
Multi-Neighbourhood Local Search
with Application to Course Timetabling

Luca Di Gaspero1 and Andrea Schaerf 2

1 Dipartimento di Matematica e Informatica
Università di Udine

via delle Scienze 206, I-33100, Udine, Italy
email: digasper@dimi.uniud.it

2 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Università di Udine

via delle Scienze 208, I-33100, Udine, Italy
email: schaerf@uniud.it

Abstract. A recent trend in local search concerns the exploitation of
several different neighbourhood functions so as to increase the ability of
the algorithm to navigate the search space.
In this work we investigate the use of local search techniques based on
various combinations of neighbourhood functions, and we apply it to a
timetabling problem. In particular, we propose a set of generic operators
that automatically compose neighbourhood functions, giving rise to more
complex ones. In the exploration of large neighbourhoods, we rely on
constraint techniques to prune the list of candidates. This way, we are
able to select the most effective search technique through a systematic
analysis of all possible combinations built upon a set of basic, human-
defined, neighbourhood functions.
The proposed ideas are applied to a practical problem, namely the so-
called Course Timetabling problem. Our algorithms are systematically
tested and compared on real-world instances. The experimental analysis
shows that neighbourhood composition leads to much better results than
traditional local search techniques.

1 Introduction

Local search is a successful meta-heuristic paradigm for the solution of constraint
satisfaction and optimization problems. Main local search strategies, such as hill
climbing, simulated annealing and tabu search (see, e.g., [1]), have proved to be
very effective in a large number of problems.

One of the most critical features of local search is the definition of the neigh-
bourhood structure. In fact, for most popular problems, many different neigh-
bourhood structures have been considered and experimented. For example, for
Job-Shop Scheduling, at least ten different ones have appeared in the lit-
erature (see [19]). Moreover, for most common problems, there is more than
one neighbourhood structure that is sufficiently natural and intuitive to deserve
systematic investigation.



One of the attractive properties of the local search paradigm is its flexibility,
in the sense that different techniques and neighbourhoods can be combined and
alternated to give rise to complex algorithms. The main motivation for consid-
ering combination of diverse neighbourhood is related to the diversification of
search needed to escape from local minima. In fact a solution that is a local
minimum for a given definition, is not necessarily a local minimum for another
one, and thus an algorithm that uses both has more chances to move toward
better solutions.

There are actually many ways to combine different neighbourhoods and dif-
ferent algorithms. In this work, we formally define and investigate the following
three:

Neighbourhood union: We consider as neighbourhood the union of many
neighbourhoods. The algorithm at each iteration selects a move belonging
to any of the components.

Neighbourhood composition: We consider as atomic moves, chains of moves
belonging to different neighbourhoods.

Token-ring search: Given an initial state and a set of algorithms based on
different neighbourhood functions, the token-ring search makes circularly a
run of each algorithm, always starting from the best solution found by the
previous one.

All these three notions are not completely new, and they have been proposed
in the literature in similar forms (under various names). For example, the effec-
tiveness of token-ring search for two neighbourhoods has been stressed by several
authors (see, e.g.,[7]). In particular, when one of the two algorithms, is not used
with the aim of improving the cost function, but exclusively for diversifying the
search region, this idea falls under the name of iterated local search [11]. As an
example, in [15] we employ the alternation of tabu search using a small neigh-
bourhood with hill climbing using a larger neighbourhood for the solution of the
high-school timetabling problem.

The alternation of simple search and move chains is also the basis of the so-
called Variable Neighbourhood Search strategy proposed by Hansen and Mlade-
nović [8], which has been used in many applications (see, e.g., [3]).

Our contribution consists in the attempt to systematize the different ideas
in a general multi-neighbourhood framework, and to perform a comprehensive
experimental analysis on a real application. In addition, we want to exploit
constraint propagation techniques in local search, in the spirit of [13], so as to
speed up the exploration of large neighbourhoods.

Our case study is the Course Timetabling problem [2, 16]. An application
built around the algorithms presented here is actually used to make the working
timetable at the Faculty of Engineering of the University of Udine. However,
the version of the problem we consider in this paper is simplified, by eliminating
very specific constraints, so as to reduce it to a more general form. Experiments
are performed on real instances (simplified accordingly), and the data is made
publicly available through the web at the URL http://www.diegm.uniud.it/
schaerf/projects/coursett/.



The experimental results confirm that algorithms based on combinations of
neighbourhoods performs much better than basic ones.

2 Local Search

Local search is a family of general-purpose search techniques, which was first
introduced more than 35 years ago [10]. It has become quite popular in AI after
the seminal papers by Minton et al [12] and Selman et al [18]. Local search
techniques are non-exhaustive in the sense that they do not guarantee to find a
feasible (or optimal) solution, but they search non-systematically until a specific
stop criterion is satisfied.

2.1 Local Search Basics

Given an instance p of a search or optimization problem P , we associate a search
space S with it. Each element s ∈ S corresponds to a potential solution of p,
and is called a state of p. Local search relies on a function N which assigns to
each s ∈ S its neighbourhood N(s) ⊆ S. Each s′ ∈ N(s) is called a neighbour of
s.

A local search algorithm t starts from an initial state s0, which can be ob-
tained with some other technique or generated randomly, and enters a loop that
navigates the search space, stepping from one state si to one of its neighbours
si+1.

The neighbourhood of a state s can be described in terms of changes (called
moves) that are applied to transform s in the members of N(s). A move is
typically composed by a limited set of attributes (or variables) that describes
the changes to the state. Given a state s and a move m, we denote by s ◦m the
state obtained from s applying the move m. Therefore a neighbourhood can be
seen as a set of moves, even though not all moves can be applied in any state
s, because some moves might be infeasible, i.e., they lead to a state outside the
search space.

Local search techniques differ from each other according to the strategy they
use both to select the move in each state and to stop the search. In all tech-
niques, the search is driven by a cost function f that estimates the quality of
the state. For optimization problems, f generally accounts for the number of
violated constraints and for the objective function of the problem.

Two of the most common local search techniques are hill climbing (HC) and
tabu search (TS). We describe them here, however, a full description of HC
and TS is out of the scope of this paper (see, e.g., [7]). We only present the
formulations and the concepts which are used in this work.

2.2 Hill climbing

HC is actually not a single local search technique, but rather a family of tech-
niques based on the idea of performing only moves that improve or leave un-
changed (i.e. sideways moves) the value of the cost function f .



We employ the so-called Randomized non-ascending strategy which selects a
random move mi at each iteration i, and if f(si ◦ mi) ≤ f(si) then let si+1 =
si ◦mi otherwise let si+1 = si.

HC does not stop when it reaches a local minimum. In fact, the search might
loop infinitely by cycling among two or more states at equal cost. To provide
against this situation, the stop criterion is based on the number of iterations
elapsed from the last strict improvement. Specifically, given a fixed value n the
algorithm stops after n iterations that do not improve the value of the cost
function, i.e., it stops at iteration j such that f(sj) = f(sj−1) = · · · = f(sj−n).

2.3 Tabu search

At each state si, TS explores exhaustively the current neighbourhood N(si).
Among the elements in N(si), the one that gives the minimum value of the cost
function becomes the new current state si+1, independently of the fact whether
f(si+1) is less or greater than f(si).

Such a choice allows the algorithm to escape from local minima, but creates
the risk of cycling among a set of states. In order to prevent cycling, the so-called
tabu list is used, which determines the forbidden moves. This list stores the most
recently accepted moves. The inverses of the moves in the list are forbidden.

The simplest way to run the tabu list is as a queue of fixed size k. That is,
when a new move is added to the list, the oldest one is discarded. We employ
a more general mechanism which assigns to each move that enters the list a
random tenure, i.e. each move remains in the list for a random number of steps
varying between two values kmin and kmax. When its tabu period is expired, a
move is removed from the list. This way the size on the list is not fixed, but
varies dynamically between kmin and kmax.

There is also a so-called aspiration mechanism that overrides the tabu status:
If a move m leads to a state whose cost function value is better than the current
best, then its tabu status is dropped and the resulting state is acceptable as the
new current one.

Also in this case, like HC, the search is stopped when no improvement of the
cost function is found after n iterations.

As a final remark, we must mention that we use just one of the simplest
forms of TS: more involved ones include sophisticated prohibition strategies and
mechanisms for long-term memory. However, as a matter of fact, the algorithm
described here is the most employed in the TS literature.

3 Multi-Neighbourhood Search

Consider a problem, a search space S for it and a set k of neighbourhood func-
tions N1, . . . , Nk defined on S. Given also a set of n local search techniques (in
this work n = 2, namely HC and TS), we can define k × n different search al-
gorithms, called runners, by combining any technique with any neighbourhood
function.



The functions Ni are obviously problem-dependent, and they are defined by
the person who investigates the problem. In this section, we show that, given a
set of human-defined neighbourhood functions, we can automatically create new
runners, using some composition operators.

3.1 Neighbourhood Union

Given k neighbourhood functions N1, . . . , Nk, we call union, written N1 ⊕ · · · ⊕
Nk, the neighbourhood function such that, for each state s, the set N1 ⊕ · · · ⊕
Nk(s) is equal to N1(s) ∪ · · · ∪Nk(s).

According to the above definition, a HC runner that uses the neighbourhood
N1 ⊕ · · · ⊕Nk selects at each iteration a random move from any Ni, whereas a
TS runner explores all Ni exhaustively and it selects the overall best solution.

The random distribution for selecting a move in N1 ⊕ · · · ⊕Nk from s is the
following: We first select a random i (with 1 ≤ i ≤ k) and then a random state
s′ ∈ Ni(s). The selection thus is not uniform, because it is not weighted based
on the cardinality of the sets Ni(s).

3.2 Neighbourhood Composition

Given k neighbourhood functions N1, . . . , Nk, we call composition, denoted by
N1⊗· · ·⊗Nk, the neighbourhood function defined as follows. Given two states sa

and sb, then sb belongs to N1⊗· · ·⊗Nk(sa) if there exist k−1 states s1, . . . sk−1

such that s1 ∈ N1(sa), s2 ∈ N2(s1), . . . , and sb ∈ N1(sk−1).
Intuitively, a composite move is an ordered sequence of moves belonging to

the component neighbourhoods, i.e. m = m1m2 . . .mk with mi ∈ Ni. Differently
from the union operator, for composition the order of the Ni is relevant, and it
is meaningful to repeat the same Ni in the composition.

Given the k neighbourhood functions and an integer h, we call total compo-
sition of step h the union of all possible compositions (also with repetitions) of
all k neighbourhoods. We denote a total composition by �hN1, . . . , Nk. A move
in this neighborhood is an ordered sequence of h moves m1m2 . . .mh such that
mi ∈ N1 ⊕ · · · ⊕Nk. In other words, each move mi (1 ≤ i ≤ h) can be chosen in
any neighborhood Nj (1 ≤ j ≤ k).

3.3 Token-ring search

Given an initial state s0, and a set of q runners t1, . . . , tq, the token-ring search,
denoted by t1 . · · · . tq, makes circularly a run of all ti. Each ti always starts
from the final solution of the previous runner ti−1 (or tq if i = 1).

The token-ring search keeps track of the global best state, and stops when it
performs a fixed number of rounds without an improvement of this global best.
The component runners ti stop according to their own specific criteria.



3.4 Local Search Kickers

As noticed by several authors (see, e.g., [11]), local search can benefit from
alternating regular runs with some perturbations that allow the search to escape
from the attraction area of a local minimum.

In our settings, we define a form of perturbation, that we call kick, in terms
of neighbourhood compositions. A kicker is a runner that makes just one single
move, and uses a neighbourhood composition (total or simple) of a relatively
long length. A kicker can perform either a random kick, i.e. a random sequence
of moves, or a best kick, which means an exhaustive exploration of the composite
neighbourhood searching for the best sequence.

Random kicks roughly correspond to the notion of random walk used in [17].
The notion of best kicks is based on the idea of ejection chains (see, e.g., [14]),
and generalizes it to generic chains of moves (from different neighbourhoods).
Experiments with kickers as part of a token-ring search, called Run & Kick, are
shown in our case study, and, as highlighted in Section 5, the use of best kicks
turned out to be very effective in our test instances.

Notice that the cardinality of a composition is the product of the cardinalities
of all the base neighbourhoods, therefore if the base neighbourhoods have some
few thousand members, the computation of the best kick for a composition of
length 3 or more is normally intractable. In order to reduce this complexity, we
introduce the problem-dependent notion of synergic moves. For every pair of
neighbourhood functions N1 and N2, the user might define a set of constraints
that specifies whether two moves m1 and m2, in N1 and N2 respectively, are
synergic or not. This relationship is typically based on equality constraints of
some variables that represent the move features. If no constraint is added, the
kicker assumes that all moves are synergic.

A move sequence belonging to the neighbourhood composition is evaluated
only if all pairs of adjacent moves are synergic. The intuition behind the idea
of synergic moves is that a combination of moves that are not all focussed on
the same features of the current state s have little chance to produce improve-
ments. In that case, in fact, the improvements would have been found by one
of the runners that make one step at the time. Conversely, a good sequence of
“coordinated” moves can be easily overlooked by a runner based on a simple
neighbourhood function.

In order to build kicks, i.e. chains of synergic moves, the kicker makes use of a
constraint-based backtracking algorithm that builds it starting from the current
state s, along the lines of [13]. Differently from [13], all variables describing
a move are instantiated simultaneously, and backtracking takes place only at
“move granularity” rather than at the level of each individual variable. That is,
the algorithm backtracks at level i if the current move mi has no synergic move
in the neighbourhood Ni+1 that is feasible if applied in the state reached from
s executing the moves of the partial sequence built up to level i.

Notice that the use of a backtracking algorithm for the exploration of the
composite neighborhood does not mean that this process is exponential in nature.
In fact, the size of the compound neighborhood for a kick of step n is bound by



the product of the size of the component neighborhoods Ni (i = 1, . . . , n). More
correctly, the size of the compound neighborhood grows exponentially w.r.t. the
number of neighborhoods involved, but in our experimentation we always choose
a constant value for n that is small enough to ensure an efficient computation of
kicks.

Different definition of synergy are possible for a given problem. In general,
there is a trade-off between the time necessary to explore the neighbourhood
and the probability to find good moves. In our case study, we experiment with
two different definitions of synergy and compare their results.

4 A Case Study: Course Timetabling

The Course Timetabling (CTT) problem consists in the weekly scheduling
of lectures for a set of courses. There are various formulations of the CTT prob-
lem (see, e.g., [16]), which differ from each other mostly for the hard and soft
constraints (or objectives) they consider. For the sake of generality, we consider
in this work a basic version of the problem.

4.1 Problem Definition

There are q courses c1, . . . , cq, p periods 1, . . . , p, and m rooms r1, . . . , rm. Each
course ci consists of li lectures to be scheduled in distinct time periods, and it is
attended by si students. Each room rj has a capacity capj , in terms of number
of seats. There are also g groups of courses, called curricula, such that any two
courses of a curriculum have students in common.

The output of the problem is an integer-valued q × p matrix T , such that
Tik = j (with 1 ≤ j ≤ m) means that course ci has a lecture in room rj at period
k, and Tik = 0 means that course ci has no class in period k. We search for the
matrix T such that the following hard constraints are satisfied, and the violations
of the soft ones are minimized. Hard constraints must be always satisfied in the
final solution of the problem, whereas soft constraints can be violated, but at
the price of deteriorating the solution quality.

(1) Lectures (hard): The number of lectures of course ci must be exactly li.
(2) Room Occupancy (hard): Two distinct lectures cannot take place in the

same room in the same period.
(3) Conflicts (hard): Lectures of courses in the same curriculum must be all

scheduled at different times.
We define a conflict matrix CM of size q × q, such that cmij = 1 if there is
a curriculum that includes both ci and cj , cmij = 0 otherwise.

(4) Availabilities (hard): Teachers might be not available for some periods.
We define an availability matrix A of size q× p, such that aik = 1 if lectures
of course ci can be scheduled at period k, aik = 0 otherwise.

(5) Room Capacity (soft): The number of students that attend a course
must be less or equal than the number of seats of all the rooms that host its
lectures.



(6) Minimum working days (soft): The set of periods p is split in wd days
of p/wd periods each (assuming p divisible by wd). Each period therefore
belongs to a specific week day. The lectures of each course ci must be spread
into a minimum number of days di (with di ≤ ki and di ≤ wd).

(7) Curriculum compactness (soft): The daily schedule of a curriculum
should be as much compact as possible, avoiding gaps between courses. A
gap is a free period between two lectures scheduled in the same day and that
belong to the same curriculum.

4.2 Search Space, Cost Function and Initial State

In order to solve CTT by local search, first we have to define the search space.
Our search space is composed of all the assignment matrices Tik for which the
constraints (1) and (4) hold. States for which the hard constraints (2) and (3)
do not hold are allowed, but are considerably penalized within the cost function.

The cost function is thus a weighted sum of the violations of the aforemen-
tioned hard constraints plus the violations of the soft constraints (5) – (7).

The weight of constraint type (5) is the number of students without a seat,
whereas the weight of constraint types (6) and (7) is fixed to 5 and 2, respectively.
Hard constraints are assigned the weight 1000.

The initial solution is selected at random. That is, we create a random matrix
T that satisfies constraints (1) and (4).

4.3 Neighbourhood functions

In the CTT problem, we are dealing with the assignment of a lecture to two kinds
of resources: the time periods and the rooms. Therefore, one can very intuitively
define two basic neighbourhood structures which deal separately with each one
of these components. We call these neighbourhoods Time and Room (or simply
T and R for short) respectively.

The first neighbourhood is defined by simply changing the period assigned
to a lecture of a given course to a new one which satisfies the constraints (4).
A move of the Time type is identified by a triple of variables 〈C,P,Q〉, where
C represent a course, P and Q are the old and the new periods of the lecture,
respectively.

The Room neighbourhood, instead, is defined by changing the room assigned
to a lecture in a given period. A move of this type is identified by a triple of
variables 〈C,P,R〉, where C is a course, P is a period, and R is the new room
assigned to the lecture.

Obviously, there are some constraints (part of the so-called interface con-
straints in [13]) for a given move m to be applicable. In details, a Time move
〈C = ci, P = k1, Q = k2〉 is feasible in a given state only if in that state the
course ci has a lecture at time k1, it has no lecture at time k2, and the teacher of
ci is available at k2. Instead, we consider a Room move 〈C = ci, P = k,R = rj〉
as applicable in a state if the course ci has a lecture at time k which is assigned
to a room rj′ with j 6= j′.



Given these two basic neighbourhoods we define the neighbourhood union
Time⊕Room whose moves are either a Time or a Room. Conversely, the neigh-
bourhood composition Time⊗Room involves both the resources at once. For the
composite neighbourhood, we define a move 〈C1, P1, Q1〉 of type Time and a move
〈C2, P2, R2〉 of type Room as synergic under the constraints C1 = C2 ∧Q1 = P2.

4.4 Runners and Kickers

We define 8 runners, obtained equipping HC and TS with the four neighbour-
hoods: Time, Room, Time⊕Room, and Time⊗Room.

We define also two kickers both based on the total composition �hTime,Room
of the basic neighbourhoods. The two kickers differ to each other on the definition
of the synergic moves for the four combinations. The first one is more strict and
it requires that the moves “insist” on the same period and on the same room.
The second one is more relaxed and allows also combination of moves on different
rooms.

All the above runners and kickers are combined in various token-ring strate-
gies, as described in the next section.

5 Experimental Results

Up to our knowledge no benchmark instance for the CTT problem is made
available in the scientific community. For this reason we decided to test our
algorithms with four real-world instances from the School of Engineering of our
university, which will be made available through the web. Real data have been
simplified to adapt to the problem version of this work, but the overall structure
of the instances is not affected by the simplification.

The main features of these instances are reported in Table 1. All of them
have to be scheduled in 5 days of 4 or 5 periods each.

Instance q p
∑

i
li m Conflicts Occupancy

1 46 20 207 12 4.63% 86.25%

2 52 20 223 12 4.75% 92.91%

3 56 20 252 13 4.61% 96.92%

4 55 25 250 10 4.61% 100.00%

Table 1. Features of the instances used in the experiments

The column denoted by
∑

i li reports the overall number of lectures, while the
columns “Conflicts” and “Occupancy” show the density of the conflict matrix,
and the percentage of occupancy of the rooms (

∑
i li/(m · p)), respectively. The

first feature is a measure of instance size, whereas the other two are the main
indicators of instance constrainedness.



The proposed algorithms are coded in C++ and have been tested on a PC
running Linux equipped with an AMD Athlon 1.5 GHz processor and 384 Mb
of central memory. In order to obtain a fair comparison among all algorithms,
we fix an upper bound on the overall computational time (600 secs per instance)
of each solver during multiple trials, and we record the best value found up to
that time. This way, each algorithm can take advantage of a multi-start strategy
proportionally with its speed, thus having increased chances to reach a good
local minimum.

5.1 Multi-Neighbourhood Search

We run the HC and TS Multi-Neighbourhood algorithms on the three instances
with the best parameter settings found in a preliminary test phase. Namely,
the tabu list is a dynamic one and the tabu tenure varies in the range 20÷ 30.
Concerning the number of idle iterations allowed, it is 1 million for HC and 1000
for TS.

All algorithms found a feasible solution for all trials. Concerning the objec-
tive function, the best costs found by the algorithms are summarized in Table 2,
where the neighbourhood is in parentheses. The best results found by each tech-
nique are highlighted in bold face.

Instance HC(T⊕R) HC(T⊗R) HC(T).HC(R)

1 288 285 295

2 18 22 101

3 72 169 157

4 140 159 255

Instance TS(T⊕R) TS(T⊗R) TS(T).TS(R)

1 238 277 434

2 35 175 262

3 98 137 488

4 150 150 2095

Table 2. Results for the plain Multi-Neighbourhood HC and TS algorithms

From the results, it turns out that the HC algorithms are superior to the TS
ones for three out of four instances. Concerning the comparison of neighbourhood
operators, the best results are obtained by the Time⊕Room neighbourhood for
both HC and TS.

Notice that the thorough exploration of Time⊗Room performed by TS does
not give good results. This highlights the trade-off between the steepness of
search and the computational cost.



5.2 Multi-Neighbourhood Run & Kick

In this section, we evaluate the effect of �hTime,Room kickers in joint action
(i.e., token-ring) with the proposed local search algorithms.

We take into account 3 types of kicks. The first two are best kicks with the
strict and the more relaxed definition of move synergy (denoted in Tables 3
and 4 by b and b∗, respectively). To the aim of maintaining the computation
time under a certain level we experiment these kickers only with step h = 2 and
h = 3.

We compare these kicks with random kicks of length h = 10 and h = 20
(denoted in Tables 3 and 4 by r). In preliminary experiments, we have found that
shorter random walks are almost always undone by the local search algorithms
in token-ring alternation with the kicker. On the contrary, longer walks perturb
too much the solution leading to a waste of computation time.

The results of the Multi-Neighbourhood Run & Kick are reported in Tables 3
and 4. In the column “Kick” is reported the length of the kick and the selection
mechanism employed.

For each technique we list the best state found and the percentage of im-
provement obtained by Run & Kick w.r.t. the corresponding plain algorithm
presented in the previous section. As before, the best results for each instance
are typed in bold face.

Comparing these results with those of the previous table, we see that the use
of kickers can provide a remarkable improvement on the algorithms. In particu-
lar, kickers implementing the best kick strategy of length 2 increase the ability
of the local search algorithms independently of the search technique employed.
Unfortunately, the same conclusion does not hold for the best kicks of length 3.
In fact, the time limit granted to the algorithms makes possible only to perform
a single best kick of this length at early stages in the search. Therefore, for in-
stances of this size the improvement in the search made by these kicks is hidden
because of their high computational cost.

Furthermore, it is possible to see that for TS the random kick strategy ob-
tains moderate improvements in joint action with T⊕R and T⊗R neighbour-
hoods, favouring a diversification of the search. Conversely, the behaviour of the
HC algorithms with this kind of kicks is not uniform, and it deserves further
investigation.

Concerning the influence of different synergy definitions, it is possible to see
that the more strict one has a positive effect in joint action with TS, while it
seems to have little or no impact with HC. In our opinion this is related to the
thoroughness of neighbourhood exploration performed by TS.

Another effect of the Run & Kick strategy, which is not shown in the ta-
bles, is the improvement of algorithm robustness measured in terms of standard
deviations of the results.



Instance Kick HC(T⊕R) HC(T⊗R) HC(T).HC(R)

1 b2 207 -28.1% 212 -25.6% 200 -32.2%

1 b∗2 206 -28.5% 217 -23.9% 203 -31.2%

1 b3 271 -5.9% 518 +81.8% 439 +48.8%

1 b∗3 341 +18.4% 515 +116% 773 +171%

1 r10 271 -5.9% 275 -3.5% 414 +30.3%

1 r20 284 -1.4% 294 +3.2% 440 +49.2%

2 b2 18 0.0% 21 -4.6% 27 -73.3%

2 b∗2 18 0.0% 17 -22.7% 23 -77.2%

2 b3 71 +294% 67 +205% 239 +137%

2 b3∗ 79 +339% 92 +318% 481 +376%

2 r10 19 +5.6% 21 -4.6% 156 +54.5%

2 r20 24 +33.3% 19 -13.6% 182 +80.2%

3 b2 64 -11.1% 94 -44.4% 78 -50.3%

3 b∗2 55 -23.6% 87 -48.5% 79 -49.7%

3 b3 182 +153% 329 +94.7% 853 +443%

3 b∗3 235 +226% 436 +158% 1632 +940%

3 r10 94 +30.6% 202 +19.5% 206 +31.2%

3 r20 95 +31.9% 113 -33.1% 181 +15.3%

4 b2 132 -5.71% 146 -8.18% 113 -55.69%

4 b∗2 139 -0.71% 151 -5.03% 142 -44.31%

4 b3 250 +78.57% 565 +255.35% 1242 +387.06%

4 b∗3 180 +28.57% 3417 +2049.06% 19267 +7455.69%

4 r10 115 -17.86% 250 +57.23% 3292 +1190.98%

4 r20 130 -7.14% 172 +8.18% 4344 +1603.53%

Table 3. Results for the HC + Kick algorithms

6 Discussion and Conclusions

We have proposed a set of multi-neighbourhood search strategies to improve
local search capabilities. This is only a step toward a full understanding of the
capabilities of multi-neighbourhood techniques.

Our neighbourhood operators are completely general, in the sense that, given
the basic neighbourhood functions, the synthesis of the proposed algorithms
requires only the definition of the synergy constraint, but no further domain
knowledge.

With respect to other multi-neighbourhood meta-heuristics, such as Variable
Neighbourhood Search [8] and Iterated Local Search [11], we have tried to give a
more general picture in which these previous (successful) proposals fit naturally.

Our software tool [4–6] generates automatically the code for exploration of
composite neighbourhood starting from the code for the basic ones. This is
very important, from the practical point of view, so that the test for composite
techniques is very inexpensive not only in terms of design efforts, but also it
terms of human programming resources.



Instance Kick TS(T⊕R) TS(T⊗R) TS(T).TS(R)

1 b2 208 -12.6% 214 -22.7% 210 -57.0%

1 b∗2 208 -12.6% 210 -24.2% 226 -53.7%

1 b3 287 +20.6% 424 + 53.1% 347 -20.0%

1 b∗3 273 +14.7% 464 +67.5% 399 -8.1%

1 r10 265 +11.3% 314 +13.4% 546 +11.9%

1 r20 220 -7.6% 274 -1.1% 569 +16.6%

2 b2 13 -62.9% 40 -77.1% 27 -89.7%

2 b∗2 18 -48.6% 34 -80.6% 47 -82.1%

2 3b 82 +134% 445 +154% 491 +87.4%

2 b∗3 97 +177% 798 +356% 1703 +550%

2 r10 17 -51.4% 40 -77.1% 544 +108%

2 r20 20 -42.9% 32 -81.7% 726 +177%

3 b2 76 -22.5% 83 -50.9% 101 -79.3%

3 b∗2 78 -20.4% 97 -42.6% 145 -70.3%

3 b3 227 +132% 312 +127% 1019 +109%

3 b∗3 259 +164% 476 +248% 1348 +176%

3 r10 71 -27.6% 147 -13.0% 832 +70.5%

3 r20 72 -26.5% 139 -17.8% 966 +98.0%

4 b2 78 -48.00% 99 -34.00% 105 -94.99%

4 b∗2 87 -42.00% 126 -16.00% 88 -95.80%

4 b3 103 -31.33% 201 +34.00% 1356 -35.27%

4 b∗3 177 +18.00% 2189 +1359.33% 12020 +473.75%

4 r10 134 -10.67% 123 -18.00% 4105 +95.94%

4 r20 101 -32.67% 159 +6.00 % 4324 +106.40%

Table 4. Results for the TS + Kick algorithms

The typical way to solve CTT is by a decomposition: First schedule lectures
neglecting the rooms, then assigns the rooms (see, e.g., [9]). In our framework,
this would correspond to a token-ring A(Time).A(Room) (where A is any tech-
niques) with one single round, with the initial solution in which all lectures are
in the same room. Experiments show that this choice gives much worse results
than those shown in this paper.

It is worth noticing that for CTT, it is natural to compose the neighbourhoods
because they are complementary, as they work on different features of the current
state (the search space is not connected under them). However, preliminary
results with other problems show that multi-neighbourhood search helps also
for problems that have completely unrelated neighbourhoods, and thus could be
solved also relying on a single neighbourhood function.

References

1. Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester, 1997.



2. E. Burke and W. Erber, editors. Proc. of the 3rd Int. Conf. on the Practice and
Theory of Automated Timetabling, number 2079 in Lecture Notes in Computer
Science. Springer-Verlag, 2000.

3. Matthijs den Besten and Thomas Stützle. Neighborhoods revisited: An exper-
imental investigation into the effectiveness of variable neighborhood descent for
scheduling. In J. Pinho de Sousa, editor, Proc. of the 4th Metaheuristics Interna-
tional Conference (MIC-01), pages 545–550, 2001.

4. Luca Di Gaspero and Andrea Schaerf. EasyLocal++: An object-oriented
framework for flexible design of local search algorithms. Technical Report
UDMI/13/2000/RR, Dipartimento di Matematica e Informatica, Università di
Udine, 2000. Available at http://www.diegm.uniud.it/schaerf/projects/

local++.
5. Luca Di Gaspero and Andrea Schaerf. A case-study for EasyLocal++: the

course timetabling problem. Technical Report UDMI/13/2001/RR, Dipartimento
di Matematica e Informatica, Università di Udine, 2001. Available at http:

//www.diegm.uniud.it/schaerf/projects/local++.
6. Luca Di Gaspero and Andrea Schaerf. EasyLocal++: An object-oriented frame-

work for flexible design of local search algorithms. Software—Practice and Expe-
rience, 2003. To appear.

7. Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publishers, 1997.
8. P. Hansen and N. Mladenović. An introduction to variable neighbourhood search.

In S. Voß, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 433–458.
Kluwer Academic Publishers, 1999.

9. G. Laporte and S. Desroches. Examination timetabling by computer. Computers
and Operational Research, 11(4):351–360, 1984.

10. S. Lin. Computer solutions of the traveling salesman problem. Bell System Tech-
nical Journal, 44:2245–2269, 1965.

11. Helena Ramalhino Lourenço, Olivier Martin, and Thomas Stützle. Applying it-
erated local search to the permutation flow shop problem. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer, 2001. to appear.

12. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving
large-scale constraint satisfaction and scheduling problems using a heuristic repair
method. In Proc. of the 8th Nat. Conf. on Artificial Intelligence (AAAI-90), pages
17–24. AAAI Press/MIT Press, 1990.

13. G. Pesant and M. Gendreau. A constraint programming framework for local search
methods. Journal of Heuristics, 5:255–279, 1999.

14. E. Pesch and F. Glover. TSP ejection chains. Discrete Applied Mathematics,
76:175–181, 1997.

15. Andrea Schaerf. Local search techniques for large high-school timetabling prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics, 29(4):368–377, 1999.

16. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87–127, 1999.

17. Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving
local search. In Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI-94),
pages 337–343, 1994.

18. Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In Proc. of the 10th Nat. Conf. on Artificial Intelligence
(AAAI-92), pages 440–446, 1992.

19. Rob Vaessens, Emile Aarts, and Jan Karel Lenstra. Job shop scheduling by local
search. INFORMS Journal of Computing, 8(3):302–317, 1996.


