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Abstract A cloud workflow system is a type of platform service which facilitates the automation 

of distributed applications based on the novel cloud infrastructure. One of the most important 

aspects which differentiate a cloud workflow system from its other counterparts is the market-

oriented business model. This is a significant innovation which brings many challenges to 

conventional workflow scheduling strategies. To investigate such an issue, this paper proposes a 

market-oriented hierarchical scheduling strategy in cloud workflow systems. Specifically, the 

service-level scheduling deals with the Task-to-Service assignment where tasks of individual 

workflow instances are mapped to cloud services in the global cloud markets based on their 

functional and non-functional QoS requirements; the task-level scheduling deals with the 

optimisation of the Task-to-VM  (virtual machine) assignment in local cloud data centres where 

the overall running cost of cloud workflow systems will be minimised given the satisfaction of 

QoS constraints for individual tasks. Based on our hierarchical scheduling strategy, a package 

based random scheduling algorithm is presented as the candidate service-level scheduling 

algorithm and three representative metaheuristic based scheduling algorithms including genetic 

algorithm (GA), ant colony optimisation (ACO) and particle swarm optimisation (PSO) are 

adapted, implemented and analysed as the candidate task-level scheduling algorithms. The 

hierarchical scheduling strategy is being implemented in our SwinDeW-C cloud workflow system 

and demonstrating satisfactory performance. Meanwhile, the experimental results show that the 

overall performance of ACO based scheduling algorithm is better than others on three basic 

measurements: the optimisation rate on makespan, the optimisation rate on cost and the CPU time.  

Keywords Cloud Workflow System · Cloud Computing · Workflow Scheduling · Hierarchical 

Scheduling · Metaheuristics 

1. Introduction 

Cloud computing is emerging as the latest distributed computing paradigm and attracts increasing 

interests of researchers in the area of Distributed and Parallel Computing [34], Service Oriented 

Computing [2] and Software Engineering [38]. Though there is yet no consensus on what is Cloud, 

but some of its distinctive aspects as proposed by Ian Foster in [18] can be borrowed for an 

insight: “Cloud computing is a large-scale distributed computing paradigm that is driven by 

economies of scale, in which a pool of abstracted, virtualised, dynamically-scalable, managed 

computing power, storage, platforms, and services are delivered on demand to external customers 

over the Internet.” Compared with the definitions of conventional computing paradigms such as 

cluster [30], grid [17] and peer-to-peer (p2p) [45], “economies” is a noticeable keyword in cloud 

computing which has been neglected by others. “Economies” denotes that cloud computing adopts 

market-oriented business model where users are charged for consuming cloud services such as 

computing, storage and network services like conventional utilities in everyday life (e.g. water, 

electricity, gas and telephony) [3]. Meanwhile, cloud service providers are obligated to provider 

satisfactory QoS (quality of service) based on business service contracts. It is evident that cloud 

computing is becoming the latest driving force to deliver computing as the 5
th

 utility besides the 

previous efforts on such as utility based grid computing [35].  
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Cloud can generally provide three levels of services: IaaS (Infrastructure as a Service), PaaS 

(Platform as a Service), and SaaS (Software as a Service). As described in [18], a cloud workflow 

system can be regarded as a type of platform service which facilitates the automation of distributed 

large-scale e-business and e-science applications in the cloud [25, 42]. As a cloud service itself, a 

cloud workflow system belongs to a specific service provider and under the management of its 

cloud resource managers. However, as a platform service, a cloud workflow system possesses the 

ability to get access to other cloud services and facilitate the service level agreements (SLA) [3, 27, 

37]; and the ability to control the underlying cloud resources (e.g. computing and storage resources) 

in its own data centre.  

Generally speaking, the function of a cloud workflow system and its role in a cloud computing 

environment, is to facilitate the automation of user submitted workflow applications where the 

tasks have precedence relationships defined by graph-based modelling tools such as DAG 

(directed acyclic graph) and Petri Nets [1, 23], or language-based modelling tools such as XPDL 

(XML Process Definition Language) [48]. For conventional applications with independent tasks, 

resource managers usually employ scheduling strategies with relatively simple heuristics such as 

FCFS (first come, first served), Min-Min and Max-Min [40, 50] to satisfy the QoS constraints such 

as on time and/or cost. On the contrary, cloud workflow applications with dependent tasks are 

managed by cloud workflow systems which require more sophisticated scheduling strategies to 

satisfy QoS constraints as well as the precedence relationships between workflow tasks. Moreover, 

with the increasing demand for process automation in the cloud, especially for large-scale 

collaborative and distributed e-business and e-science applications [14, 25, 39], the investigation 

on cloud workflow scheduling strategies is becoming a significant issue not only in the area of 

cloud workflow systems but also general cloud computing.  

Among many others, one of the most important aspects which differentiate a cloud workflow 

system from its other counterparts is the market-oriented business model [3, 18]. Such a seemed 

small change actually brings significant innovation to conventional computing paradigms since 

they are usually based on non-business community models where resources are shared and free to 

be accessed by community members [48]. Specifically, given such a market-oriented business 

model, in this paper, we identify the following two changes in comparison to conventional 

computing paradigms which may bring major challenges to cloud workflow scheduling strategies: 

1) from best-effort based scheduling to QoS-constraint based scheduling; 2) from specific 

application oriented scheduling to general service oriented scheduling. Details will be presented in 

Section 3.  

In this paper, to adapt to the above changes and address the consequent challenges brought by 

them, we propose a market-oriented hierarchical scheduling strategy in cloud workflow systems. 

Specifically, our strategy includes a service-level scheduling stage and a task-level scheduling 

stage. Based on workflow specifications (including task definitions, process structures and QoS 

constraints), in the service-level scheduling stage, the global scheduler assigns workflow tasks to 

candidate services in the global cloud markets and negotiate service level agreements (SLA). For 

service-level scheduling, we present a package based random scheduling algorithm which can 

generate service-level scheduling plans in an efficient fashion. In the task-level scheduling stage, 

given the QoS constraints for both workflow tasks and non-workflow tasks, the local scheduler 

optimises the Task-to-VM  (virtual machine) assignment in its own data centre with specific 

metaheuristic scheduling algorithms. In this paper, three representative metaheuristic scheduling 

algorithms including genetic algorithm (GA), ant colony optimisation (ACO) and particle swarm 

optimisation (PSO) are investigated as the candidate task-level scheduling strategies and their 

performance is compared in our SwinDeW-C cloud workflow system. The work presented in this 

paper aims to provide a tentative investigation on workflow scheduling strategies in market-

oriented cloud workflow systems where satisfactory workflow QoS can be guaranteed for user 

submitted workflow applications while in the meantime, the system running cost of cloud 

workflow systems can be decreased through dynamic optimisation.  

The remainder of the paper is organised as follows. Section 2 introduces a general architecture 

of the cloud workflow system and presents the problem analysis for cloud workflow scheduling. 

Section 3 proposes the market-oriented hierarchical scheduling strategy. Section 4 presents the 

package based random generation algorithm for service-level scheduling and Section 5 presents 

the three representative metaheuristic scheduling algorithms for task-level scheduling. Section 6 

demonstrates simulation experiments to verify the effectiveness of our hierarchical scheduling 

strategy and presents the comparison results for the performance of the three metaheuristic 

scheduling algorithms. Section 7 presents the related work. Finally, Section 8 addresses the 

conclusions and the future work.  
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2. Workflow Scheduling in Cloud Workflow Systems 

In this section, we first present a general architecture of the cloud workflow system to demonstrate 

the role of workflow schedulers in the lifecycle of a workflow instance. Afterwards, we present the 

problems faced by workflow scheduling strategies in cloud workflow systems.   

2.1 Cloud Workflow System Architecture 

The architecture of SwinDeW-C is depicted in Figure 1. As discussed earlier, the general cloud 

architecture includes four basic layers from top to bottom: application layer (user applications), 

platform layer (middleware cloud services to facilitate the development/deployment of user 

applications), unified resource layer (abstracted/encapsulated resources by virtualisation) and 

fabric layer (physical hardware resources). Accordingly, the architecture of SwinDeW-C can also 

be mapped to the four basic layers. Here, we present the lifecycle of an abstract workflow 

application to illustrate the system architecture. Note that here we focus on the system architecture, 

the introduction on the cloud management services (e.g. brokering, pricing, accounting, and virtual 

machine management) and other functional components are omitted here and will be introduced in 

the subsequent sections.   
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Figure 1. Cloud Workflow System Architecture 

 

Users can easily get access to SwinDeW-C Web portal (as demonstrated in Section 6) via any 

electronic devices such as PC, laptop, PDA and mobile phone as long as they are connected to the 

Internet. Compared with SwinDeW-G which can only be accessed through a SwinDeW-G peer 

with pre-installed programs, the SwinDeW-C Web portal has greatly improved its usability. At 

workflow build-time stage, given the cloud workflow modelling tool provided by the Web portal 

on the application layer, workflow applications are modelled by users as cloud workflow 

specifications (consist of such as task definitions, process structures and QoS constraints). After 

workflow specifications are created (static verification tools for such as structure errors and QoS 

constraints may also be provided), they will be submitted to any one of the coordinator peers on 

the platform layer. Here, an ordinary SwinDeW-C peer is a cloud service node which has been 

equipped with specific software services similar to a SwinDeW-G peer. However, while a 

SwinDeW-G peer is deployed on a standalone physical machine with fixed computing units and 

memory space, a SwinDeW-C peer is deployed on a virtual machine of which the computing 

power can scale dynamically according to task request. As for the SwinDeW-C coordinator peers, 

they are super nodes equipped with additional workflow management services and the knowledge 

across different clouds compared with ordinary SwinDeW-C peers. For example, a SwinDeW-C 

coordinator peer can act as a global scheduler which deals with service-level scheduling at the 
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platform layer (will be discussed in Section 3) for mapping workflow tasks with suitable cloud 

services.  

At the run-time instantiation stage, the cloud workflow specification can be submitted to any of 

the SwinDeW-C coordinator peers. Afterwards, the workflow tasks will be assigned to suitable 

peers through peer to peer based communication between SwinDeW-C peers. Since the peer 

management such as peer join, peer leave and peer search, as well as the p2p based workflow 

execution mechanism, is the same as in SwinDeW-G system environment. Therefore, the detailed 

introduction is omitted here but can be found in [45]. Before workflow execution, a coordinator 

peer will conduct an evaluation process on the submitted cloud workflow instances to determine 

whether they can be accepted or not given the specified non-functional QoS requirements under 

the current pricing model. It is generally assumed that functional requirements can always be 

satisfied given the theoretically unlimited scalability of cloud. In the case where users need to run 

their own special programs, they can upload them through the Web portal and these programs will 

be automatically deployed in the data centre by the resource manager. Here, a negotiation process 

between the user and the cloud workflow system may be conducted if the user submitted workflow 

instance is not acceptable to the workflow system due to the unacceptable offer on budgets or 

deadlines. The final negotiation result will be either the compromised QoS requirements or a failed 

submission of the cloud workflow instance. If all the task instances have been successfully 

allocated (i.e. acceptance messages are sent back to the coordinator peer from all the allocated 

peers), a cloud workflow instance may be completed with satisfaction of both functional and non-

functional QoS requirements (if without exceptions). Hence, a cloud workflow instance is 

successfully instantiated.   

Finally, at run-time execution stage, each task is executed by a SwinDeW-C peer. In cloud 

computing, the underlying heterogeneous resources are virtualised as unified resources (virtual 

machines). Each peer utilises the computing power provided by its virtual machine which can 

easily scale according to the request of workflow tasks. As can be seen in the unified resource 

layer of Figure 1, the SwinCloud is built on the previous SwinGrid infrastructure at the fabric 

layer. Meanwhile, some of the virtual machines can be created with external commercial IaaS 

(infrastructure as service) cloud service providers such as Amazon, Google and Microsoft. The 

virtual machines within the SwinCloud are managed by its local scheduler which deals with task-

level scheduling at the unified resource layer (will be discussed in Section 3) for optimising the 

Task-to-VM assignment to meet QoS constraints of individual workflow tasks. Any SwinDeW-C 

peer (either coordinator peer or ordinary peer) can act as a local scheduler. During cloud workflow 

execution, workflow management tasks such as QoS management, data management and security 

management are executed by the SwinDeW-C peers. Users can get access to the final results as 

well as the running information of their submitted workflow instances at any time through the 

SwinDeW-C Web portal.  

2.2 Problem Analysis for Cloud Workflow Scheduling 

Cloud computing adopts the market-oriented business model and hence service contracts are 

signed between users and service providers which specify both functional and non-functional QoS 

constraints before the running of cloud applications. If service providers fail to fulfil the service 

contracts, they will have to compensate the loss claimed by users. Otherwise, the reputation of 

service providers will be deteriorated in the global cloud markets. Therefore, cloud service 

providers need to adopt a series of marketing and technical strategies to ensure the successful 

fulfilment of service contracts while maintain the profits of their own. Among many others, a 

critical issue is the cloud workflow scheduling strategy which plays an important role in the 

resource management of cloud workflow systems. Specifically, given the market-oriented business 

model, we identify the following two changes in cloud computing in comparison to conventional 

computing paradigms which may bring major challenges to cloud workflow scheduling strategies:  

1) From best-effort based scheduling to QoS-constraint based scheduling. Conventional 

computing paradigms such as cluster and grid are generally based on community models where 

resources are free to access and shared among community members who are also resource 

contributors themselves. Since monetary cost is not considered, the resource managers mainly 

adopts the best-effort based workflow scheduling strategies which only attempt to minimise the 

makespan (overall completion time) of workflow applications [50]. On the contrary, with the 

market-oriented business model in cloud computing environments, resource managers should be 

able to meet the user specified QoS requirements (mainly on makespan and cost) for individual 

workflow instances as well as minimise the overall makespan and cost for multiple workflow 

instances running concurrently in cloud workflow systems, namely, it should be able to minimise 

the overall running cost of cloud workflow systems to gain extra profits for cloud workflow 
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service providers. Therefore, to meet the above requirements in cloud workflow systems, QoS 

constraint based scheduling strategies [11, 26, 29, 49, 50] instead of best-effort based scheduling 

strategies need to be investigated.  

2) From specific application oriented scheduling to general service oriented scheduling. 

Conventional workflow systems are often application oriented, i.e. designed to accommodate 

specific type of applications where resources are managed in a centralised fashion. With the 

emerging of service oriented architecture (SOA) [4, 13, 15, 16] , and especially the advent of three 

levels of services (IaaS, PaaS and SaaS) in cloud computing [18], workflow systems have been 

evolved from application oriented to service oriented. In such a service oriented environment, 

cloud workflow scheduling faces at least two problems. The first problem is that the cloud 

workflow system may not be able to provide all the cloud services required for the execution of 

the entire workflow instance in its own data centre. Hence, as described in Section 2, at workflow 

instantiation stage, the cloud workflow resource manager needs designate a resource broker to 

acquire available services from other service providers (as sub-contractors) in the global cloud 

markets and negotiate SLAs to ensure the satisfaction of user requirements. Therefore, cloud 

workflow schedulers should be able to facilitate the selection of suitable services with the correct 

assignment of fine-grained QoS constraints and control of precedence relationships. The second 

problem is that cloud workflow systems need to handle intensive requests for workflow 

applications, in another word, cloud workflow systems are of instance intensive. As platform 

services, workflow systems in cloud are no longer application oriented. Hence, they should 

possess good scalability to handle the requests from different application domains such as data and 

computation intensive scientific workflow applications (e.g. weather forecasting and astrophysics) 

and transaction intensive business workflow applications (e.g. bank transactions and insurance 

claim applications). Meanwhile, within the same data centre, there are probably many other 

independent general non-workflow tasks (without precedence relationships but with QoS 

constraints) running on VMs. Therefore, they should also be considered in cloud workflow 

scheduling strategies so as to optimise the Task-to-VM assignment in cloud data centres.  

To conclude, based on the above problem analysis, the basic requirements for cloud workflow 

scheduling strategies are: 1) the satisfaction of QoS requirements for individual workflow 

instances; 2) the minimisation of the cloud workflow system running cost; 3) the ability of 

assigning fine-grained QoS constraints to facilitate SLA management; 4) good scalability for 

optimising Task-to-VM assignment in cloud data centres which include both workflow and non-

workflow tasks.   

3. A Market-Oriented Hierarchical Scheduling 
Strategy 

3.1 Strategy Overview 

To satisfy the four basic requirements for cloud workflow scheduling strategies presented above, 

we propose a market-oriented hierarchical scheduling strategy. The motivation mainly comes from 

that the fact that the four basic requirements actually demand the scheduling at two different levels, 

namely service-level scheduling and task-level scheduling. Specifically, for the first and third 

requirements, a global scheduler which in charges of the service-level scheduling is required to 

allocate suitable services and assign fine-grained QoS constraints to facilitate the management of 

service level agreement. As for the second and the fourth requirements, a local scheduler which in 

charges of the task-level scheduling is required to optimise the Task-to-VM assignments in the 

cloud data centre. The strategy overview is presented in Table1. 

 

Table 1 Strategy Overview 

Market-Oriented Hierarchical Scheduling Strategy 
Input: Cloud Workflow Specifications, Cloud Service Providers, Unified Resources 

Output: Service-Level Scheduling Plan and Task-Level Scheduling Plan 

Service-Level 

Scheduling 

Global Scheduler: platform layer, static scheduling, workflow 

instances, service providers 

Step1: search and produce the collection of suitable services based 

on functional requirements 

Step2: assign fine-grained QoS constraints based on the non-
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functional QoS requirements 

Step3: allocate suitable services and make reservations 

Task-Level 

Scheduling 

Local Scheduler: unified resources layer, dynamic scheduling, 

workflow tasks, unified resources 

Step1: obtain the QoS constraints for each individual tasks 

(including both workflow and non-workflow tasks) 

Step2: optimise the Task-to-VM assignment  

Step3: implement the optimal scheduling plan 

 

The input of our strategy mainly includes the cloud workflow specifications (consist of such as 

task definitions, process structures and QoS constraints), cloud service providers (the valid service 

providers registered in the cloud service catalogue) and the unified resources (namely virtual 

machines). The output of our strategy includes both the service-level scheduling plan which 

handles individual workflow instances by allocating suitable services for every workflow task and 

making reservations through SLA; and the task-level scheduling which handles both workflow 

tasks of multiple workflow instances and non-workflow tasks in the local data centre by 

optimising the Task-to-VM assignment to minimise the overall running cost of the cloud workflow 

system. Note that for the purpose of description, the detailed steps described below for each 

scheduling stage may cover some existing functionalities of general resource management in cloud 

computing (namely the role of the global scheduler and local scheduler may overlap with the role 

of the resource managers) such as resource brokering and SLA management, but they are not the 

focus of this paper. This paper mainly proposes the hierarchical scheduling framework and 

investigates the corresponding algorithms for the service-level scheduling and the task-level 

scheduling which will be further illustrated in Section 4 and Section 5 respectively. 

3.2 Service-Level Scheduling 

The service-level scheduling is a part of the resource management on the platform layer. The 

service-level scheduling is a type of static scheduling which aims to allocate the suitable service 

for each workflow task of individual workflow instances. The functionality of service-level 

scheduling is usually realised by the global schedulers which have the knowledge across different 

clouds such as a SwinDeW-C coordinator peer.  

The service-level scheduling mainly consists of the following three steps: 

Step1: search and produce the collection of suitable services based on functional requirements. 

After workflow specifications are submitted to cloud workflow systems, the global scheduler will 

first search for the available service providers in the global cloud markets given the functional 

requirements specified in the cloud workflow specifications. In most cases, the required services 

could be found on the cloud. If not, users may need to upload their own programs to the cloud 

workflow systems and the cloud workflow systems will deploy the programs automatically in its 

local data centre. Therefore, in this step, most workflow tasks will be given with more than one 

candidate service providers.   

Step2: assign fine-grained QoS constraints based on the non-functional QoS requirements. 

Since in the global cloud markets, there are many service providers available, the non-functional 

QoS requirements (such as time, cost and trust) are the main criteria to select the suitable service 

providers. However, users normally only specify one global or several coarse-grained QoS 

constraints for the entire workflow instance or major workflow segments in cloud workflow 

specifications, global schedulers need to assign fine-grained QoS constraints to each workflow 

tasks so as to select the suitable service providers for each of them [27, 48]. Since there are many 

strategies available for setting overall QoS constraints and assigning fine-grained QoS constraints 

in workflow systems, we will not discuss them in this paper but can be referred in [21, 27, 48]    

Step3: allocate suitable services and make reservations. As we introduced in Section 2, a 

negotiation process between the user and the cloud workflow system will be conducted in order to 

sign service contracts. Based on the collection of candidate services obtained in Step1 and the fine-

grained QoS constraints obtained in Step2, a static scheduling strategy, as will be illustrated in 

Section 4.2, is required in order to generate a number of service-level scheduling plans with 

different task-to-service assignments. Given these service-level scheduling plans, the global 

scheduler can then estimate and provide the user with competitive prices (which may be 

determined by some marketing level strategies but normally be able to cover the system running 

cost) and different levels of QoS (above the level of user requirements). As for those services 

which are not own by the cloud workflow system, the global scheduler will activate the resource 

broker to negotiate SLA with the other service providers. Finally, after the selection of a specific 
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service-level scheduling plan, the contract between the user and the cloud workflow system is 

signed (along with the sub-contracts between cloud workflow systems and other service providers), 

and reservations will be made on all the services (e.g. specific time slots for computing services 

and fixed sizes of memory spaces for storage services).  

Based on the above three steps, a service-level scheduling plan is selected at the workflow 

runtime instantiation stage with the static information of candidate services. It can guarantee 

satisfactory QoS for the workflow instance if the service contract (along with all the sub-contracts) 

will be successfully fulfilled as promised. However, due to the dynamic nature of cloud computing 

environments, local schedulers in cloud data centres should be able to adapt to the system changes 

or exceptions at workflow runtime (e.g. resource upgrade and resource recruitment, or resource 

unavailability and resource overload). Therefore, at the workflow runtime execution stage, to 

ensure the successful fulfilment of service contracts, dynamic task-level scheduling in each cloud 

data centre is required.   

3.3 Task-Level Scheduling 

The task-level scheduling is a part of the resource management on the unified resources layer. The 

task-level scheduling is a type of dynamic scheduling which aims to optimise the Task-to-VM 

assignment so that the QoS constraints for each individual tasks will be satisfied while the overall 

running cost of cloud workflow systems can be minimised. The functionality of task-level 

scheduling is usually realised by local schedulers which are located within a specific cloud such as 

a SwinDeW-C ordinary peer. Note that local scheduler cannot control the cloud resources which 

belong to other service providers but only with the obligations of service contracts. Each service 

provider may have its own task-level scheduling strategies to optimise the system running cost of 

its own data centre. Therefore, in our strategy, the task-level scheduling only targets the tasks 

running in a specific data centre, i.e. the data centre which the cloud workflow system belongs to. 

Moreover, since our scheduling strategy can be implemented simultaneously in many data centres, 

it can also be employed to minimise the overall running cost for multiple data centres. However, 

this will be further investigated in our future work.    

The task-level scheduling mainly consists of the following three steps: 

Step1: obtain the QoS constraints for each individual tasks (including both workflow and non-

workflow tasks). Given the results of the service-level scheduling, suitable services have been 

allocated to individual workflow tasks and time slots have been booked in advance. However, 

since the initial scheduling plan is generated by the service-level scheduling based on static 

information (e.g. the available time slots and the work load) of cloud services, the runtime service 

states may be significantly different due to such as the changes of service workload, the 

unavailability of existing resources and the recruitment of additional resources. Moreover, since 

the service-level scheduling plan only deals with individual workflow instances, it cannot have a 

global view of the Task-to-VM assignment for workflow tasks of multiple workflow instances and 

general non-workflow tasks in the data centre which needs be optimised to minimise the system 

running cost. However, since the original time slots on each service reserved by service-level 

scheduling will probably be re-arranged during the optimisation process, the QoS constraints for 

each individual task need to be obtained for validation purpose, i.e. to validate whether the 

generated scheduling plans can meet these QoS constraints or not. Moreover, for workflow tasks, 

their precedence relationships are also required to be obtained besides their QoS constraints.  

Step2: optimise the Task-to-VM assignment. In cloud data centres, the underlying physical 

resources are virtualised as unified resources, namely virtual machines (VMs). VMs with specific 

CPU units and memory spaces can be created dynamically to suit the needs of different cloud 

applications. Most of the VMs are created with commodity machines which have moderate 

processing speed. However, due to the needs of some computation intensive tasks such as 

scientific workflow applications, high performance machines such as supercomputers are also 

available in the data centre or hired from other service providers which provide IaaS, i.e. 

infrastructure as a service. Therefore, VMs in a specific data centre may include resources with 

different processing speeds, and hence with different pricing models. Additionally, the network 

transfer is usually free within a data centre and the cost on data storage can be paid in a simple 

way (e.g. the storage cost for each task is linear to the storage time and size since the storage 

services are normally charged with a unanimous pricing model). Therefore, in this paper, the 

optimisation of the Task-to-VM assignment focuses on the reduction of the time and cost for 

computation services. The goal in this step is to generate an optimal (near-optimal) scheduling 

plan by a specific metaheuristic scheduling algorithm which can significantly reduce the overall 

system running time and cost for the data centre while satisfy the QoS constraints of both 

workflow and non-workflow tasks.  
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Step3: implement the optimal scheduling plan. After the optimal (near-optimal) scheduling plan 

is generated in Step2 by a specific metaheuristic scheduling algorithm within limited time, it will 

then be automatically implemented by the local scheduler who is capable of controlling the 

underlying resources on the fabric layer to carry out the workflow execution.  

Based on the above three steps, a task-level scheduling plan is implemented in the cloud data 

centre to carry out the workflow execution with satisfactory QoS. Meanwhile, the overall running 

cost of the cloud workflow system has also been minimised.  

As mentioned earlier, cloud workflow systems are of instance intensive. Therefore, the service-

level scheduling which deals with individual workflow instances will be conducted whenever a 

new workflow instance arrives and hence in a very high frequency. As for the task-level 

scheduling, since it deals with the Task-to-VM assignment in the entire data centre, it will be 

conducted much less frequently so as to allow the optimal scheduling plan to be carried out but 

also periodically so as to accommodate the coming of new tasks. For those tasks which have not 

been optimised yet, they will be executed according to their reserved time slots, namely the initial 

service-level scheduling plan. However, when significant environment changes such as the break 

down of existing resources or the recruitment of additional resources, the task-level scheduling 

should often be conducted immediately.  

4. Service-Level Scheduling Algorithm 

Service-level scheduling is to assign suitable service to each task of individual workflow instances 

according to their functional and non-functional QoS requirements. As mentioned above, we will 

not detail the algorithms for the processes in Step1 and Step2 such as service discovery and fine-

grained QoS constraints assignment but focus on the algorithm for generating service-level 

scheduling plans which specify the concrete Task-to-Service assignment.  

Specifically, given the set of unassigned workflow tasks, the set of available cloud services 

(obtained in Setp1 based on functional requirements), the objective for service-level scheduling 

algorithm is to generate candidate scheduling plans which can satisfy the following constraints: the 

fine-grained QoS constraints for each workflow task (obtained in Step2 based on non-functional 

QoS requirements), the precedence relationship between workflow tasks (defined in workflow 

specifications). Based on the generated candidate scheduling plans, the global scheduler needs to 

select the best one from them usually based on the system defined criteria such as minimum cost 

or minimum time. The best service-level scheduling plan will be applied to specify service 

contract between the user and the cloud workflow system and further make reservations on the 

selected services. Therefore, the service-level scheduling algorithm should be able to explore the 

search space of Task-to-Service in an efficient fashion.   

In this paper, we present a package based random scheduling algorithm for service-level 

scheduling. But before that, we briefly illustrate DAG task graphs. DAGs (Directed Acyclic 

Graphs) based modelling is widely used in workflow area [1, 5, 7, 23]. As depicted in Figure 2, in 

a DAG, each node represents a workflow task and directed links indicate the task dependencies. 

To facilitate cloud workflow scheduling, each task node in a DAG also associated with its QoS 

constraints, e.g. the constraints on the execution time and execution cost. In a DAG, each node 

(except the root node, i.e. the first task) will have one and only one parent node which indicates its 

parent task. A child task will become ready and can be executed until its parent task is completed. 

However, it is possible that a child task has more than one parent task in real world processes. In 

such a case, as depicted in Figure 2(b), a transformation process will create multiple instances of 

the child task for each of its parent tasks. Additionally, for an iterative task as depicted in Figure 

2(c), a transformation process will create the same number of instances for the iterative task as its 

iteration times. Therefore, DAGs can visually represent common workflow structures with single 

parent-child relationships. This simple representation of DAGs can benefit workflow scheduling 

algorithms in the efficient validation of the precedence relationships between workflow tasks. An 

example workflow defined by a DAG is presented in Figure 2(d). 
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(a) DAG Task Graph 

 

 

 

 
 

 

(b) Multiple Parent Task 

 

 
 

 

 

(c) Iterative Task 

 

 
(d) Example Workflow 

Figure 2. DAG Task Graph 

 

As depicted in Figure 3, the service-level scheduling algorithm adopts a two-dimensional 

representation of scheduling plans where the first dimension isched  denotes the scheduled tasks 

and the second dimension ialloc  denotes the allocated services. The packages here consist of co-

allocated tasks of the same workflow instance with correct precedence relationships defined in 

DAGs. For example, if T1, T2 and T3, as depicted in Figure 2(a), can be executed by the same 

service (i.e. with the same functional requirements), then they can form a package where the tasks 

are arranged in correct precedence relationships and share the same candidate service randomly 

allocated to each package (e.g. Package 1 of the service-level scheduling plan shown in Figure 3 

with service 2S ). Note that here without losing generality, we assume every workflow task is an 

atomic task, i.e. every workflow task only requires a single cloud service. If a workflow task is not 

an atomic task, it can be split into multiple atomic tasks according to its required capabilities. 

Every cloud service can have more than one capability. As for multiple instances of workflow 

tasks (e.g. multiple parent task and iterative task as shown in Figure 2(b) and Figure 2(c)), it is 

possible that they are located in different packages and allocated with different services (e.g. the 

two instances of task Tm shown in Package k-1 with service 1S  and Package k with service 

pS in Figure 3). In such a case, the multiple instances of the same task need to be allocated with 

the same service, e.g. either 1S  or pS  in a random fashion or based on the service speed or price. 

The pseudo-code for package based random scheduling algorithm is presented in Algorithm 1. 

 

 
 

Figure 3. Package Based Service-Level Scheduling Plan  
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Algorithm 1. Package Based Random Scheduling 

 

The input of the scheduling algorithm consists of the DAGs which define the precedence 

relationships between workflow tasks and their associated fine-grained QoS constraints on time 

and cost, and the available cloud services with their capability (capabilities), execution speed and 

price. The algorithm will repeated for a number of times until a fixed size of candidate scheduling 

plans are generated (line 1). For each package, the workflow tasks will be arranged with correct 

precedence relationships according their associated DAGs, and each package is randomly 

allocated with a service which satisfies the functional requirements (line 2 to line 9). With the 

generated candidate scheduling plans, the next step is to verify them with the given QoS 

constraints (line 10 to line 17). For each candidate scheduling plan, it is valid if and only if for all 

the individual Task-to-Service assignment, the price of the allocated service is not higher than the 

cost constraint of the task, and the execution speed of the allocated service is not lower than the 

execution speed required (i.e. the reciprocal of the execution time) by the task. After the 

verification process, the valid candidate scheduling plans will be compared to obtain the best one 

based on the criteria such as minimum execution time or minimum execution cost (line 18). 

Finally, the best service-level scheduling plan (or sometimes the top ranked several candidates) 

will be returned to the global scheduler to facilitate the signing of service contracts and make 

reservations on allocated services (line 19).  

After the service-level scheduling, workflow tasks of individual cloud workflow instances are 

mapped to correct cloud services with satisfying functional and non-functional QoS performance. 

The global scheduler in the cloud workflow system will implement the selected service-level 

scheduling plan by distributing the corresponding segments of the scheduling plan to the local 

schedulers for cloud services which are responsible for the run-time Task-to-VM assignment in the 

local cloud data centre. In the next section, we will present the task-level scheduling in cloud 

workflow systems.  
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5. Task-Level Scheduling Algorithm 

Task-level scheduling is to optimise the Task-to-VM assignment in the cloud data centres. Since 

the cloud workflow system cannot directly control the cloud services which are owned by other 

service providers, the task-level scheduling in our strategy specifically means the optimisation of 

the Task-to-VM assignment in the local cloud data centre which underneath the cloud workflow 

system, as depicted in Figure 1. Therefore, the major goal for task-level scheduling is to decrease 

the system running cost of cloud workflow systems by dynamically optimising the Task-to-VM 

assignment. As mentioned earlier, in a cloud data centre, there are a large number of workflow 

tasks (with both QoS constraints and precedence relationships) and general non-workflow tasks 

(with QoS constraints but no precedence relationships) running concurrently on unified resources, 

namely virtual machines. These virtual machines are built on commodity machines with moderate 

processing speed and/or supercomputers with high processing power to meet the requirements of 

different applications such as transaction intensive business workflows and computation intensive 

scientific workflows. Meanwhile, virtual machines with different processing speed will be charged 

with different prices. Therefore, task-level scheduling in cloud workflow systems needs to deals 

with the Task-to-VM assignment where the Task set includes both workflow tasks and non-

workflow tasks and the VM set includes different virtual machines with different processing speed 

and prices. Evidently, the input of task-level scheduling algorithms, i.e. the initial Task-to-VM list 

in the data centre, needs to be obtained in the first place.  

Here, note that given the large scalability of cloud computing, the number of tasks running in a 

cloud data centre is huge for instance, hundreds of thousands of tasks. Besides, due to the 

complexity (NP-Complete) of QoS constraint based scheduling problem in nature [50], it is 

extremely difficult, if not impossible, to design a global scheduling algorithm to optimise the 

Task-to-VM assignment of the entire data centre within reasonable overhead, i.e. CPU time. 

Therefore, in our strategy, the task-level scheduling algorithms only aim to optimise the Task-to-

VM assignment of a specific local part of the entire data centre with a reasonable amount of tasks, 

for instance, several hundreds [11]. Meanwhile, in order to reduce the overall running cost of the 

data centre, the task-level scheduling algorithms can be run in a parallel fashion. As such, the 

Task-to-VM assignment of every part of the data centre can be optimised and run with the lowest 

cost. However, the overall running cost of the data centre may not be optimal but it is considerably 

optimised. Therefore, as will also be demonstrated in our simulation experiments, it is a reasonable 

and practical compromise between the overhead of task-level scheduling algorithms and the 

optimisation on the running cost of the cloud data centre. We will leave the further study on the 

task-level scheduling algorithms for the global Task-to-VM assignment of the entire data centre as 

our future work. In this paper, we focus on the task-level scheduling for a specific part of the entire 

data centre. Therefore, how to define the initial Task-Resource list as the input for the task-level 

scheduling algorithms is important but remains a challenging issue. Specifically, there are at least 

two basic requirements for the initial Task-to-VM list: 1) Reasonable partition for the global Task-

to-VM list of the entire data centre; 2) Reasonable size of the Task-to-VM list. The first 

requirement is to ensure that the local Task-to-VM lists, as the input for each parallel task-level 

scheduling algorithms, are reasonably portioned, i.e. the global Task-to-VM list is fully covered by 

the collection of these local Task-to-VM lists, meanwhile, these local Task-to-VM lists are not 

covered with each other. As for the second requirement, as a control over the overhead of the task-

level scheduling algorithms, the size of the local Task-to-VM list should be reasonable, e.g. the 

number of tasks is below 300 and the number of virtual machines is below 20 as in our simulation 

experiments presented in Section 6.  

To address such an issue, we present the integrated Task-to-VM list to define the local Task-to-

VM list as the input for each parallel task-level scheduling algorithm. As depicted in Figure 4, the 

integrated Task-to-VM list is an integrated collection of virtual machines and he integrated DAG 

task graph which includes workflow tasks defined in DAG task graphs and their co-allocated non-

workflow tasks. Here, co-allocated tasks are those which have been allocated to the same virtual 

machines. For example, as depicted in Figure 4, the local Task-to-VM list contains four different 

virtual machines 1VM  to 4VM . Each virtual machine maintains a local task-list, i.e. the job 

queue inputted by the local scheduler of the data centre. To start the task-level scheduling, the 

local scheduler will acquire the current task-list of 1VM  to 4VM  and can automatically combine 

them into an integrated DAG task graph which consists of all the tasks, for instance, a total of n  

tasks, by assigning a pseudo start task StartT  and pseudo end task EndT . Hence, one integrated 

Task-to-VM list ( ){ }4,3,2,1,,...,1|, =++= jnppiVMTL ji  is built which is a part of the global 

Task-to-VM list and ready to be optimised by the task-level scheduling algorithms. Here, tasks are 
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defined with }}{,,,{ 1+> iiiii TTDAGTimeCostT (the QoS constraints on cost and time, and the 

precedence relationship with other tasks for workflow tasks), and virtual machines are defined 

with },,{ jjj SpeedPriceVM (the price and the processing speed). Similarly, the same process can 

be conducted in a parallel fashion on all the local groups of virtual machines in the data centre. 

Therefore, a partition of the global Task-to-VM list is made as a result of all the integrated Task-

to-VM lists. Hence, as mentioned above, the overall running cost of the data centre will be reduced 

since the task-level scheduling algorithm will optimise the Task-to-VM assignment in each group 

of virtual machines. For each group, the maximum number of virtual machines is defined by the 

cloud workflow system given the average length of the local task-list of each virtual machine. 

Empirically, as shown in our simulation experiments, the empirical ratio between tasks and virtual 

machines is normally below 20:1, e.g. the maximum number of tasks in an integrated Task-to-VM 

list is under 300 and the maximum number of virtual machines is under 20. Note that the ratio 

between tasks and virtual machines probably varies from data centre to data centre and are 

subjected to changes due to different capabilities of virtual machines.  

 

startT
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Figure 4. The Local Integrated Task-to-VM List 

 

5.1 Genetic algorithm 

GA is a search technique often employed to find the exact or approximate solutions to 

optimisation and search problems [20, 49]. GA is a specific class of evolutionary algorithms 

inspired by evolutionary biology. In GA, every solution is represented with a string, also known as 

a chromosome, which follows the semantics defined by the encoding method. After encoding, the 

candidate solutions, i.e. the initial population, need to be generated as the basic search space. 

Within each generation, three basic GA operations, i.e. selection, crossover and mutation, are 

conducted to imitate the process of evolution in nature. Finally, after the stopping condition is met, 

the chromosome with the best fitness value is returned, representing the best solution found in the 

search space. That ends the whole GA process. In recent years, GA has been adopted to address 

large complex scheduling problems and proved to be effective in many distributed and dynamic 

resource environments, such as parallel processor systems and grid workflow systems [31, 40]. 
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Algorithm 2. GA Based Task-Level Scheduling 

 

As depicted in Algorithm 2, the first searching phase of GA based task-level scheduling is to 

optimise the overall makespan and cost for the integrated task-resources list through GA (Line 1 to 

Line 9). The GA algorithm starts from encoding (Line 1). Here two-dimension encoding method is 

adopted. The first dimension represents the scheduled acts and the second represents the resource 

allocated to the corresponding act in the first dimension. GA starts with the generation of a fixed 

size initial population. (Line 2). Because the quality of initial population is critical for the final 

outcome, package based random algorithm is applied to generate the initial population. The 

algorithms for the encoding and package based random generation are the same as described in 

Section 4 (Figure 3 and Algorithm 1 respectively) and hence omitted here. After that, the 

algorithm starts searching for the best solution iteratively until the stopping condition, e.g. the 

maximum generation, is met (Line3 to Line9). Three fundamental operations of GA including 

selection, crossover and mutation take actions in sequence. Stochastic universal sampling (SUS) 

[20] for selecting potentially useful solutions as parents for recombination is used in selection 

operation (Line4). SUS uses a single random value to sample all of the solutions by choosing them 

at evenly spaced intervals. The solution candidates generated during initialisation phase are all 

legal (i.e. they all satisfy the precedence relationship as defined in DAGs); however, conventional 

crossover will probably make some individuals illegal. To keep the diversity of the population, 

single point crossover strategy is employed. When two parents are both legal, single point 

crossover ensures their children are legal. So before the mutation, the whole population is valid 

[33]. The third genetic operation is mutation (Line 5) where the allocated resource is mutated, i.e. 

substituted for another resource, at a randomly selected cell of a chromosome. The mutation rate is 

normally set to a small probability value such as 10% since mutation can easily destroy the correct 

precedence relationship and result in invalid solutions. The major affect of Mutation is that it can 

introduce diversity into the population to help it jump out of local optimal traps. However, it can 

make some individuals invalid. These invalid individuals should be eliminated through validation 

and replace (Line 7, Line 8). Since cloud workflow system is a market-oriented system, the 

candidate scheduling solution is expected to satisfy the QoS constraints according to the service 
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contract. The last operation of the first phase is check which verifies whether the candidate 

individual should be retained or discarded. 

During the second searching phase, the SolutionSet is compared with the user preference, i.e.  

UerPref, and the best scheduling plan L is deployed (Line 10 to Line 12). Both makespan and 

costs are taken into account in UerPref which defines the specific preference of users towards the 

two factors. For example, the UerPref can be the minimum makespan, the minimum cost or a 

balance ration between makespan and cost. The best scheduling plan (BestSolution) is selected 

from the satisfied population (Line 10). The BestSolution is defined as the best solution according 

to UerPref among all the valid solutions. Since the BestSolution is represented in two dimensional 

vector, it should be decoded back to L as an integrated Task-to-VM list (Line 11). The last step of 

the whole algorithm is to deploy the L (Line12).  

5.2 Ant colony optimisation 

In recent years, Ant Colony Optimisation (ACO), a type of optimisation algorithm inspired by the 

foraging behaviour of real ants in the wild, has been adopted to address large complex scheduling 

problems and proved to be quite effective in many distributed and dynamic resource environments, 

such as parallel processor systems and grid workflow systems [6, 11]. 

As shown in Algorithm 3, the first searching stage of ACO based task-level scheduling is to 

optimise the overall execution time and cost for the integrated task-resources list through ACO 

(Line 1 to Line 10). The ACO algorithm starts from initialisation of pheromone and all parameters 

(Line 1). In [12], two types of pheromone, i.e. ijdτ  and ijcτ , are defined. Here, ijdτ  denotes 

the desirability of mapping task ia  to resource jR  from the perspective of execution time while 

ijcτ  denotes the desirability from the perspective of execution cost. Afterwards, the ACO based 

searching process iterates until the stopping condition, i.e. the maximum iteration times, is 

satisfied. During each iteration, a group of ants needs to be initialised first (line 3 to line 4). Each 

ant starts with selecting one of the heuristics from duration-greedy, cost-greedy or overall-greedy 

which has specific preference on searching (Line 3). Then, the tackling sequence which arranges 

the order of tasks is built based on the input DAG task graph (Line 4). During the solution 

construction process (Line 5 to Line 8); each activity is allocated to a specific resource according 

to its bias ijB  which is based on the value of pheromones and the heuristic information (Line 6). 

Meanwhile, after a specific choice of resources, the earliest start time est  of the current activity 

is compared with the earliest end time eet  of its predecessors to determine whether the current 

schedule can satisfy the precedence relationships defined in the DAG task graph. After a 

successful resource allocation, the est  and eet  for its subsequent activities are updated (Line 7). 

Here, a local updating process is conducted to decrease the local pheromone of ijdτ  and ijcτ  so 

that the following ant can have a higher probability of choosing other resources (Line 8). Evidently, 

the purpose of local updating is to enhance the diversity of the ACO algorithm. By contrast, after 

all ants have built their individual solutions, a global updating process is conducted to increase the 

pheromone along the path for the best-so-far solution so that the subsequent ants have higher 

probability to choose the same scheduling plan (Line 9). Therefore, the purpose of global updating 

is to reinforce the best-so-far solution in order to speed up the convergence of the ACO algorithm. 

Finally, at the end of iteration, the best-so-far solution is returned and added into the SolutionSet 

which serves as the input for the second searching stage (Line 10).  

In the second searching stage, the BestSolution is retrieved from the SolutionSet (Line 11 to 

Line 12). The process is the same as the one described in GA. The BestSolution is selected 

according to the user preference UerPref (Line 11) and then the corresponding integrated Task-to-

VM list is deployed.  
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Algorithm 3. ACO Based Task-Level Scheduling 

5.3 Particle swarm optimisation 

Particle swarm concept is predominately designed to find solutions for continuous optimisation 

problems without prior information [51, 52]. To solve the workflow scheduling problem, a discrete 

version of PSO (DPSO) is presented in this paper as a candidate evolutionary algorithm [10]. 

Something like conventional PSO, the key issue of DPSO is to define the position and velocity of 

particle as well as to define their operation rules and the equation of motion according to the 

features of discrete variables. Suppose that the workflow has m  tasks and n  resources. The 

position of particle i  is presented as nijxm,j,)im,...,xij,...,xi,xi(xiX ≤≤≤≤= 1121
，A particle i  is 

also associated with a velocity 
iV  along each dimension 

{ }1,0,1,1),,...,,...,2,1( −∈≤≤= ijvmjimvijviviviV . Each particle is assumed to have a local memory that 

keeps its pervious best position pbest. For each particle, pbest and the position vector of the best 

performing particle in the local neighbourhood, gbest, are combined to adjust the velocity along 

each dimension, and the adjusted velocity is then used to adjust the position of the particle. Here 

iV  is a selective strategy, when ijv  equals to -1, the corresponding bit is selected from gbest; 

when ijv  equals to 0, the corresponding bit is selected from iX ; when ijv  equals to 1, the 

corresponding bit is selected from pbest. For the sake of clarity, variables and the rules of DPSO 

for solving workflow scheduling can be depicted in formulas. 



16 

(1) Multiply the Subtraction of Position 

)(1 XXcV pbestp −•=  (1) 





=
pbest

 X
V p

 from bit value ingcorrespond select the1

from bit value ingcorrespond select the0   

Here we define the threshold [ ]1,0∈δ , generate a random number r  for each workflow, 

compare r and δ .When δ≥r , assign 0 to 
pV , otherwise , assign 1 to 

pV . 

)(2 XXcV gbestg −•=  (2) 





−
=

gbest

 X
Vg

 from bit value ingcorrespond select the1

from bit value ingcorrespond select the0   

    Here we also generate a random number r for each workflow, compare r and δ .When δ≥r , 

assign 0 to
gV , otherwise, assign -1 to

gV . 

(2) Motion Equations of Particle 

)()( 21 XXcXXcV gbestpbest −+−=  (3) 

VXX +=  (4) 

PSO Based Task-Level Scheduling 

Input: Integrated Task-to-VM list                                   

            Tasks                                              ;

            Virtual machines                           .          

Output: Optimised task-level scheduling plan
//Optimising the overall makespan and cost 

// swarm initialization

1) ps=population size; 

2) MAXNFC=maximum number of function calls (NFC);

3) MINNFC=minimum number of function calls (NFC);

4) MOR=makespan optimisation ratio compared to the last iteration

5)COR=cost optimization ratio compared to the last iteration

6) For j=1 to ps

7) GENERATE a valid solution   ;

8) ASSIGN  to            ; 

9) FIND ;

10) GENERATE learning probability     and      ;
11) While ((NFC<MAXNFC) and (NFC<MINNFC or MOR <0.02 or COR <0.02))

{

12) For j=1 to ps

/*PSO evolution steps*/

/*Velocity updating*/

13) GENERATE a random number     for each sub workflow;

14) CALCULATE      using             and       ;

15) CALCULATE      using             and       ;

16) CALCULATE      using       and       ;
/*Position updating*/

17) CALCULATE  new position      using      and      ;
/* pbest and gbest updating*/

18) UPDATE(pbest);   

19) UPDATE(gbest);
// return both pbest and gbest and record them into the SolutionSet 

20)     Return(Solution, SolutionSet);

}

// Selecting the BestSolution according to user preferences

21) BestSolution=COMPARE(SolutionSet, UserPref);

// deploy the task-level scheduling plan

22) Deploy(L).
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Algorithm 4. PSO Based Task-Level Scheduling 

 

As described in Algorithm 4, the first searching phase here is also to optimise the overall 

execution time and cost for the integrated task-resources list to be scheduled through DPSO (Line 

1 to Line 18). The particles involved in this algorithm are encoded in two dimensions. One 
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dimension indicates the acts from the workflow to be scheduled; the other represents the resources 

to fulfil the relevant acts.  This relationship is maintained by the indices of vectors. The DPSO 

algorithm starts from initialisation of swarm. To effectively control the trade off of cup time and 

solution quality, maximum number of function calls(MAXNFC),minimum number of function 

calls(MINNFC), makespan optimisation rate compared to the last iteration(MOR) and cost 

optimisation rate compared to the last iteration(COR) (Line 2 to Line 5) is defined. Generate a 

valid solution for each particle, because the initial position of each particle is the personal best 

position, the generated solution can be assigned to the pbest of every particle directly (Line 6 to 

Line 9).In DPSO, the particle not only learns from its own experience, but also learns from the 

counterpart in the swarm. So the particle with the biggest fitness value is assigned to the swarm 

global best , that is gbest (Line10).After this, the process is entering search iterations(Line 12 to 

Line 21) .When the maximum number of function calls is met or the other three conditions is 

satisfied, the iteration will stop. The three conditions are to ensure iteration time is no less than 

minimum number of function calls and to ensure the optimisation rate on makespan and cost is no 

less than two percent during iteration. Each sub workflow gets a random number to decide whether 

it will learn from its own experience or not, the same way for it to learn from the global best 

candidate solution. The velocity, also a selective strategy, for the particle to move is a vector with 

the value -1, 0, 1. When the component is -1, the resource allocated to the act according the 

corresponding component in the global best, when it is 0, the position has no change, when it is 1, 

the resource allocated as the component in the personal best (Line 14 to Line 17).Once these 

operations is performed, the particle is in the new position, that is the new solution is produced. 

Before starting the next iteration, the global best and the personal best of each particle are expected 

to be updated (Line 19 to Line 20).Finally, at the end of iteration, the best-so-far solution is 

returned and added into the SolutionSet which serves as the input for the second searching stage 

(Line 21).  

In the second searching stage, the BestSolution is retrieved from the SolutionSet according to the 

user preference UerPref (Line 21 to Line 22). The process is the same as the above two described 

in GA and ACO. Finally, the corresponding integrated Task-to-VM list L is deployed. 

6. Evaluation 

6.1 Simulation environment 

SwinDeW-C (Swinburne Decentralised Workflow for Cloud) [46] is developed based on 

SwinDeW [44] and SwinDeW-G [45]. It is currently running at Swinburne University of 

Technology as a virtualised environment which is physically composed of 10 servers and 10 high-

end PCs. To simulate the cloud computing environment, we set up VMware [41]  software on the 

physical servers and create virtual clusters as data centres. Figure 2 shows our simulation 

environment.   

 

  
(a) System architecture of SwinDeW-C               
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(b) Main system components of SwinDeW-C 

Figure 5. Simulation environment of SwinDeW-C 

 

As depicted in Figure 5(a), every data centre created is composed of 8 virtual computing nodes 

with storages, and we deploy an independent Hadoop [19] file system on each data centre. 

SwinDeW-C runs on these virtual data centres that can send and retrieve data to and from each 

other. Through a user interface at the applications layer, which is a Web based portal, we can 

deploy workflows and upload application data. SwinDeW-C is designed for large scale workflow 

applications in the cloud computing environments. In Figure 5(b), we illustrate the key system 

components of SwinDeW-C.  

User Interface Module: The cloud computing platform is built on the Internet and a Web 

browser is normally the only software needed at the client side. This interface is a Web portal by 

which users can visit the system and deploy the applications. The Uploading Component is for 

users to upload application data and workflows, and the Monitoring Component is for users, as 

well as system administrators to monitor workflow execution. 

Resource Management Module: Resource management module is the major component in the 

cloud workflow system. The workflow scheduling module plays an important role in the support 

of cloud workflow execution and the management of cloud resources. As proposed in this paper, 

SwinDeW-C employs the hierarchical scheduling strategy which consists of service-level 

scheduling and task-level scheduling. As for its other major functionalities such as resource 

brokering, pricing, auditing and SLA management they can directly inherit their counterparts in 

the general cloud computing environment.  

QoS Management Module: In market-oriented cloud computing environments, service 

providers need to deliver satisfactory QoS in order to fulfil service contracts and make profits. 

Otherwise, they cannot sustain in the global cloud markets. Generally speaking, QoS management 

includes three main components, namely QoS setting, QoS monitoring and exception handling. 

Taking temporal QoS management, one of the major dimensions of workflow QoS [48] as an 

example, it consists of temporal constraint setting which specifies temporal constraints in cloud 

workflow specifications at build time [27]; temporal checkpoint selection and temporal 

verification which dynamically monitors the temporal consistency state along workflow execution 

[8, 9], and temporal adjustment which handles detected temporal violations to ensure satisfactory 

temporal QoS [8, 36].  

Other Modules: The Data Management Module includes the strategies for data placement, the 

data catalogue for service registry and lookup, and other components for cloud data management. 

The Flow Management Module has a Process Repository that stores all the workflow instances 

running in the system.  

As part of the cloud resource management module, our hierarchical scheduling strategy is 

currently being implemented in SwinDeW-C. Specifically, the package based random algorithm is 

implemented as a functionality of the global scheduler in SwinDeW-C to facilitate service-level 

scheduling, i.e. allocating suitable services and making reservations for individual tasks; the ACO 

based task-level scheduling algorithm is implemented as a functionality of the local scheduler in 

local data centres to facilitate task-level scheduling, i.e. optimising the Task-to-VM assignment to 

reduce cloud workflow system running cost (ACO is the best candidate among the three 

representative algorithms including GA, ACO and PSO, as will be illustrated with the 

experimental results in Section 6.3).  
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6.2 Experiment settings  

6.2.1 Parameter Settings for Workflows 

The workflow processes are randomly generated as DAG task graphs as described in Section 4 

where each workflow segment is with a random size of 3 to 5 activities. The mean duration of 

each task is randomly selected from 30 to 3,000 basic time units and its standard deviation is 

defined as 33% of its mean (a large standard deviation for valid normal distribution models where 

the samples are all positive numbers according to the “3 σ ” rule [24]) to represent the highly 

dynamic performance of underlying resources. Each resource contains three attributes including 

resource ID, the execution speed and the execution cost. Here, the execution speed is defined as a 

random integer from 1 to 5 where the execution time is equal to the mean duration divided by the 

execution speed. In each of the ten experiment scenarios, half of the virtual machines are with 

speed of 1. To simplify the setting, the price of each resource in our experiment is defined as the 

execution speed plus a random number ranging from 1 to 3. For example, if a task is allocated to a 

resource with the execution speed of 2, then 2 basic units plus an additional random 1 to 3 basic 

units, e.g. 4 basic cost units, will be charged for every basic time unit consumed on such a resource 

(namely the price of the resource is 4). Three attributes is defined for the integrated task-resource 

list, that is, the number of total tasks, the number of workflow segments and the number of 

resources. Specifically, the number of total tasks ranges from 50 to 300 including both workflow 

and non-workflow activities. The number of workflow segments increase accordingly from 5 to 

50. The number of resources is constrained in the range of 3 to 20 since high performance 

resources in scientific workflow systems usually maintain long job queues. QoS constraints 

including time constraint and cost constraint for each task are defined where time constraint is 

defined as the mean duration plus 1.28* variance  and cost constraint is defined as the triple of 

the corresponding time constraint. The makespan of a workflow is defined as the latest finished 

time on all the virtual machines and the total cost of a workflow is defined as the sum of task 

durations multiply the prices of their allocated virtual machines. As for the three basic 

performance measurements, the optimisation rate on makespan equals to the mean makespan 

subtract the minimum makespan, then divides by the mean makespan; the optimisation rate on cost 

equals to the mean cost subtract the minimum cost, then divided by the mean cost; the CPU time 

used is defined as the average execution time of each algorithm running on a standard SwinDeW-

C node. The detail of each experiment scenario is shown in table 2. Note that in these settings, the 

number of workflow tasks and the number of non-workflow tasks are kept in the same level to 

simulate the application scenarios in a general cloud data centre.  

Table 2 Experiment Scenarios 

 

6.2.2 Parameter Settings for Genetic Algorithm 

In GA, 50 new individuals are created during each iteration. The crossover rate is set to 0.7 and the 

mutation rate is 0.1. Single cross over method is applied to recombine the chromosomes. When an 

invalid chromosomes is produced by the operation of mutation, the best chromosomes in the 

population will replace it. The fitness value of a solution is defined as the reciprocal of the sum 

consisting of the makespan and 5% of the cost (the purpose of decreasing the cost here is to 

balance the weight of makespan and cost since their original amount is not at the same level. 5% is 

an empirical value here according to our experiment setting and it is subject to changes in 
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particular system environments). To make a trade-off between effectiveness and efficiency, we 

design a compound stopping condition with four parameters: the minimum iteration times, the 

maximum iteration times, the minimum increase of optimisation rate on time (the increase of 

optimisation rate on time: the minimum makespan of last iteration subtracts the minimum 

makespan of the current iteration and divided by the one of the last iteration), the minimum 

increase of optimisation rate on cost (similar to that of makespan). Specifically, the evolutionary 

process iterates at least a minimum of 100 times. After 100 times iterations, the iteration will stop 

on condition that the maximum iteration times are met; or the increase of optimisation rate on time 

is less than 0.02; or the increase of optimisation rate on cost is less than 0.02.  

6.2.3 Parameter Settings for Ant Colony Optimisation 

In ACO, 50 new ants are created in each iteration. Since we focus on both the reduction of 

makespan and the reduction of cost, half of them are created as duration-greed and another half as 

cost-greedy. The maximum iteration times are set as 1,000 and the minimum iteration times are 

100. The weights of pheromone and heuristic information are set to be 1 and 2. The probability of 

selecting the implementation with the largest value of Bij is 0.8. Local pheromone updating rate is 

0.1 and the global pheromone updating rate is also 0.1. For fairness, the fitness value and the 

stopping condition are the same as defined in GA.  

6.2.4 Parameter Settings for Particle Swarm Optimisation 

In PSO, 50 new particles are created in iteration. PSO employs the package-based random 

generating method same as in GA to produce the initial valid positions. Two learning probabilities 

are defined. The probability learning from its pbest for each particle is set to 0.4 and the 

probability learning from its gbest for each particle is set to 0.5. To keep the swarm owning 

diversity, the particle learns more from its own experience than from the global best particle. The 

parameters c1 and c2 in Formula 3 are both set as 2.0. For fairness, the fitness value and the 

stopping condition are the same as defined in GA.  

6.3 Experimental Results  

In the following sections, the experimental results on the three basic measurements including the 

optimisation rate on makespan, the optimisation rate on cost and the CPU time are presented. As 

explained in the parameter setting for each algorithm above, the workflow makespan and cost are 

given equal weights in the optimisation process. Therefore, the best solution can be selected either 

according to makespan or cost. In our experiment, the best solution is selected as the one with the 

minimum makespan and its corresponding cost is regarded as the best cost (note that the cost of 

the best solution is normally not the minimum cost found in the searching process). For each 

measurement, an overall view for the ten experiment scenarios is first presented. Afterwards, as an 

example, 10 randomly selected independent test cases in scenario 6 where the workflow is 

composed of 200 tasks, 28 workflow segments and 12 virtual machines, are presented as the 

detailed view. Here, since GA is the most popular metaheuristic used in workflow scheduling, the 

average makespan and cost by GA is adopted as the benchmark for comparison purpose.  

6.3.1 Results for Makespan Optimisation 

Figure 6 shows the experimental results on the optimisation rate of makespan. Figure 6(a) presents 

the optimisation rate on overall makespan in 10 different scenarios; Figure 6(b), 6(c), 6(d) show 

the best and average makespan of scenario 6 by GA, ACO and PSO respectively.  

From Figure 6(a), it can be seen that when the workflow size is small, the optimisation rate on 

makespan by GA, ACO and PSO are similar but very low. For example, in the first scenario with 

50 tasks, the makespan optimisation rate of ACO is about 5%, PSO is about 5.6% and GA is about 

5.8%. When the workflow size increases, the performance of GA remains relatively stable but is 

getting worse; the performance of PSO is on the rise at first and then deteriorates dramatically. On 

the contrary, ACO has a potential ability to search good solution in workflow scheduling when the 

number of the activities becomes large. For example, in the last scenario with 300 tasks, the 

optimisation rate on makespan of ACO is 24.4%, GA is 11.8% and PSO is only 3.88%. It is 

interesting to see that PSO achieved better performance than the others when the workflow size is 

ranging from 150 to 200. For example, the makespan optimisation rate of PSO is 22.2% when the 

number of tasks is 180 while GA is 13.8% and ACO is 15.4%. 
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In Figure 6(b), 6(c) and 6(d), 10 independent test cases are shown for scenario 6. The vertical 

distance between the curve of best value and the curve of average value indicates the reduced 

makespan. A clear phenomenon is that though in the same scenario, the best value found by each 

algorithm in different test cases is very dynamic. However, it can be seen that the curve for the 

best value and the curve for the average value have the similar trend but in a coarse-grained sense. 

Upon our observation, the quality of the initial solutions mainly accounts for such a phenomenon 

besides the random nature of these algorithms. Therefore, effective methods for generating high 

quality initial solutions such as the package based random generation methods employed in this 

paper and others can be further investigated to improve the performance of these scheduling 

algorithms as well as their stability.    

 

(a) (b) 

(c) 
(d) 

Figure 6.  Makespan optimisation of GA, ACO and PSO 

 

6.3.2 Results for Cost Optimisation 

Figure 7 shows the experimental results on the optimisation rate of cost. Figure 7(a) presents the 

optimisation rate on cost in 10 different scenarios; Figure 7(b), 7(c), 7(d) show the best and 

average cost of scenario 6 by GA, ACO and PSO respectively.   

(a) (b) 



22 

Figure 7.  Cost optimisation of GA, ACO and PSO 

 

As can be seen in Figure 7(a), ACO has an overall better performance than others and it shows a 

increasing trend. GA and PSO have similar and relatively stable performance, but much lower than 

that of ACO especially when the workflow size is becoming larger. As for the detailed results in 

scenario 6, the best cost value by ACO is ranging from 7930.28 to 8810.87 with a mean value 

8309.73; the best cost value by GA is ranging from 8346.70 to 8719.63 with a mean value 8613.42; 

the best cost value by PSO is ranging from 8389.50 to 8783.00 with a mean value 8541.00. This 

implies that ACO explores a larger searching space than the other two and it is more effective in 

constructing solutions with smaller cost. Meanwhile, similar to the optimisation on makespan, the 

best cost found by each algorithm in the ten test cases is very different but normally behaves 

similarly to their average cost.   

6.3.3 Results for CPU time 

(a) (b) 

(c) (d) 

Figure 8.  CPU time of GA, ACO and PSO 

 

(c) (d) 
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Figure 8 shows the experimental results on the CPU time of each algorithm. Figure 8(a) presents 

the CPU time in 10 different scenarios; Figure 8(b), 8(c), 8(d) show the CPU time of scenario 6 of 

GA, ACO and PSO respectively.   

As can be seen in Figure 8(a), PSO consumes much more CPU time than others. In the first 

scenario with 50 tasks, PSO and GA use about 30 seconds while ACO only needs 16 seconds. 

When the workflow size increases, the CPU time of PSO is growing dramatically. For example, 

for the last scenario with 300 tasks, it takes PSO about 58 seconds while ACO only uses 33 

seconds. An interesting phenomenon is that the CPU time used by GA goes down at first and 

keeps steady at about 17 seconds. As can be seen in Figure 8(b), 8(c), 8(d), the CPU time of each 

algorithm is very dynamic though in the same scenario. Furthermore, if we take a look at the three 

basic measurements for the same test case of specific algorithm, it shows that a larger CPU time 

often associates with a lager optimisation rate on makespan (or cost). For example, the CPU time 

of test case 4 is larger than that of test 3, and accordingly as can be seen in Figure 6(c), the 

optimisation rate on makespan of test case 4 is larger than that of test 3. Another example, the 

CPU time of test case 7 is larger than that of test 8, and accordingly as can be seen in Figure 7(c), 

the optimisation rate on cost of test case 7 is larger than that of test 8. However, larger CPU time 

normally cannot guarantee larger optimisation rate on makespan and cost simultaneously. This is 

reasonable since larger optimisation rate on makespan normally implies the more usage of 

expensive virtual machines with faster speed, and hence increase the cost.  

6.3.4 Further Discussion 

1) For the optimisation rate on makespan: A distinctive phenomenon observed is that when the 

number of tasks is more than 200, ACO yields a better performance. This implies that the ACO is 

more effective in solving large size discrete multiple constraints optimisation problem. One of the 

possible reasons for that is because ACO constructs the valid solutions task by task while PSO and 

GA search for valid solutions randomly in the searching space. Therefore, ACO generated 

solutions are all constraints satisfied. But GA and PSO cannot guarantee the validity of generated 

solutions. Meanwhile, due to the same reason, ACO can normally explore a much larger searching 

space than GA and PSO. Therefore, ACO can still maintain a good performance when the 

workflow size is getting larger. In contrast, GA and PSO tend to have premature convergence due 

to the limited searching space.    

2) For the optimisation rate on cost: In this paper, the scheduling problem is a two-constraint 

optimisation problem where the fitness value for each solution is defined based on both makespan 

and cost. Solutions with higher fitness values are regarded as better solutions. As explained, in our 

experiment, the best solution is selected as the one with the minimum makespan and its 

corresponding cost is regarded as the best cost. Therefore, the optimisation rate on cost is highly 

related to the optimisation rate on makespan. For example, in scenario six, ACO can achieve the 

makespan optimisation rate of 19.5% and at the same time achieve the cost optimisation rate of 

7.6%. Based on Figure 6(a) and Figure 7(a), conclusion can be drawn that ACO has a better ability 

to optimise cost than optimise makespan. One of the possible reasons is that in ACO, 50% ants are 

duration-greedy, i.e. dedicate to makespan optimisation only, while the other 50% are cost-greedy, 

i.e. dedicate to cost optimisation only. In GA and PSO, the balance between makespan 

optimisation and cost optimisation is only adjusted by fitness value. In other words, each 

individual in ACO has its social role for either makespan optimisation or to cost optimisation. In 

GA and PSO, individuals are evolving to achieve higher fitness value but without the difference of 

social roles. Therefore, it implies that the performance of algorithms having specialised social 

roles is better than that of those without. 

3) For CPU time: Generally speaking, the problem of larger overheads is the main drawback of 

metaheuristics based algorithms. Therefore, in our experiments, compound stopping condition is 

designed to control but also give reasonable CPU time for the optimisation process. Since ACO 

constructs and optimises the solutions task by task, its CPU time increases steadily with the growth 

of workflow size. By tracing the program, it is found that the most time consuming part of PSO is 

UPDATE (pbest) (Line 18 in the pseudo code of PSO). For UPDATE (pbest), every particle’s 

fitness needs to be calculated where the calculation of makespan and the calculation of cost are 

invoked at the same time. As for the interesting phenomenon that the CPU time used by GA goes 

down at first and keeps steady at about 17 seconds, also by tracing the program, it is shown that 

when the workflow size is small, e.g. 50, GA iterates more than the minimum iteration times (i.e. 

100). However, when the workflow size goes up over 100, GA encounters the problem of 

premature convergence and hence the iteration times are normally equal to100 or just a little more 

than that. Therefore, the CPU time is almost the same and thus also explains why GA has a 

relatively stable performance. 
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6.3.5 Summary 

Given the experimental results presented above, there is not a single candidate among GA, ACO 

and PSO of which the average performance is distinctively better than others in all scenarios on 

the three basic measurements. However, we can have the following conclusions: 

1) For optimisation rate on makespan: GA has a stable and moderate performance among the 

three; the performance of ACO is increasing rapidly when the workflow size grows; the 

performance of PSO is quite dynamic and it is on a down trend when the workflow size becoming 

larger. 2) For optimisation rate on cost: GA and PSO both have a stable and moderate 

performance among the three; ACO behaves better than other and especially when the workflow 

size is becoming larger. 3) For CPU time: PSO has much larger CPU time than others. The CPU 

time of GA is becoming stable when the workflow size is large. The CPU time of ACO is larger 

than that of GA but much less than that of PSO. 

To sum up, GA has the moderate performance among the three. PSO is a better candidate for 

medium size scheduling problem, e.g. the number of workflow tasks is ranging from 150 to 200. 

The performance of ACO is on the rise with the growing of the workflow size. When the 

workflow size is small, its overall performance is the best or closest to the best. Therefore, given 

such results, we recommend ACO based task-scheduling algorithm as the best candidate among 

the three for task-level scheduling in our hierarchal scheduling strategy. 

7. Related Work  

A cloud workflow system is built on the novel cloud computing infrastructure [3]. Cloud 

computing is the latest computing paradigm which adopts the market-oriented business model 

where users are charged for their consumption of computing resources, similar to the consumption 

of utilities such as water, gas and electricity in our everyday life. The advent of cloud computing is 

based on the recent development and application in the area of high performance distributed 

computing such as cluster, peer to peer (P2P) and grid computing [17, 45, 47]. Especially with the 

marketed-oriented grid computing [35], the traditional community based computing paradigm is 

involved into utility based. Such an innovation brings many challenges for resource management 

in cloud workflow systems, and among many others, cloud workflow scheduling is one of the 

most important issues.  

Workflow scheduling are classical NP-complete problems [43, 50]. Therefore, many heuristic 

algorithms are proposed. The work in [50] has presented a systematic overview of workflow 

scheduling algorithms for grid computing. The major grid workflow scheduling algorithms have 

been classified into two basic categories which are best-effort based scheduling and QoS-

constraint based scheduling. In traditional community based computing paradigms, best-effort 

based scheduling strategies are often applied to only minimise the execution time without 

considering the monetary cost since resources are shared freely among system users. On the 

contrary, in market-oriented computing paradigms, QoS-constraint based scheduling strategies are 

employed to optimise performance under important QoS constraints, e.g. makespan minimisation 

under cost constraints or cost minimisation under time constraints. Many heuristic algorithms such 

as Minimum Execution Time, Minimum Completion Time, Min-min, Max-min are used as 

candidates for best-effort based scheduling strategies [40]. As for QoS-constraint based 

scheduling, some metaheuristic methods such as GA (Genetic Algorithm), ACO (Ant Colony 

Optimisation) and PSO (Particle Swarm Optimisation) have been proposed and exhibit satisfactory 

performance [10, 11, 26, 49, 50, 52].  

In cloud workflow systems, QoS-constraint based scheduling strategies, namely metaheuristic 

algorithms, are required. The three most representative metaheuristic algorithms for workflow 

scheduling investigated in this paper are GA, ACO and PSO. In recent years, GA has been adopted 

to address large complex scheduling problems and proved to be quite effective in many distributed 

and dynamic resource environments, such as parallel processor systems and grid workflow 

systems [28, 29, 31, 33, 49]. ACO, a type of optimisation algorithm inspired by the foraging 

behaviour of real ants in the wild, has been adopted to address large complex scheduling problems 

and proved to be quite effective in many application scenarios [12, 26, 32, 51]. The work in [11] 

proposes an ant colony optimisation approach to address scientific workflow scheduling problems 

with various QoS requirements such as reliability constraints, makespan constraints and cost 

constraints. A balanced ACO algorithm for job scheduling is proposed in [6] which can balance 

the entire system load while trying to minimise the makespan of a given set of jobs. PSO is a 

relatively new type of searching algorithm. PSO is a stochastic, population-based algorithm 

modelled on swarm intelligence that finds a solution to an optimisation problem in a search space 
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[51]. In recent years, PSO has been applied to address scheduling problems [22, 52] in many 

different application scenarios such as grid computing, service-flow and flow-shop.  

Up to date, the research on cloud computing is in its infancy so is the research on cloud 

workflow scheduling. To the best of our knowledge, this is the first paper that systematically 

analyses the problem of cloud workflow scheduling and proposes a practical solution, i.e. a 

hierarchical scheduling strategy.   

8. Conclusions and Future Work  

With the emerging of cloud computing, cloud workflow systems are designed to facilitate the 

cloud infrastructure to support large scale distributed collaborative e-business and e-science 

applications. One of the most important aspects which differentiate a cloud workflow system from 

its other counterparts is the market-oriented business model where users are charged for their 

consumption of the cloud resources such as computing, storage and network. This is a significant 

innovation which brings many challenges to the resource management in conventional workflow 

systems, especially for workflow scheduling strategies. Specifically, as introduced in Section 2.2, 

there are at least two basic changes which bring major challenges for workflow scheduling in 

market-oriented cloud workflow systems: 1) from best-effort based scheduling to QoS-constraint 

based scheduling; 2) from specific application oriented scheduling to general service oriented 

scheduling. The first change requires QoS constraint based workflow scheduling strategies in 

cloud workflow systems instead of conventional best-effort based strategies. The second change 

requires that cloud workflow scheduling strategies can deal with cloud services which are either 

within or outside their own data centre, and have the ability to handle intensive requests of 

workflow applications.  

In order to address these challenges, this paper proposed a market-oriented hierarchical 

scheduling strategy which consists of a service-level scheduling and a task-level scheduling. The 

service-level scheduling deals with the Task-to-Service assignment where tasks of individual 

workflow instances are mapped to cloud services in the global cloud markets based on their 

functional and non-functional QoS requirements; the task-level scheduling deals with the 

optimisation of the Task-to-VM assignment in local cloud data centres where the overall running 

cost of cloud workflow systems will be minimised given the satisfaction of QoS constraints for 

individual tasks. Based on a systematic analysis of workflow scheduling in cloud workflow 

systems in Section 2, the overview of our hierarchical scheduling strategy with the detailed 

processes for both service-level scheduling and task-level scheduling are described in Section 3. 

Afterwards, under the hierarchical scheduling strategy, a package based random scheduling 

algorithm has been presented in Section 4 as the candidate for service-level scheduling which can 

assign workflow tasks to suitable cloud services with correct functional and non-functional QoS 

requirements in an efficient fashion. As for task-level scheduling, three representative 

metaheuristics based scheduling algorithms including genetic algorithm (GA), ant colony 

optimisation (ACO) and particle swarm optimisation (PSO) have been adapted, implemented and 

analysed as candidate task-level scheduling algorithms in Section 5. In this paper, the three 

metaheuristics have been adapted so that they can optimise both makespan and cost 

simultaneously. Meanwhile, considering the enormous overhead of optimising the Task-to-VM 

assignment in the entire data centre, in our strategy, the task-level scheduling algorithms are run in 

a parallel fashion where each instance only deals with a local Task-to-VM list. Each individual 

local Task-to-VM list is defined by an integrated Task-to-VM list for a group of virtual machines, 

and they together cover the Task-to-VM list of the entire data centre. As such, the overall running 

cost of the data centre will be reduced since the task-level scheduling algorithm will optimise the 

Task-to-VM assignment in each group of virtual machines. 

The simulation experiments conducted in our SwinDeW-C cloud workflow system have 

demonstrated the effectiveness of our hierarchical scheduling strategy. Meanwhile, the 

experimental results show that ACO performs better than GA and PSO in the overall performance 

on three basic measurements: the optimisation rate on makespan, the optimisation rate on cost and 

the CPU time. Therefore, a recommended solution for workflow scheduling in cloud workflow 

systems is our market-oriented hierarchical scheduling strategy where the service-level scheduling 

adopts the package based random scheduling algorithm and the task-level scheduling adopts the 

ACO based scheduling algorithm. But note that based on our hierarchical scheduling strategy, 

different system designers may select different candidate scheduling algorithms according to 

his/her personal preferences on the three basic measurements and more.  

In the future, more heuristics and metaheuristics will be investigated for both service-level 

scheduling and task-level scheduling algorithms. Meanwhile, in order to overcome the enormous 
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overhead, our current strategy decomposes the optimisation of global Task-To-VM assignment in 

the entire data centre into parallel optimisation of local Task-To-VM assignment in many small 

groups of virtual machines. However, the optimal solution for the global Task-To-VM assignment 

may not be found. Therefore, scheduling algorithms which can effectively tackle large size 

scheduling problems in cloud workflow systems are required to be investigated in the future. 

Meanwhile, some real world applications will be implemented in our SwinDeW-C workflow 

system to further evaluate the performance of these scheduling strategies. These results will be 

demonstrated in our future work.    
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