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This paper is concerned with the use of simulated annealing in the solution of the 
multi-objective examination timetabling problem. The solution method proposed optimizes 
groups of objectives in different phases. Some decisions from earlier phases may be 
altered later as long as the solution quality with respect to earlier phases does not 
deteriorate. However, such limitations may disconnect the solution space, thereby causing 
optimal or near-optimal solutions to be missed. Three variants of our basic simulated 
annealing implementation which are designed to overcome this problem are proposed 
and compared using real university data as well as artificial data sets. The underlying 
principles and conclusions stemming from the use of this method are generally applicable 
to many other multi-objective type problems. 
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1. Introduction 

Many  schedul ing  and t imetabl ing problems have a pr imary  objec t ive  of  
f inding a feas ible  solut ion in which a set of  required events  are scheduled  into a 

g iven t ime per iod  wi thout  confl ic t .  However ,  in pract ice  there are usual ly a number  

o f  secondary  objec t ives  or constraints  which relate to the qual i ty of  the t imetable .  
Many  o f  these may conf l ic t  with each other  or with the pr imary  ob jec t ives  and 

there  is usual ly  some hierarchy of  impor tance ,  with some factors  being regarded  

as more  vital than others. Where  there are more than two or three different  object ives,  
it is of ten imposs ib le  to produce  good solut ions using s ingle-phase methods ,  and 
a mul t i -phase  approach  is f requent ly  adopted,  with the more  impor tant  objec t ives  

being cons ide red  in earl ier  phases and the less impor tant  ones being de layed  until 
a later  phase.  This  has the d isadvantage  that the decis ions  made  in the initial 
phases  cannot  be undone ,  yet  they may have a detr imental  e f fec t  on the overal l  

qual i ty  o f  the final solut ion.  
This  paper  is conce rned  with the prob lem of  mul t i -ob jec t ive  examina t ion  

schedul ing.  We suggest  an approach based on s imulated anneal ing.  Our  initial 
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implementation goes some way towards overcoming the problems outlined above. 
It solves the problem in phases, but allows decisions made in earlier phases to be 
undone later, as long as the quality of  the solution with respect to earlier objectives 
does not deteriorate. Although this approach is an improvement over strictly phased 
methods, it is still possible that not enough of the initial decisions will be reversed 
to produce good solutions with respect to the minor objectives. We suggest variants 
to the standard simulated annealing algorithm which are able to overcome this 
problem. In the next section, the examination timetabling problem is described in 
detail, followed by a full explanation of  our solution method. We then go on to 
describe the potential problem with this approach and outline three variants intended 
to surmount it. The results of tests on both live and artificially generated examination 
timetabling data are presented. 

2. The examination timetabling problem 

Although the major requirement when producing an examination timetable 
is that no student be scheduled to sit two exams simultaneously, many establishments 
define other secondary objectives. The most common are listed below. 

(1) Minimise the total examination period or, more commonly,  fit all exams 
within a given time period. 

(2) Minimise the number of students scheduled to sit simultaneous exams. This 
is known as minimising first-order conflict. 

(3) Increase student comfort  by spacing the exams fairly and evenly across the 
whole group of students. 

(4) Place certain exams within pre-specified time windows. This includes exanas 
which are pre-assigned to a set date. 

(5) Schedule certain pairs or groups of exams in the same time period. 

(6) Schedule subgroups of exams in a specific order. 

(7) Timetable large exams towards the beginning of the exam period to give 
lecturers maximum time to complete their marking. 

(8) Allocate each exam to a suitable room. 

(9) Allocate suitable invigilators to each exam. For certain exams, invigilators 
with a certain amount of relevant knowledge may be required. 

(10) Maximise the number of exams which can be moved to another time period 
without disrupting the rest of the schedule. In the event of a last minute 
change having to be made, this maximises the probability that an exam can 
be moved to a new period without introducing first-order conflict. 
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The relative importance attached to these different aspects will vary from 
institution to institution and may range from that of a binding constraint to less 
vital secondary objectives. It is clear that many of these are in conflict. For 
example, students on popular courses will tend to be involved in large exams. Hence, 
scheduling these towards the start of the exam period will increase the number of 
students having two consecutive exams. Even if only a subset of the above require- 
ments are involved, the problem is a true multi-objective optimisation problem. 

3. Solution methods 

Until recently, the many solution methods which had been proposed for the 
examination timetabling problem tended to fall into two categories. Some of the 
earliest are greedy construction heuristics, which attempt to solve the problem in 
a single pass. They tend to be oversimplified because they have no look-ahead 
facility, leading to large costs being incurred towards the end of the process. An 
example of  this is the algorithm suggested by Broder [1] in which each exam is 
allocated in turn to the "best" available period until all have been scheduled. Such 
methods are able to solve simple problems extremely quickly, but may perform 
poorly on highly constrained problems. Our own experiments with a greedy heuristic 
for scheduling exams at Swansea University support this point of view. 

To overcome this problem, multi-phase methods which split the problem 
into several parts and solve each separately were proposed. For example, Lotfi and 
Cerveny [2] split the problem into several distinct phases. Phase one groups all 
exams into a given number of exam blocks while ensuring no student has two 
exams in the same block. These blocks are then allocated to days while minimising 
the number of students with same-day exams. Phase three arranges the exam days 
and the final phase allocates exams to rooms. Each phase can then be solved using 
more sophisticated methods than are possible if the entire problem is to be solved 
in a single pass, but this may be to the detriment of later phases. 

The problem of allocating the exams to blocks such that no two exams in 
the same block are in conflict is most commonly modelled and solved as a graph 
colouring problem. Each vertex of the graph represents a different exam and edges 
join any two vertices which represent any pair of exams requiring a common 
resource or which are both taken by the same student. A feasible colouring of the 
graph (i.e. an allocation of colours to the vertices such that all pairs of adjacent 
vertices have different colours) corresponds to a feasible timetable, with the exams 
mapped onto each set of vertices in the same colour being held at the same time. 

Once a suitable partition has been established, phase two is usually concerned 
with spacing out the exams, but the precise objectives may differ from institution 
to institution. A number of different solution approaches have been suggested. For 
example, Arani et al. [3] and Balakrishnan et al. [4] formulate variants of the 
problem as integer programs and solve them using Lagrangian relaxation. Arani 



108 J.M. Thompson, K.A. Dowsland, Variants of sitnulated annealing 

et al. minimise the number of students with same-day examinations using a set 
covering model with side constraints. Balakrishnan et al. use a network model to 
solve the problem of minimising the number of students with exams in consecutive 
time slots, commonly known as second-order conflict. The nodes in their network 
correspond to block/time slot pairs and edge weights correspond to the number of 
students taking exams in the blocks represented by both endpoints. The optimal 
solution corresponds to the shortest path traversing the entire network and visiting 
exactly one node associated with each block. The position of this node corresponds 
to the timing of this block. Computational results are presented for the problem 
of minimising the number of students with consecutive exams on a single day. 
However, with appropriate edge weights, the model is equally valid for the more 
general problem of minimising second-order conflict. Others have suggested heuristic 
approaches. For example, Johnson [5] uses simulated annealing to minimise the 
number of students with same-day exams. As stated earlier, the drawback of multi- 
phase methods is that the solution obtained from an early phase is then fixed in 
later phases and may lead to poor overall performance. Where there is a requirement 
for time windows and pre-assigned exams, such methods are often inappropriate 
since there is very little freedom to arrange the exam blocks once these have been 
determined. 

Recent approaches have attempted to overcome these difficulties. Eiselt and 
Laporte [6] solve the problem in phases but allow exam blocks determined in the 
first phase to be broken up in later phases. They produce a hierarchy of requirements, 
placing the objectives into three levels of importance. They then define the objectives 
in the first two levels of importance as constraints and create an initial conflict- 
free solution using what is essentially a greedy heuristic with some backtracking. 
The second phase involves using a random descent algorithm to improve the 
solution by moving single exams into different time periods. Although this allows 
greater flexibility than standard phased methods, the final solution is still largely 
dependent on the solution obtained in phase one. This problem was noted by 
Hertz [7], who solves the problem using tabu search. All types of conflict are 
combined into a single weighted cost function, and an arbitrary initial solution is 
improved by moving one exam at a time using the principles of tabu search to 
explore the solution space. He reports success with this method for both school 
and examination timetabling problems, but does not indicate how the weights for 
the cost function were determined. Carter [8] gives a comprehensive review of 
examination timetabling methods. 

Our proposed solution method is based on an extension to the graph colouring 
model. Although the basic model is concerned only with the problem of eliminating 
clashes, many of the additional constraints outlined previously can be included. 
Exams which have to be scheduled in the same time period are merged into one 
vertex. As suggested by Balakrishnan [9], time windows can be incorporated by 
adding a clique (i.e. a set of vertices which are all pairwise adjacent) of dummy 
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vertices, one for each time slot. Edges are added between t ime-windowed exam 
vertices and any unsuitable time slot vertices. A pre-assigned exam will be adjacent 
to all time slot vertices except for the one relating to its specified date. Room 
capacities can be incorporated by including vertex weights equal to the number of 
students sitting each exam, and information concerning the number of students 
with clashes or consecutive exams can be represented by edge weights. This model 
is the basis of our simulated annealing approach. Thus, we consider the problem 
as a graph colouring problem with additional objectives and side constraints. 

4. Simulated annealing 

Sequential meta-heuristics such as simulated annealing and tabu search have 
been used successfully in the solution of graph colouring problems (Chams et al. 
[10], Dubois and de Werra [11]). Here, we use simulated annealing, although many 
of our general comments and conclusions are equally applicable to other 
neighbourhood search methods. Simulated annealing is briefly summarised in figure 1, 
but for a full discussion, see Dowsland [12]. It is an iterative procedure which 
searches the set of possible solutions through a pre-defined neighbourhood structure. 
Starting from a randomly generated solution, a neighbouring solution is sampled 
and compared with the current one according to an appropriate cost function. If 
the cost function is improved, the sampled solution is accepted. Only accepting 
improving moves would leave the search trapped in the first local minimum 
encountered. Simulated annealing overcomes this by also accepting some inferior 
solutions but controlling such acceptances using a probability function. This function 
is dependent on a parameter t and moves are more likely to be accepted for higher 
values of t. Because of the origin of simulated annealing in the field of statistical 
thermodynamics,  t is referred to as the temperature and is decreased or cooled 
during each run. If t is allowed to become sufficiently small, the search eventually 
becomes trapped in a local minimum. Solution quality is dependent on the rate of 
cooling and the optimal cooling schedule will vary from problem to problem. 

A common approach to solving multi-objective problems with simulated 
annealing is to combine all objectives and constraints into a single linear cost 
function using a series of weights and penalties. This is the approach used by Hertz 
and Abramson [13] and Abramson and Dang [14] also report a successful imple- 
mentation of simulated annealing with a weighted cost function for the solution 
of the school timetabling problem. In the latter case, selection of weights did not 
appear to be a problem, with all but one of the objectives being given equal weight. 
However, it is worth noting that their objective was to obtain a zero cost solution 
with respect to all elements of the cost function. When this is not the case, the 
selection of such weights can be very difficult. For example, Dige et al. [15] 
addressed the school timetabling problem and found that weights which reflected 
the importance of each objective did not produce satisfactory solutions. Wright [16] 
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Simulated Annealing Procedure 

Given a 

Step 1, 

Step 2. 

Step 3. 

Step 4, 

Step 5. 

Step 6. 

function f to be minimised over a given solution space 

Produce an initial solution S. 

Define an initial temperature t > 0. 

Do the following L times: 

3.1. Choose S j, a random neighbour of S. 
3.2. _~ = f(S ~) -f(S).  
3.3. If .~< 0, then S = S I, otherwise set S = S 1 with probability exp(- ~S/t). 

Set t = r * t, where r is some cooling parameter <1. 

If t is still significant, goto step 3. 

Return S or best solution achieved during run. 

Figure 1. Simulated annealing procedure. 

points out that when selecting weights,  one should consider  the importance of  the 
objective,  the diff icul ty of  achieving it and the way in which the objectives interact 
with the chosen neighbourhood structure. Such methods  may produce acceptable 
results for problems with two or three objectives,  but cannot  be expected to solve 
more diff icult  ones. We therefore chose to use a variant of  the phased approach 
in which the more important  objectives are considered in the earlier phases,  similar 
to that suggested by Eiselt and Laporte [6]. This method has more flexibil i ty than 
traditional phased approaches in that some decisions made during earlier phases 
may be undone during subsequent  ones. This is achieved by gradual ly reducing the 
solution space so that solutions which are inferior with respect to earlier phases 
are removed.  By using s imulated anneal ing instead of  a s t raightforward descent  
approach,  the final solution should be less dependent  on the solution to phase one. 
Whi le  this overcomes  many of  the drawbacks associated with phased methods,  it 
is possible that the removal of  large numbers of  solutions may disconnect  the 
solution space with respect to the neighbourhood structure. This means that one 
of  the under ly ing  assumptions for the success of  s imulated annealing,  that of  the 
reachabil i ty  of  all solutions from all others, will be violated. 

5. I m p l e m e n t a t i o n  

As aforement ioned,  our basic model is that of graph colouring and our 
under ly ing solution space and ne ighbourhood structure are those proposed by 
Chams  et al. [10]. Thus, a feasible solution is any partit ion of the vertices into k 
subgroups or colour  classes and the ne ighbourhood consists of  all those solutions 
obtained by changing the colour of a single vertex. At the start of  each phase, 
constraints  are imposed by removing any solutions which violate them from the 
solution space and the cost function is chosen to reflect the objectives of  that 
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phase. Ideally, each phase would involve a single objective, thereby eliminating 
the problem of choosing appropriate weights. However, where large numbers of 
objectives are involved, it is more practical to combine them into groups of similar 
importance. This approach was implemented as the basis of an exam scheduling 
package at Swansea University. In order to fully describe this implementation, we 
firstly need to outline the objectives and constraints in operation there. 

At Swansea, the examination period consists of twenty-four time slots with 
Sunday breaks. We are concerned only with degree exams, which are all scheduled 
in the morning. Thus, each time slot corresponds to an actual date. The exams must 
be scheduled within this period without any student clashes and with a limited 
number of desks available at any one time. Certain exams are subject to time 
windows and/or pre-specified sequences. There is also a preference for large exams 
to be scheduled within the first two weeks and the number of students with exams 
on consecutive days to be kept as small as possible. Thus, all except the final two 
requirements are in practice binding constraints. Our objective in phase one is 
therefore to find a feasible timetable subject to all binding constraints and to 
optimise the secondary objectives in phase two. We decided to do this by reflecting 
the pre-orderings, time windows, and the fixed number of time slots in our definition 
of solution space in phase one and minimising the unweighted sum of first-order 
conflict and room overflow. In our case, this policy of equal weighting worked 
well, but this may be due to the fact that the number of desks available is far in 
excess of those required. Thus, this part of the objective is easy to satisfy. The 
break in consecutive days between Saturdays and Mondays was incorporated by 
allowing Sundays to form feasible time slots but setting the room capacity for them 
at zero. This implementation ensures that the reachability condition is satisfied 
because the constraints imposed on the solution space do not disconnect it. In 
practice, phase one solved very easily and we therefore decided to initialise the 
search with a good solution obtained using a greedy heuristic. This often produced 
an optimal solution to this phase, i.e. a solution with no student clashes and no 
room overflow. Where this was not the case, annealing quickly solved the problem. 

The solution space in phase two is therefore restricted by excluding all 
solutions which include student clashes or room overflow. We decided to include 
both the objective of placing all large exams early and that of minimising second- 
order conflict into the cost function. The initial solution is obviously the output 
from phase one, but a new cooling sequence with different parameters is initiated. 
Due to the ease with which all large exams could be scheduled in the first two 
weeks of the exam period, we decided to place a heavy penalty on such exams 
falling outside of this period. In practice, this two-phase approach gave satisfactory 
results for the 1993 timetable. However, the solution space for phase two is 
considerably reduced and therefore it may be disconnected. Thus, the optimal solution 
may not be reachable from the initial solution by a series of valid neighbourhood 

moves. 
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6. Improved solution methods 

Although, as in our case, acceptable results may be achieved using this basic 
solution method, better results would be possible if we could circumnavigate this 
problem. In this section, we describe three variants of our annealing algorithm which 
allow us to do this. They are: 

(1) perform several independent rtms using different starting solutions, 

(2) change the neighbourhood structure to include more connections, 

(3) penalise infeasible solutions rather than removing them from the solution 
space. 

All three methods are applicable to our problem and the way in which we 
implemented is fully explained below. 

6.1. PERFORM SEVERAL INDEPENDENT RUNS 

If the solution space has been split into several disjoint parts, then performing 
an independent search in each section will ensure that the global optimal solution 
is reachable from some starting solution. However, purely random starts cannot 
guarantee that different sections of the solution space will be explored. Therefore, 
in generating a sequence of different starting solutions, an intelligent form of 
diversification is required in order to increase the likelihood of each one being 
situated in a different part of the solution space. This is similar to the idea of 
diversification or a long-term memory function in tabu search (Glover [17]) in which 
an attempt is made to learn about that part of the solution space already explored, 
and to use this information to force the algorithm to move on to new areas. 

We can identify two types of information which can be easily recorded. The 
simplest and most obvious is to record, for each vertex, the set of colours which 
have been allocated to it. At the diversification stage, as many vertices as possible 
should be allocated new colours in the new starting solution. However, this may 
result in the same groups of vertices being placed in the same colour class as each 
other. This can be avoided if we record those pairs of vertices which have been in 
the same colour class at any time during the search. Diversification may then attempt 
to split pairs of vertices which have remained the same colour throughout or, 
alternatively, to force non-adjacent pairs which have never been the same colour 
into the same colour class. 

In our experiments, we deal only with the placing of vertices into new colour 
classes. Information concerning the colours allocated to each vertex is only recorded 
from phase two because this is the phase where the solution space may be disconnected. 
The results are then used to re-initialise phase one. It is possible that phase one 
may push vertices back into old col0urs. Rather than waste time during phase two, 
the output of phase one is tested to ensure that at least one vertex takes on a 
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completely new colour. However, it should be noted that the dummy time slot vertices 
are not recoloured since each represents a set day. Thus, this approach could also 
be regarded as a restricted version of the second approach in which pairs of exam 
vertices and time slot vertices which have never taken on the same colour are forced 
into the same colour class. This process can be repeated for several runs and has 
a natural endpoint when all vertices have taken on all feasible colours. As the number 
of runs increases, more and more time is required to obtain a feasible solution to 
phase one as increasingly more vertices have to be recoloured. It should be noted 
that this approach does not guarantee that each starting solution is in a separate 
component  of the solution space. However, research into the performance of  the 
long-term memory function in tabu search has shown that such diversification is 
still valuable even when the solution space is not known to be disconnected. Thus, 
this solution method has the double advantage of overcoming the problems of a 
disconnected solution space and ensuring that the search within each component  is 
sufficiently diverse. Taking this strategy to its extreme when each vertex has been 
coloured in every possible colour may be very time consuming, but the process can 
be stopped before this stage is reached depending on the amount of time available. 

6.2. CHANGE THE NEIGHBOURING STRUCTURE 

An alternative to initialising several searches to cover a disconnected solution 
space is to redefine the neighbourhood structure so that the space is no longer disjoint. 
This can be achieved by widening the neighbourhoods so that each solution has 
more immediate neighbours. However, there is a trade-off between solution time 
and solution quality because more iterations may be necessary to adequately search 
larger neighbourhoods. A general strategy for increasing the neighbourhood is to 
increase the number of elements moved or exchanged. Our neighbourhood currently 
consists of  the set of solutions which differ from the current solution by the colour 
of a single vertex. Therefore, in our case this would involve extending the number 
of  vertices to be recoloured, for example, including moves where the colours of 
two vertices are exchanged. Figure 2 illustrates an example where the solution space 
is disconnected under our original neighbourhood structure, but is connected when 
we allow two vertices to swap colours. The cost function represents the sum of the 
edge weights between nodes in consecutive colours, and is clearly lower for the 
solution shown in figure 2(b). The solution shown in figure 2(a) has no neighbours 
under our original neighbourhood structure, but if we allow swaps, the solution in 
figure 2(b) can be reached in two moves by swapping the colours of vertices 5 and 

6, followed by 4 and 5. 
In general, a large proportion of swaps would be infeasible and, hence, much 

time would be wasted examining such moves. It is also possible that this would not 
be sufficient to completely reconnect the solution space. Morgernstern and Shapiro [ 18] 
suggested Kempe chains as an alternative neighbourhood structure for the graph 
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10 

B A 

Figure 2. An "unreachable" colouring under a standard neighbourhood. 
Colour A corresponds to time period 1, B to 2, and C to 3. 

colouring problem. Although Kempe chains are only moderately successful when 
the objective is to minimise the number of colours, there is no reason to suppose 
that they will not be successful for our cost function. An i - j  Kempe chain is a connected 
component  of the subgraph induced by the set of vertices coloured i or j .  An example 
of  a graph and its corresponding Kempe chains is shown in figure 3. Because any 
j coloured vertices adjacent to any i coloured vertices in a given chain are themselves 
in that chain, the colours of  the vertices within a chain can be swapped without 
affecting the feasibility of the colouring. A Kempe chain neighbourhood of a given 
colouring is defined as the set of  colourings obtained by swapping the colours on 
a single Kempe chain. A single chain can be generated by firstly choosing a vertex, 
v, coloured i. Any adjacent vertices coloured j are then added to the chain, as are 
any vertices coloured i o r j  which are adjacent to any vertex currently in the chain. 
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Vertex Colouring 

A B C 

0 B A 

Kempe chains 

(a) A - B chain  

| 

(b) A- C chains (c) B - C chains 

Figure 3. A vertex colouring and its Kempe chains. 

Note that all feasible moves from the standard neighbourhood will be valid Kempe 
chain moves since any vertex which can be recoloured from i t o j  has no neighbours 
coloured j and is therefore an isolated vertex forming its own i - j  Kempe chain. 
Likewise,  all feasible 2-swap moves are included. 

In our implementation, Kempe chains are generated randomly using the method 
described above and selecting randomly a colour i, a vertex in that colour, and then 
a second colour j. The colours on the corresponding i - j  Kempe chain are then swapped. 
The only exception to this is if the chain includes a time slot vertex. Swapping such 
a chain will reallocate the colours to days. In order to avoid this, we leave the vertices 
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in the chain unchanged but swap the colours of all other vertices coloured i or j.  
This produces the same vertex partitions as swapping the original chain, but avoids 
complex updating of our cost function. 

However,  it should be noted that a neighbourhood based on Kempe chains is 
not guaranteed to reconnect the solution space. Figure 4 shows two solutions which 
cannot be reached from one another using a series of Kempe chain moves. The reason 
for this is that each Kempe chain is full, i.e. contains all the vertices in either of its 

(a) Cost function = 24 
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Figure 4. An "unreachable" colouring under a Kempe chain neighbourhood. 
Colour A corresponds to time period 1, B to 2, and C to 3. 

two colours. Therefore, the vertices grouped together in the colour classes will not 
change although the colours of any two classes may be swapped. Any subset of  
vertices which cover all colours and which satisfy these conditions cannot be re- 
coloured by a series of Kempe chain moves. In situations where the room constraints 
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are more restrictive, this may also make a number of Kempe chain moves infeasible, 
thereby increasing the possibility of the space remaining disconnected. Sampling 
Kempe chains is more computationally expensive than sampling single vertices, but 
the access it provides to a greater part of the solution space may make it worthwhile. 

6.3. PENALISE INFEASIBLE SOLUTIONS 

We have already noted the possibility of using weights in a single-phase method 
to guide the search towards solutions which satisfy the more important constraints 
while optimising the secondary objectives. It is also possible to introduce weights 
into a multi-phase method, using them to penalise undesirable solutions in later phases 
rather than eliminating them completely from the solution space. If such an approach 
is to work correctly, it is obviously important to get the correct balance between 
the weights, the cooling schedule and the rest of the cost function. As highlighted 
by Dige et al. [15], this can be particularly difficult if the secondary objectives cannot 
all be satisfied simultaneously. Clearly, placing too high a weight on any objective 
has the effect of  eliminating highly penalised solutions from the solution space, 
while very low weights will mean that the objective concerned will be practically 
ignored until all others have been optimised. 

If the starting temperature for phase two is sufficiently high for effective 
annealing, it is likely that a relatively large number of clashes will be reintroduced 
at the start of phase two, suggesting that the time spent eliminating all clashes in 
phase one may be wasted. We deal with this problem in two ways. Our simplest 
approach dispenses with phase one and combines first-order conflict, room overflow, 
second-order conflict and the number of large exams out of place into a single weighted 
sum. In order to get the balance between first- and second-order conflict correct, 
we decided to measure first-order conflict as the number of students with clashing 
exams, rather than the number of exams themselves, since this allows us to measure 
both types of conflict on a similar scale. First-order conflict must obviously be 
weighted higher and we experimented with several weights. Room overflow was 
given a weighting of 10 per student with no seat, and large exams out of place were 
weighted at 200. 

Our second approach maintains the two separate phases. In order to impose 
greater control on the degree to which the quality of solutions to earlier phases is 
allowed to deteriorate, we impose a threshold so that only solutions whose quality 
exceeds this threshold are included in the solution space. In practice, these threshold 
limits were used such that moves which created first-order conflict greater than their 
value would be accepted, but as soon as this occurred, the algorithm switched to 
the next phase. The problem exists that unless the weights can be chosen to ensure 
that all local minima are optimal with respect to earlier objectives, it is possible 
that some degree of deterioration in these objectives will be evident in the final 
solution. If these objectives do not represent binding constraints, then some 
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deterioration may be acceptable. However, if, as in our case, the phase one objectives 
are binding, this will not be satisfactory. Our solution is to change the cost function 
once the algorithm has converged with respect to the weighted cost function, so 
that only the penalties on earlier objectives remain. Rather than continue to anneal 
at low temperatures, we perform random descent based only on first-order conflict 
at this stage. However, we found that this was not always successful in removing 
all clashes. 

This multi-staged approach can be summarised as follows. 

1. Anneal using the reduced neighbourhood to convergence. (This ensures at 
least one good solution in phase two.) 

2. Allow first-order conflict to enter the solution space and let t rise slowly 
according to t ---> t / 1  - a t ,  until the clash penalty reaches a predeflned threshold. 

3. Apply standard annealing using a weighted cost function, to convergence. 

4. If no feasible timetable has been found in stage 3, use random descent based 
solely on first-order conflict. 

Although extending the solution space in this way will reconnect it, the problem 
in allocating weights makes it difficult to ensure that the search is guided in the 
right direction. Ideally, only those solutions necessary to bridge the gaps should be 
reintroduced, but we do not know how these may be identified. It is also worth 
noting that the solution space may be expanded in other ways, by relaxing the 
constraints implicit in the definition of feasibility in phase one. An example of this 
type of expansion is used by Abramson and Dang [14] in the school timetabling 
problem, where they allow additional dummy time periods. Use of these periods is 
penalised in the cost function. This facilitates neighbourhood moves which are equivalent 
to swaps, without incurring the high penalty values which would result if the swap 
had been achieved using two separate moves. This approach would theoretically 
allow all our Kempe chain moves, and many others, to be generated as a series of 
moves under the standard neighbourhood. However, since we are unlikely to obtain 
a zero cost solution with respect to second-order conflict, setting the weights to ensure 
that the dummy periods are not used in the final solution could prove problematical. 
Given the relative lack of success of the two penalty function methods described 
above, we did not carry out any experiments on this type of expansion. 

7. Computational experience 

7.1. THE DATA 

The purpose of the computational experiments was twofold; firstly, to compare 
the performance of simulated annealing with that of  a simple greedy heuristic and 
random descent, and secondly, to compare the various improvements outlined above. 
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The algorithms were coded in FORXRAN and experiments were conducted using a 
DEC Alpha. We used a number of different data sets based on genuine 1993 Swansea 
University data, in which 570 exams were to be timetabled into a fixed exam period 
of four weeks and data was available for over 3000 students. One hundred exams 
were t ime-windowed, including 49 which were preassigned. There were 23 large 
exams to be scheduled within the first two weeks, while an additional 17 exams 
were specified as especially difficult to mark and therefore an early date was requested. 
Various exams had to be in a set order and 1200 desks were available at any one 
sitting. This data set and four variants form the basis of our experiments. These are 
outlined below. 

(1) Full data set. 

(2) Tightened data set. 

In the original data, the room capacity constraints were fairly loose and we 
thought them unlikely to affect the connectedness of the solution space. Therefore, 
we reduced the number of  desks available at any one sitting from 1200 to 800. 
Previously, room utilisation was just 46%, i.e. an average of 46% of desks would 
be used at any one time. Decreasing the number of desks available puts a greater 
strain on our algorithms because the room utilisation rises to 69%. 

(3) Kempe data set. 

Since we do not know whether or not our solution space in phase two is dis- 
connected, it was decided to construct a set of data which we knew to be 
disconnected using our standard neighbourhood, but with at least two components 
which would be reconnected using the Kempe chain neighbourhood. This was 
achieved by adding additional vertices to data set (1) and ensuring that these extra 
vertices had an optimal colouring not reachable from the initial colouring using the 
standard neighbourhood, but reachable when using a Kempe neighbourhood. Edge 
weights were chosen so that the initial coiouring produced a heavier cost function 
value than the alternative colouring which can only be reached via Kempe chains. 
This effectively adds a penalty of  900 units of  second-order conflict to any solution 
in the "wrong" component  of the solution space. These additional vertices were 
connected to the standard graph using edges which maintained the feasibility of all 
solutions encountered during a single run when using the original data set. 

(4) Disconnected data set. 

The logic behind this data set is similar to that behind data set (3). Our aim 
here was to produce a disconnected solution space which could not be overcome 
using Kempe chains. This was achieved by small alterations to data set (3). 
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(5) Cost free data set. 

The above data sets allow us to compare the different methods, but do not 
allow us to measure overall solution quality. Therefore, we constructed a data set 
with a known optimal cost of zero. This was done by taking a good solution and 
removing all edges which contributed to the cost function. The total number of edges 
was restored to its original value by adding new, random edges which did not add 
to the cost function. Thus, we have a solution of zero cost. However,  it should be 
noted that this solution will have several zero cost neighbours, and it is possible 
that other zero cost solutions may have been generated in other areas of the solution 
space. 

7.2. INITIAL EXPERIMENTS 

Preliminary experiments used a greedy heuristic to obtain some foundation 
results. The exams were ordered such that the t ime-windowed and large exams 
preceded the rest and the exams within each group were sorted according to the 
number of conflicting exams. Each was then allocated to the period which minimised 
the secondary objectives while not breaking any binding constraints (if no free time 
slot was available, the algorithm terminated unsuccessfully).  As anticipated, results 
confirmed the inadequacies of such methods and substantiated the need for a more 
sophisticated solution method. 

As stated in section 5, it is relatively easy to obtain a feasible timetable for 
data set (1) by the method described for phase one, and there is no reason why the 
methods used to generate data sets (2) to (5) should make this phase more difficult. 
Therefore, the remaining experiments concentrate on phase two. In order to get the 
best out of  simulated annealing, it is necessary to optimise the parameters for the 
cooling schedule. There are a number of theoretical approaches to this, e.g. White [ 19]. 
However,  we found that setting the starting temperature according to this method 
required ridiculously high values. We therefore chose the parameters as follows. 
The starting temperature needs to be high enough to accept a large proportion of 
moves. The maximum increase in cost will be twice the number of students in the 
exam being moved and will occur if an exam with no second-order conflict is moved 
to a position where all students have exams in the preceding and following slots. 
A starting temperature of 20 allows a reasonable probability of accepting this type 
of  increase for exams of average size, and this was therefore adopted. The smallest 
possible cost increase is 1 unit. A final temperature of 0.1 was selected since this 
gives a probability of less than 1 in 104 of accepting any uphill move. The approximate 
size of our neighbourhoods in phase 2 is 4000 and we therefore chose to conduct 
10,000 iterations per temperature. We experimented with five different cooling ratios 
between these limits. These were carried out on data sets (1) and (2) using five 
separate runs, with different random number streams for each data set and each set 
of parameters. The results are summarised in table 1. The numbers in this and all 
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Table 1 

Results for the standard annealing implementation. 

Cooling 
ratio 

Date set (1) Date set (2) 

Average Best Time Average Best Time 

0.8 439.4 424 54.01 457.2 432 52.59 
0.9 395.8 365 133.66 389.2 369 121.82 
0.95 371.0 345 253.88 377.4 352 249.77 
0.97 354.4 331 447.19 374.2 359 426.24 
0.99 330.4 313 1357.65 337.0 315 1314.06 

Times are in CPU seconds. 

subsequent  tables show the num ber  of  cases of  students having second-order  conf l ic t  

(this exc ludes  s e c o n d - o r d e r  conf l ic t  due to consecu t ive  p re -as s igned  exams) .  In all 

cases  excep t  where  o the rwise  indicated,  all other  ob jec t ives  were  c o m p l e t e l y  satis- 

f ied.  All solut ion t imes  given are in C P U  seconds.  As expec ted ,  solut ion qualiW 

increases  with s lower  cool ing ,  but at the expense  of  longer  solut ion t ime.  Since the 

resul ts  for  the s lowes t  rate of  0.99 appea r  to be s igni f icant ly  better,  0.99 was used  

in the remaining  experiments .  However ,  the run t ime may be prohibi t ive for practical 

s i tuat ions  and fas ter  coo l ing  may  be necessary .  

Table 2 

Comparison of greedy heuristic, random descent and simulated annealing. 

Data set (1) Data set (2) Data set (3) Data set (4) Data set (5) 

Greedy 441 n/s n/s n/s 212 

RD 619" 860"* 1547"" 1547 ~ 491.8 

SA 330.4 337.0 1225.6 1225.6 26.0 

n/s: some exams could not be scheduled while obeying all binding constraints. 
" In four of the five cases, the large exams could not be fitted into the first two weeks 

of the exam period. 
"" In three of the five cases, the large exams could not be fitted into the first two weeks 

of the exam period. 

Resul t s  us ing  this rat io were  c o m p a r e d  with the g reedy  heuris t ic  and with 

r a n d o m  descen t  in which  only  i m p r o v i n g  moves  were  accepted .  These  resul ts  are 

s u m m a r i s e d  in table  2 and show that s imula ted  annea l ing  o u t p e r f o r m s  the o ther  

two methods .  C o m p a r i n g  the resul ts  for  data  sets (1) and (2) with those  in table  1 

indica tes  that this r ema ins  true even for  the fas ter  coo l ing  ratios.  It is par t i cu la r ly  

in teres t ing  to note  the poo r  p e r f o r m a n c e  of  both  the g reedy  heur is t ic  and r a n d o m  

descen t  on data  set (5), which  has a known  opt imal  solut ion of  zero.  
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7.3. MAIN EXPERIMENTS 

The  second set of  exper iments  were intended to measure  the success  of  the 

var ious  methods  p roposed  for ove rcoming  the reachabi l i ty  problem.  We deal first 
with d ivers i f ica t ion .  Since  each divers i f ica t ion will have the same character is t ics  
as an ordinary  run, d ivers i f ica t ion  exper iments  were carr ied out using the same 
parameters  as s tandard annealing.  Comple te  runs, when terminat ion  occurs  when 

phase one produces  a solut ion with no vert ices in new colours  or all ver t ices  have 
been every  colour,  were deemed  impractical .  This  was because  early results showed  
that many d ivers i f ica t ions  were needed before  these s topping condi t ions  were met, 
yet  solution quali ty just  f luctuated without  homing in on part icularly good solutions.  

In order  to give a more meaningfu l  compar i son  with other  methods ,  it was dec ided  

to l imit the number  o f  d ivers i f ica t ions  to two (i.e. three comple te  runs).  The  results 
are shown in table 3. Table 3(a) shows the ou tcome  of  f ive d ivers i f ica t ion  runs on 

Table 3 

Results for diversification method: diversification limited to two. 

(a) Complete results using data set (l) 

Seed # 1 Seed # 2 Seed # 3 Seed # 4 Seed # 5 

Result 1 322 336 313 355 326 

Result 2 360 346 350 322 317 

Result 3 325 290 318 326 313 

(b) Summary of all results 

Data set (1) Data set (2) Data set (3) Data set (4) Data set (5) 

Average 312.0 319.2 326.0 313.4 19.2 

Best 290 311 310 298 14 

Time 3966.75 3847.88 4248.38 3952.54 3844.53 

Times are in CPU seconds. 

data  set (1), using dif ferent  random number  streams. The  large number  of  d i f fer ing  

results indicates a large number  of  local optima in our problem, showing the d i f f icu l ty  
o f  f inding the opt imal  solut ion.  It also shows that this d ivers i f ica t ion  me thod  did 

achieve  its stated object ive,  that of  taking the search to different  parts of  the solut ion 
space.  However ,  it is apparent  that there were also s ignif icant  d i f fe rences  among  
the d i f ferent  r andom starts. This is probably  due to the size o f  the solut ion space.  

It should be noted  that the r andom starts cannot  guarantee  to move  to a new area 
o f  the space,  whereas  our  d ivers i f ica t ion  method  can. Table  3(b) shows a summary  
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of the diversification results for all the data sets. For each diversification run, the 
best cost function value achieved was taken and the results given are the average 
of these over five different random runs. The most noticeable observation is that 
the diversification method dealt effectively with data set (4), which we know to be 
disconnected. The other data sets may all be connected and little benefit can apparently 
be gained by diversifying. 

Before comparing Kempe chain annealing with the other strategies, we need 
to determine suitable parameters. Table 4 shows the results for Kempe chain annealing 
on the first two data sets with different cooling ratios. The parameters used are the 
same as for standard annealing. Although there is scope for larger changes in the 

Table 4 

Results for Kempe chain annealing. 

Cooling 
ratio 

Date set (1) Date set (2) 

Average Best T ime  Average Best Time 

0.8 312.8 304 98.41 331.0 320 90.80 
0.9 299.8 284 212.86 316.4 290 183.51 
0.95 280.0 272 419.43 290.6 275 382.60 
0.97 284.0 277 703.89 283.8 277 643.52 
0.99 263.4 257 2166.07 276.2 271 1867.20 

Times are in CPU seconds. 

cost function in Kempe chain annealing, this did not seem to be the case in practice 
and, therefore, the same starting and stopping temperatures were used. Neighbourhoods 
are larger under Kempe chain annealing, about 6000 in size, but it was felt that 
more iterations per temperature were not necessary. The results were significantly 
better than those obtained by standard annealing, with the cooling ratio of 0.99 again 
working well. 

Results were then obtained from the three remaining data sets. These are shown 
in table 5. All results were obtained using a cooling ratio of 0.99. The results show 
that the Kempe chain neighbourhood does produce superior results and this is especially 
noticeable for data set (3). Here, standard annealing produced very poor results, 
while Kempe chains consistently performed well. This was not the case for data set 
(4), as expected, where neither method achieved worthwhile results. These results 
too can be compared with diversification (table 3) and show the significant advantage 
of  using Kempe chains over the diversification strategy in terms of both solution 
quality and solution time. Results from data set (5) stress this point and show that 
Kempe chains came extremely close to obtaining the optimal solution of zero, and 
in fact achieved near-optimal results for all random number streams. 
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Table 5 

Results for standard annealing and Kempe chain annealing 
on the remaining data sets. 

Standard annealing Kempe chain annealing 

Average Best Time Average Best Time 

Data set (3) 
Data set (4) 
Data set (5) 

1225.6 1204 1460.64 264.6 254 2035.64 

1225.6 1204 1391.67 1161.4 1152 2072.32 
26.0 17 1342.22 2.6 1 2091.14 

Times are in CPU seconds. 

Fur ther  exper iments  were conduc ted  in order  to de te rmine  whe ther  improved  

solutions could be obtained by using a standard ne ighbourhood fol lowed by a Kempe  

chain ne ighbourhood,  The  rationale behind this was to obtain a decent  solution fairly 
quickly  and then to improve  on this more  s lowly using Kempe  chains.  This  was 
achieved by running through the entire cooling schedule on the original neighbourhoods,  
and then reheat ing the tempera ture  so that half  the number  of  i terat ions conduc ted  

during the standard run would be conducted  during the Kempe  chain run. The results 

are shown in table 6 and show that we did not get any benef i t  f rom this method,  
with results  being poore r  than those obta ined by pure Kempe  chain anneal ing.  This  
indicates  that anneal ing at h igher  tempera tures  is an impor tant  part o f  the search 

and in a pure Kempe  chain run, the search traverses the solut ion space towards  good 

solut ions  at these temperatures .  

Table 6 

Results for standard annealing followed by Kempe chain annealing. 

Average Best Ti me 

Data set (1) 269.2 259 2552.00 
Data set (2) 274.6 265 2371.28 

Data set (3) 274.4 260 2635.05 
Data set (4) 1164.2 1149 2590.92 
Data set (5) 4.4 1 2437.41 

Times are in CPU seconds. 

Expe r imen t s  using the penal ty  method  were  conducted ,  init ially using data  

set (1). The first set of experiments simply combined first-order conflict, room overf low,  

s econd-o rde r  conf l ic t  and the number  of  large exams out of  place as a weighted  
sum and annealed  in a single phase.  Dif ferent  weight ings  o f  the f i rs t -order  conf l ic t  
as c o m p a r e d  to second order  were used. These  results are shown in the first four  
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Table 7 

Results for the penalty method on data set (1). 

Average Best Time 

Pen = 2 n/s - - 
Pen = 3 n/s - - 
Pen = 10 360.0 ~ 354 1556.22 
Pen = 20 371.4 350 1586.31 
Pen= 3, t= 50 599.8 451 2316.72 
Pen= 10, t= 50 407.0 396 1723.81 

Pen = 3, t = 100 507.6 392 1899.27 
Pen = 10, t = 100 463.4 406 2007.28 

Pen = weight of first-order conflict, t = threshold value. 
n/s: no feasible solution was found. 
"Only two out of the five runs produced a feasible solution. 
Times are in CPU seconds. 

rows of  table 7. With low penalties,  it appeared that the algori thm struggled to return 

to solut ions  of  zero cost  in terms of  the pr imary object ives .  The higher  penal ty  of  
20 did ensure  that a feasible solut ion is found,  but f i rs t -order  conf l ic t  is unl ikely  to 

re -en te r  the solut ion.  There fore ,  using such a penal ty  is equivalent  to pe r fo rming  

phases  one and two in a single phase but with fewer  total i terations than were  used 
for  s tandard anneal ing.  The second group of  exper iments  used the staged method.  

First-order conflict  was penalised by factors of 3 and 10 when compared with secondary 
confl ic t ,  and threshold  limits were  set at 50 and 100. These  results are shown in the 
bo t tom four  rows of  table 7. Anneal ing was conduc ted  with a cool ing  rate o f  0.99 

and i terat ions per t empera ture  were again 10,000. Combin ing  a penal ty  of  10 with 

a re la t ive ly  low threshold  of  50 resulted in feasible solut ions f rom stage 3 in all 
cases.  In general ,  lower  penalt ies  and higher  thresholds  increased the l ikel ihood of  

requiring stage 4. Results are poor in comparison with other methods. Further research 

into this me thod  may lead to improved  results, but for  the purposes  o f  this study, 

no fur ther  exper imenta t ion  was carr ied out. 
Finally,  table 8 summar ises  all solut ion methods  on all f ive data sets. The  

results clearly show the superiori ty of  the Kempe chain ne ighbourhood over  all o ther  
methods ,  excep t  in the case of  data set (4). So far, we have not been able to reap 
any benef i t  f rom the penal ty  funct ion approach,  a l though it is an im p ro v em en t  on 
both the greedy  heurist ic  and random descent .  The  Kempe  chain approach is the 

best  me thod  of  those proposed  and works well on all our  connec ted  data sets. 
W he n  compar ing  the results, it is important  to cons ider  the total run t imes.  

Such long run t imes resulted f rom our de terminat ion  to ensure  each me thod  was 
given the maximum opportunity to produce its best solution, in order that our methods  
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Table 8 

Average results from all solution methods. 
GH: greedy heuristic; RD: random descent; SA: standard annealing; 

KCA: Kempe chain neighbourhood; MIR: more independent runs; PF: penalty method. 

Data set (1) Data set (2) Data set (3) Data set (4) Data set (5) 

GH 441 n/s n/s n/s 212 
RD 619 ~ 860 "~ 1547" 1547 ~ 49 I. 8 

SA 330.4 337.0 1225.6 1225.6 26.0 

KCA 263.4 276.2 264.6 1161.4 2.6 
MIR 312.0 319,2 326.0 313.4 19.2 

PF 371.4 . . . .  

n/s denotes no feasible solution was obtained. 
~ From five different random number streams, in only two cases were results obtained 

with all objectives satisfied apart from second-order conflict. 
** From five different random number streams, in only one cases was a results obtained 

with all objectives satisfied apart from second-order conflict. 
Times are in CPU seconds. 

themse lves  could  be fair ly compared .  In pract ice,  many univers i t ies  prefer  to use 
a s tandard personal  compu te r  such as a 486pc,  where  the average  t ime to comple t e  
1000 i terat ions under  a s tandard ne ighbourhood  was 12.6 seconds compared  with 

15.3 seconds  under  a Kempe  chain ne ighbourhood .  The  improved  solut ion qual i ty  
when using Kempe  chains  would seem to make the extra  solut ion t ime wor thwhi le ;  

however ,  comple t e  run t imes on a pc with the best parameter  sett ings would  be in 
the region of  e ighteen and a half  hours. There fore ,  e i ther  faster  cool ing  or f ewer  

iterations at each temperature may be necessary, although a lower starting t empera tu re  
and higher  f inishing tempera ture  would also save t ime without  having a large effect  
on solut ion quality.  With faster  cool ing,  results equiva len t  to those obta ined  using 

a coo l ing  ratio of  0.8 can be found within half  an hour ' s  run time. 

8. Conclusions 

We have laid down an effective f ramework for solving multi-objective problems  
using s imulated annealing.  The  proposed solution method groups the object ives  into 

sets o f  similar  impor tance  and opt imises  each set in turn. Prev ious ly  opt imised  
ob jec t ives  are cons ide red  as binding constraints  in later  phases and this is ach ieved  
by r emoving  unsui table  solut ions f rom the solut ion space. This  phased approach 
appears  to be especial ly  useful for  problems where weight ing diff icul t ies  occur. The  

nature o f  s imulated anneal ing means decis ions made in earl ier  phases can be undone  
in later ones. However ,  this may d isconnec t  the solut ion space. We in t roduced  three 
ways  of  deal ing  with this, of  which two proved  sat isfactory.  The  penal ty  approach  
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proved too difficult in terms of setting suitable weights, but both diversification 
and, in particular, the neighbourhood widening, were successful. In our case, this 
was achieved using Kempe chains. It is worth commenting that this is a result of  
modelling the examination scheduling problem as a graph colouring problem. It 
was only because this model was used that Kempe chains were considered as a possibly 
improved neighbourhood for our problem. Therefore, although a model may not be 
necessary in order to use a technique such as simulated annealing, it may be useful 
to consider appropriate models in order to generate new ideas for improving solution 
quality. The Kempe chain neighbourhood vastly outperformed our standard annealing 
implementation, but does not guarantee to satisfy the reachability condition. The other 
two methods designed to satisfy the teachability condition are either excessively time 
consuming or of  poor quality and, hence, are not generally recommended although 
the diversification option may be better in very disconnected solution spaces. It would 
be extremely useful to be able to ascertain for any data set whether or not the solution 
space is disconnected. This is a matter for future research and may also provide 
clues as to which solutions should be reintroduced for a penalty approach. 

The 1993 Swansea University timetable, produced using the described basic 
simulated annealing method proved to be entirely acceptable. Some unilateral changes 
had to be made, following publication of a draft timetable, due to errors in the initial 
data. Therefore, the final timetable produced had 490 cases of students sitting two 
exams in two days, a vast improvement over previous years. The solution method 
is relatively simple, easy to apply, and can produce a feasible timetable in about 
one minute. The user can specify how long they are willing to wait for their results, 
thereby controlling the time used to optimise the secondary objectives. In practice, 
the cooling schedules used in these experiments may be too slow to form the basis 
of  a practical solution method. For this reason, the 1993 Swansea timetable was 
produced using the undulating cooling schedule discussed in Thompson and 
Dowsland [20]. However,  we plan to use the results of this research to produce an 
even better timetable for 1994, using a Kempe chain neighbourhood. 
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