.44E�017 ± 9.22E�018 3.80E�013 ± 1.19E�012 6.26E+000 ± 2.44E+000
NCRastrigin 4.54E�017 ± 9.79E�018 1.42E�011 ± 5.06E�011 1.24E+001 ± 3.48E+000
Schwefel 1.27E�004 ± 0.00E+000 4.02E+001 ± 7.17E+001 2.00E+003 ± 3.28E+002
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where k 2 {1,2, . . .SN} is randomly chosen index that has to be different from i and MR is the modification rate which takes
value between 0 and 1. A lower value of MR may cause solutions to improve slowly while a higher one may cause too much
diversity in a solution and hence in the population.

4.2. Magnitude of the perturbation

Another modification is related to the ratio of the variance operator of the basic ABC algorithm. In basic ABC, a random
perturbation which avoids getting stuck at local minima is added to the current solution in order to produce a new solution
(2). This random perturbation is the difference of the solutions (xi and xk) weighted by a random real number /ij. The value of
/ij varies within the range [�1,1] in the basic ABC while it varies within the range [�SF,SF] in the modified ABC algorithm.
Hence, magnitude of the perturbation is controlled by a control parameter called the scaling factor (SF). This value is set be-
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Table 5
Time Complexity of the ABC algorithm on Rosenbrock function (D: Dimension).

T0 T1 bT 2 Complexity ððbT 2 � T1Þ=T0Þ

D = 10 0.411260649048971 0.233486099490298 0.704668386624557 1.1457
D = 50 0.411260649048971 0.474651666622434 1.33588620900142 2.0941
D = 100 0.411260649048971 0.732597858107665 1.98444847040615 3.0439

Table 6
Values for the control parameters of the ABC algorithm used
for hybrid functions, D: Dimension of the problem.

Colony size D

Max. Cycle number 10,000
‘‘limit” 200
MR 0.4
SF 1

Table 7
Time Complexity of the ABC Algorithm on Composite Function 3 (D: Dimension).

T0 T1 bT 2 Complexity ððbT 2 � T1Þ=T0Þ

D = 10 0.37499985191971 0.84299985319376 7.62500013224781 18.0853412190309
D = 30 0.890999869443476 22.5620004348457 57.7893576609787
D = 50 0.938000343739986 45.5779997399077 117.08004553051

Table 8
D: 10, Colony Size: 10, ‘‘limit”: 200, Cycle: 10,000 Max.FES: 100,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 1 2 3 4 5 6 7 8

1.00E+03 Best 1.76E+00 3.92E+01 2.98E+04 2.12E+02 3.64E+02 5.93E+03 5. 22E+00 2.04E+01
7th 1.54E+01 1.47E+02 5.66E+04 5.55E+02 1.55E+03 4.37E+04 1.02E+01 2.07E+01
Median 4.44E+01 2.08E+02 8.52E+04 8.49E+02 2.34E+03 1.04E+05 1.82E+01 2.08E+01
19th 7.29E+01 3.11E+02 1.03E+05 1.37E+03 2.86E+03 1.88E+05 2.89E+01 2.08E+01
Worst 1.03E+02 6.94E+02 1.71E+05 3.01E+03 6.79E+03 8.13E+05 6.54E+01 2.09E+01
Mean 4.43E+01 2.41E+02 8.51E+04 1.07E+03 2.66E+03 1.73E+05 2.39E+01 2.07E+01
Std 2.91E+01 1.54E+02 3.74E+04 7.28E+02 1.66E+03 1.97E+05 1.70E+01 1.30E�01

1.00E+04 Best 0.00E+00 0.00E+00 6.33E+03 0.00E+00 4.82E�02 5.67E+00 4.15E�01 2.03E+01
7th 0.00E+00 0.00E+00 1.51E+04 0.00E+00 3.36E�01 1.24E+01 5.58E�01 2.04E+01
Median 0.00E+00 0.00E+00 2.02E+04 0.00E+00 1.22E+00 1.62E+01 6.72E�01 2.05E+01
19th 0.00E+00 0.00E+00 2.24E+04 0.00E+00 9.11E+00 2.93E+01 8.56E�01 2.06E+01
Worst 0.00E+00 0.00E+00 3.72E+04 0.00E+00 6.73E+01 1.23E+02 1.16E+00 2.07E+01
Mean 0.00E+00 0.00E+00 1.96E+04 0.00E+00 9.13E+00 2.68E+01 7.17E�01 2.05E+01
Std 0.00E+00 0.00E+00 6.69E+03 0.00E+00 1.57E+01 2.77E+01 2.02E�01 1.09E�01

1.00E+05 Best 0.00E+00 0.00E+00 7.83E+02 0.00E+00 0.00E+00 1.07E+00 2.38E�01 2.02E+01
7th 0.00E+00 0.00E+00 3.82E+03 0.00E+00 0.00E+00 3.23E+00 3.05E�01 2.03E+01
Median 0.00E+00 0.00E+00 6.33E+03 0.00E+00 0.00E+00 4.44E+00 3.37E�01 2.04E+01
19th 0.00E+00 0.00E+00 8.05E+03 0.00E+00 0.00E+00 6.50E+00 3.90E�01 2.04E+01
Worst 0.00E+00 0.00E+00 1.42E+04 0.00E+00 0.00E+00 8.84E+00 4.95E�01 2.05E+01
Mean 0.00E+00 0.00E+00 6.27E+03 0.00E+00 0.00E+00 4.69E+00 3.46E�01 2.04E+01
Std 0.00E+00 0.00E+00 2.83E+03 0.00E+00 0.00E+00 2.24E+00 6.43E�02 6.52E�02
MTE 8.63E�09 7.65E�09 6.27E+03 1.74E�09 1.15E�03 4.69E+00 3.46E�01 2.04E+01
STE 1.31E�09 1.40E�09 2.83E+03 7.95E�09 2.33E�03 2.24E+00 6.43E�02 6.52E�02
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fore running the algorithm. A lower value of SF allows the search to fine tuning the process in small steps while causing slow
convergence. A larger value of SF speeds up the search, but it reduces the exploitation capability of the perturbation process.
For some classes of problems, lower values of SF are appropriate while for some, higher ones are convenient. For this reason,
the modified algorithm may change SF automatically during the search, called adaptive SF (ASF). Automatic tuning of SF is
conducted by using Rechenberg’s 1/5 mutation rule which states that the ratio of successful mutations to all mutations
should be 1/5 [2]. Changing step size according to 1/5 rule in every m number of cycles is performed as in the Eq. (6):
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Table 9
D: 10, Colony Size: 10, ‘‘limit”: 200, Cycle: 10,000 Max.FES: 100,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 9 10 11 12 13 14 15 16 17

1.00E+03 Best 1.95E+01 4.52E+01 7.70E+00 2.81E+03 2.04E+00 3.58E+00 2. 57E+02 2.69E+02 2.68E+02
7th 2.72E+01 6.47E+01 9.81E+00 6.98E+03 3.17E+00 4.12E+00 3.95E+02 3.18E+02 3.18E+02
Median 3.04E+01 6.99E+01 1.04E+01 9.63E+03 3.64E+00 4.24E+00 4.56E+02 3.40E+02 3.35E+02
19th 3.71E+01 7.73E+01 1.07E+01 1.42E+04 4.47E+00 4.32E+00 5.14E+02 3.63E+02 3.74E+02
Worst 4.74E+01 9.35E+01 1.14E+01 2.45E+04 7.20E+00 4.51E+00 5.88E+02 3.88E+02 5.27E+02
Mean 3.19E+01 7.02E+01 1.02E+01 1.11E+04 3.92E+00 4.22E+00 4.49E+02 3.37E+02 3.44E+02
Std 6.72E+00 1.12E+01 8.16E�01 5.53E+03 1.20E+00 1.80E�01 7.53E+01 3.44E+01 5.06E+01

1.00E+04 Best 1.28E�02 1.91E+01 6.62E+00 6.01E+01 8.00E�01 3.40E+00 1.31E+02 1.77E+02 2.02E+02
7th 1.05E+00 3.10E+01 7.50E+00 6.76E+02 1.44E+00 3.66E+00 1.99E+02 2.14E+02 2.48E+02
Median 2.35E+00 3.58E+01 7.86E+00 1.64E+03 1.58E+00 3.81E+00 2.32E+02 2.32E+02 2.63E+02
19th 4.91E+00 4.10E+01 8.55E+00 2.25E+03 1.84E+00 3.97E+00 2.66E+02 2.71E+02 2.78E+02
Worst 7.28E+00 4.90E+01 8.83E+00 3.07E+03 2.18E+00 4.10E+00 3.49E+02 3.05E+02 3.64E+02
Mean 2.91E+00 3.52E+01 7.90E+00 1.42E+03 1.60E+00 3.81E+00 2.30E+02 2.42E+02 2.66E+02
Std 2.35E+00 7.45E+00 6.38E�01 8.30E+02 3.59E�01 1.86E�01 5.45E+01 3.32E+01 2.96E+01

1.00E+05 Best 2.02E+01 1.47E+01 4.37E+00 6.01E+01 1.19E�01 3.07E+00 1.03E+02 1.75E+02 1.84E+02
7th 2.03E+01 1.91E+01 5.69E+00 2.97E+02 3.79E�01 3.43E+00 1.31E+02 1.85E+02 2.04E+02
Median 2.04E+01 2.27E+01 6.12E+00 3.43E+02 5.03E�01 3.51E+00 1.49E+02 1.94E+02 2.15E+02
19th 2.04E+01 2.70E+01 6.66E+00 4.99E+02 1.92E�01 3.65E+00 1.68E+02 2.11E+02 2.29E+02
Worst 2.05E+01 2.96E+01 7.20E+00 1.02E+03 8.43E�01 3.78E+00 1.97E+02 2.22E+02 2.52E+02
Mean 2.04E+01 2.27E+01 6.13E+00 3.99E+02 4.90E�01 3.51E+00 1.48E+02 1.98E+02 2.16E+02
Std 6.52E�02 4.24E+00 6.65E�01 2.11E+02 1.92E�01 1.55E�01 2.40E+01 1.46E+01 1.61E+01
MTE 7.89E�09 2.27E+01 6.13E+00 3.99E+02 4.90E�01 3.51E+00 1.48E+02 1.98E+02 2.16E+02
STE 1.82E�09 4.24E+00 6.65E�01 2.11E+02 1.92E�01 1.55E�01 2.40E+01 1.46E+01 1.61E+01

Table 10
D: 10, Colony Size: 10, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 100,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 18 19 20 21 22 23 24 25

1.00E+03 Best 5.87E+02 5.49E+02 5.22E+02 7.02E+02 8.79E+02 7.49E+02 2.01E+02 2.00E+02
7th 6.57E+02 6.29E+02 6.54E+02 9.55E+02 9.23E+02 9.66E+02 2.01E+02 2.00E+02
Median 7.00E+02 6.71E+02 7.05E+02 9.96E+02 9.53E+02 1.02E+03 2.02E+02 2.00E+02
19th 9.44E+02 7.19E+02 8.14E+02 1.03E+03 9.70E+02 1.04E+03 2.02E+02 2.00E+02
Worst 1.02E+03 1.07E+03 9.96E+02 1.13E+03 1.09E+03 1.15E+03 5.56E+02 2.01E+02
Mean 7.78E+02 7.04E+02 7.47E+02 9.91E+02 9.54E+02 1.00E+03 2.16E+02 2.00E+02
Std 1.47E+02 1.29E+02 1.31E+02 8.80E+01 4.88E+01 8.19E+01 6.94E+01 2.77E�01

1.00E+04 Best 4.14E+02 3.95E+02 4.38E+02 5.20E+02 8.49E+02 5.49E+02 2.01E+02 2.00E+02
7th 5.38E+02 5.15E+02 5.09E+02 5.82E+02 8.58E+02 5.64E+02 2.01E+02 2.00E+02
Median 5.67E+02 5.71E+02 5.46E+02 6.19E+02 8.64E+02 6.38E+02 2.01E+02 2.00E+02
19th 5.87E+02 6.18E+02 5.77E+02 8.00E+02 8.70E+02 8.73E+02 2.01E+02 2.00E+02
Worst 8.15E+02 6.83E+02 6.49E+02 8.03E+02 8.91E+02 8.84E+02 2.02E+02 2.00E+02
Mean 5.66E+02 5.62E+02 5.49E+02 6.67E+02 8.66E+02 6.82E+02 2.01E+02 2.00E+02
Std 7.06E+01 7.06E+01 4.80E+01 1.13E+02 9.70E+00 1.32E+02 3.88E�01 6.65E�03

1.00E+05 Best 3.65E+02 3.58E+02 3.88E+02 3.97E+02 8.79E+02 7.49E+02 2.00E+02 2.00E+02
7th 4.66E+02 4.51E+02 4.40E+02 5.29E+02 9.23E+02 9.66E+02 2.00E+02 2.00E+02
Median 4.87E+02 4.78E+02 5.00E+02 5.82E+02 9.53E+02 1.02E+03 2.01E+02 2.00E+02
19th 5.04E+02 4.94E+02 5.05E+02 6.29E+02 9.70E+02 1.04E+03 2.01E+02 2.00E+02
Worst 5.42E+02 5.24E+02 5.42E+02 8.00E+02 1.09E+03 1.15E+03 2.01E+02 2.00E+02
Mean 4.77E+02 4.68E+02 4.77E+02 6.00E+02 9.54E+02 1.00E+03 2.01E+02 2.00E+02
Std 4.44E+01 3.81E+01 4.60E+01 9.76E+01 4.88E+01 8.19E+01 9.01E�02 1.95E�03
MTE 4.77E+02 4.68E+02 4.77E+02 6.00E+02 9.54E+02 1.00E+03 2.01E+02 2.00E+02
STE 4.44E+01 3.81E+01 4.60E+01 9.76E+01 4.88E+01 8.19E+01 9.01E�02 1.95E�03
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SFðt þ 1Þ ¼
SFðtÞ � 0:85 if uðmÞ < 1=5;
SFðtÞ=0:85 if uðmÞ > 1=5;
SFðtÞ if uðmÞ ¼ 1=5:

8><>: ð6Þ
If the algorithm cannot improve the solution with respect to Rechenberg’s 1/5 rule, that is the ratio of successful mutations to
all mutations (u(m)) is less than 1/5, SF is decreased. If u(m) is greater than 1/5 then SF is increased in order to speed up the
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Table 11
D: 30, Colony Size: 30, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 300,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 1 2 3 4 5 6 7 8

1.00E+03 Best 6.59E+03 1.18E+05 1.02E+06 1.34E+05 1.86E+04 6.87E+08 1.31E+03 2.11E+01
7th 1.51E+04 1.83E+05 1.41E+06 3.97E+05 2.36E+04 1.47E+09 1.76E+03 2.12E+01
Median 1.73E+04 2.11E+05 1.55E+06 4.73E+05 2.51E+04 2.22E+09 1.94E+03 2.12E+01
19th 1.82E+04 2.42E+05 1.83E+06 5.86E+05 2.79E+04 4.61E+09 2.27E+03 2.13E+01
Worst 2.04E+04 2.88E+05 2.18E+06 8.62E+05 3.03E+04 7.29E+09 2.54E+03 2.13E+01
Mean 1.59E+04 2.11E+05 1.60E+06 4.83E+05 2.55E+04 3.04E+09 2.00E+03 2.12E+01
Std 3.51E+03 4.38E+04 2.89E+05 1.52E+05 2.73E+03 1.91E+09 3.63E+02 5.03E�02

1.00E+04 Best 2.34E�01 1.59E+00 3.35E+05 5.70E+02 8.40E+03 1.35E+04 5.82E+00 2.10E+01
7th 3.33E�01 4.15E+00 4.59E+05 7.30E+02 1.14E+04 2.03E+04 1.35E+01 2.11E+01
Median 4.33E�01 5.77E+00 4.97E+05 9.02E+02 1.19E+04 3.09E+04 1.65E+01 2.11E+01
19th 6.82E�01 8.42E+00 5.48E+05 1.74E+03 1.32E+04 4.36E+04 2.00E+01 2.11E+01
Worst 9.78E�01 1.56E+01 7.29E+05 2.37E+03 1.55E+04 1.63E+05 2.38E+01 2.12E+01
Mean 5.18E�01 6.61E+00 5.00E+05 1.19E+03 1.20E+04 3.64E+04 1.60E+01 2.11E+01
Std 2.24E�01 3.40E+00 8.34E+04 5.83E+02 1.64E+03 2.84E+04 4.40E+00 5.44E�02

1.00E+05 Best 0.00E+00 0.00E+00 1.86E+05 1.86E+05 5.20E+03 5.93E+01 1.09E�03 2.08E+01
7th 0.00E+00 0.00E+00 2.41E+05 2.41E+05 6.32E+03 1.44E+02 4.11E�03 2.10E+01
Median 0.00E+00 0.00E+00 2.67E+05 2.67E+05 7.06E+03 1.82E+02 5.03E�02 2.10E+01
19th 0.00E+00 0.00E+00 2.98E+05 2.98E+05 7.61E+03 2.93E+02 2.41E�01 2.10E+01
Worst 0.00E+00 0.00E+00 3.39E+05 3.39E+05 8.74E+03 3.56E+02 7.56E�01 2.11E+01
Mean 0.00E+00 0.00E+00 2.65E+05 2.65E+05 6.91E+03 2.09E+02 1.92E�01 2.10E+01
Std 0.00E+00 0.00E+00 3.95E+04 3.95E+04 9.13E+02 8.59E+01 2.62E�01 6.15E�02

3.00E+05 Best 0.00E+00 0.00E+00 1.76E+05 1.76E+05 4.53E+03 3.35E+01 2.68E�08 2.08E+01
7th 0.00E+00 0.00E+00 1.99E+05 1.99E+05 5.54E+03 9.37E+01 3.69E�01 2.09E+01
Median 0.00E+00 0.00E+00 2.16E+05 2.16E+05 6.13E+03 1.43E+02 1.17E+02 2.10E+01
19th 0.00E+00 0.00E+00 2.39E+05 2.39E+05 6.43E+03 1.82E+02 1.72E+02 2.10E+01
Worst 0.00E+00 0.00E+00 2.72E+05 2.72E+05 7.68E+03 2.60E+02 2.60E+02 2.10E+01
Mean 0.00E+00 0.00E+00 2.20E+05 2.20E+05 6.02E+03 1.38E+02 1.05E+02 2.09E+01
Std 0.00E+00 0.00E+00 2.53E+04 2.53E+04 7.16E+02 5.81E+01 8.20E+01 5.63E�02
MTE 9.35E�09 9.06E�09 2.20E+05 9.01E�09 6.02E+03 1.38E+02 1.49E�02 2.09E+01
STE 6.21E�10 5.80E�10 2.53E+04 8.89E�10 7.16E+02 5.81E+01 7.23E�02 5.63E�02

Table 12
D: 30, Colony Size: 30, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 300,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 9 10 11 12 13 14 15 16 17

1.00E+03 Best 2.13E+02 3.44E+02 4.06E+01 5.63E+05 3.79E+01 1.39E+01 6.21E+02 4.39E+02 4.47E+02
7th 2.74E+02 4.13E+02 4.22E+01 7.42E+05 5.10E+01 1.40E+01 7.39E+02 4.96E+02 5.37E+02
Median 2.95E+02 4.54E+02 4.33E+01 7.85E+05 7.35E+01 8.31E+02 5.29E+02 5.84E+02
19th 3.03E+02 4.79E+02 4.46E+01 8.77E+05 1.06E+02 1.41E+01 8.63E+02 5.58E+02 6.48E+02
Worst 3.28E+02 5.19E+02 4.66E+01 9.66E+05 1.31E+02 1.42E+01 9.03E+02 6.55E+02 8.43E+02
Mean 2.88E+02 4.44E+02 4.34E+01 8.04E+05 7.82E+01 1.44E+01 8.05E+02 5.25E+02 6.08E+02
Std 2.39E+01 4.56E+01 1.80E+00 9.42E+04 2.87E+01 1.41E+01 7.60E+01 4.77E+01 9.69E+01

1.00E+04 Best 1.01E+02 2.27E+02 3.65E+01 1.10E+05 1.45E+01 1.42E�01 4.74E+02 2.86E+02 3.00E+02
7th 1.18E+02 2.52E+02 3.83E+01 2.17E+05 1.69E+01 1.35E+01 5.26E+02 3.33E+02 3.43E+02
Median 1.23E+02 2.67E+02 4.00E+01 2.26E+05 1.75E+01 1.37E+01 5.36E+02 3.52E+02 3.69E+02
19th 1.32E+02 2.73E+02 4.06E+01 2.49E+05 1.85E+01 1.38E+01 5.41E+02 3.70E+02 3.88E+02
Worst 1.50E+02 2.85E+02 4.19E+01 3.36E+05 2.02E+01 1.39E+01 6.22E+02 4.21E+02 4.87E+02
Mean 1.24E+02 2.62E+02 3.97E+01 2.35E+05 1.75E+01 1.40E+01 5.36E+02 3.54E+02 3.73E+02
Std 1.22E+01 1.61E+01 1.49E+00 4.81E+04 1.54E+00 1.38E+01 2.98E+01 3.68E+01 4.58E+01

1.00E+05 Best 6.07E+01 1.62E+02 3.43E+01 8.86E+04 9.13E+00 1.21E�01 2.00E+02 2.77E+02 2.67E+02
7th 7.12E+01 2.06E+02 3.59E+01 1.03E+05 1.15E+01 1.31E+01 3.00E+02 2.99E+02 3.10E+02
Median 7.72E+01 2.16E+02 3.68E+01 1.23E+05 1.20E+01 1.35E+01 3.00E+02 3.16E+02 3.27E+02
19th 8.14E+01 2.25E+02 3.72E+01 1.41E+05 1.28E+01 1.35E+01 3.03E+02 3.33E+02 3.38E+02
Worst 9.04E+01 2.42E+02 3.84E+01 1.74E+05 1.35E+01 1.36E+01 4.84E+02 4.00E+02 3.84E+02
Mean 7.67E+01 2.14E+02 3.65E+01 1.22E+05 1.19E+01 1.37E+01 3.15E+02 3.21E+02 3.27E+02
Std 7.60E+00 1.58E+01 1.11E+00 2.27E+04 1.09E+00 1.35E+01 6.80E+01 3.09E+01 2.89E+01

3.00E+05 Best 5.49E+01 1.60E+02 3.36E+01 5.09E+04 8.21E+00 1.41E�01 2.00E+02 2.69E+02 2.46E+02
7th 6.15E+01 1.99E+02 3.48E+01 8.65E+04 1.02E+01 1.28E+01 3.00E+02 2.90E+02 2.88E+02
Median 6.53E+01 2.02E+02 3.59E+01 9.52E+04 1.08E+01 1.32E+01 3.00E+02 3.02E+02 3.04E+02
19th 7.27E+01 2.10E+02 3.64E+01 1.05E+05 1.14E+01 1.34E+01 3.00E+02 3.18E+02 3.17E+02
Worst 7.95E+01 2.24E+02 3.68E+01 1.24E+05 1.21E+01 1.34E+01 3.00E+02 3.52E+02 3.29E+02
Mean 6.60E+01 2.01E+02 3.56E+01 9.55E+04 1.07E+01 1.36E+01 2.88E+02 3.06E+02 3.01E+02
Std 6.74E+00 1.44E+01 8.84E�01 1.75E+04 9.32E�01 1.33E+01 3.25E+01 2.18E+01 2.00E+01
MTE 6.60E+01 2.01E+02 3.56E+01 9.55E+04 1.07E+01 1.88E�01 2.88E+02 3. 06E+02 3.01E+02
STE 6.74E+00 1.44E+01 8.84E�01 1.75E+04 9.32E�01 1.33E+01 3.25E+01 2. 18E+01 2.00E+01

B. Akay, D. Karaboga / Information Sciences xxx (2010) xxx–xxx 11

Please cite this article in press as: B. Akay, D. Karaboga, A modified Artificial Bee Colony algorithm for real-parameter optimization, Inform.
Sci. (2010), doi:10.1016/j.ins.2010.07.015

http://dx.doi.org/10.1016/j.ins.2010.07.015


Table 13
D: 30, Colony Size: 30, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 300,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 18 19 20 21 22 23 24 25

1.00E+03 Best 1.21E+03 1.17E+03 1.21E+03 1.20E+03 1.13E+03 1.22E+03 2.03E+02 2.01E+02
7th 1.28E+03 1.26E+03 1.29E+03 1.23E+03 1.24E+03 1.26E+03 2.04E+02 2.05E+02
Median 1.32E+03 1.31E+03 1.31E+03 1.25E+03 1.36E+03 1.27E+03 2.05E+02 2.14E+02
19th 1.36E+03 1.34E+03 1.35E+03 1.27E+03 1.40E+03 1.29E+03 2.08E+02 2.19E+02
Worst 1.41E+03 1.41E+03 1.41E+03 1.29E+03 1.46E+03 1.32E+03 2.20E+02 7.05E+02
Mean 1.31E+03 1.30E+03 1.32E+03 1.25E+03 1.33E+03 1.28E+03 2.07E+02 2.36E+02
Std 5.11E+01 6.07E+01 4.58E+01 2.34E+01 9.25E+01 2.57E+01 4.42E+00 9.71E+01

1.00E+04 Best 1.01E+03 9.95E+02 1.00E+03 5.00E+02 9.15E+02 7.38E+02 2.01E+02 2.00E+02
7th 1.03E+03 1.03E+03 1.04E+03 5.63E+02 9.40E+02 8.79E+02 2.01E+02 2.00E+02
Median 1.04E+03 1.05E+03 1.06E+03 7.69E+02 9.67E+02 9.15E+02 2.01E+02 2.00E+02
19th 1.06E+03 1.07E+03 1.07E+03 8.28E+02 9.81E+02 9.70E+02 2.01E+02 2.00E+02
Worst 1.08E+03 1.13E+03 1.11E+03 9.52E+02 1.01E+03 1.03E+03 2.01E+02 2.00E+02
Mean 1.04E+03 1.05E+03 1.06E+03 7.24E+02 9.62E+02 9.18E+02 2.01E+02 2.00E+02
Std 2.13E+01 3.48E+01 2.66E+01 1.46E+02 2.56E+01 6.50E+01 6.52E�02 4.92E�02

1.00E+05 Best 8.00E+02 8.00E+02 8.00E+02 5.00E+02 8.91E+02 5.45E+02 2.01E+02 2.00E+02
7th 8.43E+02 8.03E+02 8.59E+02 5.00E+02 9.06E+02 8.44E+02 2.01E+02 2.00E+02
Median 9.70E+02 9.58E+02 9.57E+02 6.45E+02 9.12E+02 8.46E+02 2.01E+02 2.00E+02
19th 9.77E+02 9.69E+02 9.74E+02 8.00E+02 9.19E+02 8.47E+02 2.01E+02 2.00E+02
Worst 9.93E+02 9.90E+02 1.01E+03 8.00E+02 9.28E+02 8.49E+02 2.01E+02 2.00E+02
Mean 9.26E+02 9.13E+02 9.22E+02 6.42E+02 9.12E+02 8.22E+02 2.01E+02 2.00E+02
Std 7.31E+01 7.68E+01 6.80E+01 1.41E+02 9.31E+00 7.86E+01 5.05E�02 4.62E�03

3.00E+05 Best 8.00E+02 8.00E+02 8.00E+02 5.00E+02 8.91E+02 5.42E+02 2.01E+02 2.00E+02
7th 8.00E+02 8.00E+02 8.00E+02 5.00E+02 8.99E+02 8.44E+02 2.01E+02 2.00E+02
Median 8.00E+02 8.00E+02 8.00E+02 6.45E+02 9.04E+02 8.44E+02 2.01E+02 2.00E+02
19th 8.00E+02 8.00E+02 8.00E+02 8.00E+02 9.07E+02 8.44E+02 2.01E+02 2.00E+02
Worst 9.71E+02 9.45E+02 9.80E+02 8.00E+02 9.17E+02 8.46E+02 2.01E+02 2.00E+02
Mean 8.12E+02 8.17E+02 8.23E+02 6.42E+02 9.04E+02 8.20E+02 2.01E+02 2.00E+02
Std 4.07E+01 4.50E+01 5.31E+01 1.41E+02 6.01E+00 8.13E+01 5.45E�02 2.23E�03
MTE 8.12E+02 8.17E+02 8.23E+02 6.42E+02 9.04E+02 8.20E+02 2.01E+02 2. 00E+02
STE 4.07E+01 4.50E+01 5.31E+01 1.41E+02 6.01E+00 8.13E+01 5.45E�02 2. 23E�03

Table 14
D: 50, Colony Size: 50, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 500,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 1 2 3 4 5 6 7 8

1.00E+03 Best 5.97E+04 1.15E+06 4.73E+06 2.51E+06 5.12E+04 3.16E+10 7.03E+03 2.12E+01
7th 7.98E+04 1.70E+06 5.81E+06 3.02E+06 5.92E+04 4.21E+10 8.11E+03 2.13E+01
Median 8.91E+04 1.85E+06 6.71E+06 3.44E+06 6.22E+04 5.49E+10 9.00E+03 2.13E+01
19th 1.00E+05 2.09E+06 7.39E+06 3.90E+06 6.52E+04 5.85E+10 9.77E+03 2.14E+01
Worst 1.18E+05 2.37E+06 8.65E+06 4.57E+06 7.18E+04 7.53E+10 1.06E+04 2.14E+01
Mean 8.90E+04 1.85E+06 6.62E+06 3.43E+06 6.23E+04 5.20E+10 8.94E+03 2.13E+01
Std 1.43E+04 3.01E+05 1.09E+06 5.49E+05 5.08E+03 1.10E+10 9.65E+02 4.73E�02

1.00E+04 Best 1.01E+03 1.85E+04 1.79E+06 2.41E+05 2.19E+04 1.16E+08 2.14E+02 2.12E+01
7th 1.46E+03 2.87E+04 2.17E+06 2.93E+05 2.74E+04 1.95E+08 2.79E+02 2.12E+01
Median 1.57E+03 3.15E+04 2.34E+06 3.25E+05 2.94E+04 2.58E+08 3.16E+02 2.12E+01
19th 1.78E+03 3.57E+04 2.49E+06 3.37E+05 3.14E+04 3.26E+08 3.50E+02 2.13E+01
Worst 2.58E+03 4.37E+04 2.95E+06 4.33E+05 3.36E+04 4.87E+08 4.36E+02 2.13E+01
Mean 1.65E+03 3.19E+04 2.35E+06 3.23E+05 2.90E+04 2.66E+08 3.20E+02 2.12E+01
Std 3.48E+02 5.46E+03 2.45E+05 5.11E+04 3.19E+03 9.09E+07 4.84E+01 4.29E�02

1.00E+05 Best 0.00E+00 0.00E+00 1.01E+06 1.31E+02 1.05E+04 7.40E+02 7.95E�01 2.11E+01
7th 0.00E+00 0.00E+00 1.19E+06 7.13E+02 1.22E+04 4.55E+03 8.76E�01 2.12E+01
Median 0.00E+00 0.00E+00 1.38E+06 1.44E+03 1.31E+04 6.45E+03 9.19E�01 2.12E+01
19th 0.00E+00 0.00E+00 1.41E+06 2.63E+03 1.42E+04 1.28E+04 9.36E�01 2.12E+01
Worst 0.00E+00 0.00E+00 1.54E+06 9.84E+03 1.55E+04 2.38E+04 9.73E�01 2.12E+01
Mean 0.00E+00 0.00E+00 1.32E+06 2.13E+03 1.32E+04 9.37E+03 9.05E�01 2.12E+01
Std 0.00E+00 0.00E+00 1.40E+05 2.23E+03 1.39E+03 6.53E+03 4.46E�02 3.37E�02

5.00E+05 Best 0.00E+00 0.00E+00 9.76E+05 4.49E+00 7.93E+03 7.40E+02 7.18E�01 2.11E+01
7th 0.00E+00 0.00E+00 1.07E+06 1.57E+02 9.67E+03 1.69E+03 7.81E�01 2.11E+01
Median 0.00E+00 0.00E+00 1.10E+06 2.27E+02 1.03E+04 2.11E+03 8.03E�01 2.11E+01
19th 0.00E+00 0.00E+00 1.22E+06 4.59E+02 1.09E+04 3.40E+03 8.54E�01 2.12E+01
Worst 0.00E+00 0.00E+00 1.31E+06 1.81E+03 1.20E+04 4.55E+03 8.79E�01 2.12E+01
Mean 0.00E+00 0.00E+00 1.13E+06 3.82E+02 1.03E+04 2.47E+03 8.10E�01 2.11E+01
Std 0.00E+00 0.00E+00 9.38E+04 3.98E+02 9.13E+02 1.10E+03 4.70E�02 2.65E�02
MTE 9.34E�09 9.28E�09 1.13E+06 3.82E+02 1.03E+04 2.47E+03 8.10E�01 2. 11E+01
STE 6.05E�10 6.19E�10 9.38E+04 3.98E+02 9.13E+02 1.10E+03 4.70E�02 2.65E�02
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Table 15
D: 50, Colony Size: 50, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 500,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 9 10 11 12 13 14 15 16 17

1.00E+03 Best 6.10E+02 9.08E+02 7.71E+01 4.09E+06 5.91E+02 2.35E+01 8.11E+02 5.30E+02 6.17E+02
7th 6.77E+02 1.03E+03 7.89E+01 4.44E+06 9.04E+02 2.40E+01 9.78E+02 6.27E+02 7.30E+02
Median 7.26E+02 1.11E+03 8.08E+01 4.77E+06 1.07E+03 2.40E+01 1.03E+03 6.70E+02 7.68E+02
19th 7.58E+02 1.18E+03 8.15E+01 5.24E+06 1.36E+03 2.41E+01 1.05E+03 7.56E+02 8.27E+02
Worst 8.02E+02 1.30E+03 8.24E+01 5.78E+06 2.19E+03 2.43E+01 1.08E+03 8.20E+02 9.87E+02
Mean 7.17E+02 1.11E+03 8.02E+01 4.86E+06 1.15E+03 2.40E+01 1.01E+03 6.82E+02 7.91E+02
Std 4.83E+01 1.04E+02 1.58E+00 4.79E+05 4.50E+02 1.84E�01 7.04E+01 8.14E+01 9.44E+01

1.00E+04 Best 3.41E+02 4.65E+02 7.26E+01 1.18E+06 4.73E+01 2.33E+01 5.68E+02 3.35E+02 3.53E+02
7th 3.50E+02 5.61E+02 7.51E+01 1.50E+06 6.00E+01 2.36E+01 5.80E+02 3.55E+02 3.99E+02
Median 3.61E+02 5.82E+02 7.58E+01 1.68E+06 6.32E+01 2.37E+01 5.92E+02 3.83E+02 4.16E+02
19th 3.68E+02 5.97E+02 7.67E+01 1.80E+06 6.86E+01 2.38E+01 6.40E+02 3.97E+02 4.29E+02
Worst 3.98E+02 6.13E+02 7.86E+01 1.94E+06 7.61E+01 2.39E+01 7.19E+02 4.40E+02 4.75E+02
Mean 3.62E+02 5.74E+02 7.58E+01 1.65E+06 6.35E+01 2.37E+01 6.15E+02 3.80E+02 4.17E+02
Std 1.60E+01 3.14E+01 1.43E+00 1.89E+05 7.23E+00 1.54E�01 4.49E+01 2.88E+01 2.80E+01

1.00E+05 Best 2.36E+02 4.49E+02 6.95E+01 8.33E+05 3.21E+01 2.30E+01 2.01E+02 3.00E+02 2.98E+02
7th 2.74E+02 4.81E+02 7.11E+01 9.70E+05 3.66E+01 2.33E+01 2.18E+02 3.24E+02 3.26E+02
Median 2.82E+02 4.93E+02 7.23E+01 1.07E+06 3.81E+01 2.34E+01 3.00E+02 3.46E+02 3.39E+02
19th 2.86E+02 5.02E+02 7.31E+01 1.14E+06 3.91E+01 2.34E+01 3.05E+02 3.58E+02 3.54E+02
Worst 2.98E+02 5.06E+02 7.43E+01 1.21E+06 4.28E+01 2.36E+01 5.12E+02 3.86E+02 4.10E+02
Mean 2.77E+02 4.88E+02 7.21E+01 1.04E+06 3.81E+01 2.34E+01 2.97E+02 3.44E+02 3.39E+02
Std 1.39E+01 1.60E+01 1.30E+00 1.10E+05 2.41E+00 1.41E�01 8.91E+01 2.39E+01 2.43E+01

5.00E+05 Best 2.36E+02 4.31E+02 6.62E+01 7.31E+05 2.91E+01 2.29E+01 2.00E+02 2.68E+02 2.81E+02
7th 2.51E+02 4.49E+02 6.99E+01 8.33E+05 3.42E+01 2.31E+01 2.00E+02 3.24E+02 3.01E+02
Median 2.61E+02 4.57E+02 7.03E+01 8.91E+05 3.54E+01 2.32E+01 2.00E+02 3.44E+02 3.10E+02
19th 2.64E+02 4.68E+02 7.09E+01 9.44E+05 3.66E+01 2.33E+01 3.00E+02 3.57E+02 3.17E+02
Worst 2.76E+02 4.88E+02 7.25E+01 1.05E+06 3.75E+01 2.33E+01 4.00E+02 3.86E+02 3.30E+02
Mean 2.59E+02 4.58E+02 7.03E+01 8.88E+05 3.50E+01 2.32E+01 2.52E+02 3.39E+02 3.08E+02
Std 9.91E+00 1.41E+01 1.44E+00 8.77E+04 1.98E+00 1.13E�01 5.74E+01 3.16E+01 1.24E+01
MTE 2.59E+02 4.58E+02 7.03E+01 8.88E+05 3.50E+01 2.32E+01 2.52E+02 3.39E+02 3.08E+02
STE 9.91E+00 1.41E+01 1.44E+00 8.77E+04 1.98E+00 1.13E�01 5.74E+01 3.16E+01 1.24E+01

Table 16
D: 50, Colony Size: 50, ‘‘limit”: 200, Cycle: 10,000, Max.FES: 500,000, MR = 0.4, MTE: Mean of Term. Err. of 25 runs, STE: Std of Term. Err. of 25 runs.

FES Prob 18 19 20 21 22 23 24 25

1.00E+03 Best 1.24E+03 1.30E+03 1.29E+03 1.33E+03 1.19E+03 1.36E+03 2.10E+02 4.55E+02
7th 1.29E+03 1.31E+03 1.33E+03 1.37E+03 1.23E+03 1.39E+03 2.39E+02 8.13E+02
Median 1.33E+03 1.36E+03 1.36E+03 1.40E+03 1.26E+03 1.41E+03 2.75E+02 1.24E+03
19th 1.34E+03 1.37E+03 1.38E+03 1.42E+03 1.32E+03 1.43E+03 3.44E+02 1.44E+03
Worst 1.38E+03 1.42E+03 1.40E+03 1.46E+03 1.35E+03 1.48E+03 4.21E+02 1.58E+03
Mean 1.32E+03 1.36E+03 1.36E+03 1.40E+03 1.27E+03 1.41E+03 2.90E+02 1.16E+03
Std 3.75E+01 3.66E+01 2.89E+01 3.39E+01 5.05E+01 2.78E+01 6.09E+01 3.56E+02

1.00E+04 Best 1.04E+03 1.04E+03 1.03E+03 9.47E+02 9.08E+02 1.00E+03 2.01E+02 2.01E+02
7th 1.07E+03 1.05E+03 1.06E+03 1.03E+03 9.41E+02 1.06E+03 2.01E+02 2.02E+02
Median 1.09E+03 1.05E+03 1.07E+03 1.04E+03 9.54E+02 1.09E+03 2.01E+02 2.02E+02
19th 1.09E+03 1.07E+03 1.09E+03 1.05E+03 9.65E+02 1.11E+03 2.01E+02 2.03E+02
Worst 1.12E+03 1.10E+03 1.10E+03 1.06E+03 9.84E+02 1.16E+03 2.02E+02 2.05E+02
Mean 1.08E+03 1.06E+03 1.07E+03 1.04E+03 9.52E+02 1.09E+03 2.01E+02 2.02E+02
Std 1.71E+01 1.54E+01 1.89E+01 2.47E+01 1.69E+01 3.72E+01 2.92E�01 8.16E�01

1.00E+05 Best 9.88E+02 9.77E+02 9.76E+02 5.00E+02 8.77E+02 5.82E+02 2.01E+02 2.00E+02
7th 9.90E+02 9.80E+02 9.80E+02 5.00E+02 8.86E+02 5.89E+02 2.01E+02 2.01E+02
Median 9.91E+02 9.82E+02 9.81E+02 9.92E+02 8.89E+02 5.98E+02 2.01E+02 2.01E+02
19th 9.93E+02 9.84E+02 9.85E+02 1.01E+03 8.92E+02 6.07E+02 2.01E+02 2.01E+02
Worst 1.00E+03 9.88E+02 9.89E+02 1.01E+03 9.06E+02 6.12E+02 2.01E+02 2.02E+02
Mean 9.92E+02 9.82E+02 9.82E+02 8.35E+02 8.90E+02 5.97E+02 2.01E+02 2.01E+02
Std 3.00E+00 3.07E+00 3.70E+00 2.32E+02 5.95E+00 1.01E+01 2.19E�02 4.54E�01

5.00E+05 Best 9.80E+02 9.66E+02 9.67E+02 5.00E+02 8.59E+02 5.58E+02 2.00E+02 2.00E+02
7th 9.84E+02 9.69E+02 9.69E+02 5.00E+02 8.74E+02 5.66E+02 2.01E+02 2.01E+02
Median 9.86E+02 9.70E+02 9.69E+02 9.92E+02 8.76E+02 5.70E+02 2.01E+02 2.01E+02
19th 9.87E+02 9.71E+02 9.70E+02 1.01E+03 8.78E+02 5.74E+02 2.01E+02 2.01E+02
Worst 9.90E+02 9.73E+02 9.72E+02 1.01E+03 8.84E+02 5.86E+02 2.01E+02 2.02E+02
Mean 9.85E+02 9.70E+02 9.70E+02 8.34E+02 8.75E+02 5.71E+02 2.01E+02 2.01E+02
Std 2.12E+00 1.38E+00 1.22E+00 2.31E+02 4.83E+00 7.12E+00 3.27E�02 4.54E�01
MTE 9.85E+02 9.70E+02 9.70E+02 8.34E+02 8.75E+02 5.71E+02 2.01E+02 2.01E+02
STE 2.12E+00 1.38E+00 1.22E+00 2.31E+02 4.83E+00 7.12E+00 3.27E�02 4.54E�01
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Fig. 4. Logarithmic scaled best function error of median runs of 25 runs for 30-dimension of 25 functions in the set. Numbers in the legend correspond to
the function number.

Table 17
Results of state-of-art algorithms for hybrid functions, Dimension = 10, Colony Size = 20, Cycle = 5000 for ABC, PSO-RDL: Recombination with Dynamic Linkage
Discovery in PSO [17], DMS-PSO: Dynamic multi-swarm particle swarm optimizer with local search [33], SPC-PNX [4], DE: Differential Evolution [50], SADE:
Self-adaptive Differential Evolution [43], restart CMA-ES: Restart Covariance Matrix Adaptation Evolution Strategy with Increasing Population Size [1].

F1 F2 F3 F4 F5

PSO-RDL Mean 2.50E�14 1.77E�13 9.68E�02 2.47E�07 2.09E�07
Std. 2.88E�14 2.03E�13 3.34E�01 7.07E�07 7.22E�07

DMS-PSO Mean 0.00E+00 1.30E�13 7.01E�09 1.89E�03 1.14E�06
Std. 0.00E+00 1.56E�13 2.66E�09 1.89E�03 2.18E�06

SPC-PNX Mean 8.90E�09 9.63E�09 1.08E+05 9.38E�09 9.15E�09
Std. 9.39E�10 3.30E�10 8.72E+04 6.33E�10 6.32E�10

DE Mean 0.00E+00 0.00E+00 1.94E�06 9.09E�15 0.00E+00
Std. 0.00E+00 0.00E+00 4.63E�06 3.15E�14 0.00E+00

SaDE Mean 0.00E+00 1.05E�13 1.67E�05 1.42E�05 1.23E�02
Std. 0.00E+00 5.11E�13 3.12E�05 7.09E�05 1.46E�02

Restart CMA-ES Mean 5.20E�09 4.70E�09 5.60E�09 5.02E�09 6.58E�09
Std. 1.94E�09 1.56E�09 1.93E�09 1.71E�09 2.17E�09

ABC Mean 4.89E�17 4.81E�17 2.50E+03 1.50E�16 5.82E+01
Std. 7.23E�18 5.89E�18 8.68E+02 5.47E�17 4.11E+01

ABC (SF = 0.7) Mean 8.85E�17 1.04E�16 1.37E+03 1.29E�04 1.32E+02
Std. 5.36E�17 4.90E�17 5.54E+02 3.05E�04 1.09E+02

ABC (SF = 0.5) Mean 1.16E�16 1.14E�16 9.90E+02 1.25E�02 3.26E+02
Std. 4.91E�17 4.60E�17 4.62E+02 1.25E�02 3.30E+02

ABC (SF = 0.3) Mean 1.52E�16 1.83E�16 5.88E+02 1.29E�01 8.07E+02
Std. 3.43E�17 8.43E�17 2.79E+02 9.46E�02 8.12E+02

ABC (MR = 1) Mean 4.64E�17 4.62E�17 1.52E+03 4.61E�17 7.28E�13
Std. 6.91E�18 9.16E�18 7.67E+02 6.95E�18 1.15E�12

ABC (MR = 0.8) Mean 8.80E�17 1.10E�16 3.57E+03 8.24E�17 1.82E�12
Std. 4.84E�17 4.66E�17 1.11E+03 4.73E�17 1.46E�12

ABC (MR = 0.6) Mean 4.75E�17 4.58E�17 3.72E+03 4.82E�17 1.89E�12
Std. 6.79E�18 7.75E�18 1.29E+03 6.45E�18 1.74E�12

ABC (MR = 0.4) Mean 4.48E�17 4.30E�17 3.58E+03 4.48E�17 6.18E�12
Std. 8.91E�18 9.77E�18 1.60E+03 7.31E�18 5.52E�12

ABC (MR = 0.2) Mean 4.80E�17 4.89E�17 3.22E+03 6.98E�17 1.66E+00
Std. 5.46E�18 4.62E�18 2.14E+03 4.05E�17 1.61E+00

ABC (ASF-MR: 0.9) Mean 4.94E�17 4.76E�17 5.23E�04 4.41E�12 4.12E�04
Std. 4.29E�18 8.58E�18 5.23E�04 1.32E�11 6.31E�04
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The pseudo-code of the ABC algorithm is given below:

1: Initialize the population of solutions xi,j, i = 1 . . .SN, j = 1 . . .D, triali = 0 triali is the non-improvement number of the
solution xi, used for abandonment

2: Evaluate the population
3: cycle = 1
4: repeat

{——Produce a new food source population for Employed bee——}
6: for i = 1 to SN do
7: Produce a new food source ti for the employed bee of the food source xi by using (2) (in the case of modified ABC

algorithm by using (5)) and evaluate its quality
8: Apply a greedy selection process between ti and xi and select the better one
9: If solution xi does not improve triali = triali + 1, otherwise triali = 0
10: end for
11: Calculate the probability values pi by (4) for the solutions using fitness values

{——Produce a new food source population for onlookers——-}
12: t = 0,i = 1
13: repeat
14: if random < pi then
15: Produce a new tij food source by (2) (in the case of the modified ABC algorithm by using (5)) for the onlooker

bee
16: Apply a greedy selection process between ti and xi and select the better one
17: If solution xi does not improve triali = triali + 1, otherwise triali = 0
18: t = t + 1
19: end if
20: until (t = SN)

{——Determine Scout——}
21: if max(triali) > limit then
22: Replace xi with a new randomly produced solution by (1)
23: end if
24: Memorize the best solution achieved so far
25: cycle = cycle+1
26: until (cycle = Maximum Cycle Number)
5. Experiments and discussion

We have tested the ABC algorithm and its variants in two groups of functions. The first group consists of basic functions,
and the second one has one set of composite functions.

5.1. Experiments on basic functions

In the first part of the experiments, in order to assess the performance of the ABC algorithm, we considered basic functions
used in [32] and given in Table 1. There are two groups of functions in the table. The first group consists of unimodal functions:
Sphere and Rosenbrock. Sphere function is a continuous, convex and unimodal function. Since the global optimum of the
Rosenbrock function is inside a long, narrow, parabolic-shaped flat valley, and the variables are dependent, the gradients gen-
erally do not point towards the optimum, and it is difficult to converge the global optimum. The second group consists of mul-
timodal functions: Ackley, Griewank, Weierstrass, Rastrigin, Noncontinuous Rastrigin and Schwefel. The Ackley function has a
surface with many local optima due to its exponential term. The variables of Griewank function have interdependence since
the function has a product term. The multimodality is removed by the increment in dimensionality (n > 30) and the problem
seems unimodal. The Weierstrass function is continuous everywhere but differentiable nowhere. Non-Continuous and Con-
tinuous Rastrigin functions are based on the Sphere function with the addition of cosine modulation to produce many local
minima. The surface of Schwefel function is composed of numerous peaks and valleys. The second best minimum of the func-
tion is far from the global minimum, and the global minimum is near the boundaries of the search domain [10,41].

In the experiments, the population size was 10, and the maximum number of function evaluations was 30,000
for 10-dimensional problems. All experiments were conducted 30 times, independently for each function. While making
this comprehensive study, we examined the ABC algorithm under different control parameter settings (number of
parameters changed in each cycle, step size in the production of neighboring solutions and ‘‘limit”). The results
obtained by ABC algorithm with different control parameters are compared against the results of PSO variants
presented in [32]. Settings of the PSO variants can be found in [32]. PSO-w (PSO with inertia factor), PSO-cf (PSO with
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Table 18
Results of state-of-art algorithms for hybrid functions, Dimension = 10, Colony Size = 20, Cycle = 5000 for ABC, PSO-RDL: Recombination with Dynamic Linkage
Discovery in PSO [17], DMS-PSO: Dynamic multi-swarm particle swarm optimizer with local search [33], SPC-PNX [4], DE: Differential Evolution [50], SADE:
Self-adaptive Differential Evolution [43], Restart CMA-ES: Restart Covariance Matrix Adaptation Evolution Strategy with Increasing Population Size [1].

F6 F7 F8 F9 F10

PSO-RDL Mean 9.57E�01 5.73E�02 2.00E+01 1.25E+01 3.86E+01
Std. 1.74E+00 4.66E�02 2.17E�04 8.17E+00 1.80E+01

DMS-PSO Mean 6.89E�08 4.52E�02 2.00E+01 0.00E+00 3.62E+00
Std. 3.19E�07 3.26E�02 5.54E�09 0.00E+00 8.55E�01

SPC-PNX Mean 1.89E+01 8.26E�02 2.10E+01 4.02E+00 7.30E+00
Std. 4.00E+01 6.24E�02 5.79E�02 2.27E+00 5.21E+00

DE Mean 1.59E�01 1.46E�01 2.04E+01 9.55E�01 1.25E+01
Std. 7.97E�01 1.38E�01 7.58E�02 9.73E�01 7.96E+00

SaDE Mean 1.20E�08 1.99E�02 2.00E+01 0.00E+00 4.97E+00
Std. 1.93E�08 1.07E�02 5.39E�08 0.00E+00 1.69E+00

Restart CMA-ES Mean 4.87E�09 3.31E�09 2.00E+01 2.39E�01 7.96E�02
Std. 1.66E�09 2.02E�09 3.89E�03 4.34E�01 2.75E�01

ABC (SF = 1) Mean 3.31E+00 2.52E�01 2.03E+01 4.87E�17 2.22E+01
Std. 5.18E+00 9.29E�02 6.07E�02 1.79E�17 7.32E+00

ABC (SF = 0.7) Mean 8.89E+00 2.28E�01 2.03E+01 4.00E�01 3.77E+01
Std. 1.40E+01 7.54E�02 5.67E�02 4.86E�01 8.98E+00

ABC (SF = 0.5) Mean 9.48E+00 2.27E�02 2.03E+01 3.21E�01 5.13E+01
Std. 9.25E+00 8.10E�02 7.24E�02 4.62E�01 8.56E+00

ABC (SF = 0.3) Mean 1.37E+01 2.49E�01 2.03E+01 5.28E+00 7.50E+01
Std. 1.36E+01 1.08E�01 5.88E�01 2.32E+00 1.65E+01

ABC (MR = 1) Mean 1.27E+00 4.84E�01 2.04E+01 1.20E+01 2.92E+01
Std. 1.38E+00 9.07E�02 7.50E�02 3.56E+00 4.33E+00

ABC (MR = 0.8) Mean 6.02E+00 5.20E�01 2.03E+01 2.35E+01 3.85E+01
Std. 1.62E+01 8.40E�02 6.33E�02 3.59E+00 4.09E+00

ABC (MR = 0.6) Mean 4.95E+00 3.01E�01 2.04E+01 1.83E�01 2.41E+01
Std. 4.00E+00 7.15E�02 7.40E�02 4.31E�01 4.37E+00

ABC (MR = 0.4) Mean 2.76E+00 1.27E�02 2.04E+01 5.29E�17 1.43E+01
Std. 3.62E+00 2.91E�01 7.67E�02 2.33E�17 2.61E+00

ABC (MR = 0.2) Mean 2.51E+00 9.48E�02 2.04E+01 5.00E�17 1.69E+00
Std. 5.61E+00 3.73E�02 6.79E�02 1.93E�17 4.62E+00

ABC (ASF-MR: 0.9) Mean 3.36E+00 6.52E�02 2.00E+01 7.65E+00 1.25E+01
Std. 2.49E+00 1.44E�02 1.28E�02 2.15E+00 2.93E+00
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constriction factor), PSO-w-local (PSO with inertia factor using a local neighborhood), PSO-cf-local (PSO with constric-
tion factor using local neighborhood), UPSO (Unified PSO combining local and global neighborhood topologies),
FDR-PSO (Fitness Distance Ratio based PSO uses the neighbor with higher fitness), FIPS (Fully Informed Particle
Swarm), CPSO-H (Cooperative PSO), CLPSO (Comprehensive Learning PSO) are the versions of PSO which are investi-
gated in [32].

While making an experimental comparison, if the difference of error rates is less than 10�7, this difference is consid-
ered as insignificant in a practical sense [14]. The winner algorithm for each problem was given in boldface in the tables
if it was significantly different. Comparison results obtained by PSO variants and the ABC algorithm with different con-
trol parameters set for Sphere, Rosenbrock, Ackley and Griewank functions are given in Table 2 and for Weierstrass,
Rastrigin, Non-continuous Rastrigin and Schwefel functions are given in Table 3. From the results, for the Rosenbrock
function, the ABC algorithm that adjusts step size automatically produces the best result. For the Griewank and Schwefel
functions, CLPSO performs the best. Of the other functions (Sphere, Ackley, Rastrigin, NCRastrigin), CLPSO and basic ABC
algorithms exhibit similar performance. For all functions, except the Rosenbrock function, initialization ranges for the
algorithms were different from the search ranges. Initial ranges and search ranges for functions can be found in Table
1. The ABC algorithm is robust against initialization conditions since the scout unit helps the search space to be explored
efficiently.

The modification rate (MR), scaling factor (SF) and ‘‘limit” are control parameters of the ABC algorithm which needed to
be tuned for better performance. We investigated the effect of the control parameters on the performance of the ABC algo-
rithm by manually trying some different values before the run. The results presented in Tables 2,3 were demonstrated in
the Fig. 2(a)–(f). From these figures, generally, the basic version of the ABC algorithm in which MR = 0 (just one parameter
is changed), and SF is 1 (/ is in the range [�1,1]) is a better choice than other structures tried out for both unimodal and
multimodal basic functions. MR parameter is more important for the ABC algorithm on hybrid functions which are rotated
and shifted versions of function combinations. For ‘‘limit” control parameter, 200 is more appropriate than other values for
both unimodal and multimodal functions. This value can change depending on the dimension of the problem. Convergence
rates of the basic ABC algorithm are shown in Fig. 3(a) for unimodal basic functions and in Fig. 3(b) for multimodal basic
functions.
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Table 19
Results of state-of-art algorithms for hybrid functions, Dimension = 10, Colony Size = 20, Cycle = 5000 for ABC, PSO-RDL: Recombination with Dynamic Linkage
Discovery in PSO [17], DMS-PSO: Dynamic multi-swarm particle swarm optimizer with local search [33], SPC-PNX [4], DE: Differential Evolution [50], SADE:
Self-adaptive Differential Evolution [43], restart CMA-ES: Restart Covariance Matrix Adaptation Evolution Strategy with Increasing Population Size [1].

F11 F12 F13 F14 F15

PSO-RDL Mean 5.58E+00 1.31E+02 8.87E�01 3.78E+00 2.71E+02
Std. 1.42E+00 4.50E+02 4.06E�01 3.44E�01 1.59E+02

DMS-PSO Mean 4.62E+00 2.40E+00 3.69E�01 2.36E+00 4.85E+00
Std. 5.84E�01 4.36E+00 5.64E�02 3.38E�01 1.34E+01

SPC-PNX Mean 1.91E+00 2.60E+02 8.38E�01 3.05E+00 2.54E+02
Std. 1.16E+00 4.89E+02 2.69E�01 4.37E�01 1.51E+02

DE Mean 8.47E�01 3.17E+01 9.77E�01 3.45E+00 2.59E+02
Std. 1.40E+00 4.20E+01 4.67E�01 4.40E�01 1.83E+02

SaDE Mean 4.89E+00 4.50E�07 2.20E�01 2.92E+00 3.20E+01
Std. 6.62E�01 8.51E�07 4.11E�02 2.06E�01 1.11E+02

Restart CMA-ES Mean 9.34E�01 2.93E+01 6.96E�01 3.01E+00 2.28E+02
Std. 9.00E�01 1.42E+02 1.50E�01 3.49E�01 6.80E+01

ABC (SF = 1) Mean 5.46E+00 9.85E+01 2.96E�02 3.41E+00 1.53E�01
Std. 5.84E�01 6.16E+01 2.12E�02 1.53E�01 3.34E�01

ABC (SF = 0.7) Mean 5.67E+00 1.16E+02 5.87E�02 3.44E+00 2.25E+00
Std. 7.24E�01 1.02E+02 2.80E�02 1.73E�01 9.89E+00

ABC (SF = 0.5) Mean 5.75E+00 1.10E+02 1.03E�01 3.36E+00 5.29E�01
Std. 7.21E�01 8.68E+01 5.83E�02 1.45E�01 2.50E+00

ABC (SF = 0.3) Mean 6.09E+00 1.52E+02 1.64E�01 3.53E+00 1.17E+01
Std. 9.60E�01 3.41E+02 8.43E�02 1.59E�01 2.08E+01

ABC (MR = 1) Mean 8.38E+00 1.30E+02 1.77E+00 3.66E+00 3.01E+02
Std. 6.64E�01 1.76E+02 3.52E�01 1.45E�01 7.66E+01

ABC (MR = 0.8) Mean 6.88E+00 1.72E+03 1.48E+00 3.59E+00 2.87E+02
Std. 5.20E�01 5.35E+02 3.36E�01 1.12E�01 3.49E+01

ABC (MR = 0.6) Mean 6.79E+00 4.22E+02 7.52E�01 3.56E+00 1.99E+02
Std. 5.19E�01 2.10E+01 3.17E�01 1.44E�01 4.73E+01

ABC (MR = 0.4) Mean 5.58E+00 2.22E+02 2.05E�01 3.49E+00 1.08E+02
Std. 6.38E�01 1.80E+02 9.97E�02 1.27E�01 4.34E+01

ABC (MR = 0.2) Mean 5.26E+00 1.55E+02 6.91E�02 3.35E+00 1.71E+01
Std. 5.84E�01 6.58E+01 5.28E�02 2.12E�01 3.15E+01

ABC (ASF-MR: 0.9) Mean 2.39E+00 1.71E+01 6.32E�01 3.24E+00 2.41E+02
Std. 1.04E+00 1.46E+01 1.74E�01 2.95E�01 8.64E+01

B. Akay, D. Karaboga / Information Sciences xxx (2010) xxx–xxx 17
5.2. On the scalability and time complexity of ABC

It is generally difficult for optimization algorithms to solve high dimensional problems. Performance of an algorithm dete-
riorates as the problem dimension increases. In order to cope with this problem, the algorithm needs more information
about the search space to direct the solutions to the optima. Increasing the population size or the number of evaluations
exponentially might improve the performance, but the performance in case of a high dimension problem is also related
to the landscape of the problem. Moreover, it is more difficult for the algorithm to solve a high dimensional problem when
there is an epistatic interaction between the parameters, many local optima, misleadingness and hard structural properties
of the search space [28]. This is defined as scalability problem.

In order to analyze the scalability of ABC, we investigated the performance of ABC with respect to growing dimensions.
For this experiment, functions given in Table 1 with different dimensions including 10, 50 and 100 were used. The scalability
test was repeated for the colony sizes of 10, 20 and 50. Mean and standard deviation of errors for the functions for each case
were reported in Table 4. When the problem dimension was increased from 10 to 50 and then to 100, the performance of the
ABC algorithm was influenced from this change as expected. However, as seen from the table, an increase in problem dimen-
sion did not require exponential increment in population size or evaluation number. Therefore, it can be stated that the ABC
algorithm is not very sensitive to increments in problem dimensions and has a good scalability.

The effect of scalability on the computational complexity of the ABC algorithm was also analyzed. For this purpose, time
complexity of the ABC algorithm for Rosenbrock function with different dimensions was calculated as described in [54].
Rosenbrock function was chosen since it has interaction between its parameters. In order to determine the time complexity,
after code execution time (T0) and execution time of Rosenbrock function for 200,000 evaluations (T1) were calculated, mean
of five executions’ time of ABC on Rosenbrock function through 200,000 evaluations ðbT 2Þwas computed. Then, the complex-
ity of the algorithm was determined by ððbT 2 � T1Þ=T0Þ and given in Table 5. Table 5 shows that bT 2 increases by less than a
factor of dimension increment. Consequently, it can be stated that the time complexity of the ABC algorithm does not depend
on the problem dimension excessively and it scales with O(n).

By onlookers, a new population is formed by searching the neighborhoods of the solutions chosen depending on their
quality. Since the number of onlookers is equal to SN, in each cycle 2xSN searches are conducted by employed bees and on-
looker bees. Hence, when the maximum cycle number (MCN) is reached, totally, 2xSNxMCN searches are carried out. So, the
search complexity of ABC is proportional to 2xSNxMCN.
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Table 20
Results of state-of-art algorithms for hybrid functions, Dimension = 10, Colony Size = 20, Cycle = 5000 for ABC, PSO-RDL: Recombination with Dynamic Linkage
Discovery in PSO [17], DMS-PSO: Dynamic multi-swarm particle swarm optimizer with local search [33], SPC-PNX [4], DE: Differential Evolution [50], SADE:
Self-adaptive Differential Evolution [43], restart CMA-ES: Restart Covariance Matrix Adaptation Evolution Strategy with Increasing Population Size [1].

F16 F17 F18 F19 F20

PSO-RDL Mean 2.20E+02 2.22E+02 1.02E+03 9.85E+02 9.59E+02
Std. 1.74E+02 1.00E+02 1.19E+02 1.02E+02 1.06E+02

DMS-PSO Mean 9.48E+01 1.10E+02 7.61E+02 7.14E+02 8.22E+02
Std. 1.01E+01 4.35E+00 1.85E+02 2.01E+02 4.59E+01

SPC-PNX Mean 1.10E+02 1.19E+02 4.40E+02 3.80E+02 4.40E+02
Std. 9.87E+00 1.07E+01 2.25E+02 1.87E+02 2.29E+02

DE Mean 1.13E+02 1.15E+02 4.00E+02 4.20E+02 4.60E+02
Std. 1.80E+01 2.01E+01 2.04E+02 2.18E+02 2.38E+02

SaDE Mean 1.01E+02 1.14E+02 7.19E+02 7.05E+02 7.13E+02
Std. 6.17E+00 9.97E+00 2.09E+02 1.90E+02 2.01E+02

Restart CMA-ES Mean 9.13E+01 1.23E+02 3.32E+02 2.26E+02 3.00E+02
Std. 3.49E+00 2.09E+01 1.12E+02 9.93E+01 0.00E+00

ABC (SF = 1) Mean 1.75E+02 1.96E+02 4.46E+02 4.51E+02 4.38E+02
Std. 2.11E+01 2.25E+01 4.83E+01 4.09E+01 3.30E+01

ABC (SF = 0.7) Mean 1.77E+02 2.04E+02 3.86E+02 4.31E+02 4.09E+02
Std. 1.64E+01 2.47E+01 9.60E+01 3.16E+01 2.66E+01

ABC (SF = 0.5) Mean 2.12E+02 2.33E+02 4.16E+02 4.31E+02 4.39E+02
Std. 2.49E+01 2.87E+01 4.40E+01 4.66E+01 2.97E+01

ABC (SF = 0.3) Mean 2.93E+02 3.06E+02 4.75E+02 4.78E+02 4.61E+02
Std. 4.40E+01 5.80E+01 1.32E+02 4.73E+01 4.80E+01

ABC (MR = 1) Mean 1.98E+02 2.02E+02 5.50E+02 5.16E+02 5.04E+02
Std. 1.20E+01 1.75E+01 1.13E+02 1.19E+02 1.07E+02

ABC (MR = 0.8) Mean 2.25E+02 2.41E+02 4.62E+02 4.83E+02 4.62E+02
Std. 1.17E+01 2.31E+01 2.15E+01 2.74E+01 3.12E+01

ABC (MR = 0.6) Mean 2.02E+02 2.18E+02 5.03E+02 5.03E+02 5.19E+02
Std. 1.79E+01 1.55E+01 4.60E+01 6.14E+01 5.19E+01

ABC (MR = 0.4) Mean 1.75E+02 1.90E+02 4.61E+02 5.20E+02 5.18E+02
Std. 1.80E+01 1.44E+01 4.14E+01 2.76E+01 3.23E+01

ABC (MR = 0.2) Mean 1.59E+02 1.86E+02 4.33E+02 4.34E+02 4.24E+02
Std. 1.71E+01 1.66E+01 4.21E+01 5.99E+01 3.22E+01

ABC (ASF-MR: 0.9) Mean 1.85E+02 1.75E+02 3.71E+02 3.92E+02 4.30E+02
Std. 3.62E+01 3.27E+01 5.78E+01 6.43E+01 7.00E+01
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5.3. Experiments on composite functions

In the second part of the experiments, we tested the ABC algorithm and its modified versions on the real-parameter opti-
mization problems defined in [54]. Some algorithms produce good results on some functions while they cannot achieve de-
sired performance on some others. If an algorithm has an operator for producing neighboring solutions by copying one
parameter to another, it can converge to the global optima quickly when the global optimum lies on symmetric dimensions.
A similar situation is when the global optima are at the origin. When an algorithm has local search capability, finding the
global optimum is simpler [34]. For this reason, in [54], composite problems are constructed by combining simple functions
via the Gaussian function in order to obtain more challenging problems. Composition functions are randomly located, asym-
metrical and multimodal problems. Functions in the set have different characteristics, and they are categorized in a system-
atic manner that will determine how the algorithms behave under the common evaluation criteria specified for CEC2005
[54]. This set contains total 25 functions comprising unimodal, multimodal, shifted, rotated and hybrid composition func-
tions. Detailed information about these functions is available in [54].

The ABC algorithm was initialized uniformly within the search space except for 7th and 25th problems. Initial ranges for
these two problems are specified in the report [54]. Other problems except 7 and 25 have the global optimum within bounds.
For dimension D, values of 10, 30 and 50 were employed. The ABC algorithm was terminated when the number of function
evaluations reached the MaxFES, or the error of function value was equal to 10�8 or less. In [54], maximum function eval-
uation sizes were 100,000, 300,000 and 500,000 for problem dimensions 10, 30 and 50, respectively. For fair comparison, the
same evaluation numbers as in [54] were employed. The ABC algorithm was run through 10,000 cycles for all dimensions.
Therefore, the colony sizes were 10, 30 and 50 for the dimensions 10, 30 and 50, respectively. For each function, the algo-
rithm was run 25 times. Error values were sorted from the best to worst, and beside the best (1st) and the worst (25th), 7th,
median (13th) and 19th function values are reported in Tables 8–10 for D = 10, Tables 11–13 for D = 30, Tables 14–16 for
D = 50. In Fig. 4(a)–(e) logarithmic scaled convergence graphs of problems for D = 30 of median run (13th) are presented.

In the experiments, we tried different modification rates. For some functions (functions 7, 9, 12 and 13), better results
were obtained with lower values of MR while for some functions (functions 4 and 16) using higher MR values produced bet-
ter results. For this reason we have chosen an average value for MR and set it to 0.4. ‘‘Limit” was set to 200 for all functions
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Table 21
Results of state-of-art algorithms for hybrid functions, Dimension = 10, Colony Size = 20, Cycle = 5000 for ABC, PSO-RDL: Recombination with Dynamic Linkage
Discovery in PSO [17], DMS-PSO: Dynamic multi-swarm particle swarm optimizer with local search [33], SPC-PNX [4], DE: Differential Evolution [50], SADE:
Self-adaptive Differential Evolution [43], restart CMA-ES: Restart Covariance Matrix Adaptation Evolution Strategy with Increasing Population Size [1].

F21 F22 F23 F24 F25

PSO-RDL Mean 9.94E+02 8.87E+02 1.08E+03 7.20E+02 1.76E+03
Std. 3.27E+02 7.12E+01 2.87E+02 3.96E+02 1.54E+01

DMS-PSO Mean 5.36E+02 6.92E+02 7.30E+02 2.24E+02 3.66E+02
Std. 2.18E+02 1.56E+02 1.66E+02 8.31E+01 1.51E+02

SPC-PNX Mean 6.80E+02 7.49E+02 5.76E+02 2.00E+02 4.06E+02
Std. 2.69E+02 9.37E+01 8.22E+01 0.00E+00 2.38E�01

DE Mean 4.92E+02 7.18E+02 5.72E+02 2.00E+02 9.23E+02
Std. 4.00E+01 1.58E+02 4.48E+01 0.00E+00 3.40E�01

SaDE Mean 4.64E+02 7.32E+02 6.64E+02 2.00E+02 3.76E+02
Std. 1.58E+02 9.15E+01 1.53E+02 0.00E+00 3.15E+00

Restart CMA-ES Mean 5.00E+02 7.29E+02 5.59E+02 2.00E+02 3.74E+02
Std. 0.00E+00 3.18E�13 6.86E+00 3.24E�11 3.22E+00

ABC (SF = 1) Mean 4.07E+02 8.59E+02 4.98E+02 2.02E+02 2.00E+02
Std. 5.89E+01 7.29E+01 4.44E+01 5.76E�03 4.20E�03

ABC (SF = 0.7) Mean 3.82E+02 7.79E+02 5.05E+02 2.02E+02 2.00E+02
Std. 6.89E+01 1.73E+02 3.78E+01 8.26E�03 2.52E�03

ABC (SF = 0.5) Mean 3.80E+02 8.26E+02 5.08E+02 2.02E+02 2.00E+02
Std. 6.82E+01 1.64E+02 3.49E+01 7.62E�03 3.20E�03

ABC (SF = 0.3) Mean 3.84E+02 9.20E+02 5.01E+02 2.02E+02 2.00E+02
Std. 6.43E+01 1.31E+02 3.87E+01 8.32E�03 2.51E�03

ABC (MR = 1) Mean 7.76E+02 8.38E+02 8.00E+02 2.02E+02 2.00E+02
Std. 8.00E+01 3.40E+00 1.39E+02 4.26E�03 4.86E�04

ABC (MR = 0.8) Mean 7.58E+02 8.40E+02 8.20E+02 2.02E+02 2.00E+02
Std. 7.62E+01 4.41E+00 9.93E+01 5.38E�03 7.01E�04

ABC (MR = 0.6) Mean 7.08E+02 8.41E+02 7.49E+02 2.02E+02 2.00E+02
Std. 1.14E+02 3.85E+00 1.31E+02 5.42E�03 9.16E�04

ABC (MR = 0.4) Mean 5.56E+02 8.43E+02 5.77E+02 2.02E+02 2.00E+02
Std. 9.68E+01 5.97E+00 6.66E+01 6.28E�03 1.94E�03

ABC (MR = 0.2) Mean 4.39E+02 7.89E+02 5.09E+02 2.02E+02 2.00E+02
Std. 1.13E+02 1.32E+02 3.86E+01 5.79E�03 2.81E�03

ABC (ASF-MR: 0.9) Mean 5.81E+02 8.20E+02 5.66E+02 2.02E+02 2.00E+02
Std. 1.46E+02 6.11E+00 4.07E+01 8.45E�03 4.13E�03

B. Akay, D. Karaboga / Information Sciences xxx (2010) xxx–xxx 19
and dimensions. Number of solutions in the population was 10, 30 and 50 for dimensions 10, 30 and 50, respectively. Values
of control parameters are listed on Table 6.

In order to point out the relation between dimension and complexity for different dimensions, algorithm complexity was
calculated as in basic functions. As for basic functions, code execution time (T0), execution time of function 3 for 200,000
evaluations (T1) and for five runs, mean of the algorithm execution times on function 3 for 200,000 evaluations (bT 2 were cal-
culated. The complexity of the algorithm was then determined by ððbT 2 � T1Þ=T0Þ and given in Table 7. Our system was Win-
dows XP (SP3) on Pentium (R) M 1.60 GHz processor with 1 GB of RAM and the programming language used was Delphi 7.

From the results in Tables 8–10 for D = 10, the ABC algorithm reached the given accuracy on functions 1, 2, 4, and 9. In
case where dimension was 30, the ABC algorithm reached the given accuracy on functions 1, 2 and 4, while when D = 50, it
reached that just on functions 1 and 2.

The ABC algorithm was not executed using an optimal control parameter set while producing the results given in Tables
8–16. We tried different parameter values for MR, SF and limit, and compared the performance of ABC against other algo-
rithms that are included in the special session of CEC05 on real-parameter optimization: Recombination with Dynamic Link-
age Discovery in Particle Swarm Optimization (PSO-RDL) [17], Dynamic Multi-swarm Particle Swarm Optimizer with local
search (DMS-PSO) [33], SPC-PNX [4], Differential Evolution [50], Self-Adaptive Differential Evolution (SADE) [43], Restart
Covariance Matrix Adaptation Evolution Strategy (Restart CMA-ES)[1]. The dimension was 10, colony size was 20 and max-
imum evaluation number was 100,000. For control parameter MR, values 1, 0.8, 0.6, 0.4, 0.2; for SF, values 1, 0.7, 0.5, 0.3 and
adaptive scaling were employed.

Comparison results are given in the Tables 17–21. In order to demonstrate the results better, values in the tables are pre-
sented in Fig. 5(a)-Fig. 6(l). From the results in the tables and figures, all algorithms show similar performances on functions
1 and 2. On function 3, the ABC algorithm shows better performance by the increment in MR parameter and adaptive scaling.
This means that the ABC algorithm needs more parameters to be mutated in the neighborhood of the current solution for
function 3 because the function is non-separable. For function 4, reducing scaling factor affects the performance of the
ABC algorithm negatively. Other algorithms show similar performance for function 4. For function 5, the ABC algorithm pro-
duces the best results when MR is incremented. In addition, decreasing the step size worsens the performance of the ABC
algorithm. For function 6, other algorithms outperform ABC in all cases. For function 8, DMS-PSO, PSO-RDL, Restart CMA-
ES and ABC algorithm with ASF demonstrate equal performances. Performance of the ABC algorithm on function 9 is affected
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Fig. 5. Comparison of the state-of art algorithms and the variants of the ABC algorithm for composite functions F1–F13.
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by the decrement on MR positively. SADE, DMS-PSO produce similar or better performances on this function compared to
ABC. On function 11, restart CMAES and DE algorithms are better than others while on functions 12 and 14, SADE is better
than others. On functions 13, 15, 23 and 25, better results are achieved by the basic ABC algorithm (SF = 1). On functions 7,
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Fig. 6. Comparison of the state-of art algorithms and the variants of the ABC algorithm for composite functions F14–F25.
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10, 16, 18, 19 and 20 restart CMAES is better, while on functions 17 and 22, the DMS-PSO algorithm is better. On function 24,
SPC-PNX, DE, SADE and restart CMAES algorithms perform equally. On function 21, ABC produces the best performance;
however, it should be noted that lower values of SF produce better results.
6. A comparative discussion on evolutionary computing paradigms vs. ABC

In the previous sections, comparative results of PSO, DE, ES and ABC variants were presented. In this section, we offer a
thorough comparative analysis by considering standard versions of these algorithms.

Exploration, which is the ability to search the solution space to find promising new solutions, and exploitation, which is
the ability to find the optimum solution in the neighborhood of a good solution, are two important aspects in evolutionary
computing paradigms. However, different algorithms in evolutionary computing employ different operators for exploration
and exploitation [48].

In ES, a mutant vector is created by adding a normally distributed random step size to each vector component [49,51]. In
basic ABC, a step size which is a randomly weighted difference of the current solution and a solution randomly selected is
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applied to only one component of the current solution to produce a neighboring solution. Recent versions of ES such as CMA-
ES use self-adaptive mechanisms for step size. Earlier versions of ES and ABC do not have a recombination operator. A fitness-
based probabilistic selection scheme used in the ABC algorithm does not exist in ES. One advantage of ABC over ES is the
diversification controlled by the random selection process in the scout bees phase which makes ABC escape from local
minima.

In PSO, a new position vector is calculated using the particle’s current and best solution and the swarm’s best solution
while in ABC, a new solution vector is calculated using the employed bee’s current solution and a randomly chosen solution.
In PSO, the new solution is replaced with the old one without considering which one is better. However, in ABC, a greedy
selection scheme is applied between the new solution and the old one, and the better one is preferred for inclusion in
the population. In this way, the information of a good member of the population is distributed among the other members
due to the greedy selection mechanism employed. ABC also uses a probabilistic selection scheme in the onlooker bees phase
in addition to this greedy selection scheme. The ABC algorithm also has a scout phase which provides diversity in the pop-
ulation by allowing new random solutions to be inserted into the population instead of the solutions which do not provide
improvements while the PSO algorithm does not have such a process. Moreover, PSO has more control parameters than ABC.

The neighboring solution production mechanism used in ABC is similar to the self-adapting mutation process of DE. From
this point of view, in DE and ABC algorithms, the solutions in the population directly affect the mutation operation since the
operation is based on the difference between them. However, in DE, the difference is weighted by a constant scaling factor
while in ABC, it is weighted by a random step size. Unlike DE, in ABC, there is no explicit crossover. Although both algorithms
employ greedy selection between the current solution and a new solution, in DE, there is no operation as in the scout bees
phase of ABC to insert a random solution into the population during a search. Therefore, although the local convergence
speed of a standard DE is quite good, it might result in the premature convergence in optimizing multimodal problems if
a sufficient diversity is not provided within the initial population [25].

The performance of ABC is very good in terms of the local and the global optimization due to the selection schemes em-
ployed and the neighboring production mechanism used. ABC balances exploration and exploitation efficiently.
7. Conclusion

In this work, we investigated the performance of standard and modified versions of the Artificial Bee Colony algorithm
and compared their performances against state-of-the-art algorithms presented in the literature. Besides comparing the Arti-
ficial Bee Colony algorithm against some other algorithms, comparisons between its own versions were also conducted.
Although the standard ABC algorithm modifies only one parameter while producing a new neighboring solution, the mod-
ified ABC algorithm employs a control parameter that determines how many parameters to be modified for the production of
a neighboring solution. A scaling factor that tunes the step size adaptively was introduced. From the results, it can be con-
cluded that the standard ABC algorithm can efficiently solve basic functions while the modified ABC algorithm produces
promising results on hybrid functions compared to state-of-the-art algorithms.
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