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Most scheduling heuristics applied to Heterogeneous Computing (HC) focus on the search of a minimum
makespan, instead of the reduction of cost. However, relevant studies presume that HC is based on high-
speed bandwidth and communication time has ignored. Furthermore, in response to the appeal for a
user-pay policy, when a user submits a job to a Grid environment for computation each implementation
of a job would be charged. Therefore, the Apparent Tardiness Cost Setups-Minimum Completion Time
(ATCS-MCT) scheduling heuristic considers both makespan and cost, and it composes of execution time,
communication time, weight and deadline factors. This study simulates experiments in a dynamic envi-
ronment, due to the nature of Grid computing being dynamic. The ATCS-MCT is compared to frequent
solutions by five scheduling heuristics. This study indicates that the ATCS-MCT achieves a similarly smal-
ler makespan, and lower cost than Minimum Completion Time (MCT) scheduling heuristic, which is the
benchmark of on-line mapping.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Grid computing can be categorized into a type of distributed
system. Its purpose is to surpass limitations on geographical loca-
tions and hardware specifications of computers. This is to share
idle and scattered resources, such as computation ability. There-
fore, application programs requiring large-scale computation,
which were previously eschewed by limits on computer hardware,
can now utilize idle computers distributed all over the globe. This
method is required to manage jobs involving massive computation
and enhance system performance.

To facilitate a job requiring large-scale computation over a dis-
tributed system, it is necessary to divide jobs into several indepen-
dent tasks. The application scheduler that assigns the relevant data
and communications to the involved computers is ordered tempo-
rarily and based on the rules of the scheduling policy in a Grid
computing system (The Open Grid Forum (OGF), 2002). However,
computers that are distributed over the Internet differ from each
other in terms of hardware, software and network topology (Chen,
2005; Ritchie & Levine, 2003). It is very difficult to have fair evalu-
ation methods in determining what scheduling heuristics can be
used as optimal solutions. However, mapping independent tasks
onto a HC suite is a well-known NP-complete problem, if through-
put is used as the optimization criterion (Chen, 2005; Eshagian,
1996; Maheswaran, Ali, Siegel, Hensgen, & Freund, 1999). Concern-
ll rights reserved.

18; fax: +886 2330 4902.
Y. Tseng), yhchin@cs.nthu.
).
ing this, many researchers (Kim & Kim, 2003) have found that
applying heuristic approaches to task dispatching may lead to
acceptable results. A job is comprised of many independent tasks
and the makespan is the maximum time difference between the
start and finish of a sequence of tasks between involved computers,
after completion of the last task. A smaller makespan is regarded as
the better solution when there are many different scheduling heu-
ristics applied to the same job. Thus far, a number of studies on sta-
tic and dynamic scheduling heuristics (Braun et al., 2001;
Maheswaran et al., 1999; Ritchie & Levine, 2003) have been dedi-
cated to heterogeneous computing.

Considering changes in user behavior and the necessity of user-
pay policies, scholars have predicted that Grid computing may be-
come another infrastructure for daily life (Foster & Kesselman,
2004) as a resource that can be very conveniently shared and used
by the public, such as electricity or tap water. Predictably, the
trend towards user-pay policy would prevail. Sun Grid, launched
by Sun Microsystems Inc., incorporated a payment mechanism in
March 2006 (Sun Microsystems, 2006). Sun Grid charges by the
CPU time of each computer, instead of completion time required
by the job. Therefore, actual cost is calculated by the sum of com-
pletion time for each computer involved in the execution of tasks.
Moreover, since a job is comprised of several independent tasks, in
most studies it was assumed that each task should be regarded as
independent although having individual priorities. Hence, the
assignment of tasks to appropriate computers for computation re-
quires consideration for both the minimal makespan and the low-
est cost. As each service is charged, users would expect to reduce
the budgets for completion time, the cost of the job and the risk.
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The objective function of an application centric method can be
classified as makespan and economic cost (Dong & Akl, 2006). For-
merly, most studies only focused on the single objective function of
either makespan or economic cost. Studies of makespan are in the
studies of (Braun et al., 2001; Fujimoto & Hagihara, 2004; Kim &
Kim, 2003; Maheswaran et al., 1999) and the Nimrod/G project is
a major economic model in the multi-domain distributed Grid sys-
tem (Buyya, Abramson, Giddy, & Stockinger, 2002). This study
combines makespan and economic cost to concentrate on lower
makespan under lower cost. Formerly, most scheduling heuristics
in HC sought to minimize makespan without taking into account
weight and deadline of each task (Braun et al., 1999, 2001;
Kim & Kim, 2003; Ritchie & Levine, 2003). Even though previous
scheduling heuristics may achieve minimum makespan, as user-
pay policy grows, the total cost may increase due to the lack of con-
sideration on deadline. Thus, the trade-off between makespan and
cost becomes an important issue.

It can be understood from analyses in previous studies that HC
systems include: heterogeneous machines, high-speed networks,
interfaces, operating systems, communication protocols and pro-
gramming environments. All of which combine to produce a posi-
tive impact on the ease of use and performance (Ilavarasan,
Thambidurai, & Mahilmannan, 2005; Khokhar, Prasanna,
Shaaban, & Wang, 1993; Wu & Shu, 2001). Grid computing is a type
of HC (Kim & Kim, 2003; Ritchie & Levine, 2003). Scheduling heu-
ristics previously applied to HC ignore communication time over
the transmission network. However, the delays are caused when
network bandwidth is unavailable. Grid computing is constructed
over both high-speed and low-speed network communication net-
works. For example, the SETI@home project was conducted in
1995, which involved Grid computing utilized idle computers to
assist in the analysis of data and to enhance computation ability
of participants’ computers (Anderson, Cobb, Korpela, Lebofsky, &
Werthimer, 2002; Groth, 2005). In this project, not all the partici-
pants were provided with high-speed network bandwidth.

To summarize, scheduling heuristics applied to HC and Grid
computing may differ with the three important factors of each task
in a job: (1) communication time, (2) weight and (3) deadline.
Hence, this study proposes a scheduling heuristic called ATCS-
MCT to consider weight, deadline and communication time of each
unexecuted task before dispatching them to currently idled com-
puters. Through experimental results, it is indicated that the
ATCS-MCT scheduling heuristic leads to similar makespan and
lower costs than MCT scheduling heuristic, which is the bench-
mark of on-line mapping.

The remainder of this study is segregated into the following sec-
tions. Section 2 investigates currently used scheduling heuristics.
Section 3 explains the proposed method of the ATCS-MCT. Section
4 defines assumptions and simulation environments. Section 5
compares the simulation results of the research and previous stud-
ies. Section 6 details the discussions and conclusions.
2. Previous work

Haynos (2004) suggested that Grid computing differs from
other distributed systems. The study asserts that the nature of
the Grid is to facilitate the sharing of distributed resources by
means of loosely coupled processing. Foster (2002) proposed that
Grid computing includes a three-point checklist: (1) coordinate re-
sources that are not subject to centralization; (2) use standard,
open, and general-purpose protocols and interfaces; and (3) deliver
nontrivial qualities of service. From these studies, it can be under-
stood that the purpose of the Grid is to facilitate resource-sharing
among computers by loosely coupled processing. In addition, the
number of Grid participants is determined dynamically as they
are freely allowed to enter and exit the Grid. Many static and dy-
namic scheduling heuristics have been dedicated to HC or Grid
computing (Braun et al., 2001; Fujimoto & Hagihara, 2004; Han,
Jiang, Fu, & Luo, 2003; Kim & Kim, 2003; Maheswaran et al., 1999).

Maheswaran et al. (1999) proposed that static techniques, in
which the complete set of tasks to be mapped, require the mapping
to be done off-line prior to the execution of any of the tasks. These
are known as priori, whereas dynamic methods should conduct
mapping on-line as tasks arrive. Fujimoto and Hagihara (2004)
indicated static scheduling is policy in which all decisions are
made before the execution of a scheduled task. On the other hand,
they asserted that in dynamic scheduling some or all decisions are
performed during scheduling. Hence, the static and dynamic ap-
proaches significantly differ in the dynamic arrival states of tasks.
The static heuristic means all tasks have arrived before the applica-
tion scheduler is ready to dispatch them. The dynamic heuristic
schedules the unfixed number of tasks in the queue when other
tasks continually arrive in the application scheduler. This is an
on-line mapping of tasks. Braun et al. found that genetic heuristic
(GA) is able to acquire the minimum makespan under most simu-
lation scenarios with static scheduling heuristics, followed by min-
imum-minimum completion time (Min-min). However, in terms of
simulation dispatching time, GA requires 300 times longer than
Min-min (Braun et al., 2001). Dynamic scheduling heuristics can
be divided into two parts: (1) on-line mapping and (2) batch map-
ping. The benchmark of on-line mapping is the MCT (Maheswaran
et al., 1999; Srisan & Uthayopas, 2002). Arrival rate and complex-
ion of a task may affect mapping performance when tasks dynam-
ically enter the queue of the application scheduler.

Fujimoto and Hagihara (2004) presented a Round-Robin (RR)
approach and compared five dynamic scheduling heuristics suit-
able for Gird computing systems, including Dynamic FPLTF
(DFPLTF), Suffrage-C, Min-min, maximum-minimum completion
time (Max-min) and Work Queue (WQ). Kim and Kim (2003) pro-
posed the Minimum Execution Completion Time (MECT) method
and compared three scheduling heuristics for Grid computing sys-
tems, including Minimum Execution Time (MET), MCT and K-Per-
cent Best (KPB).

In summary, the dynamic heuristics for scheduling are fre-
quently compared. These are Opportunistic Load Balancing (OLB),
MET, MCT, Min-min and Max-min. Most studies relate the map-
ping of task and computer by the Expected Time to Compute
(ETC) matrix (Braun et al., 2001; Kim & Kim, 2003; Ritchie & Levine,
2003), in which each row represents the ETC for each task to be
completed on each computer and each column lists the ETC for
each computer to execute each task. The ETC matrix is detailed
in Section 4. Due to it is very hard to predict the completion time
of each task, we utilize ETC matrix for presentation of our heuristic
feasibility. The computer availability time, abbreviated CAT, of
each computer, CAT(cj), is accumulated for each task’s expected
execution times. A CANDIDATE matrix comprises multiple candi-
date for tasks and computers; each row is composed of a task i, a
computer j which the task i is executed on it and obtains the min-
imum completion time, and the minimum completion time. These
scheduling heuristics are briefly described below.

The OLB heuristic randomly chooses a task from the queue and
arbitrarily dispatches the task to a currently available compute.
The application scheduler uses CAT(cj) to accumulate the expected
execution times of tasks on each computer. The pseudocode of OLB
is presented in Fig. 1.

As Fig. 2 indicates, the MET heuristic randomly chooses a task
from the queue and dispatches the task to a computer with the
shortest execution time.

Fig. 3 shows that the MCT heuristic randomly chooses a task
from the queue and dispatches the task to a computer with the
minimum CAT(cj).



Fig. 1. Pseudocode of the OLB heuristic.

Fig. 2. Pseudocode of the MET heuristic.

Fig. 3. Pseudocode of the MCT heuristic.
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The Min-min heuristic computes the expected execution times
of each task within the queue dispatching to each computer and
storages this data in ETC0(ti,cj). Next, each task ti acquires the min-
imum completion time by a computer cmin in ETC0(ti,cj) and sends
Fig. 4. Pseudocode of the
the three data sets: (1) task ti, (2) computer cmin and (3) minimum
completion time to CANDIDATE(ti,cj,minimum). Furthermore, the
application scheduler chooses the task tmin, with minimum com-
pletion time, from CANDIDATE(ti,cj,minimum). Finally, the appli-
Min-min heuristic.



Fig. 5. Pseudocode of the Max-min heuristic.

1 In Pinedo and Chao (1999), a deadline is a due date that absolutely must be met.
In this study, a due date is the same as a soft deadline.
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cation scheduler dispatches the task tmin to computer cmin and up-
dates CAT(cmin). The application scheduler does not dispatch when
each unexecuted task ti belongs to a job that has been completed.
The pseudocode of the Min-min heuristic is presented in Fig. 4.

Fig. 5 shows that the Max-min heuristic is the same as the Min-
min heuristic. However, the application scheduler chooses task
tmax with a maximum completion time, instead of a minimum
completion time from CANDIDATE(ti,cj,minimum). Then, the appli-
cation scheduler dispatches task tmax to computer cmin and updates
CAT(cmin). The application scheduler does not dispatch when each
unexecuted task ti belongs to a job that has been completed.

3. ATCS-MCT heuristic

Several observations from the above listed heuristics have pro-
vided details on three issues. First, since the assumptions of most
studies are based on high-speed network communication environ-
ments, communication time of each task was not considered. Sec-
ond, the importance of each task was not notable. However, some
tasks are more important or need to be completed earlier, which
makes it inadequate to assign all the tasks with the same level of
priority. Third, the deadline for each task was not considered. Each
task should naturally have a deadline in which to complete its exe-
cution, otherwise, it would be logically meaningless to have a task
assigned in a waiting queue and entered in an endless waiting phe-
nomenon. This would happen without being scheduled by the
scheduler, even if the deadline for execution were not critical. Hard
deadline result in tasks being dropped (Golconda, Dogan, & Ozgu-
ner, 2004), if they are overdue. However, since a job usually is com-
posed of many tasks, a job cannot be completed if the completion
time of some constituent task of the job exceeds its deadline and is
then dropped. Therefore, this study adopts a soft deadline. This is
due to soft deadlines giving consideration to job completion and
focusing on the dispatching process. If the completion time of
the task exceeds the deadline of the task, it will delay the
execution.

This study is as an investigation of tasks schedules in Grid com-
puting from which increase another three factors: (1) communica-
tion time, (2) weight and (3) deadline for each task. This is due to
past studies mostly focusing on execution time for each task. With
four factors (includes execution time factor) to consider, none of
the current basic dispatching rules is feasible. Pinedo and Chao
(1999) proposed that Apparent Tardiness Cost Setups (ATCS) might
best satisfy the above requirements. The ATCS rule is shown in
Eq. (7) and is a composite dispatching rule that combines three dis-
patch rules: (1) Weighted Shortest Processing Time first (WSPT),
(2) Minimum Slack first (MS) and (3) Shortest Setup Time first
(SST). The ATCS rule requires three factors and two scaling param-
eters. The three factors are: (1) factor R derives a due date1 range in
Eq. (3), (2) factor s leads to a due date tightness in Eq. (4) and (3) fac-
tor g obtains setup time severity in Eq. (5). The R and s factors indi-
cate which jobs are more urgent or given less time. Therefore, these
jobs shall be given higher priority in the scheduling. As a result of the
setup times of scheduled jobs in a single machine, the makespan is
schedule-dependent. The factors that use makespan R and s have
to be estimated, explicitly by bC max. The two scaling parameters in
Eq. (6) include K1 as the due date related scaling parameter and K2

as the setup time relate scaling parameter. Eq. (7) integrates Eqs.
(1)–(6) to obtain the ATCS value of each job with weight, slack and
setup time at current time. A job with a maximum ATCS value can
be executed first. The ATCS has to be modified to be applicable in
a Grid environment. This is due to the ATCS being a scheduling ap-
proach for single machine.

�d ¼
Pn

j¼1due datesj

n
j : job ð1Þ

bCmax ¼
Xn

j¼1

pj þ n�s p : process time; s : setup time

bC max : estimated for the makespan ð2Þ

R ¼ dmax � dmin

Cmax
R : due date range ð3Þ

s ¼ 1�
�d

Cmax
s : due date tightness ð4Þ

g ¼ �s=�p ð5Þ
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K1 ¼ 6� 2R for R P 0:5
K2 ¼ s= 2
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Ijðt; ‘Þ ¼
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� �
t : current time; ‘ : pre-job; w : weight ð7Þ
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In order to utilize idle computers distributed everywhere, a job
is divided into several tasks and these tasks are dispatched on idle
computers that can obtain better performance in a Grid environ-
ment. Thus, all the jobs in Eqs. (1)–(7) are replaced by tasks. In
addition, since the ATCS objective is to schedule all the jobs on
one single machine, for application in Grids the application sched-
uler must perform the ATCS computation on all involved comput-
ers by Eqs. (1)–(7). The resource demander must inform the
resource administrator of how many resources are required in ad-
vance, so that the administrator is aware of the amount, type and
any other information of all the resources demanded. When a job is
divided into a number of tasks, the resource demander may set up
the weight and deadline of each task. It is not yet possible to deter-
mine which task will be dispatched to which computer before-
hand, although the deadline and weight of a task will remain the
same to any given computer. In Eq. (3), the minimal execution time
of a task on all computers shall be set as dmin, while the maximal
execution time shall be set as dmax. This is due to not knowing
which task will be submitted to which computer and the execution
time of each task may vary when assigned to a different computer,
Further, the deadline of each task shall be randomly generated
from the range of dmin and dmax. The setup time in Eq. (7) was de-
signed for a single computer. Specifically, after a task is performed,
the following task would spend some time for preparation. How-
ever, in this study, to be more in-line with the actual situation in
a distributed system, the communication times of each task will
be simulated via the network to all the computers. Therefore, in
cases of a Grid system, the setup time will be regarded as the com-
munication time and the other settings of the original ATCS will re-
main. As a result of the ATCS being a designed method for single
computer, to determine which task should be performed next,
Fig. 6. Pseudocode of the
the ATCS would perform Eqs. (1)–(7) on all the tasks that have
not been dispatched. Then assign the task to an appropriate com-
puter with a maximum value in Eq. (7). To avoid most tasks are dis-
patched to few computers in this situation, if the computer does
not have the smallest completion time, it must be integrated with
the MCT approach. This would dispatch the task to the computer
currently featuring the minimum completion time. To be applied
to the Grid environment, the original ATCS shall be revised as the
Apparent Tardiness Cost Setups-Minimum Completion Time
(ATCS-MCT), as shown in Fig. 6.

Tt ¼maxðCt � dt ;0Þ Tt : tardiness
Ct : completion time of a task; dt : deadline of a task ð8Þ

total weighted tardiness ¼
Xn

t¼1

wtTt ð9Þ

total cost ¼
Pn

j¼1CATðcjÞ
� �

3600
ð10Þ

In addition, this study also proposes that the resource demand-
ers may set the weight and deadline of each task in accordance
with the degree of importance. In the dispatching process, if a task
has a better dispatching value that is composed of execution time,
communication time, weight and deadline, it will have a high pri-
ority to be scheduled. In this circumstance, to acquire a lower cost
and makespan, this study allocates some tasks the ability to over-
take their deadline. This is done when the task is affected by the
other three factors. If a task fails to be completed within the ex-
pected deadline, a penalty will be computed according to weight
of this task. Eq. (8), is detailed as tardiness and describes a task
when it deadline is overdue. Therefore, the difference time be-
ATCS-MCT heuristic.



Table 2
Expected Time to Compute (ETC) matrix.
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tween the completion times of tasks and the deadlines of tasks and
will be multiplied with their corresponding weights and acknowl-
edged as the total weighted tardiness. This is shown in Eq. (9). The
sum of the total weighted tardiness is used to obtain the weighted
tardiness cost for the completion of a job. A smaller value indicates
a lower weighted tardiness cost. The scheduling management of a
job can be facilitated via the total weighted tardiness. The pricing
policy of Sun Grid requires one US dollar for utilization of a CPU
per hour. Thus, Eq. (10) can be utilized to calculate the each CAT(cj)
for involved computers and to figure out the cost to be paid.

In most studies, the investigation on dynamic task scheduling
mainly focuses on the expected execution time of tasks and seeks
a minimal makespan. However, as the scheduling proceeds, the
ATCS-MCT approach takes the expected execution time of the task
and also takes the three important factors of communication time,
weight and deadline into account. Based on the considerations of
all four factors of expected execution time, communication time,
weight and deadline of a task, the proposed ATCS-MCT achieves
a similar makespan as the MCT scheduling heuristic and reduces
cost. In addition, the total weighted tardiness obtained is far less
than most of the other scheduling heuristics could achieve.

4. Simulation model

In this study, an approach is proposed to achieve a lower make-
span and minimal cost based on user-pay policy. In the study sim-
ulation, tasks dynamically enter the queue with the arrival rate of
k, which ranges between 0.01 and 0.5 (Hamidzadeh, Atif, & Rama-
mritham, 1999). The application scheduler then dispatches the
tasks at once. To simplify the scenario for analysis, this study only
simulated cases with a fixed number of tasks and computers. Spe-
Table 1
Four scenarios in the simulation model.

Heterogeneity Task Computer

HH High [1,3000] High [1,100]
HL High [1,3000] Low [1,10]
LH Low [1,100] High [1,100]
LL Low [1,100] Low [1,10]

Fig. 7. Pseudocode of the m
cifically, a type of dynamic heuristics is applied here for scheduling
in a Grid system. The following presumptions are detailed in this
study:

1. The tasks of a job have been previously divided by a logic unit.
2. All the tasks are independent from each other and parameters

passing between tasks are not necessary.
3. Each task is given a weight value and deadline.
4. To maintain authenticity and fairness in the experiment, in each

scheduling heuristic, five heuristics are assigned communica-
tion time to each task.

5. Tasks are non-preemptive. After a task is dispatched to a certain
computer, the application scheduler would not dispatch
another task to the same computer before completion of the
former task.

Most relevant studies confirmed the correlation between task
and computer by means of the ETC matrix, in which ETC(ti,cj) is
the expected execution time of task i when dispatched to computer
j. The heterogeneity of both task and computer has influence on the
expected execution time, either in case of the HC or of Grid com-
puting. Hence, this study’s proposed simulation model is derived
from the modification of the ETC matrix proposed by Braun et al.
(2001). Task heterogeneities are categorized into two types: (1)
high – ranging at [1,3000] and (2) low – ranging at [1,100]. Com-
puter heterogeneities are also classified into two types: (1) high –
ranging at [1,100] and (2) low – ranging at [1,10]. Therefore, the
ETC matrix incorporates four scenarios, as indicated in Table 1.

As shown in Table 2, Column 1 is task heterogeneity, Row 1 is
computer heterogeneity and ETC(ti,cj) = ti

* cj. Where 1 6 i 6 n,
1 6 j 6m, n is the number of tasks and m is the number of comput-
ers. As an example, when both task and computer heterogeneities
odified OLB heuristic.



Fig. 8. Pseudocode of the modified MET heuristic.

Fig. 9. Pseudocode of the modified MCT heuristic.
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are high, task heterogeneity belongs to [1,3000], computer hetero-
geneity belongs to [1,100] and ETC(ti,cj) belongs to ti

* cj. According
to the Central Limit Theorem in statistics, when the number of
samples exceeds or is equal to 30, the diagram for sampled dis-
patching would seem very similar to that of normal distribution.
Therefore, each scheduling heuristics in this experiment includes
four scenarios, each of which has 30 different samples. The number
of tasks in each random sampling is 2000, the number of comput-
ers is 32 and the task arrival rate k ranges between 0.01 and 0.5.
The capacity of the queue for dispatched is set at 32 due to the
number of computers being 32, which ensures every task can be
performed in every computer at the initial time. All bar charts
use the mean value of 30 batch simulation results.

In studies on network environments, the most important part of
research is the experimental data. However, experiments conducted
on physical network nodes can be very costly, so the development of
network simulators derives from this cost issue. Lee et al. pointed out
Network Simulation Version 2 (NS2), which is promoted by The VINT
Project, features merits of an ideal network simulation tool: abstrac-
tion, emulation, scenario generation, visualization, and extensibility
(Breslau et al., 2000). Based on this research and recommendations
by numerous scholars, the network simulation software NS2 was
adopted. This was done to generate packet data for data transmission
among network nodes for the sample experiments and to enhance
authenticity of the Grid experiment.

From Section 2 of this study, it can be distinguished that the
scheduling heuristics that are more frequently applied are
the OLB, MET, MCT, Min-min and Max-min. In order to compare
the four factors, the earlier detailed scheduling heuristics that
compute communication time, total weighted tardiness and com-
puting cost have been modified. These modifications are shown
in Figs. 7–11 in bold italics. Moreover, the proposed ATCS-MCT
heuristic will be compared with the other five scheduling
heuristics.



Fig. 10. Pseudocode of the modified Min-min heuristic.
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5. Experimental results

In this study, a computer with an Intel Core 2 Duo E6850 CPU
and 2G DDR2 800 RAM was utilized for the simulation. Due to the
excessive amounts of data that were generated in the simulation
experiment, the scheduling heuristics were developed by Microsoft
VB.Net and Excel to facilitate the data analysis. In addition, the NS2
network simulator (Breslau et al., 2000) was used for the simulation
on distribution of network nodes to produce data such as packet
size and transmission time. Subsequently, the simulation results
were applied to each heuristic to obtain the experimental results.
In addition, to enhance the completeness of the experiment, the
properties of task and computer were categorized by the degree
of heterogeneity into four different scenarios:

Scenario 1: Task and computer are characterized by High hetero-
geneity (HH).

Scenario 2: Task is High heterogeneity and computer is Low het-
erogeneity (HL).

Scenario 3: Task is Low heterogeneity and computer is High het-
erogeneity (LH).

Scenario 4: Task and computer are characterized by Low hetero-
geneity (LL).
In the following subsections, the comparisons on execution dis-
patching time, completion time, total weighted tardiness and com-
puting cost of the experimental results are detailed.

5.1. Execution dispatching time

Experimental results with execution dispatching time are
shown in Fig. 12. The numbers in the lower part of Fig. 12 is the
time unit in seconds that it took for the simulation of dispatching
by each scheduling heuristic with four different combinations of
heterogeneities. As an example, in the ATCS-MCT scheduling heu-
ristic, the dispatching time of the first combination heterogeneity
(HH) is 1197.73 s. It is shown in the experimental results that
the OLB and MET heuristics reached faster execution dispatching
time.

During the simulation, the OLB and MET heuristics can be
grouped into the same class and only initiate one stage to dispatch
an unexecuted task to an involved computer. This results in a
shorter dispatching time in the simulation. Conversely, the Min-
min, Max-min, and ATCS-MCT heuristics incorporate two stages
for assigning an unexecuted task to an involved computer. In addi-
tion, the ATCS-MCT heuristic computes extra weight and deadline
factors in the dispatching simulation. Therefore, the time spent
was about two times longer than required in the OLB heuristic.
However, the duration is still shorter than completion time and
can be ignored.

5.2. Completion time

The completion time obtained by six scheduling heuristics un-
der four different heterogeneity scenarios is shown in Fig. 13.
Fig. 13 is transformed into percentages of completion time in this
experiment, which is obtained from the comparison based on the
ATCS-MCT as shown in Fig. 14. From Figs. 13 and 14, it can be real-
ized that the completion time spent by the Max-min and MCT are
stood on top 2 positions of the experiment results, followed by the
ATCS-MCT and the Min-min. The ATCS-MCT was lower than the
Min-min in most cases. It is shown in Fig. 14 that hairline differ-
ence between the ATCS-MCT and the MCT. In the LL case, the



Fig. 11. Pseudocode of the modified Max-min heuristic.
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completion time by the ATCS-MCT was 11,876.61 s, while the com-
pletion time of MCT was 11,926.54 s. The ATCS-MCT was 49.93 s
faster than the MCT. In the LH case, the completion time by the
ATCS-MCT was 73,939.72 s, while that of the MCT was
73,498.86 s. The ATCS-MCT was 440.86 s slower than the MCT. In
the HL case, the ATCS-MCT had a completion time of
352,570.53 s, while the MCT only achieved a completion time of
351,233.61 s. The ATCS-MCT was 1336.92 s slower than the MCT.
In the HH case, the completion time of the ATCS-MCT was
2,185,918.36 s, while that of the MCT was 2,183,872.91 s. The
ATCS-MCT was 2045.45 s slower than the MCT. Hence, it can be
implied that the higher heterogeneity of task and computer leads
to a greater difference between the two approaches.

The ranges of task and computer heterogeneities in this study
were based on the study by Braun et al. In the experiment by Braun
et al. (2001), the completion time with the Min-min was similar to
GA and surpassed the Max-min. However, simulation results in
this study revealed that the Max-min led to a completion time,
which was shorter than that of the Min-min. The Min-min had a
worse effect in a dynamic environment than in a static environ-
ment. Given that the Min-min and the Max-min are looking for
the set of minimal completion time from the time that each task
is performed in each computer that is in queue in the first stage,
then the chosen minimal or maximal completion time from the
set is approached by the Min-min or the Max-min. Therefore, in
a Grid environment, it can be understood that even under the same
degree of heterogeneities, variant environment would lead to
changes in the minimal makespan for different scheduling
heuristics.
5.3. Total weighted tardiness

The total weighted tardiness obtained by the six scheduling
heuristics under the four heterogeneity scenarios is shown in
Fig. 15. Fig. 15 is transformed into percentages of total weighted
tardiness in this experiment, which is obtained from the compari-
son based on the ATCS-MCT as shown in Fig. 16. The ATCS-MCT
reached the lowest total weighted tardiness, followed by the
Min-min. The MCT and the Max-min were the third and fourth
of the six scheduling heuristics.

The scheduling by the ATCS-MCT considers the minimal make-
span along with the weight and deadline of each task. Therefore,
the ATCS-MCT is capable of selecting the more important tasks
and calls for the desired execution based on the corresponding
deadline. Thus, the total weighted tardiness can be minimized. In
contrast, the Max-min and MCT reached the first and second short-
est completion time. However, the selection of tasks fails to con-
sider the weight and deadline of the task, which is similar to
other scheduling heuristics. Therefore, the completion time of
some tasks may easily exceed the assigned deadline. After being
weighted, the total weighted tardiness of the task would be
larger.

5.4. Computing cost

The pricing of computing cost is based on the pricing strategy
proposed by Sun Grid, which necessitates that the utilization of a
CPU per hour will be charged one US dollar. Similarly, the comput-
ing cost for the six scheduling heuristics under the four different
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Fig. 13. Completion time by different scheduling heuristics under the same heterogeneity scenario.

L.-Y. Tseng et al. / Expert Systems with Applications 36 (2009) 11118–11130 11127
heterogeneity scenarios is shown in Fig. 17. Fig. 17 is transformed
into percentages of computing cost in this experiment, which is ob-
tained from the comparison based on ATCS-MCT as shown in
Fig. 18. It is shown that ATCS-MCT and the Min-min are stood on
the second and third positions of the experiment results. The
Max-min and MCT achieved the first and second shortest comple-
tion time. However, they only obtained a ranking of fourth and fifth
shortest real cost computation. Computing the cost by the MET
was 3.43–5.64 times lower than the ATCS-MCT and was the lowest
among all approaches. However, the completion time of the MET
was 3.86–4.72 times longer than that of the ATCS-MCT. In addition,
the total weighted tardiness of the MET was 4.12–5.29 times long-
er than that of the ATCS-MCT.

The MET can dramatically reduce the cost, based on its ability to
dispatch all tasks to all computers that have the best performance.
The processing times for each task are relatively minimal and this
can minimize the actual cost. However, it is difficult to fulfill this
scheduling heuristic in a Grid computing. This is due to the ten-
dency of the Grid, which is to utilize currently idle computers of
global distribution. However, the best performance computers
may not always remain idle and only few computers among all
others can be regarded as the optimal. Therefore, if all the tasks
are dispatched to these optimal computers. This would cause a se-
vere unload-balance, the intention of Grid computing would be
distorted and the waiting time of each task would be prolonged.
This is the reason why the completion time of the MET would reach
far beyond that of the other scheduling heuristics, as shown in
Fig. 14. Moreover, each computer was not given a weight. Accord-
ing to general pricing strategies, the unit cost for computation by a
computer with a better CPU performance will be higher than
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Fig. 15. Total weighted tardiness by different scheduling heuristics under the same heterogeneity scenario.
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computers of poorer performance. When discriminatory pricing is
applied to the computers with different performance levels, then
the computing cost by the MET may not be the lowest.

In this study, the simulation results of execution time, commu-
nication time, weight and deadline of tasks were examined in the
above four subsections. It was observed that the completion times
of the Max-min and the MCT were ranked as the first and second
fastest. However, the total weighted tardiness of both was ranked
as the third and fourth lowest and the computer costs of both were
ranked as the fourth and fifth lowest. In the experiment results, it
was shown that the minimum completion time does not lead to
minimum cost. In addition, the total weighted tardiness by the
ATCS-MCT was considerably the lowest than that of the other
scheduling heuristics and the computing cost was ranked as the
second and similar to what can be achieved by the other schedul-
ing heuristics that featuring satisfactory makespan. Therefore, the
ATCS-MCT scheduling heuristic can be proposed for the evaluation
of cost before implementation.
6. Discussions and conclusions

The development of technology brings about diverse resource-
sharing approaches and enhances the popularization. To confront
the trend towards a user-pay policy, similar to the one Sun Grid
has adopted for the payment mechanism by unit time, the selec-
tion of a scheduling method to reduce cost becomes very impor-
tant. Through experimental results in this study, the following
conclusions can be obtained:

1. Scheduling heuristics that are more suitable for actual Grid
computing will be considered. In response to the distributed
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processing characteristics of Grid computing, this study pro-
poses three factors to be considered: (1) communication time
between computers, (2) weight and (3) deadline. This study
revealed that the makespan was similar to the MCT, which
was previously assumed to be the benchmark scheduling heu-
ristic in on-line mapping. In addition, the makespan of the
Max-min was similar to the MCT and they were ranked as the
first and second fastest.

2. The assessment will not rely on completion time alone. The
minimum makespan was the only objective function for sched-
uling heuristics in previous studies (Braun et al., 1999, 2001;
Fujimoto & Hagihara, 2004; Kim & Kim, 2003; Maheswaran
et al., 1999; Ritchie & Levine, 2003). However, as CPU time grad-
ually becomes the basis for pricing, it is confirmed in the exper-
imental results of this study that the minimum makespan does
not sure lead to minimum cost.
3. The simulation experiment must take communication between
network nodes into account. Based on recommendations by
numerous scholars, the network simulation software NS2 was
adopted. This was done to produce data, such as packet and
transmission time, for the simulation of inter-node data trans-
mission for the purpose of enhancing experiment authenticity
on Grid computing.

4. The relationship between total weighted tardiness and computer
cost will be considered. Both the ATCS-MCT scheduling heuristic
and the other scheduling heuristics feature similar makespan. In
addition to expected execution time, this study proposes that the
weight and deadline of tasks will also be considered. Therefore,
the minimum total weighted tardiness and lower computation
costs can be achieved in authentic Grid computing.

5. Along with different cost budgets, different scheduling
heuristics can be applied to various environments:
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I Execution dispatching time: If the goal is to reduce the dis-
patching time that completes a job, the OLB would be the opti-
mal choice. This scheduling heuristic has been verified in most
studies.

II Completion time: If the objective is to minimize makespan
without a concern of total weighted tardiness and cost, then
the Max-min or the MCT is recommended. The MCT scheduling
heuristic is the on-line mapping benchmark.

III Cost: When the intent is to achieve lower cost and minimal
total weighted tardiness within shorter completion time, the
ATCS-MCT is an ideal option.

By and large, the dynamic scheduling heuristic of the ATCS-
MCT, which is proposed in this study for a Grid environment,
achieves makespan similar to other better scheduling heuristics.
In addition, with weight and deadline factors of the tasks taken
into consideration, the tasks have a high weight or greater critical
deadline that can implement first and obtain a lower cost.
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