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a b s t r a c t

The main goal of the structural optimization is to minimize the weight of structures while satisfying all
design requirements imposed by design codes. In this paper, the Artificial Bee Colony algorithm with an
adaptive penalty function approach (ABC-AP) is proposed to minimize the weight of truss structures. The
ABC algorithm is swarm intelligence based optimization technique inspired by the intelligent foraging
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behavior of honeybees. Five truss examples with fixed-geometry and up to 200 elements were studied to
verify that the ABC algorithm is an effective optimization algorithm in the creation of an optimal design for
truss structures. The results of the ABC-AP compared with results of other optimization algorithms from
the literature show that this algorithm is a powerful search and optimization technique for structural
design.

© 2010 Elsevier B.V. All rights reserved.

ize optimization

. Introduction

Over the last 60 years, a number of optimization techniques
ave been developed and used in the structural optimization [1,2].
hese techniques can be broadly divided into two groups: (i) gradi-
nt based and (ii) direct search (stochastic or non-gradient based).
ince there are known difficulties in the application of gradient-
ased techniques in structural optimization problems, direct search
echniques have gained popularity in recent years [2–7]. Direct
earch techniques explore the design space by generating a number
f successive solutions to guide the algorithm to an optimal design.
enetic algorithms [8–12], simulated annealing algorithms [13–16]
volutionary programming [17] and evolutionary strategies [18]
re the most notable direct search optimization techniques used
n the solution of engineering problems. The main characteristic of
hese algorithms is the imitation of biological and physical events
y evolving a good enough or near-optimal solution over a num-
er of successive iterations. These techniques do not require the
valuation of gradients of objective and constraint functions, but
hey do require a significant amount of computer power. In the
ast, such techniques were considered impractical for design use
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

ue to the limitations of earlier computers. Recent advancements
n computer hardware, especially in memory size and the speed of
ersonnel computers make direct search techniques more feasible
nd practical.
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568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.09.003
More recently, another branch of biologically inspired algo-
rithms have attracted the attention of researchers all over the
world. Algorithms belonging to this field imitate the collective
behavior of a group of social insects (for example, bees, termites,
ants and wasps) to solve complex optimization problems. These
social insects live closely together in their nest and divide up the
various tasks within the colony, such as foraging, nest building and
defense. Each member of the colony performs their own tasks by
interacting or communicating directly or indirectly in their local
environment. Even when one or more individuals fail to carry out
their task, the group as whole can still perform their tasks [19,20].
The process of the division of labor among insects is believed to be
more effective than individual action performed by an individual
insect. These collective and adaptive behaviors of simple insects
have been used by researchers to develop new optimization algo-
rithms, known as swarm-based optimization algorithms. Particle
swarm optimization [21–24] and ant colony optimization algo-
rithms [25,26] are well known swarm-based algorithms and are
already employed to solve structural optimization problems. On the
hand, bee-inspired algorithms have not yet been employed to solve
structural engineering optimization problems. The main objective
of this paper is to propose a bee-based algorithm for the optimum
design of planer and space trusses consisting of continuous design
variables and to evaluate the performance of the algorithm by com-
paring the results of the algorithm with those of other optimization
orithm for optimization of truss structures, Appl. Soft Comput. J.

techniques. Also, modifications that have been made to implement
the algorithm to the structural optimization are described.

The bee-inspired optimization algorithms are based on either a
crude imitation of their mating process or their foraging behav-
iors. The algorithms based on the biological process of their

dx.doi.org/10.1016/j.asoc.2010.09.003
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eproduction are generally used in the combinatorial optimization
roblems while algorithms based on the foraging behavior of hon-
ybees are used for various types of optimization problems. The
ee Colony Optimization [27,28], Virtual Bee [29], Bee [30,31] and
rtificial Bee Colony [32–35] are some of the algorithms based on
imicking the foraging behavior of honeybee swarms. Although all

ee algorithms share some common features, they do have some
ifferent characteristics.

The Bee Colony Optimization (BCO) algorithm developed by
eodorovic and co-workers [27,28] was used to solve the travel-
ng salesman problem and a number of other numerical examples.
n addition, they presented some potential application areas of
he BCO algorithm in transportation and traffic engineering prob-
ems. Teodorovic [27] also stated that the BCO algorithm based
n Swarm Intelligence principles gave encouraging results for its
se in solving complex engineering problems. Yang [29] proposed
he Virtual Bee Algorithm (VBA) and demonstrated how it could
olve two-dimensional numerical problems. Based on his findings,
ang stated that VBA was usually as effective as genetic algo-
ithms and could, in some cases, optimize more effectively than
conventional algorithm due to the parallelism of the multiple

gents.
The Bee Algorithm (BA) originally proposed by Pham et al.

30,31] is used for solving unconstrained function optimization
roblems and training multi-layered perceptron networks to rec-
gnize different patterns in control charts. They claimed that the
A generally gives better results than the genetic algorithm and
he ant colony algorithm, when compared with the BA in terms of
peed of optimization and accuracy of the results. However, one of
he drawbacks of the BA is the number of parameters that must be
uned before executing the algorithm.

Karaboga and Basturk [32–34] proposed the Artificial Bee
olony (ABC) algorithm. They used the ABC algorithm to solve
nconstrained and constrained function optimization problems.
he performance of the ABC algorithm was compared to that of
ifferential evaluation, particle swarm optimization and an evo-

utionary algorithm. Karaboga and Basturk declared that the ABC
lgorithm when compared with differential evaluation, particle
warm optimization and an evolutionary algorithm performed
etter and could be effectively employed to solve engineering
roblems. Recently, Singh [35] used the ABC algorithm to solve
he leaf-constrained minimum spanning tree discrete optimization
roblems. He compared the ABC algorithm with three other meta-
euristic algorithms, namely the genetic algorithm, ant colony
ptimization algorithm and tabu search algorithm. Singh stated
hat the results of the new ABC algorithm outperforms all the other
pproaches and provides quality solutions in shorter time.

Since the ABC algorithm has been shown to perform well, it was
elected for use in the present study for truss optimization with
ome deviations. Similar to other direct search algorithms, the ABC
s an unconstrained optimization algorithm. To accommodate the
nclusion of constraints, Karaboga and Basturk [33] proposed the
eb’s selection mechanism. In this work, the self-adaptive penalty

unction approach is used to find a way of incorporating constraints
n order to improve the ABC algorithm. Although only the size opti-

ization of truss structures is considered in this study, it is believed
hat the ABC optimization algorithm can also be used for the topol-
gy and shape optimization of other types of structures.

The remainder of this paper is arranged as follows: Section 2
riefly presents the characteristics of the structural optimization
roblems. In Section 3, the natural forging behavior of real bees
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

s described, Section 4 describes the modeling of foraging behav-
or of artificial bees, the constraint handling procedure included
n the ABC algorithm is given in Section 5. The pseudo-code of
BC-AP algorithm is presented in detail in Section 6. The analy-
is of standard test problems to demonstrate the effectiveness of
 PRESS
ting xxx (2010) xxx–xxx

the algorithm in finding the optimal solution is given in Section 7.
Finally, Section 8 presents the conclusions.

2. The presentation of the structural optimization problem

Many problems in engineering have multiple solutions and
selecting the appropriate one can be a major task. In sizing
optimization problems, the major task is to find an optimal cross-
section of the elements of a system by minimizing the weight of
the structure. This is expressed mathematically as:

Minimize W(�A) =
n∑

j=1

AjLj�j (1)

where Aj, Lj, and �j are the cross-sectional area, length and unit
weight of jth truss member, respectively; W(�A) is the weight of
truss which is minimized; n is the total number of members. The
vector �A represents element cross-section vector that is selected
between lower Al and upper Au bounds. Eq. (1) is subjected to the
following normalized constraints:

sm,l(�A) = �m,l

�m,allowed
− 1 ≤ 0, m = 1, 2, . . . , n (2)

bm,l(�A) = �m,l

�m,allowed
− 1 ≤ 0, m = 1, 2, . . . , n (3)

dk,l(�A) = uk,l

uk,allowed
− 1 ≤ 0, k = 1, 2, . . . , nn (4)

where sm,l, bm,l, and dk,l are respectively, the element stress, ele-
ment buckling and nodal displacement constraint functions; �m,l
and �m,l are the stress and the slenderness ratio of mth member
due to the loading condition l; �m,allowed and �m,allowed are the allow-
able axial stress and allowable slenderness ration for mth member,
respectively; uk,allowed and uk,l are the allowable displacement and
nodal displacement of kth degrees of freedom due to the loading
condition l, respectively; nn is the number of restricted displace-
ments. All the normalized constraint functions are activated when
the violated constraints have values larger than zero.

3. The behavior of real honeybees in their natural
environment

Honeybees live in social units called colonies, depending on the
time of year a typical colony includes a single queen, thousands
of semi-sterile female workers and a few thousand males (drones).
Adult workers are responsible for executing all the tasks associated
with colony living such as; processing and storing food, cleaning
cells, feeding larvae (nursing behavior), secreting wax and con-
structing combs, and guarding the entrance [36]. When the female
bees are about 3 weeks old, they begin foraging, cease perform-
ing most tasks within the hive and usually remain foragers for the
rest of their lives [37]. Foragers are able to utilize a large number
of flower nectar (food sources) in multiple directions up to 12 km
from the hive, but mostly they fly within a 3 km radius [30].

In a colony, the female bees start the foraging process by ran-
domly searching for the promising flower patches. After finding
a food source, the bee loads up with nectar then returns to the
hive and unloads her nectar. Then, she may inform her nest mates
about her findings through the movements known as the “wag-
gle dance.” This dance gives three pieces of information regarding
the flower patch; the direction in which it can be found, distance
orithm for optimization of truss structures, Appl. Soft Comput. J.

from the hive and quality rating [20,28,31]. In a decentralized but
intelligent fashion, some of the bees decide to follow their nest
mates who have performed the waggle dance; others, to maximize
their nectar intake, search for the food source without following the
dancers. This means that each bee can follow one of three options

dx.doi.org/10.1016/j.asoc.2010.09.003
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fter unloading the nectar: (a) abandon the food source and search
or another promising flower patch, (b) continue to forage at the
ood source without recruiting nest mates, or (c) perform the wag-
le dance to recruit nest mates before returning to the food source.
ach bee follows one of the above options based upon the food level
f that nectar source. If a bee finds a nectar source which is above a
ertain limit, she follows option (c). If the nectar source is average,
he bee goes to forage at the food source without recruiting nest

ates. Otherwise, the bee continues to search for promising nectar
ources as option (a). The main goal of the foragers is to locate the
ost abundant nectar source [20,28,30].

. Modeling bee behavior

In the ABC algorithm, each food source exploited by the bees
epresents a possible solution to given optimization problem. The
ocation and amount of nectar from the flower patch correspond
o the design variables and the fitness function, respectively. All
he worker bees (N) leave the hive to search for promising flower
atches. After the workers bees return to hive with a certain amount
f nectar, the first half (SN) that found the best food sources become
employed bees.” The remainder of the bees watches the waggle
ance to decide which of the employed bees followed. These bees,
hich watch the waggle dance, are called “unemployed bees” or

onlooker bees.”
Each food source has only one employed bee; that is, the number

f food sources is equal to the number of employed bees. The num-
er of unemployed bees which will fly to a food source depends on
he amount of nectar at the source. The unemployed bees choose
food source according to the quality of the nectar. More unem-
loyed bees prefer to visit an abundant nectar source while fewer
r no unemployed bees choose the food source having less nectar
han others. It means that unemployed bees select a food source
ccording to a probability proportional to the amount of nectar to
e found at the food source [35]. The probability pi for that source
is calculated in the following way:

i = 1/iW(�A)∑SN
j=11/jW(�A)

(5)

A candidate food source is created from the neighborhood of
he old food source. It means that the ABC algorithm uses the old
ood source (iA

old
j

) to search for a candidate food source (iA
new
j

).
umerically, the location of a candidate food source i is determined
s:

new
j = iA

old
j + �(iA

old
j − kAold

j ) (6)

here � is a random number between −1 and 1. Anew
j

is an updated
esign variable. The left hand subscripts represent the solution
umber (food source, i = 1, 2, 3, . . ., SN) while the right hand script
enote the design variable number (j = 1, 2, 3, . . ., D). k is a ran-
omly chosen integer number but cannot be equal to i. kAold

j
plays

n important role in the ABC convergence behavior since it is
mployed to control the exploration abilities of the bees. It directly
nfluences the location of the new food source, which is based on
he previous location of other food sources in the regions of the
esign space. Every employed bee determines a new food source in
he neighborhood of its currently associated food source and eval-
ates the new amount of food as shown in Eq. (1). If the food level

n the new location is better than the old one, the new position
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

ecomes the food source; otherwise, the old location is maintained
s the best food source.

As mentioned above, the ABC algorithm is iterative. If there is
o improvement in the amount of nectar from a food source after
predefined iteration (LIMIT), this food source is discarded by its
 PRESS
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employed bee. These employed bees become “scout bees” acting
as the colony’s explorers [26]. Concerned primarily with finding
any kind of nectar source and they do not have any guidance as to
where to look for food. The scouts may accidentally discover rich,
entirely unknown food sources and when this happens the scout
bee becomes an employed bee. A new location found by a scout bee
i is calculated as:

Anew
j = Al

j + �(Au
j − Al

j) (7)

where � is a random number between 0 and 1. Al
j

and Au
j

are the
lower and upper bounds of the jth variable, respectively.

5. Constraint handling procedure

The objective of structural optimization is to develop a design
that minimizes the total structural weight while satisfying all
design requirements such as member stresses, nodal displace-
ments and member buckling. These requirements correspond to
the constraints for the optimization problems. Like other direct
search algorithms, the ABC algorithm was originally developed
for unconstrained optimization problems, and hence it is neces-
sary to somehow incorporate constrains into the ABC algorithm to
solve structural optimization problems. The advantages and disad-
vantages of the well known constraint handling techniques were
presented in a review paper by Coello [38] and Kicinger et al. [17].
In the Coello’s research [38], constraint-handling techniques were
divided into five major groups (i) penalty functions, (ii) special rep-
resentations and operations, (iii) repair algorithms, (iv) separation
of objectives and constraints, (v) hybrid methods. The traditional
approach for handling the design constraints of optimization prob-
lems is to use penalty function methods in which a constrained
optimization problem is transformed into an unconstrained prob-
lem by adding a certain value to the objective function based on
the amount of constraint violations.

Most of the penalty function methods require pre-defined or
static penalty function coefficients at the beginning of the calcula-
tions. These coefficients are generally determined by trial and error
methods. If the penalty function coefficients are too low, the opti-
mized design converges to an unfeasible solution without satisfying
the constraints. On the other hand, if the penalty function coeffi-
cients are too high, the optimized design will not have a satisfactory
objective function value. In order to overcome this drawback of the
static penalty function method, various types of penalty functions
have been proposed and studied [38,17]. Adaptive penalty is one
of the methods, in which a penalty function coefficient is adapted
according to feedback received from the search process. Different
versions of the adaptive penalty function techniques have been
proposed by various researchers including Hadj-Alouane and Bean
[39], Nanakorn and Meesomklik [40], Hasancebi [18], and Togan
and Daloglu [11].

The original ABC algorithm uses the Deb’s selection mechanism
[41] that belongs to the category (iv) to accommodate the inclusion
of constraints. Deb’s method includes three very simple heuristic
rules to compare two solutions: (i) a feasible solution is always pre-
ferred to an unfeasible one, (ii) between two feasible solutions, the
one having a better objective function is preferred, (iii) between
two unfeasible solutions, the one having a smaller constraint func-
tion is preferred. The advantage of the Deb’s selection mechanism
is that it does not require any penalty factor because the selection
procedure is only performed in a pair wise comparison and is very
orithm for optimization of truss structures, Appl. Soft Comput. J.

easy to employ in any optimization problem. On the other hand,
this method seems to have problems in maintaining diversity in the
population [38]. In addition, an optimal solution generally lies on or
close to boundaries between feasible and unfeasible search spaces
in the structural optimization when design variables are continu-

dx.doi.org/10.1016/j.asoc.2010.09.003
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us. Deb’s method forces the candidate solution to be in the feasible
egion and a candidate solution may not cross the boundaries. These
isadvantages may artificially slow down the ABC algorithm.

Due to the undesirable effect of Deb’s method and the static
enalty function methods mentioned above, an adaptive penalty
unction method is considered in this study for constraint handling
ithin the ABC. There are several different versions of the adaptive
enalty function methods. The common property of all these meth-
ds is that the penalty coefficient is updated for every individual
ccording to information gathered from search space. The adap-
ive penalty function proposed by Hasancebi [18] is used in this
ork. The following function is used to transform a constrained

ptimization problem to an unconstraint optimization problem for
th bee.

c=iW

⎡
⎣1+ir(t)

⎡
⎣ l∑

j=1

(
n∑

m=1

(sm,j + bm,j) +
nn∑

k=1

dk,j

)⎤
⎦
⎤
⎦ (8)

c is unconstrained objective function; W is constraint objective
unction; sm,j, bm,j and dk,j are normalized constraints functions acti-
ated when their values are larger than zero and r(t) is the penalty
oefficient which is used to tune the intensity of penalization and
function of iteration. When r(t) is set to a predefined static value

uch as r = 1 for all cycles, the resulting function becomes a static
enalty function. In the adaptive penalty function implementation,
he penalty coefficient r(t) is adjusted based on the feedback from
he previous solution as in shown Eq. (9)

(t)

{
1/f · ir(t − 1) if iWc(t − 1) is feasible

f · ir(t − 1) if iWc(t − 1) is infeasible
(9)

here r(t) and r(t − 1) are the penalty coefficients at cycles (t)
nd (t − 1), respectively. Wc(t − 1) denotes the last known objec-
ive function for ith employed bee and f is the arbitrary constant
eferred to as the learning parameter of r(t). The value of f depends
n the problem to be solved. The best value for f is recommended
o be 1.1 for a simulated annealing optimization algorithm [18].
he ABC algorithm is quite different from the simulated annealing
lgorithm; therefore, the recommended value for f is unsuitable for
he ABC algorithm. In this study, f is calculated using the following
quation:

= 1 + 1
nc

> 1.01 (10)

here nc is the total number of constraints. Eq. (10) has been set
mpirically. The learning parameter f is designated to adjust the
ntensity of the penalty parameter r. It is not difficult to imagine
hat if an optimization problem has a large number of constraints,
he total value of the normalized constraints is possible to be a large
umber. Hence the f should be small. On the contrary if the opti-
ization problem has a small number of constraints, total value

f the normalized constraints may be a small number. Hence f is
elected to be a function of the total constraints. As mentioned
bove the optimal solution generally lies on or close to the bound-
ry between the feasible and the unfeasible search space in the
tructural optimization. Therefore, the optimal solution should be
ound on the boundary. In the adaptive penalty scheme, if the solu-
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

ion in the preceding iteration is feasible, the penalty coefficient f is
educed to point towards the unfeasible region. On the other hand,
f the solution in the preceding iteration is in the unfeasible region,
he penalty function is increased to make the feasible region more
ttractive.
 PRESS
ting xxx (2010) xxx–xxx

6. The pseudo-code of the proposed ABC-AP algorithm

The algorithm proposed in the previous section can be incorpo-
rated into a general truss analysis program to solve optimal design
problems. A pseudo-code of the procedure for the application of
the algorithm is given as follows:

Step 1. Set the total number of bees (N) and maximum number of
cycles (MNC).
Step 2. Generate a random initial bee colony, Aj (i = 1, 2, . . ., N, j = 1,
2, 3, . . ., D), constructed using Eq. (7).
Step 3. Read input data to construct structure then carry out the
structural analysis for the given load condition(s). The joint dis-
placements and member forces obtained from the analysis are
used to calculate the values of normalized constraints and the
unconstrained weight function (iW) for every bees.
Step 4. Select the best food locations (SN) among the candidate
food sources (N). The bees associated with the best locations
become “employed bees”.
Step 5. Set cycle = 1;
Step 6. Loop over each food source (i = 1, 2, . . ., SN)
6.1 Recruit the unemployed bees based on the probability pi using

Eq. (5).
6.2 Produce new solutions for an employed bee and any existing

unemployed bee(s), using Eq. (6).
6.3 Carry out the structural analysis under applied load conditions.

The joint displacements and member forces are used to calcu-
late the values of normalized constraints and unconstrained
weight function (Wi) for each bee.

6.4 Select the best food level for each food source. If the food level
in the new location is better than the old one, the new position
becomes the food source; otherwise, the old one is maintained
as a food source.
Step 7. Discard the food source if the following conditions are
true: (i) there is no improvement of the food level after the
LIMIT number of cycles, and (ii) the source is not one of the
best food sources. Then replace the food source with a random
solution using Eq. (7).
Step 8. cycle = cycle + 1.
Step 9. If the cycle is greater than MNC or there is no improve-
ment in the best solution after the number of LIMIT cycles, stop
the procedure; otherwise, go to step 6.

The ABC-AP algorithm has some deviations from the original ABC
algorithm proposed by Karaboga and Basturk [33]. The original
algorithm selects the half of the bees as “employed bees” and gen-
erates solutions for each of them. Also, in the original algorithm,
every employed bee constructs solutions in their neighborhood and
moves these locations if they have better fitness, then unemployed
bees construct solutions in the neighborhoods of the employed bees
they followed. On the other hand, the ABC-AP algorithm generates
N solutions initially and chooses best half of bees as the initial solu-
tions. Bees visiting the best food locations will be “employed bees”
for these food locations and the rest of the bees become “onlook-
ers.” At the rest of the cycles, employed bees and any existing
onlooker bees visit the food locations found by the employed bees
together. A bee finding the best fitness in the neighborhood will be
orithm for optimization of truss structures, Appl. Soft Comput. J.

an employed bee in the next cycle. By doing so, the greedy selection
process is performed once in each cycle. The other deviation is that
the employed bee associated with the best solution is spared from
becoming scout even if there is no improvement in the nectar after
the LIMIT number of cycles.

dx.doi.org/10.1016/j.asoc.2010.09.003
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Fig. 1. Geometry and applied

. Numerical examples

The following five classical test problems were used to investi-
ate the numerical correctness, efficiency and validation of the ABC
lgorithm:

A ten-bar plane structure subjected to two loading cases,
An eighteen-bar plane structure subjected to one loading condi-
tion,
A twenty-two-bar element space structure subjected to two load-
ing conditions,
A seventy-two-bar element space structure subjected to two
loading conditions,
A two-hundred-bar element planer structure subjected to three
loading conditions.

Based on the algorithm presented in Section 6, a C# program
as developed to design truss structures using object-oriented
aradigm. The program is composed of five main classes, namely
ataProcess, Bee, LinearAnalyis, Matrix, IndataData. The class

nputData reads input file and creates the container lists that
tore information concerning elements, nodes, loads and material
escriptions. The class Matrix is used to solve the simultaneous
lgebraic equations and to carry out the matrix related operations.
he class LinearAnalyis uses the class Indata and the class Matrix to
erform the structural analysis procedure to determine the nodal
isplacements and element forces based on the displacement based
nite element procedure. The class Bee was created to store the
ata such as fitness, penalty coefficient, name, design variables
nd actions related to the bee behaviors such as finding the food
ource. The class DataProcess combines all classes to perform the
ptimization procedure.

The optimization software was run on a Personal Computer with
Pentium Dual Core 2.33 GHz processor and 2 GB memory under

he Microsoft Windows XP operating system.
For all examples presented in this study, the ABC-AP algorithm
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

arameters were set as follows: a colony of bee size N = 50, the
aximum number of cycles MNC = 1000D (D is the number of

esign variables) and LIMIT = MNC/3. Ten independent runs were
erformed with the best and worst performances being presented
or each problem.
ng for a planar ten-bar truss.

7.1. Ten-bar plane truss

Fig. 1 shows the geometry and the loading condition of the can-
tilever truss structures consisting of ten bars. This structure is a
standard example used by many researchers including Lee and
Geem [6], Hatay and Toklu [15], Li et al. [23], Perez and Bend-
inan [24], Fleury and Schmit [42], Renwei and Peng [43], Dobbs
and Nelson [44]. In this example, two loading cases were consid-
ered: Case I in which the single loading condition P1 = 100 kips and
P2 = 0 was considered and Case II in which the single loading con-
dition P1 = 150 kips and P2 = 50 kips was considered. All members
were assumed to be made from a material with an elastic modulus
of E = 10, 000 ksi and a mass density of � = 0.10 lb/in.3. The cross-
sectional areas of all members were included as sizing variables.
The minimum and maximum cross-sectional areas of members
were set to Al = 0.1 in.2 and Au = 35.0 in.2. The displacements of the
free nodes in both directions had to be less than ±2 in and the
allowable stress was set to ±25 ksi. The problem had 32 nonlinear
constraints (10 tension constraints, 10 compression constraints and
12 displacement constraints).

To study the effect of the colony size on the convergence rate of
the ABC-AP algorithm, five different colonies consisting of 10, 30
50, 60 and 100 bees were used. The averages of each set of 10 inde-
pendent runs for each colony are given in Fig. 2 where the objective
function versus cycle numbers is shown. It can be seen from this
figure that the convergence rates increase with greater numbers of
bees. After 1000 cycles, with the exception of the colony of 10 bees
the results of all the colonies are very close to each other and are
the almost same after 15,000 cycles. The colony size may be set at
any value between 30 and 100. In current research the colony size
was set at 50 bees for all examples. Even if the maximum number
of cycle is limited to any value between 1000 and 15,000, Fig. 2
shows that the results continue to improve while the number of
cycles increases. Comparing the results of the ABC-AP with algo-
rithms in the literature, the maximum number of cycles was set
at 1000D (D is the number of design variables) for all examples.
The results of the average of 10 independent runs for the origi-
nal ABC algorithm [32] and the proposed ABC-AP algorithm are
orithm for optimization of truss structures, Appl. Soft Comput. J.

presented in Fig. 3. The results of the ABC-AP algorithm are sig-
nificantly better than the ABC algorithm for the first 1000 cycles.
The difference between the results of two algorithms becomes less
after 1000 cycles but the ABC-AP always gives better results than
the ABC algorithm.

dx.doi.org/10.1016/j.asoc.2010.09.003
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ig. 2. Comparison of the convergence rates of five different colonies of 10, 30, 50,
0 and 100 bees for a ten-bar truss subjected to load Case I.
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

Tables 1 and 2 show the minimal and maximal results of ten
ndependent runs for a ten-bar truss subjected to Case I and Case
I loads, respectively. Other published results found for the same
roblem using different optimization approaches including the

able 1
ptimization results for a ten-bar truss (Case I).

Variables Optimal cross section area (in.2)

No Design name Renwei and
Peng [43]

Hatay and
Toklu [15]

Li et

1 A1 30.590 30.680 30.7
2 A2 0.100 0.100 0.10
3 A3 23.270 23.500 23.1
4 A4 15.190 14.970 15.1
5 A5 0.100 0.100 0.10
6 A6 0.460 0.550 0.55
7 A7 7.500 7.450 7.46
8 A8 21.070 21.020 20.9
9 A9 21.480 21.430 21.5
10 A10 0.100 0.100 0.10

Weight (lb) 5062.170 5061.600 5060
Constraint violation None None Non

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.

able 2
ptimization results for a ten-bar truss (Case II).

Variable Optimal cross section area (in.2)

No Design name Dobbs and Nelson [44]

1 A1 25.810
2 A2 0.100
3 A3 27.230
4 A4 16.650
5 A5 0.100
6 A6 2.024
7 A7 12.780
8 A8 14.220
9 A9 22.140
10 A10 0.100

Weight (lb) 5059.70
Constraint violation None

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.
log10 (cycle)

Fig. 3. Comparison of the results of original ABC and proposed ABC-AP algorithm
for a ten-bar truss subjected to the load Case I.

optimality criteria [43,44], the simulated annealing (SA) algorithm
orithm for optimization of truss structures, Appl. Soft Comput. J.

[15], the heuristic practical swarm optimization (HPSO) algorithm
[23], the particle swarm optimization (PSO) algorithm [24], and the
harmony search (HS) algorithm [6] are also listed in Tables 1 and 2.
The minimum weights obtained from the ABC-AP are 5060.880 lbs
and 4677.077 lbs for Case I and Case II, respectively. There is no

al. [23] Lee and
Geem [6]

Perez and
Behdinan
[24]

This study

Best Worst

04 30.150 33.500 30.548 30.465
0 0.102 0.100 0.100 0.100
67 22.710 22.766 23.180 23.109
83 15.270 14.417 15.218 15.184
0 0.102 0.100 0.100 0.100
1 0.544 0.100 0.551 0.556
0 7.541 7.534 7.463 7.477
78 21.560 20.467 21.058 21.154
08 21.450 20.392 21.501 21.521
0 0.100 0.100 0.100 0.100

.920 5057.880 5024.210 5060.880 5060.948
e 0.907 × 10−3 23.95 × 10−3 None 0.358 × 10−6

Li et al. [23] Lee and Geem [6] This study

Best Worst

23.353 23.250 23.4692 23.5759
0.100 0.102 0.1005 0.1014
25.502 25.730 25.2393 25.2051
14.250 14.510 14.3540 14.3017
0.100 0.100 0.1001 0.1003
1.972 1.977 1.9701 1.9704
12.363 12.210 12.4128 12.4162
12.894 12.610 12.8925 12.8585
20.356 20.360 20.3343 20.3541
0.101 0.100 0.1000 0.1001

4677.290 4668.810 4677.077 4677.306
25.0 × 10−6 3.561 × 10−3 None None

dx.doi.org/10.1016/j.asoc.2010.09.003
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by several researchers including Lee and Geem [6], Lamberti [14],
Fleury and Schmit [42], Haftka and Gurdal [7]. All members were
assumed to be made of a material with an elastic modulus of E = 10,
000 ksi and a mass density of � = 0.01 lb/in.3. This space truss was
subjected to two loading conditions as shown in Table 4. The struc-

Table 4
Nodal loading components (kips) for a twenty-five-bar truss.

Loading cases Node x y z

1 1 1.000 10.000 −5.000

T
O

N

5@250

Fig. 4. Geometry and applied lo

onstraint violation for either case. The ABC-AP algorithms provide
ery good results when compared with other results, for example,
hose obtained from the HS algorithm [6] and the PSO algorithm
24] are lighter than the results from the ABC-AP but the normalized
onstraint violations for Case I are approximately 0.907 × 10−3 and
3.95 × 10−3, respectively. The SA, the PSO, the HS and the HPSO
lgorithms complete the optimization process after 1000 × 103,
× 103, 400 × 103 and 75 × 103 function evaluations, respectively.
he ABC-AP algorithm performs 500 × 103 function evaluations and
t took approximately 11 s to complete the process. It is interesting
o note that the difference between minimal and maximal results
btained from the ABC-AP is less than 0.001 % for both loading cases.
n the other hand this difference is about 3% for PSO algorithm.

.2. Eighteen-bar plane truss

Fig. 3 shows the geometry and loading condition of the can-
ilever truss structures consisting of eighteen bars and 11 nodes.
his problem has previously been presented as an example of siz-
ng and layout optimization by several researchers however, only
ize optimization is considered in this work. The structure was sub-
ected to a single loading condition which is a series of concentrated
oint loads of 20 kips acting on the upper cord nodes of the truss as

n Fig. 4. All members were assumed to be constructed from mate-
ial with an elastic modulus of E = 10, 000 ksi and a mass density of
= 0.10 lb/in.3. The stress constraint is defined as 20 ksi for both the

ension and compression members. In addition, the Euler buckling
onstraint is also taken into account for compression members. The
uler buckling stress for the ith member is calculated as:

i = −KEAi

L2
i

(11)

here Li and Ai are the length and the cross-section area of the
ember, respectively. K is a constant determined from geometry
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

nd was taken to be 4. The number of independent size variables
as reduced to four groups as follows: (i) elements 1, 4, 8, 12 and

6; (ii) elements 2, 6, 10, 14 and 18; (iii) elements 3, 7, 11 and 15;
iv) elements 5, 9, 13 and 17. The minimum cross-sectional area
f the members was Al = 0.10 in.2 and the maximum cross-section

able 3
ptimization results for an eighteen-bar truss structure.

Variables Optimal cross secti

No Design variables Imai and Schmit [45

1 A1, A4, A8, A12, A16 9.998
2 A2, A6, A10, A14, A18 21.650
3 A3, A7, A11, A15 12.500
4 A5, A9, A13, A17 7.072

Weight (lb) 6430.000
Constraint violation 0.259 × 10−3

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.
 in.

for a planar eighteen-bar truss.

was set to 50 in.2, even if there is no maximum cross-section limi-
tation. There were 36 nonlinear constraints on the member stress
and buckling stress with no displacement constraints.

The minimal and maximal results from 10 independent runs
of the ABC-AP algorithm are presented Table 3. In addition, this
table contains the results for the same optimization task from
different research efforts including Imai and Schmit [45] who
used the multiplier method and Lee and Geem [6] who used
the HS algorithm to solve the problem. The results of the ABC-
PA (6340.529 lbs) are almost same as the results from Imai and
Schmit (6340 lbs). Although, the HS algorithm [6] produced a lighter
design (6421.88 lbs) than the algorithm presented in this study
(6340.529 lbs), the algorithm violates the stress constraints which
were approximately 7.508 × 10−3 while the optimal solution found
by the ABC-AP meets all constraint requirements. The HS algorithm
completes the optimization process after 400 × 103 structural anal-
ysis. The HS algorithm found an optimum weight after less than 60 s
while the ABC-AP algorithm required 200 × 103 structural analysis
that took about 6 s to complete the optimization process.

7.3. Twenty-five-bar space truss

The space 25-bar truss shown in Fig. 5 has been optimized
orithm for optimization of truss structures, Appl. Soft Comput. J.

2 0 10.000 −5.000
3 0.500 0 0

2 5 0 20.000 −5.000
6 0 −20.000 −5.000

Note: 1 kips = 4.45 kN.

on area (in.2)

] Lee and Geem [6] This study

Best Worst

9.980 10.000 10.000
21.630 21.651 21.651
12.490 12.500 12.500
7.057 7.071 7.071

6421.880 6430.529 6430.529
7.508 × 10−3 None None

dx.doi.org/10.1016/j.asoc.2010.09.003
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Table 5
Allowable stresses (ksi) for a twenty-five-bar truss.

Design variables Members Compression Tension

1 A1 35.092 40.000
2 A2–A5 11.590 40.000
3 A6–A9 17.305 40.000
4 A10–A11 35.092 40.000
5 A12–A13 35.092 40.000
6 A14–A17 6.759 40.000

T
O

N

Fig. 5. Geometry of a tw

ural analysis program was run twice for each distinct loading
ondition and the unconstrained fitness function was calculated
ased on the corresponding stress and displacement constraint vio-

ations. Since the structure was doubly symmetric about the x- and
-axes, the problem involves eight independent design variables
fter linking in order to impose symmetry. The members were
rouped as follows: (1) element 1; (2) elements 2, 3, 4 and 5; (3)
lements 6, 7, 8 and 9; (4) elements 10 and 11; (5) elements 12 and
3; (6) elements 14, 15, 16, 17 and 18; (7) elements 18, 19, 20 and
1; (8) elements 22, 23, 24 and 25. The minimum cross-sectional
rea of each member was set to 0.01 in.2. The displacements at the
op nodes 1 and 2 in all directions had to be less than ±0.35. The
llowable stresses for all members are given in Table 5. The problem
ad 124 nonlinear constraints (25 tension, 25 compression, 6 pos-

tive displacement and 6 negative displacements for each loading
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

ondition).
Table 6 shows the best and worst results of the ABC-AP algo-

ithm with 8 size variables and compares these results with those
reviously reported in the literature. The difference between all the

able 6
ptimization results for a twenty-five-bar truss structure.

Variables Optimal cross section area (in.2)

No Design variables Haftka and Gtirdal [7] Lee and

1 0.010 0.047
2 A2–A5 1.987 2.022
3 A6–A9 2.991 2.950
4 A10–A11 0.010 0.010
5 A12–A13 0.012 0.014
6 A14–A17 0.683 0.688
7 A18–A21 1.679 1.657
8 A22–A25 2.664 2.663

Weight (lb) 545.220 544.380
Constraint violation None 0.0122

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.
7 A18–A21 6.959 40.000
8 A22–A25 11.082 40.000

Note: 1 ksi = 6.89725 MPa.

results is less than 0.006%, so all optimization algorithm listed in
Table 6 found almost the same structural weight. Constraint vio-
orithm for optimization of truss structures, Appl. Soft Comput. J.

lation (0.0122) occurred is only for the HS algorithm [6]. The HS,
the HPSO [23] and the Corrected Multi-Level & Multi-Point Sim-
ulated Annealing (CMLPSA) [14] algorithms required 300 × 103,
7125 and 400 structural analysis to complete the search process
while the ABC-AP found the optimum weight of 545.1927 lbs after

Geem [6] Li et al. [23] Lamberti [14] This study

Best Worst

0.010 0.010 0.011 0.010
1.970 1.987 1.979 2.006
3.016 2.994 3.003 2.961
0.010 0.010 0.010 0.012
0.010 0.010 0.010 0.010
0.694 0.694 0.690 0.689
1.681 1.681 1.679 1.677
2.643 2.643 2.652 2.665

545.190 545.161 545.193 545.276
None None None None

dx.doi.org/10.1016/j.asoc.2010.09.003
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placements, 8 negative displacements for each loading case). Due
Fig. 6. Geometry of

pproximately 300 × 103 cycles, which took approximately 32 s.
he CMLPSA algorithm which is modified version of the simulated
nnealing algorithm requires the gradient of the objective func-

ion; therefore, the number of cycles performed by CMLPA [14]
o find the optimal design was less than the other direct search
lgorithms.
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

.4. Seventy-two-bar truss

The 72-bar four level skeletal tower is shown in Fig. 6 and the
russ was subjected to two loading conditions as given in Table 7.

able 7
odal loading components (kips) for a twenty-five-bar truss.

Loading conditions Node x y z

1 1 5.000 5.000 −5.000

2 1 0 0 −5.000
2 0 0 −5.000
3 0 0 −5.000
4 0 0 −5.000

ote: 1 kips = 4.45 kN.
nty-two-bar truss.

The minimum cross-sectional area of each member was set to
0.01 in.2. The displacements at the upper most nodes 1, 2, 3 and 4 in
x-direction and y-direction had to be less than ±0.25 in. The allow-
able stresses for all members were ±25 ksi. The problem had 320
nonlinear constraints (72 tension, 72 compression, 8 positive dis-
orithm for optimization of truss structures, Appl. Soft Comput. J.

to the symmetry of the structure, 16 independent design variables
were used for linking. The member numbers and the corresponding
group numbers are given in Table 8.

Table 8
Element grouping for the seventy-two-bar truss structures.

Group Elements Group Elements

1 1, 2, 3,4 9 37, 38, 39, 40
2 5, 6, 7, 8, 9, 10, 11, 12 10 41, 42, 43, 44, 45, 46, 47, 48
3 13, 14, 15, 16 11 49, 50, 51, 52
4 17, 18 12 53, 54
5 19, 20, 21, 22 13 55, 56, 57, 58
6 23, 24, 25, 26, 27 14 59, 60, 61, 62, 63, 64, 65, 66
7 31, 32, 33, 34 15 67, 68, 69, 70
8 35, 36 16 71, 72

dx.doi.org/10.1016/j.asoc.2010.09.003
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The ABC-AP algorithm found the optimal weight of the seventy-
wo-bar truss to be 363.8392 lbs and there were no constraint
iolations after 400 × 103 structural analysis, which took 228 s.
ptimal designs reported in the literature together with the ABC-
P algorithm are listed in Table 9. The optimum design weight
nd group numbers of a two-hundred-bar truss.
orithm for optimization of truss structures, Appl. Soft Comput. J.

obtained from the CMLPSA [14], the HS [6] and the HPSO [23] algo-
rithms are almost same as that of the ABC-AP algorithm. These
three algorithms exhibit some amount of constraint violation but
the ABC-AP algorithm did not produce any constraint violation. In
this sense, the ABC-AP algorithm outperforms the other algorithms.

dx.doi.org/10.1016/j.asoc.2010.09.003
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Table 9
Optimization results for a seventy-two-bar truss structure.

Variables Optimal cross section area (in.2)

No Design variables Erbatur et al. [9] Perez and Behdinan [24] Li et al. [23] Lee and Geem [6] Lamberti [14] This study

Best Worst

1 A1–A4 0.155 0.1615 1.907 1.963 0.1665 0.1675 0.1683
2 A5–A12 0.535 0.5092 0.524 0.481 0.5363 0.5346 0.5336
3 A13–A16 0.480 0.4967 0.010 0.010 0.4460 0.4443 0.4462
4 A17–A18 0.520 0.5619 0.010 0.011 0.5761 0.5803 0.5849
5 A19–A22 0.460 0.5142 1.288 1.233 0.5207 0.5208 0.5140
6 A23–A30 0.530 0.5464 0.523 0.506 0.5180 0.5178 0.5217
7 A31–A34 0.120 0.1000 0.010 0.011 0.0100 0.0100 0.0100
8 A35–A36 0.165 0.1095 0.010 0.012 0.1141 0.1048 0.0973
9 A37–A40 1.155 1.3079 0.544 0.538 1.2903 1.2968 1.2847
10 A41–A48 0.585 0.5193 0.528 0.533 0.5170 0.5191 0.5138
11 A49–A52 0.100 0.1000 0.019 0.010 0.0100 0.0100 0.0100
12 A53–A54 0.100 0.1000 0.020 0.167 0.0100 0.0101 0.0100
13 A55–A58 1.755 1.7427 0.176 0.161 1.8866 1.8907 1.9010
14 A59–A66 0.505 0.5185 0.535 0.542 0.5169 0.5166 0.5211
15 A67–A70 0.105 0.1000 0.426 0.478 0.0100 0.0100 0.0100
16 A71–A72 0.155 0.1000 0.612 0.551 0.0100 0.0100 0.0100

N

7

G
i
b
e

T
O

N

Weight (lb) 385.760 381.91
Constraint violation None None

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.

.5. Two-hundred bar planar truss
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

This 200-bar truss problem was previously studied by Lee and
eem [6] and Lamberti [14]. The members were linked together

nto twenty-nine groups. Fig. 7 shows the geometry, node num-
ering, material numbering and group numbers. The modulus of
lasticity and the material density of all members were 30, 000 ksi

able 10
ptimization results for a two-hundred-bar truss structures.

Variables Optimal cross section area (in.2)

Design variables Lee and Geem [6] Lamberti [14]

A = 10 in.2

1 0.1253 0.1468
2 1.0157 0.9400
3 0.1069 0.1000
4 0.1096 0.1000
5 1.9369 1.9400
6 0.2686 0.2962
7 0.1042 0.1000
8 2.9731 3.1042
9 0.1309 0.1000
10 4.1831 4.1042
11 0.3967 0.4034
12 0.4416 0.1912
13 5.1873 5.4284
14 0.1912 0.1000
15 6.2410 6.4284
16 0.6994 0.5734
17 0.1158 0.1327
18 7.7643 7.9717
19 0.1000 0.1000
20 8.8279 8.9717
21 0.6986 0.7049
22 1.5563 0.4196
23 10.9806 10.8636
24 0.1317 0.1000
25 12.1492 11.8606
26 1.6373 1.0339
27 5.0032 6.6818
28 9.3545 10.8113
29 15.0919 13.8404

Weight (lb) 25447.100 25447.528
Constraint violation 0.40023 0.00310

ote: 1 in.2 = 6.452 cm2; 1lb = 4.45 N.
364.86 364.330 363.803 363.8392 363.8683
13.701 12.06 0.04 × 10−3 None None

and � = 0.283 lb/in.3, respectively. The members were subjected to
stress limitations of ±10 ksi. There was no displacement limit but
orithm for optimization of truss structures, Appl. Soft Comput. J.

the minimum cross-section area was not allowed to be less than
0.1 in.2. There were three loading conditions: (1) 1.0 kips acting in
the positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62
and 71; (2) 10 kips acting in the negative y-direction at nodes 1, 2,
3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, . . ., 72,

This study

After 350D cycles After 1000D cycles

Best Worst Best Worst

0.1042 0.1029 0.1039 0.1125
0.9416 0.9610 0.9463 0.9580
0.1030 0.1016 0.1037 0.1060
0.1118 0.1298 0.1126 0.1050
1.9430 1.9627 1.9520 1.9654
0.2945 0.2948 0.2930 0.2995
0.1072 0.1060 0.1064 0.1109
3.1301 3.1218 3.1249 3.1221
0.1361 0.1322 0.1077 0.1029
4.1856 4.1144 4.1286 4.1472
0.4313 0.4627 0.4250 0.4343
0.1073 0.1475 0.1046 0.1482
5.4680 5.5498 5.4803 5.4855
0.1495 0.1160 0.1060 0.1192
6.4876 6.5246 6.4853 6.4813
0.5782 0.6331 0.5600 0.5913
0.2031 0.2214 0.1825 0.1924
8.0759 8.1406 8.0445 8.0633
0.2015 0.1882 0.1026 0.1149
9.0666 9.2081 9.0334 9.1289
0.8548 0.8835 0.7844 0.8015
0.4106 0.5155 0.7506 0.9545
11.2225 11.7019 11.3057 11.5255
0.1840 0.2730 0.2208 0.4215
12.2790 12.4107 12.2730 12.4972
1.2040 1.3503 1.4055 1.6899
5.6580 5.1542 5.1600 4.5072
10.2616 9.9173 9.9930 9.4678
14.417 14.79213 14.70144 15.30332

25600.030 25832.780 25533.79 25756.640
0.00036 0.00022 None 0.00220

dx.doi.org/10.1016/j.asoc.2010.09.003
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3, 74 and 75; (3) conditions 1 and 2 acting together. The problem
ad 1200 nonlinear constraints (200 tension and 200 compression
tress constraints for each loading case).

Table 10 lists the designs developed by the ABC-AP algorithm,
he HS algorithm [6] and the SA algorithm [14]. The best ABC-
P design results in a truss structure that weighs 25, 540.58 lbs
fter 1000D cycles and 25600.30 lbs after 350D cycles, which is
bout 0.36% and 0.60% heavier than the designs presented by Lee
nd Geem [6] and Lamberti [14], respectively. The ABC-AP algo-
ithm found the optimal weights of the two-hundred bar truss
fter 1000D cycles, which took 2688 s and after 350D cycles which
ook 927 s. The best optimum design of the ABC-AP algorithm does
ot violate the constraints after 1000D cycles (1450 × 103 function
valuations) and the constraint violation is about 0.00036 for 350D
ycles (507 × 103 function evaluations). On the other hand, normal-
zed constraint violations are about 0.40 for the HS algorithm [6]
nd 0.003 for the CMLPSA algorithm [14]. The CMLPSA and HS algo-
ithm completed the optimization process after 9620 and 960 × 103

unction evaluations, respectively.

. Conclusion

The Artificial Bee Colony (ABC) algorithm, based on mimick-
ng the food foraging behavior of honeybee swarms, is proposed
s a method of solving the optimization problems of planar
nd space truss structures. An adaptive penalty (AP) function
ethod was integrated into the algorithm to transform constrained

ptimization problems to unconstrained optimization problems.
ptimization software based on the ABC-AP algorithm was coded

n the C# programming language with using object-oriented tech-
ology. Five test problems were studied using this optimization
rogram to show that the ABC-AP algorithm can be successfully
pplied to the optimization problems of the truss structures sub-
ected to multiple loading conditions. The comparison of the results
f the ABC-AP with those of other algorithms demonstrated that the
BC-AP algorithm provides results as good as or better than other
lgorithms and can be used effectively for solving such problems.
he algorithm shows a remarkably robust performance with a 100%
uccess rate. The difference between the minimal and maximal
esults for all examples is less than 1% (an average of approximately
.16%).

The ABC-AP algorithm shows the positive performance in three
spects. The first one is the initial point independency and global
ature of the algorithm. The second aspect is the characteristic
f the adaptive penalty function coefficient which changes in the
ourse of the optimization based on the feedback from previous
rocess. The last aspect is that the algorithm does not require the
valuation of the gradients of objective and constraint functions.
his makes the ABC-AP algorithm easy to implement in a struc-
ural analysis application. On the other hand, the ABC algorithm
oes not show any improvement in the speed of convergence in
erms of the number of the structural analyses performed to obtain
he best designs.

In the research described in this paper, a number of optimiza-
ion problems of trusses with continuous sizing variable and fixed
eometry were solved very effectively. Further tests are required
o determine whether the ABC-AP algorithm can be employed to
olve optimization problems of other structural types with discrete
izing and configuration variables.
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003
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31] D.T. Pham, E. Koç, A. Granbarzadeh, S. Otri, Optimisation of the weight of
multi-layered perceptrons using the bees algorithm, in: Proceedings of 5th
International Symposium of Intelligence Manufacturing Systems, Sakarya,
Turkey, 2006, pp. 38–46.

32] D. Karaboga, B. Basturk, On the performance of Artificial Bee Colony (ABC),
Applied Soft Computing 8 (1) (2008) 687–697.

dx.doi.org/10.1016/j.asoc.2010.09.003
http://dx.doi.org/10.1016/j.engstruct.2007.03.014


 INA

Compu

[

[

[

[

[

[

[

[

[

[

[

[

[

ARTICLEG Model
SOC-967; No. of Pages 13

M. Sonmez / Applied Soft

33] D. Karaboga, B. Basturk, Artificial Bee Colony (ABC) optimization algorithm for
solving constrained optimization problems, in: P. Melin, et al. (Eds.), IFSA 2007,
LNAI 4529, 2007, pp. 789–798.

34] B. Basturk, D. Karaboga, An Artificial Bee Colony (ABC) algorithm for numerical
function optimization, in: IEEE, Swarm Intelligence Symposium, Indianapolis,
IN, USA, 2006.

35] A. Singh, An Artificial Bee Colony algorithm for the leaf-constrained min-
imum spanning tree problem, Applied Soft Computing 9 (2) (2009) 625–
631.

36] Honey Bee Biology, Texas A&M University, Department of Entomology,
http://honeybee.tamu.edu/about/biology.html.

37] Apiary Fact sheets, Ministry of Agriculture and Lands of British Colombia,
http://www.al.gov.bc.ca.

38] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: survey of the state of the art, Computer Methods
in Applied Mechanics and Engineering 191 (2002) 1245–1287.

39] A.B. Hadj-Alouane, J.C. Bean, A genetic algorithm for the multiple-choice integer
program, Operation Research 45 (1997) 92–101.
Please cite this article in press as: M. Sonmez, Artificial Bee Colony alg
(2010), doi:10.1016/j.asoc.2010.09.003

40] P. Nanakorn, K. Meesomklik, An adaptive penalty function in genetic algo-
rithm for structural design optimization, Computers and Structures 78 (2001)
2527–2539.

41] K. Deb, An efficient constraint handling method for genetic algorithms, Com-
puter Methods in Applied Mechanics and Engineering 186 (2–4) (2000)
311–338.
 PRESS
ting xxx (2010) xxx–xxx 13

42] C. Fleury, L.A. Schmit, Dual methods and approximation concepts in structural
synthesis, NASA Contractor Report 3226 (1980) 97–124.

43] X. Renwei, L. Peng, An efficient method for structural optimization, Acta
Mechanica Sinica 2 (4) (1986) 348–361.

44] M.W. Dobbs, R.B. Nelson, Application of optimality criteria to automated struc-
tural design, AIAA Journal 14 (10) (1976) 1436–1443.

45] K. Imai, L.A. Schmit, Configuration optimization of trusses, Journal of Structural
Division ASCE 107 (ST5) (1991) 745–756.

Mustafa Sonmez is an Assistant Professor in the Civil
Engineering Department at Aksaray University, Turkey.
He received his B.Sc. in Civil Engineering with honors from
Middle East Technical University, Turkey in 1991 and his
M.Sc. and Ph.D. in civil engineering (majoring in structural
engineering) from University of Pittsburgh, Pennsylvania,
USA in 1996 and 2000, respectively. Dr. Sonmez’s research
interests are in the areas of nonlinear analysis of frame
orithm for optimization of truss structures, Appl. Soft Comput. J.

and truss structures, computer programming and opti-
mization algorithms. He has authored and co-authored
refereed journal papers and numerous conference pro-
ceedings. In addition to conducting research, Dr. Sonmez
teaches a variety of undergraduate and graduate courses

at Aksaray University.

dx.doi.org/10.1016/j.asoc.2010.09.003
http://honeybee.tamu.edu/about/biology.html
http://www.al.gov.bc.ca/

	Artificial Bee Colony algorithm for optimization of truss structures
	Introduction
	The presentation of the structural optimization problem
	The behavior of real honeybees in their natural environment
	Modeling bee behavior
	Constraint handling procedure
	The pseudo-code of the proposed ABC-AP algorithm
	Numerical examples
	Ten-bar plane truss
	Eighteen-bar plane truss
	Twenty-five-bar space truss
	Seventy-two-bar truss
	Two-hundred bar planar truss

	Conclusion
	Acknowledgment
	References


