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Abstract. This paper describes extensions to an evolutionary algorithm that
timetables classes for an entire University. A new method of dealing with
multi-objectives is described along with a user interface designed for it.  New
results are given concerning repair of poor recombination choices during local
search. New methods are described and evaluated that allow timetables to be
produced which have minimal changes compared to a full or partial reference
timetable. The paper concludes with a discussion of scale-up issues, and gives
some initial results that are very encouraging.

1. Introduction

Napier University uses a timetable that was produced by an evolutionary algorithm
incorporating a local search. The system timetables 100% of classes and optimises
them according to twelve competing objectives.

Timetabling the classes of a University involves finding timeslots for the events
such that each event can have the resources (rooms, students, and lecturers) that it
requires, and so that constraints on the relative timing of events are maintained. This
process produces feasible timetables. In addition to producing feasible timetables, we
want to produce timetables that are ‘good’ measured against some criteria. The
production of feasible timetables involves satisfying the hard constraints of the
problem. The production of good timetables involves satisfying as many of the soft
constraints as possible.

The Napier University problem involves placing 2000 events into 45 timeslots and
183 rooms, and optimising the timetables of 700 lecturers and 1000 student groups.
The number of ways to put 2000 events into 45 timeslots is 452000. Clearly, the vast
majority of these timetables are infeasible, because some hard constraint is broken.
The problem then becomes how to find good timetables in a search space that
contains very few feasible timetables.

There have been several attempts to solve this type of problem with evolutionary
algorithms; some examples of these can be found in [1], [2], [4], [5], [6], [7], [8], [10]
and [18]. The method used here is distinguished by its use of local search to deal
mainly with hard constraints and genetic operators to solve mainly soft constraints.
Others have used evolutionary algorithms combined with local search in other ways.



For example, in [3] Burke et al. describe a system that timetables examinations using
a local search, in this case the local search is used mainly to solve soft constraints.

2. Summary of Previous Work

The algorithm described here was originally presented in [11] where the principle of
using an indirect representation was established. Refinements were made in [12]. In
[13] the idea of timeslot suggestion lists was first presented and suitable
recombination operators were defined. Directed and targeted mutation were addressed
in [14]. In [15] the advantages of local search and Lamarckian writeback were clearly
shown, and results for a large real problem were shown to give a considerable
improvement over manual methods.

In order to solve the feasibility problem, a local search is employed which searches
from a point in the search space specified by each new chromosome to a point with
greater feasibility.  The result of this is that the evolutionary algorithm can now search
through the smaller space of feasible and nearly feasible timetables for timetables that
are good.

An indirect representation is used which codes for how a timetable will be
produced by the local search engine. The representation is split into two parts.

The first is a permutation that specifies the order in which the events should be
considered when trying to fit them in to the timetable. When building an unseeded
population the permutation is initialised using a heuristic which ensures that the more
difficult-to-place events are considered first.

The second part of the representation specifies a number of suggested timeslots for
each event (normally there are two suggestions, one coming from each parent). When
building an unseeded population, the suggested timeslots for an event are assigned
randomly from the list of possible timeslots for that event (those times when the event
could take place if there were no other events to consider).

The search proceeds as follows: events are considered in the order specified by the
permutation. For each event an attempt is made to place the event in the primary
suggested timeslot. If this fails (because some hard constraint would be broken by
doing so) then the other suggested timeslots are tried in order. If none of the
suggested timeslots is possible, then other timeslots are tried according to a problem
specific heuristic that examines the timeslots which do not incur a penalty first.

If at the end of this process the event has not been placed, it is considered unplaced
(which attracts a fitness penalty) and the next event in the permutation is considered.

If an event is placed then the timeslot used is written back into the chromosome as
the primary suggested timeslot. The timeslot that was occupying this position (if
different) is moved into the second position (and any others are shuffled down). This
writing back of the local search results makes the algorithm Lamarckian.

For each event a child inherits its primary timeslot suggestion from one parent and
its secondary timeslot suggestion (if more than one suggestion is stored) from the
other. The operator is based on multi-point recombination, and as the chromosome is
traversed there is an equal chance at every point that the parent contributing the
primary suggestion will be switched. When using more than two suggested timeslots,



the subsequent suggestions are taken alternately from each parent.  This operator
conforms with the concepts from Forma Theory of respect and assortment [16]. The
permutation is inherited from one parent only.

Three mutation operators are used; all work on the primary suggested timeslot for
one event. The first operator is a blind mutation that randomly reassigns the primary
suggested timeslot to some other possible timeslot. This mutation operator ensures
that all parts of the search space are reachable.

The other two mutation operators make use of problem specific knowledge to
direct the mutation in a way that may be useful. The first is selfish mutation which
involves an event “stealing” the timeslot used by another event. The second is co-
operative mutation which involves an event finding another event with which it can
swap primary timeslot suggestions, to the possible advantage of both. The directed
mutation operators also make changes to the permutation to ensure that during the
local search the events end up getting the timeslots they expect. These operators are
very useful, particularly in the later stages of a run and when used in conjunction with
targeted mutation.

Targeted mutation allows mutations of the chromosome to be targeted at those
parts of the chromosome that code for parts of the phenotype that attract penalties on
evaluation. During evaluation, a score is kept for each event of the extent to which
that event detracts from the fitness of the whole timetable. When calculating the
chance that the genetic material for an event will mutate, each event has a base chance
of mutating, an amount is then added to this which is directly proportional to the
degree to which this event detracts from the fitness of the whole timetable. Targeted
mutation has little effect, if any, when used with blind mutation alone, but a
significant effect when used with directed mutation operators, particularly in the early
stages of a run.

Ross et al. in [17] have described other mutation operators for timetabling that use
problem specific knowledge. There they are used mainly to solve hard constraints in
an algorithm that does not employ a local search. Mutation operators which use
problem specific knowledge were described earlier by Eiben et al. in [9].

After recombination and mutation a child may be less feasible than either of its
parents. This decrease in feasibility will often be repaired by the local search
mechanism undergone by all new chromosomes.

3. User Interface for the Evaluation of Multi-Objectives

During the local search hard constraints are never broken. This means that the
resulting timetables never have broken hard constraints, but that some events may
remain unplaced. The number of unplaced events can then be reduced by treating the
constraint all events must be placed as a soft constraint. This soft constraint is then
considered along with the other soft constraints. The breaking of soft constraints is
measured using problem measures. Each problem measure counts the number of
occurrences of some problem with the timetable, so we want to reduce the values of
the problem measures.



Fig. 1. The User Interface

The way in which the quality of a timetable is measured reflects the fact that users
have targets for individual problem measures. Once the target for a problem measure
has been met the user does not wish the algorithm to waste more effort reducing the
value further. Users also care more about reaching the targets for some problem
measures than they do for others. If users are only allowed to specify weights then
they tend to change these as the run progresses when certain problem measures reach
acceptable levels or levels beyond which they know no improvement is possible. If a
run is going to take more than a few minutes then the user either has to sit and watch
the evolution in case a weight needs to be changed, or has to accept that the algorithm
may waste time optimising something that cannot or need not be optimised further.

In order to take account of this, a user interface has been designed that allows the
user to specify (and change during the course of a run) a target t and a weight w, for
each of the twelve problem measures: see Figure 1. Targeted mutation rates are then
calculated so as not to try to improve problem measures beyond the target and the
evaluation function is then constructed so as to give no extra benefit to a chromosome
that reduces a problem measure below the target.

In order to evaluate a chromosome we need to know how much progress it has
made towards each of the problem measure targets. In order to measure the progress
towards a target we have to define the start point s. This is approximated by
examining 200 random chromosomes and taking the worst score that occurs on that
problem measure (users can provide other values for s if so required). If a problem
measure has the value v then the progress on that problem measure p can then
normally be calculated by: p = max(0, ( v - t ) / ( s - t) ). If p has the value 0 then the
target has been met. The progress of the algorithm over all problem measures P can
be calculated as the weighted average over all values of p.

The user can also specify that placing events is a special priority. If this is the case
then the comparison of two timetables is done sequentially. First the number of
unplaced events is considered. If one timetable has fewer unplaced events then it is
considered the better timetable. Only if the number of unplaced events is the same (or
both timetables have reached the target for unplaced events) is the progress on the
other problem measures considered.



4. Experiments with Timeslot Suggestion Lists

Experiments have been conducted to measure the effect of having different numbers
of timeslot suggestions within the chromosome. With one suggestion, only one parent
contributes to the placing of that event. With two suggestions there is a back-up
timeslot from the other parent. When we have three or four suggestions then
information from grandparents is stored (as a result of the recombination operator).

Two experiments were conducted. In the first the value of P that could be achieved
in a set elapsed time was measured, given targets of zero on all problem measures. In
the second the time taken for P to reach 0.05 (within 95% of the overall target) was
measured for targets reflecting those commonly used by users. For each experiment
real data for a single large department was used with 10 problem measures. Results
were averaged over 50 runs. The same initial 50 populations were used for each set of
runs. The results can be seen in figures 2 and 3. The chart in figure 2 is truncated at a
point thought to be around the optimum value of P.
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Fig. 2. Progress Achieved Over Given Time

Elapsed time is used as a measure in these experiments since the time taken to
perform an evaluation depends on the chromosome being evaluated and the method
being used. Hence, measuring against the number of evaluations would produce
erroneous results. All experiments in this paper were carried out on a dedicated
200MHz Pentium Pro computer.
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Fig. 3. Time Taken for Given Progress



For each experiment a paired Student’s T-test shows a very highly significant
(probability greater than 99.99%) improvement using suggestions from both parents,
and no significant difference using suggestions from grandparents. For the first
experiment we can say with 99% confidence that the average value of P with one
suggested timeslot is 0.2564±0.0069 and with two suggested timeslots is
0.2359±0.0087. For the second experiment we can say with 99% confidence that the
average time with one suggested timeslot is 319±28 and with two suggested timeslots
is 248±23.1

These results are as we might expect, as storing suggestions from both parents is
equivalent to repairing “mistakes” made by the recombination operator. If the
“wrong” parent was chosen to contribute a particular timeslot, then this is rectified by
the search mechanism. The lack of significant difference for increasing numbers of
suggested timeslots is probably because any benefit from storing the timeslots
suggested by grandparents is counteracted by the extra processing overhead required.

5. Using Reference Timetables and Minimising Change

A requirement that is often made of scheduling problems is that the solution should
be as close as possible to some reference schedule. The reference schedule may have
been produced manually, or may have been produced automatically from incomplete
or partially different data (for example when tracking changes to data). This is a
feature that is often required of university class timetabling systems.

An initial population can be seeded with the reference timetable and small
variations on it. This feature alone allows processing to begin before all the data has
been collected as runs with new data can be seeded with the results of previous runs.
Of course there is a danger here that what was a global optimum may become a local
optimum of the new data, so care is needed in deciding when is it better to start a run
from scratch.

The seeding is done by first finding all the events that are common to both the
present timetable data and the reference timetable. The primary timeslot suggestion
for each of these events is then copied from the reference timetable. All but one of the
chromosomes then undergoes a mutation in order to add some variety to the
population.  Where all the events are common to both timetables, and the reference
timetable is the result of a previous run, the permutation can also be copied. Where
the reference timetable is feasible given the present timetable data, the local search
will not change it and the reference timetable will exist in the initial population.

Where it is also necessary to minimise changes, the number of changes to the
reference timetable can be counted and treated as a problem measure. Hence changes
can be minimised in the same way that the breaking of other soft constraints is
minimised.
                                                          
1 Note that for the second experiment, results from one initial population were ignored. This

was because the result for using one suggested timeslot was over 6000 seconds. The
algorithm had become trapped in a local minimum at P=0.06.  It was considered that this
value was such an outlier that we could safely conclude that this was a very “unlucky” run
and that more could be learned by not considering it.



When minimising changes a modified search algorithm is used: events are
considered in the order specified by the permutation. For each event an attempt is
made to place the event in the primary suggested timeslot. If this fails (because some
hard constraint would be broken by doing so) then the event is considered unplaced
and the next event in the permutation is considered. When all events have been
considered a further attempt is then made to place the unplaced events. First, the
secondary suggested timeslot is tried, then the other timeslots according to the
heuristic that examines the timeslots which do not incur a penalty first.

This type of search is designed to minimise the “domino” effect of changing an
event’s timeslot when conducting the search. The difference between this method and
the standard method is that with this method all events get to try their primary
suggested timeslot before any gets to try other timeslots. There is no chance that an
event unable to use its slot will cause an avalanche of changes by “stealing” another
event’s timeslot.

Table 1. Comparisons of Methods to Minimise Change

% Change Standard Search Modified Search
Number of Changes is
not a Problem Measure 54.5±1.8 48.3±1.1

Number of Changes is
a Problem Measure 47.6±1.3 43.9±0.9

The following experiment was designed to test the modified search algorithm and the
effect of treating changes to the reference as a problem measure. A real timetable data
set was optimised to produce a reference timetable. The data set was then changed in
a number of ways so that about 18% of the events could no longer be placed in the
timeslots specified by the reference timetable. These events now had to find new slots
and in doing so some would have to displace other events. The new data set was then
optimised and changes to the reference were counted. The system was allowed to run
until all the events had been placed. The results, over 50 runs, can be seen in Table 1.
The figures are percentage change from the reference timetable and are given with
99% confidence intervals.
The results clearly show that each of the two methods gives an improvement, both
individually and together. A Student’s paired T-test shows an extremely high
significance in the improvements (greater than 99.9999% for each comparison pair).

While the modified search keeps the number of changes to a reference timetable
lower, it makes the algorithm less effective when it is not necessary to stay close to a
reference. The Progress Achieved Over Given Time experiment produced a result of
P=0.2656±0.008 for the modified search compared with P=0.2359±0.0087 for the
standard search – clearly a worse result (99% confidence intervals). The Time Taken
for Given Progress experiments produced a result of 646±550 seconds for the
modified search compared with 248±23 for the standard search – over twice the
average time for the same result and a much increased spread. This is partly surprising
since reducing the “domino” effect of changes to the chromosome reduces epistasis.
The reduction in performance may be due to the fact that since an unplaced event
does not have the chance to “steal” another event’s timeslot, the unplaced events tend
to stay the same with each evaluation and the search is restricted to a smaller part of



the search space. It may be possible to rectify this by increasing the amount of
directed mutation. Further work is required to investigate this area.

6. Issues of Scale-Up

One of the crucial questions asked by researchers looking at search algorithms is
“Will my algorithm scale up from test problems to large real world problems?”. A
solution that does not scale up to solve problems in the real world is of little practical
use. Our experience has been that our algorithm has scaled up well from initial test
data, to data for a whole department, and finally to data for a whole institution.
However, the way the solution scales up is something that requires further
investigation, in order that general rules can be learned.

Providing real data for scale-up experiments is difficult. The first problem is how
to provide data sets of different sizes but similar nature. The second is how to
measure the relative performance on data sets that have different ranges of problem
measures. The extent to which the algorithm approaches the optimum might be an
appropriate measure, but unfortunately, for real world data, the optimum is not
known.

Table 2. Scale-Up Results

Number of Events Elapsed Time (seconds)
74 47±5
155 270±109
307 591±205
587 926±149

The following experiment is not perfect but can give us at least an idea of how the
algorithm scales up as the search space grows exponentially. A real data set was used
and smaller subsets of this were produced. For each data set the room availability was
adjusted so that 91% utilisation of rooms was required for each. Each of the data sets
was given a target for each problem measure that was 80% of the approximated worst
case value s. The time taken for all events to be placed and for P to reach 0.05 was
then measured over 25 runs. The results and 95% confidence intervals are shown in
Table 2 and Figure 4.

Because of the difficulty in constructing reliable experiments we are careful not to
make strong claims about the results, but the results are very encouraging. Further
experiments are required to confirm them. Some of the factors that may contribute to
the favourable scale-up figures observed are discussed below:

Firstly, increasing the size of the problem increases the number of rooms available.
The heuristic which initialises the ordering permutation ensures that difficult to place
events are considered first, at least in the early stages of a run. This means that these
events have a greater choice of accommodation in larger runs.

Secondly, timetabling problems partially partition into departments, programmes
and levels. There is not a total partition since all partitions are connected by
conflicting requirements for resources. However, the algorithm can still make good



use of implicit parallelism to work on several partial partitions at once. In the test data
(and most real world timetabling problems) larger problems have a larger number of
partial partitions and so the degree of implicit parallelism employed increases as the
problem grows.

Finally, Ross et al. have shown in [19] that phase transitions exist for evolutionary
algorithms applied to timetabling problems. They showed that for some problems that
were not completely partitioned, as the number of constraints increased the problem
got harder to solve until a particular point when it started to get easier. This work is
not completely relevant because it examined an evolutionary algorithm without local
search and artificial rather than real data. It also examined increases in constraints
rather than increases in events.  It is possible however that phase transitions may be
playing a part in the results observed. Further work is required in this area.
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Fig. 4. Scale-Up Graph

7. Conclusions

We have described a new method for treating the optimisation of multi-objectives that
fits with the way the user works, and we have described a user interface which
facilitates it. We have shown that using back-up timeslots from the other parent can
allow the search mechanism to repair “mistakes” made during recombination, and that
this gives a significant improvement in results. We have defined two methods for
dealing with optimisation relative to a reference timetable, and have shown that each
of these gives a significant improvement. Finally we have shown that initial studies
on the scalability of our approach to this problem are very encouraging.
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