
1

A Market-Oriented Hierarchical Scheduling
Strategy in Cloud Workflow Systems

Zhangjun Wu
1, 2

, Xiao Liu
2
, Zhiwei Ni

1
, Dong Yuan

2
, Yun Yang

2

1
Institute of Intelligent Management, School of Management, Hefei University of Technology

Hefei, Anhui, China 230009

{wuzhangjun, nzwgd},@hfut.edu.cn

2
Faculty of Information and Communication Technologies, Swinburne University of Technology

 Hawthorn, Melbourne, Australia 3122

{xliu, dyuan, yyang}@swin.edu.au

Abstract A cloud workflow system is a type of platform service which facilitates the automation

of distributed applications based on the novel cloud infrastructure. One of the most important

aspects which differentiate a cloud workflow system from its other counterparts is the market-

oriented business model. This is a significant innovation which brings many challenges to

conventional workflow scheduling strategies. To investigate such an issue, this paper proposes a

market-oriented hierarchical scheduling strategy in cloud workflow systems. Specifically, the

service-level scheduling deals with the Task-to-Service assignment where tasks of individual

workflow instances are mapped to cloud services in the global cloud markets based on their

functional and non-functional QoS requirements; the task-level scheduling deals with the

optimisation of the Task-to-VM (virtual machine) assignment in local cloud data centres where

the overall running cost of cloud workflow systems will be minimised given the satisfaction of

QoS constraints for individual tasks. Based on our hierarchical scheduling strategy, a package

based random scheduling algorithm is presented as the candidate service-level scheduling

algorithm and three representative metaheuristic based scheduling algorithms including genetic

algorithm (GA), ant colony optimisation (ACO) and particle swarm optimisation (PSO) are

adapted, implemented and analysed as the candidate task-level scheduling algorithms. The

hierarchical scheduling strategy is being implemented in our SwinDeW-C cloud workflow system

and demonstrating satisfactory performance. Meanwhile, the experimental results show that the

overall performance of ACO based scheduling algorithm is better than others on three basic

measurements: the optimisation rate on makespan, the optimisation rate on cost and the CPU time.

Keywords Cloud Workflow System · Cloud Computing · Workflow Scheduling · Hierarchical

Scheduling · Metaheuristics

1. Introduction

Cloud computing is emerging as the latest distributed computing paradigm and attracts increasing

interests of researchers in the area of Distributed and Parallel Computing [34], Service Oriented

Computing [2] and Software Engineering [38]. Though there is yet no consensus on what is Cloud,

but some of its distinctive aspects as proposed by Ian Foster in [18] can be borrowed for an

insight: “Cloud computing is a large-scale distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualised, dynamically-scalable, managed

computing power, storage, platforms, and services are delivered on demand to external customers

over the Internet.” Compared with the definitions of conventional computing paradigms such as

cluster [30], grid [17] and peer-to-peer (p2p) [45], “economies” is a noticeable keyword in cloud

computing which has been neglected by others. “Economies” denotes that cloud computing adopts

market-oriented business model where users are charged for consuming cloud services such as

computing, storage and network services like conventional utilities in everyday life (e.g. water,

electricity, gas and telephony) [3]. Meanwhile, cloud service providers are obligated to provider

satisfactory QoS (quality of service) based on business service contracts. It is evident that cloud

computing is becoming the latest driving force to deliver computing as the 5
th

 utility besides the

previous efforts on such as utility based grid computing [35].

2

Cloud can generally provide three levels of services: IaaS (Infrastructure as a Service), PaaS

(Platform as a Service), and SaaS (Software as a Service). As described in [18], a cloud workflow

system can be regarded as a type of platform service which facilitates the automation of distributed

large-scale e-business and e-science applications in the cloud [25, 42]. As a cloud service itself, a

cloud workflow system belongs to a specific service provider and under the management of its

cloud resource managers. However, as a platform service, a cloud workflow system possesses the

ability to get access to other cloud services and facilitate the service level agreements (SLA) [3, 27,

37]; and the ability to control the underlying cloud resources (e.g. computing and storage resources)

in its own data centre.

Generally speaking, the function of a cloud workflow system and its role in a cloud computing

environment, is to facilitate the automation of user submitted workflow applications where the

tasks have precedence relationships defined by graph-based modelling tools such as DAG

(directed acyclic graph) and Petri Nets [1, 23], or language-based modelling tools such as XPDL

(XML Process Definition Language) [48]. For conventional applications with independent tasks,

resource managers usually employ scheduling strategies with relatively simple heuristics such as

FCFS (first come, first served), Min-Min and Max-Min [40, 50] to satisfy the QoS constraints such

as on time and/or cost. On the contrary, cloud workflow applications with dependent tasks are

managed by cloud workflow systems which require more sophisticated scheduling strategies to

satisfy QoS constraints as well as the precedence relationships between workflow tasks. Moreover,

with the increasing demand for process automation in the cloud, especially for large-scale

collaborative and distributed e-business and e-science applications [14, 25, 39], the investigation

on cloud workflow scheduling strategies is becoming a significant issue not only in the area of

cloud workflow systems but also general cloud computing.

Among many others, one of the most important aspects which differentiate a cloud workflow

system from its other counterparts is the market-oriented business model [3, 18]. Such a seemed

small change actually brings significant innovation to conventional computing paradigms since

they are usually based on non-business community models where resources are shared and free to

be accessed by community members [48]. Specifically, given such a market-oriented business

model, in this paper, we identify the following two changes in comparison to conventional

computing paradigms which may bring major challenges to cloud workflow scheduling strategies:

1) from best-effort based scheduling to QoS-constraint based scheduling; 2) from specific

application oriented scheduling to general service oriented scheduling. Details will be presented in

Section 3.

In this paper, to adapt to the above changes and address the consequent challenges brought by

them, we propose a market-oriented hierarchical scheduling strategy in cloud workflow systems.

Specifically, our strategy includes a service-level scheduling stage and a task-level scheduling

stage. Based on workflow specifications (including task definitions, process structures and QoS

constraints), in the service-level scheduling stage, the global scheduler assigns workflow tasks to

candidate services in the global cloud markets and negotiate service level agreements (SLA). For

service-level scheduling, we present a package based random scheduling algorithm which can

generate service-level scheduling plans in an efficient fashion. In the task-level scheduling stage,

given the QoS constraints for both workflow tasks and non-workflow tasks, the local scheduler

optimises the Task-to-VM (virtual machine) assignment in its own data centre with specific

metaheuristic scheduling algorithms. In this paper, three representative metaheuristic scheduling

algorithms including genetic algorithm (GA), ant colony optimisation (ACO) and particle swarm

optimisation (PSO) are investigated as the candidate task-level scheduling strategies and their

performance is compared in our SwinDeW-C cloud workflow system. The work presented in this

paper aims to provide a tentative investigation on workflow scheduling strategies in market-

oriented cloud workflow systems where satisfactory workflow QoS can be guaranteed for user

submitted workflow applications while in the meantime, the system running cost of cloud

workflow systems can be decreased through dynamic optimisation.

The remainder of the paper is organised as follows. Section 2 introduces a general architecture

of the cloud workflow system and presents the problem analysis for cloud workflow scheduling.

Section 3 proposes the market-oriented hierarchical scheduling strategy. Section 4 presents the

package based random generation algorithm for service-level scheduling and Section 5 presents

the three representative metaheuristic scheduling algorithms for task-level scheduling. Section 6

demonstrates simulation experiments to verify the effectiveness of our hierarchical scheduling

strategy and presents the comparison results for the performance of the three metaheuristic

scheduling algorithms. Section 7 presents the related work. Finally, Section 8 addresses the

conclusions and the future work.

3

2. Workflow Scheduling in Cloud Workflow Systems

In this section, we first present a general architecture of the cloud workflow system to demonstrate

the role of workflow schedulers in the lifecycle of a workflow instance. Afterwards, we present the

problems faced by workflow scheduling strategies in cloud workflow systems.

2.1 Cloud Workflow System Architecture

The architecture of SwinDeW-C is depicted in Figure 1. As discussed earlier, the general cloud

architecture includes four basic layers from top to bottom: application layer (user applications),

platform layer (middleware cloud services to facilitate the development/deployment of user

applications), unified resource layer (abstracted/encapsulated resources by virtualisation) and

fabric layer (physical hardware resources). Accordingly, the architecture of SwinDeW-C can also

be mapped to the four basic layers. Here, we present the lifecycle of an abstract workflow

application to illustrate the system architecture. Note that here we focus on the system architecture,

the introduction on the cloud management services (e.g. brokering, pricing, accounting, and virtual

machine management) and other functional components are omitted here and will be introduced in

the subsequent sections.

na 1na

2na

3na 4na

5na
6na

Na

ma 1ma

2ma

3ma 4ma

5ma 6ma Ma

Figure 1. Cloud Workflow System Architecture

Users can easily get access to SwinDeW-C Web portal (as demonstrated in Section 6) via any

electronic devices such as PC, laptop, PDA and mobile phone as long as they are connected to the

Internet. Compared with SwinDeW-G which can only be accessed through a SwinDeW-G peer

with pre-installed programs, the SwinDeW-C Web portal has greatly improved its usability. At

workflow build-time stage, given the cloud workflow modelling tool provided by the Web portal

on the application layer, workflow applications are modelled by users as cloud workflow

specifications (consist of such as task definitions, process structures and QoS constraints). After

workflow specifications are created (static verification tools for such as structure errors and QoS

constraints may also be provided), they will be submitted to any one of the coordinator peers on

the platform layer. Here, an ordinary SwinDeW-C peer is a cloud service node which has been

equipped with specific software services similar to a SwinDeW-G peer. However, while a

SwinDeW-G peer is deployed on a standalone physical machine with fixed computing units and

memory space, a SwinDeW-C peer is deployed on a virtual machine of which the computing

power can scale dynamically according to task request. As for the SwinDeW-C coordinator peers,

they are super nodes equipped with additional workflow management services and the knowledge

across different clouds compared with ordinary SwinDeW-C peers. For example, a SwinDeW-C

coordinator peer can act as a global scheduler which deals with service-level scheduling at the

4

platform layer (will be discussed in Section 3) for mapping workflow tasks with suitable cloud

services.

At the run-time instantiation stage, the cloud workflow specification can be submitted to any of

the SwinDeW-C coordinator peers. Afterwards, the workflow tasks will be assigned to suitable

peers through peer to peer based communication between SwinDeW-C peers. Since the peer

management such as peer join, peer leave and peer search, as well as the p2p based workflow

execution mechanism, is the same as in SwinDeW-G system environment. Therefore, the detailed

introduction is omitted here but can be found in [45]. Before workflow execution, a coordinator

peer will conduct an evaluation process on the submitted cloud workflow instances to determine

whether they can be accepted or not given the specified non-functional QoS requirements under

the current pricing model. It is generally assumed that functional requirements can always be

satisfied given the theoretically unlimited scalability of cloud. In the case where users need to run

their own special programs, they can upload them through the Web portal and these programs will

be automatically deployed in the data centre by the resource manager. Here, a negotiation process

between the user and the cloud workflow system may be conducted if the user submitted workflow

instance is not acceptable to the workflow system due to the unacceptable offer on budgets or

deadlines. The final negotiation result will be either the compromised QoS requirements or a failed

submission of the cloud workflow instance. If all the task instances have been successfully

allocated (i.e. acceptance messages are sent back to the coordinator peer from all the allocated

peers), a cloud workflow instance may be completed with satisfaction of both functional and non-

functional QoS requirements (if without exceptions). Hence, a cloud workflow instance is

successfully instantiated.

Finally, at run-time execution stage, each task is executed by a SwinDeW-C peer. In cloud

computing, the underlying heterogeneous resources are virtualised as unified resources (virtual

machines). Each peer utilises the computing power provided by its virtual machine which can

easily scale according to the request of workflow tasks. As can be seen in the unified resource

layer of Figure 1, the SwinCloud is built on the previous SwinGrid infrastructure at the fabric

layer. Meanwhile, some of the virtual machines can be created with external commercial IaaS

(infrastructure as service) cloud service providers such as Amazon, Google and Microsoft. The

virtual machines within the SwinCloud are managed by its local scheduler which deals with task-

level scheduling at the unified resource layer (will be discussed in Section 3) for optimising the

Task-to-VM assignment to meet QoS constraints of individual workflow tasks. Any SwinDeW-C

peer (either coordinator peer or ordinary peer) can act as a local scheduler. During cloud workflow

execution, workflow management tasks such as QoS management, data management and security

management are executed by the SwinDeW-C peers. Users can get access to the final results as

well as the running information of their submitted workflow instances at any time through the

SwinDeW-C Web portal.

2.2 Problem Analysis for Cloud Workflow Scheduling

Cloud computing adopts the market-oriented business model and hence service contracts are

signed between users and service providers which specify both functional and non-functional QoS

constraints before the running of cloud applications. If service providers fail to fulfil the service

contracts, they will have to compensate the loss claimed by users. Otherwise, the reputation of

service providers will be deteriorated in the global cloud markets. Therefore, cloud service

providers need to adopt a series of marketing and technical strategies to ensure the successful

fulfilment of service contracts while maintain the profits of their own. Among many others, a

critical issue is the cloud workflow scheduling strategy which plays an important role in the

resource management of cloud workflow systems. Specifically, given the market-oriented business

model, we identify the following two changes in cloud computing in comparison to conventional

computing paradigms which may bring major challenges to cloud workflow scheduling strategies:

1) From best-effort based scheduling to QoS-constraint based scheduling. Conventional

computing paradigms such as cluster and grid are generally based on community models where

resources are free to access and shared among community members who are also resource

contributors themselves. Since monetary cost is not considered, the resource managers mainly

adopts the best-effort based workflow scheduling strategies which only attempt to minimise the

makespan (overall completion time) of workflow applications [50]. On the contrary, with the

market-oriented business model in cloud computing environments, resource managers should be

able to meet the user specified QoS requirements (mainly on makespan and cost) for individual

workflow instances as well as minimise the overall makespan and cost for multiple workflow

instances running concurrently in cloud workflow systems, namely, it should be able to minimise

the overall running cost of cloud workflow systems to gain extra profits for cloud workflow

5

service providers. Therefore, to meet the above requirements in cloud workflow systems, QoS

constraint based scheduling strategies [11, 26, 29, 49, 50] instead of best-effort based scheduling

strategies need to be investigated.

2) From specific application oriented scheduling to general service oriented scheduling.

Conventional workflow systems are often application oriented, i.e. designed to accommodate

specific type of applications where resources are managed in a centralised fashion. With the

emerging of service oriented architecture (SOA) [4, 13, 15, 16] , and especially the advent of three

levels of services (IaaS, PaaS and SaaS) in cloud computing [18], workflow systems have been

evolved from application oriented to service oriented. In such a service oriented environment,

cloud workflow scheduling faces at least two problems. The first problem is that the cloud

workflow system may not be able to provide all the cloud services required for the execution of

the entire workflow instance in its own data centre. Hence, as described in Section 2, at workflow

instantiation stage, the cloud workflow resource manager needs designate a resource broker to

acquire available services from other service providers (as sub-contractors) in the global cloud

markets and negotiate SLAs to ensure the satisfaction of user requirements. Therefore, cloud

workflow schedulers should be able to facilitate the selection of suitable services with the correct

assignment of fine-grained QoS constraints and control of precedence relationships. The second

problem is that cloud workflow systems need to handle intensive requests for workflow

applications, in another word, cloud workflow systems are of instance intensive. As platform

services, workflow systems in cloud are no longer application oriented. Hence, they should

possess good scalability to handle the requests from different application domains such as data and

computation intensive scientific workflow applications (e.g. weather forecasting and astrophysics)

and transaction intensive business workflow applications (e.g. bank transactions and insurance

claim applications). Meanwhile, within the same data centre, there are probably many other

independent general non-workflow tasks (without precedence relationships but with QoS

constraints) running on VMs. Therefore, they should also be considered in cloud workflow

scheduling strategies so as to optimise the Task-to-VM assignment in cloud data centres.

To conclude, based on the above problem analysis, the basic requirements for cloud workflow

scheduling strategies are: 1) the satisfaction of QoS requirements for individual workflow

instances; 2) the minimisation of the cloud workflow system running cost; 3) the ability of

assigning fine-grained QoS constraints to facilitate SLA management; 4) good scalability for

optimising Task-to-VM assignment in cloud data centres which include both workflow and non-

workflow tasks.

3. A Market-Oriented Hierarchical Scheduling
Strategy

3.1 Strategy Overview

To satisfy the four basic requirements for cloud workflow scheduling strategies presented above,

we propose a market-oriented hierarchical scheduling strategy. The motivation mainly comes from

that the fact that the four basic requirements actually demand the scheduling at two different levels,

namely service-level scheduling and task-level scheduling. Specifically, for the first and third

requirements, a global scheduler which in charges of the service-level scheduling is required to

allocate suitable services and assign fine-grained QoS constraints to facilitate the management of

service level agreement. As for the second and the fourth requirements, a local scheduler which in

charges of the task-level scheduling is required to optimise the Task-to-VM assignments in the

cloud data centre. The strategy overview is presented in Table1.

Table 1 Strategy Overview

Market-Oriented Hierarchical Scheduling Strategy
Input: Cloud Workflow Specifications, Cloud Service Providers, Unified Resources

Output: Service-Level Scheduling Plan and Task-Level Scheduling Plan

Service-Level

Scheduling

Global Scheduler: platform layer, static scheduling, workflow

instances, service providers

Step1: search and produce the collection of suitable services based

on functional requirements

Step2: assign fine-grained QoS constraints based on the non-

6

functional QoS requirements

Step3: allocate suitable services and make reservations

Task-Level

Scheduling

Local Scheduler: unified resources layer, dynamic scheduling,

workflow tasks, unified resources

Step1: obtain the QoS constraints for each individual tasks

(including both workflow and non-workflow tasks)

Step2: optimise the Task-to-VM assignment

Step3: implement the optimal scheduling plan

The input of our strategy mainly includes the cloud workflow specifications (consist of such as

task definitions, process structures and QoS constraints), cloud service providers (the valid service

providers registered in the cloud service catalogue) and the unified resources (namely virtual

machines). The output of our strategy includes both the service-level scheduling plan which

handles individual workflow instances by allocating suitable services for every workflow task and

making reservations through SLA; and the task-level scheduling which handles both workflow

tasks of multiple workflow instances and non-workflow tasks in the local data centre by

optimising the Task-to-VM assignment to minimise the overall running cost of the cloud workflow

system. Note that for the purpose of description, the detailed steps described below for each

scheduling stage may cover some existing functionalities of general resource management in cloud

computing (namely the role of the global scheduler and local scheduler may overlap with the role

of the resource managers) such as resource brokering and SLA management, but they are not the

focus of this paper. This paper mainly proposes the hierarchical scheduling framework and

investigates the corresponding algorithms for the service-level scheduling and the task-level

scheduling which will be further illustrated in Section 4 and Section 5 respectively.

3.2 Service-Level Scheduling

The service-level scheduling is a part of the resource management on the platform layer. The

service-level scheduling is a type of static scheduling which aims to allocate the suitable service

for each workflow task of individual workflow instances. The functionality of service-level

scheduling is usually realised by the global schedulers which have the knowledge across different

clouds such as a SwinDeW-C coordinator peer.

The service-level scheduling mainly consists of the following three steps:

Step1: search and produce the collection of suitable services based on functional requirements.

After workflow specifications are submitted to cloud workflow systems, the global scheduler will

first search for the available service providers in the global cloud markets given the functional

requirements specified in the cloud workflow specifications. In most cases, the required services

could be found on the cloud. If not, users may need to upload their own programs to the cloud

workflow systems and the cloud workflow systems will deploy the programs automatically in its

local data centre. Therefore, in this step, most workflow tasks will be given with more than one

candidate service providers.

Step2: assign fine-grained QoS constraints based on the non-functional QoS requirements.

Since in the global cloud markets, there are many service providers available, the non-functional

QoS requirements (such as time, cost and trust) are the main criteria to select the suitable service

providers. However, users normally only specify one global or several coarse-grained QoS

constraints for the entire workflow instance or major workflow segments in cloud workflow

specifications, global schedulers need to assign fine-grained QoS constraints to each workflow

tasks so as to select the suitable service providers for each of them [27, 48]. Since there are many

strategies available for setting overall QoS constraints and assigning fine-grained QoS constraints

in workflow systems, we will not discuss them in this paper but can be referred in [21, 27, 48]

Step3: allocate suitable services and make reservations. As we introduced in Section 2, a

negotiation process between the user and the cloud workflow system will be conducted in order to

sign service contracts. Based on the collection of candidate services obtained in Step1 and the fine-

grained QoS constraints obtained in Step2, a static scheduling strategy, as will be illustrated in

Section 4.2, is required in order to generate a number of service-level scheduling plans with

different task-to-service assignments. Given these service-level scheduling plans, the global

scheduler can then estimate and provide the user with competitive prices (which may be

determined by some marketing level strategies but normally be able to cover the system running

cost) and different levels of QoS (above the level of user requirements). As for those services

which are not own by the cloud workflow system, the global scheduler will activate the resource

broker to negotiate SLA with the other service providers. Finally, after the selection of a specific

7

service-level scheduling plan, the contract between the user and the cloud workflow system is

signed (along with the sub-contracts between cloud workflow systems and other service providers),

and reservations will be made on all the services (e.g. specific time slots for computing services

and fixed sizes of memory spaces for storage services).

Based on the above three steps, a service-level scheduling plan is selected at the workflow

runtime instantiation stage with the static information of candidate services. It can guarantee

satisfactory QoS for the workflow instance if the service contract (along with all the sub-contracts)

will be successfully fulfilled as promised. However, due to the dynamic nature of cloud computing

environments, local schedulers in cloud data centres should be able to adapt to the system changes

or exceptions at workflow runtime (e.g. resource upgrade and resource recruitment, or resource

unavailability and resource overload). Therefore, at the workflow runtime execution stage, to

ensure the successful fulfilment of service contracts, dynamic task-level scheduling in each cloud

data centre is required.

3.3 Task-Level Scheduling

The task-level scheduling is a part of the resource management on the unified resources layer. The

task-level scheduling is a type of dynamic scheduling which aims to optimise the Task-to-VM

assignment so that the QoS constraints for each individual tasks will be satisfied while the overall

running cost of cloud workflow systems can be minimised. The functionality of task-level

scheduling is usually realised by local schedulers which are located within a specific cloud such as

a SwinDeW-C ordinary peer. Note that local scheduler cannot control the cloud resources which

belong to other service providers but only with the obligations of service contracts. Each service

provider may have its own task-level scheduling strategies to optimise the system running cost of

its own data centre. Therefore, in our strategy, the task-level scheduling only targets the tasks

running in a specific data centre, i.e. the data centre which the cloud workflow system belongs to.

Moreover, since our scheduling strategy can be implemented simultaneously in many data centres,

it can also be employed to minimise the overall running cost for multiple data centres. However,

this will be further investigated in our future work.

The task-level scheduling mainly consists of the following three steps:

Step1: obtain the QoS constraints for each individual tasks (including both workflow and non-

workflow tasks). Given the results of the service-level scheduling, suitable services have been

allocated to individual workflow tasks and time slots have been booked in advance. However,

since the initial scheduling plan is generated by the service-level scheduling based on static

information (e.g. the available time slots and the work load) of cloud services, the runtime service

states may be significantly different due to such as the changes of service workload, the

unavailability of existing resources and the recruitment of additional resources. Moreover, since

the service-level scheduling plan only deals with individual workflow instances, it cannot have a

global view of the Task-to-VM assignment for workflow tasks of multiple workflow instances and

general non-workflow tasks in the data centre which needs be optimised to minimise the system

running cost. However, since the original time slots on each service reserved by service-level

scheduling will probably be re-arranged during the optimisation process, the QoS constraints for

each individual task need to be obtained for validation purpose, i.e. to validate whether the

generated scheduling plans can meet these QoS constraints or not. Moreover, for workflow tasks,

their precedence relationships are also required to be obtained besides their QoS constraints.

Step2: optimise the Task-to-VM assignment. In cloud data centres, the underlying physical

resources are virtualised as unified resources, namely virtual machines (VMs). VMs with specific

CPU units and memory spaces can be created dynamically to suit the needs of different cloud

applications. Most of the VMs are created with commodity machines which have moderate

processing speed. However, due to the needs of some computation intensive tasks such as

scientific workflow applications, high performance machines such as supercomputers are also

available in the data centre or hired from other service providers which provide IaaS, i.e.

infrastructure as a service. Therefore, VMs in a specific data centre may include resources with

different processing speeds, and hence with different pricing models. Additionally, the network

transfer is usually free within a data centre and the cost on data storage can be paid in a simple

way (e.g. the storage cost for each task is linear to the storage time and size since the storage

services are normally charged with a unanimous pricing model). Therefore, in this paper, the

optimisation of the Task-to-VM assignment focuses on the reduction of the time and cost for

computation services. The goal in this step is to generate an optimal (near-optimal) scheduling

plan by a specific metaheuristic scheduling algorithm which can significantly reduce the overall

system running time and cost for the data centre while satisfy the QoS constraints of both

workflow and non-workflow tasks.

8

Step3: implement the optimal scheduling plan. After the optimal (near-optimal) scheduling plan

is generated in Step2 by a specific metaheuristic scheduling algorithm within limited time, it will

then be automatically implemented by the local scheduler who is capable of controlling the

underlying resources on the fabric layer to carry out the workflow execution.

Based on the above three steps, a task-level scheduling plan is implemented in the cloud data

centre to carry out the workflow execution with satisfactory QoS. Meanwhile, the overall running

cost of the cloud workflow system has also been minimised.

As mentioned earlier, cloud workflow systems are of instance intensive. Therefore, the service-

level scheduling which deals with individual workflow instances will be conducted whenever a

new workflow instance arrives and hence in a very high frequency. As for the task-level

scheduling, since it deals with the Task-to-VM assignment in the entire data centre, it will be

conducted much less frequently so as to allow the optimal scheduling plan to be carried out but

also periodically so as to accommodate the coming of new tasks. For those tasks which have not

been optimised yet, they will be executed according to their reserved time slots, namely the initial

service-level scheduling plan. However, when significant environment changes such as the break

down of existing resources or the recruitment of additional resources, the task-level scheduling

should often be conducted immediately.

4. Service-Level Scheduling Algorithm

Service-level scheduling is to assign suitable service to each task of individual workflow instances

according to their functional and non-functional QoS requirements. As mentioned above, we will

not detail the algorithms for the processes in Step1 and Step2 such as service discovery and fine-

grained QoS constraints assignment but focus on the algorithm for generating service-level

scheduling plans which specify the concrete Task-to-Service assignment.

Specifically, given the set of unassigned workflow tasks, the set of available cloud services

(obtained in Setp1 based on functional requirements), the objective for service-level scheduling

algorithm is to generate candidate scheduling plans which can satisfy the following constraints: the

fine-grained QoS constraints for each workflow task (obtained in Step2 based on non-functional

QoS requirements), the precedence relationship between workflow tasks (defined in workflow

specifications). Based on the generated candidate scheduling plans, the global scheduler needs to

select the best one from them usually based on the system defined criteria such as minimum cost

or minimum time. The best service-level scheduling plan will be applied to specify service

contract between the user and the cloud workflow system and further make reservations on the

selected services. Therefore, the service-level scheduling algorithm should be able to explore the

search space of Task-to-Service in an efficient fashion.

In this paper, we present a package based random scheduling algorithm for service-level

scheduling. But before that, we briefly illustrate DAG task graphs. DAGs (Directed Acyclic

Graphs) based modelling is widely used in workflow area [1, 5, 7, 23]. As depicted in Figure 2, in

a DAG, each node represents a workflow task and directed links indicate the task dependencies.

To facilitate cloud workflow scheduling, each task node in a DAG also associated with its QoS

constraints, e.g. the constraints on the execution time and execution cost. In a DAG, each node

(except the root node, i.e. the first task) will have one and only one parent node which indicates its

parent task. A child task will become ready and can be executed until its parent task is completed.

However, it is possible that a child task has more than one parent task in real world processes. In

such a case, as depicted in Figure 2(b), a transformation process will create multiple instances of

the child task for each of its parent tasks. Additionally, for an iterative task as depicted in Figure

2(c), a transformation process will create the same number of instances for the iterative task as its

iteration times. Therefore, DAGs can visually represent common workflow structures with single

parent-child relationships. This simple representation of DAGs can benefit workflow scheduling

algorithms in the efficient validation of the precedence relationships between workflow tasks. An

example workflow defined by a DAG is presented in Figure 2(d).

9

(a) DAG Task Graph

(b) Multiple Parent Task

(c) Iterative Task

(d) Example Workflow

Figure 2. DAG Task Graph

As depicted in Figure 3, the service-level scheduling algorithm adopts a two-dimensional

representation of scheduling plans where the first dimension isched denotes the scheduled tasks

and the second dimension ialloc denotes the allocated services. The packages here consist of co-

allocated tasks of the same workflow instance with correct precedence relationships defined in

DAGs. For example, if T1, T2 and T3, as depicted in Figure 2(a), can be executed by the same

service (i.e. with the same functional requirements), then they can form a package where the tasks

are arranged in correct precedence relationships and share the same candidate service randomly

allocated to each package (e.g. Package 1 of the service-level scheduling plan shown in Figure 3

with service 2S). Note that here without losing generality, we assume every workflow task is an

atomic task, i.e. every workflow task only requires a single cloud service. If a workflow task is not

an atomic task, it can be split into multiple atomic tasks according to its required capabilities.

Every cloud service can have more than one capability. As for multiple instances of workflow

tasks (e.g. multiple parent task and iterative task as shown in Figure 2(b) and Figure 2(c)), it is

possible that they are located in different packages and allocated with different services (e.g. the

two instances of task Tm shown in Package k-1 with service 1S and Package k with service

pS in Figure 3). In such a case, the multiple instances of the same task need to be allocated with

the same service, e.g. either 1S or pS in a random fashion or based on the service speed or price.

The pseudo-code for package based random scheduling algorithm is presented in Algorithm 1.

Figure 3. Package Based Service-Level Scheduling Plan

10

},{ ii allocsched









+ ∑

=
∑
−

=
))((:1))((

1

1

1

j

m

j

m
i mDAGsizemDAGsizesched

;)((:)1))((
1

1

1
















+= ∑

=
∑
−

=

j

m

j

m
mDAGsizeTaskmDAGsizeTask









+ ∑

=
∑
−

=
))((:1))((

1

1

1

j

m

j

m
i mDAGsizemDAGsizealloc

);|(iCapabilitySirandom=

)}(0|),,({ DAGSizejiTjTiCostiTimeiTiDAG <<<>

)},,({ PriceiSpeediiCapabilitySiService

costnschedPricenalloc ii).:1().:1(≤

timenschedspeednalloc ii).:1(/1).:1(&& ≥

Truevalidallocsched ii =}.,{

Falsevalidallocsched ii =}.,{

)}.,({},{ TruevalidallocschedCompareallocschedBest ii ==
},{ allocschedBest

Algorithm 1. Package Based Random Scheduling

The input of the scheduling algorithm consists of the DAGs which define the precedence

relationships between workflow tasks and their associated fine-grained QoS constraints on time

and cost, and the available cloud services with their capability (capabilities), execution speed and

price. The algorithm will repeated for a number of times until a fixed size of candidate scheduling

plans are generated (line 1). For each package, the workflow tasks will be arranged with correct

precedence relationships according their associated DAGs, and each package is randomly

allocated with a service which satisfies the functional requirements (line 2 to line 9). With the

generated candidate scheduling plans, the next step is to verify them with the given QoS

constraints (line 10 to line 17). For each candidate scheduling plan, it is valid if and only if for all

the individual Task-to-Service assignment, the price of the allocated service is not higher than the

cost constraint of the task, and the execution speed of the allocated service is not lower than the

execution speed required (i.e. the reciprocal of the execution time) by the task. After the

verification process, the valid candidate scheduling plans will be compared to obtain the best one

based on the criteria such as minimum execution time or minimum execution cost (line 18).

Finally, the best service-level scheduling plan (or sometimes the top ranked several candidates)

will be returned to the global scheduler to facilitate the signing of service contracts and make

reservations on allocated services (line 19).

After the service-level scheduling, workflow tasks of individual cloud workflow instances are

mapped to correct cloud services with satisfying functional and non-functional QoS performance.

The global scheduler in the cloud workflow system will implement the selected service-level

scheduling plan by distributing the corresponding segments of the scheduling plan to the local

schedulers for cloud services which are responsible for the run-time Task-to-VM assignment in the

local cloud data centre. In the next section, we will present the task-level scheduling in cloud

workflow systems.

11

5. Task-Level Scheduling Algorithm

Task-level scheduling is to optimise the Task-to-VM assignment in the cloud data centres. Since

the cloud workflow system cannot directly control the cloud services which are owned by other

service providers, the task-level scheduling in our strategy specifically means the optimisation of

the Task-to-VM assignment in the local cloud data centre which underneath the cloud workflow

system, as depicted in Figure 1. Therefore, the major goal for task-level scheduling is to decrease

the system running cost of cloud workflow systems by dynamically optimising the Task-to-VM

assignment. As mentioned earlier, in a cloud data centre, there are a large number of workflow

tasks (with both QoS constraints and precedence relationships) and general non-workflow tasks

(with QoS constraints but no precedence relationships) running concurrently on unified resources,

namely virtual machines. These virtual machines are built on commodity machines with moderate

processing speed and/or supercomputers with high processing power to meet the requirements of

different applications such as transaction intensive business workflows and computation intensive

scientific workflows. Meanwhile, virtual machines with different processing speed will be charged

with different prices. Therefore, task-level scheduling in cloud workflow systems needs to deals

with the Task-to-VM assignment where the Task set includes both workflow tasks and non-

workflow tasks and the VM set includes different virtual machines with different processing speed

and prices. Evidently, the input of task-level scheduling algorithms, i.e. the initial Task-to-VM list

in the data centre, needs to be obtained in the first place.

Here, note that given the large scalability of cloud computing, the number of tasks running in a

cloud data centre is huge for instance, hundreds of thousands of tasks. Besides, due to the

complexity (NP-Complete) of QoS constraint based scheduling problem in nature [50], it is

extremely difficult, if not impossible, to design a global scheduling algorithm to optimise the

Task-to-VM assignment of the entire data centre within reasonable overhead, i.e. CPU time.

Therefore, in our strategy, the task-level scheduling algorithms only aim to optimise the Task-to-

VM assignment of a specific local part of the entire data centre with a reasonable amount of tasks,

for instance, several hundreds [11]. Meanwhile, in order to reduce the overall running cost of the

data centre, the task-level scheduling algorithms can be run in a parallel fashion. As such, the

Task-to-VM assignment of every part of the data centre can be optimised and run with the lowest

cost. However, the overall running cost of the data centre may not be optimal but it is considerably

optimised. Therefore, as will also be demonstrated in our simulation experiments, it is a reasonable

and practical compromise between the overhead of task-level scheduling algorithms and the

optimisation on the running cost of the cloud data centre. We will leave the further study on the

task-level scheduling algorithms for the global Task-to-VM assignment of the entire data centre as

our future work. In this paper, we focus on the task-level scheduling for a specific part of the entire

data centre. Therefore, how to define the initial Task-Resource list as the input for the task-level

scheduling algorithms is important but remains a challenging issue. Specifically, there are at least

two basic requirements for the initial Task-to-VM list: 1) Reasonable partition for the global Task-

to-VM list of the entire data centre; 2) Reasonable size of the Task-to-VM list. The first

requirement is to ensure that the local Task-to-VM lists, as the input for each parallel task-level

scheduling algorithms, are reasonably portioned, i.e. the global Task-to-VM list is fully covered by

the collection of these local Task-to-VM lists, meanwhile, these local Task-to-VM lists are not

covered with each other. As for the second requirement, as a control over the overhead of the task-

level scheduling algorithms, the size of the local Task-to-VM list should be reasonable, e.g. the

number of tasks is below 300 and the number of virtual machines is below 20 as in our simulation

experiments presented in Section 6.

To address such an issue, we present the integrated Task-to-VM list to define the local Task-to-

VM list as the input for each parallel task-level scheduling algorithm. As depicted in Figure 4, the

integrated Task-to-VM list is an integrated collection of virtual machines and he integrated DAG

task graph which includes workflow tasks defined in DAG task graphs and their co-allocated non-

workflow tasks. Here, co-allocated tasks are those which have been allocated to the same virtual

machines. For example, as depicted in Figure 4, the local Task-to-VM list contains four different

virtual machines 1VM to 4VM . Each virtual machine maintains a local task-list, i.e. the job

queue inputted by the local scheduler of the data centre. To start the task-level scheduling, the

local scheduler will acquire the current task-list of 1VM to 4VM and can automatically combine

them into an integrated DAG task graph which consists of all the tasks, for instance, a total of n

tasks, by assigning a pseudo start task StartT and pseudo end task EndT . Hence, one integrated

Task-to-VM list (){ }4,3,2,1,,...,1|, =++= jnppiVMTL ji is built which is a part of the global

Task-to-VM list and ready to be optimised by the task-level scheduling algorithms. Here, tasks are

12

defined with }}{,,,{ 1+> iiiii TTDAGTimeCostT (the QoS constraints on cost and time, and the

precedence relationship with other tasks for workflow tasks), and virtual machines are defined

with },,{ jjj SpeedPriceVM (the price and the processing speed). Similarly, the same process can

be conducted in a parallel fashion on all the local groups of virtual machines in the data centre.

Therefore, a partition of the global Task-to-VM list is made as a result of all the integrated Task-

to-VM lists. Hence, as mentioned above, the overall running cost of the data centre will be reduced

since the task-level scheduling algorithm will optimise the Task-to-VM assignment in each group

of virtual machines. For each group, the maximum number of virtual machines is defined by the

cloud workflow system given the average length of the local task-list of each virtual machine.

Empirically, as shown in our simulation experiments, the empirical ratio between tasks and virtual

machines is normally below 20:1, e.g. the maximum number of tasks in an integrated Task-to-VM

list is under 300 and the maximum number of virtual machines is under 20. Note that the ratio

between tasks and virtual machines probably varies from data centre to data centre and are

subjected to changes due to different capabilities of virtual machines.

startT

1+pT 2+pT

3+pT

5+iT

4+pT

6+pT

7+pT

jT 1+jT 2+jT kjT + endT

mT

1+mT

2+mT

3+mT 5+mT

{ }),(ji VMTL

4+mT

Figure 4. The Local Integrated Task-to-VM List

5.1 Genetic algorithm

GA is a search technique often employed to find the exact or approximate solutions to

optimisation and search problems [20, 49]. GA is a specific class of evolutionary algorithms

inspired by evolutionary biology. In GA, every solution is represented with a string, also known as

a chromosome, which follows the semantics defined by the encoding method. After encoding, the

candidate solutions, i.e. the initial population, need to be generated as the basic search space.

Within each generation, three basic GA operations, i.e. selection, crossover and mutation, are

conducted to imitate the process of evolution in nature. Finally, after the stopping condition is met,

the chromosome with the best fitness value is returned, representing the best solution found in the

search space. That ends the whole GA process. In recent years, GA has been adopted to address

large complex scheduling problems and proved to be effective in many distributed and dynamic

resource environments, such as parallel processor systems and grid workflow systems [31, 40].

13

{ }mjniVMTL
ji

,..,2,1;,..,2,1|),(==

}}{,,,{ 1+> iiiii TTDAGTimeCostT

},,{ jjj SpeedPriceVM

Algorithm 2. GA Based Task-Level Scheduling

As depicted in Algorithm 2, the first searching phase of GA based task-level scheduling is to

optimise the overall makespan and cost for the integrated task-resources list through GA (Line 1 to

Line 9). The GA algorithm starts from encoding (Line 1). Here two-dimension encoding method is

adopted. The first dimension represents the scheduled acts and the second represents the resource

allocated to the corresponding act in the first dimension. GA starts with the generation of a fixed

size initial population. (Line 2). Because the quality of initial population is critical for the final

outcome, package based random algorithm is applied to generate the initial population. The

algorithms for the encoding and package based random generation are the same as described in

Section 4 (Figure 3 and Algorithm 1 respectively) and hence omitted here. After that, the

algorithm starts searching for the best solution iteratively until the stopping condition, e.g. the

maximum generation, is met (Line3 to Line9). Three fundamental operations of GA including

selection, crossover and mutation take actions in sequence. Stochastic universal sampling (SUS)

[20] for selecting potentially useful solutions as parents for recombination is used in selection

operation (Line4). SUS uses a single random value to sample all of the solutions by choosing them

at evenly spaced intervals. The solution candidates generated during initialisation phase are all

legal (i.e. they all satisfy the precedence relationship as defined in DAGs); however, conventional

crossover will probably make some individuals illegal. To keep the diversity of the population,

single point crossover strategy is employed. When two parents are both legal, single point

crossover ensures their children are legal. So before the mutation, the whole population is valid

[33]. The third genetic operation is mutation (Line 5) where the allocated resource is mutated, i.e.

substituted for another resource, at a randomly selected cell of a chromosome. The mutation rate is

normally set to a small probability value such as 10% since mutation can easily destroy the correct

precedence relationship and result in invalid solutions. The major affect of Mutation is that it can

introduce diversity into the population to help it jump out of local optimal traps. However, it can

make some individuals invalid. These invalid individuals should be eliminated through validation

and replace (Line 7, Line 8). Since cloud workflow system is a market-oriented system, the

candidate scheduling solution is expected to satisfy the QoS constraints according to the service

14

contract. The last operation of the first phase is check which verifies whether the candidate

individual should be retained or discarded.

During the second searching phase, the SolutionSet is compared with the user preference, i.e.

UerPref, and the best scheduling plan L is deployed (Line 10 to Line 12). Both makespan and

costs are taken into account in UerPref which defines the specific preference of users towards the

two factors. For example, the UerPref can be the minimum makespan, the minimum cost or a

balance ration between makespan and cost. The best scheduling plan (BestSolution) is selected

from the satisfied population (Line 10). The BestSolution is defined as the best solution according

to UerPref among all the valid solutions. Since the BestSolution is represented in two dimensional

vector, it should be decoded back to L as an integrated Task-to-VM list (Line 11). The last step of

the whole algorithm is to deploy the L (Line12).

5.2 Ant colony optimisation

In recent years, Ant Colony Optimisation (ACO), a type of optimisation algorithm inspired by the

foraging behaviour of real ants in the wild, has been adopted to address large complex scheduling

problems and proved to be quite effective in many distributed and dynamic resource environments,

such as parallel processor systems and grid workflow systems [6, 11].

As shown in Algorithm 3, the first searching stage of ACO based task-level scheduling is to

optimise the overall execution time and cost for the integrated task-resources list through ACO

(Line 1 to Line 10). The ACO algorithm starts from initialisation of pheromone and all parameters

(Line 1). In [12], two types of pheromone, i.e. ijdτ and ijcτ , are defined. Here, ijdτ denotes

the desirability of mapping task ia to resource jR from the perspective of execution time while

ijcτ denotes the desirability from the perspective of execution cost. Afterwards, the ACO based

searching process iterates until the stopping condition, i.e. the maximum iteration times, is

satisfied. During each iteration, a group of ants needs to be initialised first (line 3 to line 4). Each

ant starts with selecting one of the heuristics from duration-greedy, cost-greedy or overall-greedy

which has specific preference on searching (Line 3). Then, the tackling sequence which arranges

the order of tasks is built based on the input DAG task graph (Line 4). During the solution

construction process (Line 5 to Line 8); each activity is allocated to a specific resource according

to its bias ijB which is based on the value of pheromones and the heuristic information (Line 6).

Meanwhile, after a specific choice of resources, the earliest start time est of the current activity

is compared with the earliest end time eet of its predecessors to determine whether the current

schedule can satisfy the precedence relationships defined in the DAG task graph. After a

successful resource allocation, the est and eet for its subsequent activities are updated (Line 7).

Here, a local updating process is conducted to decrease the local pheromone of ijdτ and ijcτ so

that the following ant can have a higher probability of choosing other resources (Line 8). Evidently,

the purpose of local updating is to enhance the diversity of the ACO algorithm. By contrast, after

all ants have built their individual solutions, a global updating process is conducted to increase the

pheromone along the path for the best-so-far solution so that the subsequent ants have higher

probability to choose the same scheduling plan (Line 9). Therefore, the purpose of global updating

is to reinforce the best-so-far solution in order to speed up the convergence of the ACO algorithm.

Finally, at the end of iteration, the best-so-far solution is returned and added into the SolutionSet

which serves as the input for the second searching stage (Line 10).

In the second searching stage, the BestSolution is retrieved from the SolutionSet (Line 11 to

Line 12). The process is the same as the one described in GA. The BestSolution is selected

according to the user preference UerPref (Line 11) and then the corresponding integrated Task-to-

VM list is deployed.

15

);},{,.,.,(ijjiii BRReetaestaaCHOOSE

);,(ijij ddELOCALUPDAT ττ

);cos,,,(
bsbs

ijij tmakespanddTEGLOBALUPDA ττ

{ }mjniVMTL ji ,..,2,1;,..,2,1|),(==

}}{,,,{ 1+> iiiii TTDAGTimeCostT

},,{ jjj SpeedPriceVM

Algorithm 3. ACO Based Task-Level Scheduling

5.3 Particle swarm optimisation

Particle swarm concept is predominately designed to find solutions for continuous optimisation

problems without prior information [51, 52]. To solve the workflow scheduling problem, a discrete

version of PSO (DPSO) is presented in this paper as a candidate evolutionary algorithm [10].

Something like conventional PSO, the key issue of DPSO is to define the position and velocity of

particle as well as to define their operation rules and the equation of motion according to the

features of discrete variables. Suppose that the workflow has m tasks and n resources. The

position of particle i is presented as nijxm,j,)im,...,xij,...,xi,xi(xiX ≤≤≤≤= 1121
，A particle i is

also associated with a velocity
iV along each dimension

{ }1,0,1,1),,...,,...,2,1(−∈≤≤= ijvmjimvijviviviV . Each particle is assumed to have a local memory that

keeps its pervious best position pbest. For each particle, pbest and the position vector of the best

performing particle in the local neighbourhood, gbest, are combined to adjust the velocity along

each dimension, and the adjusted velocity is then used to adjust the position of the particle. Here

iV is a selective strategy, when ijv equals to -1, the corresponding bit is selected from gbest;

when ijv equals to 0, the corresponding bit is selected from iX ; when ijv equals to 1, the

corresponding bit is selected from pbest. For the sake of clarity, variables and the rules of DPSO

for solving workflow scheduling can be depicted in formulas.

16

(1) Multiply the Subtraction of Position

)(1 XXcV pbestp −•= (1)





=
pbest

 X
V p

 from bit value ingcorrespond select the1

from bit value ingcorrespond select the0

Here we define the threshold []1,0∈δ , generate a random number r for each workflow,

compare r and δ .When δ≥r , assign 0 to
pV , otherwise , assign 1 to

pV .

)(2 XXcV gbestg −•= (2)





−
=

gbest

 X
Vg

 from bit value ingcorrespond select the1

from bit value ingcorrespond select the0

 Here we also generate a random number r for each workflow, compare r and δ .When δ≥r ,

assign 0 to
gV , otherwise, assign -1 to

gV .

(2) Motion Equations of Particle

)()(21 XXcXXcV gbestpbest −+−= (3)

VXX += (4)

PSO Based Task-Level Scheduling

Input: Integrated Task-to-VM list

 Tasks ;

 Virtual machines .

Output: Optimised task-level scheduling plan
//Optimising the overall makespan and cost

// swarm initialization

1) ps=population size;

2) MAXNFC=maximum number of function calls (NFC);

3) MINNFC=minimum number of function calls (NFC);

4) MOR=makespan optimisation ratio compared to the last iteration

5)COR=cost optimization ratio compared to the last iteration

6) For j=1 to ps

7) GENERATE a valid solution ;

8) ASSIGN to ;

9) FIND ;

10) GENERATE learning probability and ;
11) While ((NFC<MAXNFC) and (NFC<MINNFC or MOR <0.02 or COR <0.02))

{

12) For j=1 to ps

/*PSO evolution steps*/

/*Velocity updating*/

13) GENERATE a random number for each sub workflow;

14) CALCULATE using and ;

15) CALCULATE using and ;

16) CALCULATE using and ;
/*Position updating*/

17) CALCULATE new position using and ;
/* pbest and gbest updating*/

18) UPDATE(pbest);

19) UPDATE(gbest);
// return both pbest and gbest and record them into the SolutionSet

20) Return(Solution, SolutionSet);

}

// Selecting the BestSolution according to user preferences

21) BestSolution=COMPARE(SolutionSet, UserPref);

// deploy the task-level scheduling plan

22) Deploy(L).

{ }mjniVMTL ji ,..,2,1;,..,2,1|),(==

}}{,,,{ 1+> iiiii TTDAGTimeCostT

},,{ jjj SpeedPriceVM

X

X pbest

gbest

δ χ

r

pV

g
V

V pV
g

V

gbest

pbest

X

X

X X V

Algorithm 4. PSO Based Task-Level Scheduling

As described in Algorithm 4, the first searching phase here is also to optimise the overall

execution time and cost for the integrated task-resources list to be scheduled through DPSO (Line

1 to Line 18). The particles involved in this algorithm are encoded in two dimensions. One

17

dimension indicates the acts from the workflow to be scheduled; the other represents the resources

to fulfil the relevant acts. This relationship is maintained by the indices of vectors. The DPSO

algorithm starts from initialisation of swarm. To effectively control the trade off of cup time and

solution quality, maximum number of function calls(MAXNFC),minimum number of function

calls(MINNFC), makespan optimisation rate compared to the last iteration(MOR) and cost

optimisation rate compared to the last iteration(COR) (Line 2 to Line 5) is defined. Generate a

valid solution for each particle, because the initial position of each particle is the personal best

position, the generated solution can be assigned to the pbest of every particle directly (Line 6 to

Line 9).In DPSO, the particle not only learns from its own experience, but also learns from the

counterpart in the swarm. So the particle with the biggest fitness value is assigned to the swarm

global best , that is gbest (Line10).After this, the process is entering search iterations(Line 12 to

Line 21) .When the maximum number of function calls is met or the other three conditions is

satisfied, the iteration will stop. The three conditions are to ensure iteration time is no less than

minimum number of function calls and to ensure the optimisation rate on makespan and cost is no

less than two percent during iteration. Each sub workflow gets a random number to decide whether

it will learn from its own experience or not, the same way for it to learn from the global best

candidate solution. The velocity, also a selective strategy, for the particle to move is a vector with

the value -1, 0, 1. When the component is -1, the resource allocated to the act according the

corresponding component in the global best, when it is 0, the position has no change, when it is 1,

the resource allocated as the component in the personal best (Line 14 to Line 17).Once these

operations is performed, the particle is in the new position, that is the new solution is produced.

Before starting the next iteration, the global best and the personal best of each particle are expected

to be updated (Line 19 to Line 20).Finally, at the end of iteration, the best-so-far solution is

returned and added into the SolutionSet which serves as the input for the second searching stage

(Line 21).

In the second searching stage, the BestSolution is retrieved from the SolutionSet according to the

user preference UerPref (Line 21 to Line 22). The process is the same as the above two described

in GA and ACO. Finally, the corresponding integrated Task-to-VM list L is deployed.

6. Evaluation

6.1 Simulation environment

SwinDeW-C (Swinburne Decentralised Workflow for Cloud) [46] is developed based on

SwinDeW [44] and SwinDeW-G [45]. It is currently running at Swinburne University of

Technology as a virtualised environment which is physically composed of 10 servers and 10 high-

end PCs. To simulate the cloud computing environment, we set up VMware [41] software on the

physical servers and create virtual clusters as data centres. Figure 2 shows our simulation

environment.

(a) System architecture of SwinDeW-C

18

(b) Main system components of SwinDeW-C

Figure 5. Simulation environment of SwinDeW-C

As depicted in Figure 5(a), every data centre created is composed of 8 virtual computing nodes

with storages, and we deploy an independent Hadoop [19] file system on each data centre.

SwinDeW-C runs on these virtual data centres that can send and retrieve data to and from each

other. Through a user interface at the applications layer, which is a Web based portal, we can

deploy workflows and upload application data. SwinDeW-C is designed for large scale workflow

applications in the cloud computing environments. In Figure 5(b), we illustrate the key system

components of SwinDeW-C.

User Interface Module: The cloud computing platform is built on the Internet and a Web

browser is normally the only software needed at the client side. This interface is a Web portal by

which users can visit the system and deploy the applications. The Uploading Component is for

users to upload application data and workflows, and the Monitoring Component is for users, as

well as system administrators to monitor workflow execution.

Resource Management Module: Resource management module is the major component in the

cloud workflow system. The workflow scheduling module plays an important role in the support

of cloud workflow execution and the management of cloud resources. As proposed in this paper,

SwinDeW-C employs the hierarchical scheduling strategy which consists of service-level

scheduling and task-level scheduling. As for its other major functionalities such as resource

brokering, pricing, auditing and SLA management they can directly inherit their counterparts in

the general cloud computing environment.

QoS Management Module: In market-oriented cloud computing environments, service

providers need to deliver satisfactory QoS in order to fulfil service contracts and make profits.

Otherwise, they cannot sustain in the global cloud markets. Generally speaking, QoS management

includes three main components, namely QoS setting, QoS monitoring and exception handling.

Taking temporal QoS management, one of the major dimensions of workflow QoS [48] as an

example, it consists of temporal constraint setting which specifies temporal constraints in cloud

workflow specifications at build time [27]; temporal checkpoint selection and temporal

verification which dynamically monitors the temporal consistency state along workflow execution

[8, 9], and temporal adjustment which handles detected temporal violations to ensure satisfactory

temporal QoS [8, 36].

Other Modules: The Data Management Module includes the strategies for data placement, the

data catalogue for service registry and lookup, and other components for cloud data management.

The Flow Management Module has a Process Repository that stores all the workflow instances

running in the system.

As part of the cloud resource management module, our hierarchical scheduling strategy is

currently being implemented in SwinDeW-C. Specifically, the package based random algorithm is

implemented as a functionality of the global scheduler in SwinDeW-C to facilitate service-level

scheduling, i.e. allocating suitable services and making reservations for individual tasks; the ACO

based task-level scheduling algorithm is implemented as a functionality of the local scheduler in

local data centres to facilitate task-level scheduling, i.e. optimising the Task-to-VM assignment to

reduce cloud workflow system running cost (ACO is the best candidate among the three

representative algorithms including GA, ACO and PSO, as will be illustrated with the

experimental results in Section 6.3).

19

6.2 Experiment settings

6.2.1 Parameter Settings for Workflows

The workflow processes are randomly generated as DAG task graphs as described in Section 4

where each workflow segment is with a random size of 3 to 5 activities. The mean duration of

each task is randomly selected from 30 to 3,000 basic time units and its standard deviation is

defined as 33% of its mean (a large standard deviation for valid normal distribution models where

the samples are all positive numbers according to the “3 σ ” rule [24]) to represent the highly

dynamic performance of underlying resources. Each resource contains three attributes including

resource ID, the execution speed and the execution cost. Here, the execution speed is defined as a

random integer from 1 to 5 where the execution time is equal to the mean duration divided by the

execution speed. In each of the ten experiment scenarios, half of the virtual machines are with

speed of 1. To simplify the setting, the price of each resource in our experiment is defined as the

execution speed plus a random number ranging from 1 to 3. For example, if a task is allocated to a

resource with the execution speed of 2, then 2 basic units plus an additional random 1 to 3 basic

units, e.g. 4 basic cost units, will be charged for every basic time unit consumed on such a resource

(namely the price of the resource is 4). Three attributes is defined for the integrated task-resource

list, that is, the number of total tasks, the number of workflow segments and the number of

resources. Specifically, the number of total tasks ranges from 50 to 300 including both workflow

and non-workflow activities. The number of workflow segments increase accordingly from 5 to

50. The number of resources is constrained in the range of 3 to 20 since high performance

resources in scientific workflow systems usually maintain long job queues. QoS constraints

including time constraint and cost constraint for each task are defined where time constraint is

defined as the mean duration plus 1.28* variance and cost constraint is defined as the triple of

the corresponding time constraint. The makespan of a workflow is defined as the latest finished

time on all the virtual machines and the total cost of a workflow is defined as the sum of task

durations multiply the prices of their allocated virtual machines. As for the three basic

performance measurements, the optimisation rate on makespan equals to the mean makespan

subtract the minimum makespan, then divides by the mean makespan; the optimisation rate on cost

equals to the mean cost subtract the minimum cost, then divided by the mean cost; the CPU time

used is defined as the average execution time of each algorithm running on a standard SwinDeW-

C node. The detail of each experiment scenario is shown in table 2. Note that in these settings, the

number of workflow tasks and the number of non-workflow tasks are kept in the same level to

simulate the application scenarios in a general cloud data centre.

Table 2 Experiment Scenarios

6.2.2 Parameter Settings for Genetic Algorithm

In GA, 50 new individuals are created during each iteration. The crossover rate is set to 0.7 and the

mutation rate is 0.1. Single cross over method is applied to recombine the chromosomes. When an

invalid chromosomes is produced by the operation of mutation, the best chromosomes in the

population will replace it. The fitness value of a solution is defined as the reciprocal of the sum

consisting of the makespan and 5% of the cost (the purpose of decreasing the cost here is to

balance the weight of makespan and cost since their original amount is not at the same level. 5% is

an empirical value here according to our experiment setting and it is subject to changes in

20

particular system environments). To make a trade-off between effectiveness and efficiency, we

design a compound stopping condition with four parameters: the minimum iteration times, the

maximum iteration times, the minimum increase of optimisation rate on time (the increase of

optimisation rate on time: the minimum makespan of last iteration subtracts the minimum

makespan of the current iteration and divided by the one of the last iteration), the minimum

increase of optimisation rate on cost (similar to that of makespan). Specifically, the evolutionary

process iterates at least a minimum of 100 times. After 100 times iterations, the iteration will stop

on condition that the maximum iteration times are met; or the increase of optimisation rate on time

is less than 0.02; or the increase of optimisation rate on cost is less than 0.02.

6.2.3 Parameter Settings for Ant Colony Optimisation

In ACO, 50 new ants are created in each iteration. Since we focus on both the reduction of

makespan and the reduction of cost, half of them are created as duration-greed and another half as

cost-greedy. The maximum iteration times are set as 1,000 and the minimum iteration times are

100. The weights of pheromone and heuristic information are set to be 1 and 2. The probability of

selecting the implementation with the largest value of Bij is 0.8. Local pheromone updating rate is

0.1 and the global pheromone updating rate is also 0.1. For fairness, the fitness value and the

stopping condition are the same as defined in GA.

6.2.4 Parameter Settings for Particle Swarm Optimisation

In PSO, 50 new particles are created in iteration. PSO employs the package-based random

generating method same as in GA to produce the initial valid positions. Two learning probabilities

are defined. The probability learning from its pbest for each particle is set to 0.4 and the

probability learning from its gbest for each particle is set to 0.5. To keep the swarm owning

diversity, the particle learns more from its own experience than from the global best particle. The

parameters c1 and c2 in Formula 3 are both set as 2.0. For fairness, the fitness value and the

stopping condition are the same as defined in GA.

6.3 Experimental Results

In the following sections, the experimental results on the three basic measurements including the

optimisation rate on makespan, the optimisation rate on cost and the CPU time are presented. As

explained in the parameter setting for each algorithm above, the workflow makespan and cost are

given equal weights in the optimisation process. Therefore, the best solution can be selected either

according to makespan or cost. In our experiment, the best solution is selected as the one with the

minimum makespan and its corresponding cost is regarded as the best cost (note that the cost of

the best solution is normally not the minimum cost found in the searching process). For each

measurement, an overall view for the ten experiment scenarios is first presented. Afterwards, as an

example, 10 randomly selected independent test cases in scenario 6 where the workflow is

composed of 200 tasks, 28 workflow segments and 12 virtual machines, are presented as the

detailed view. Here, since GA is the most popular metaheuristic used in workflow scheduling, the

average makespan and cost by GA is adopted as the benchmark for comparison purpose.

6.3.1 Results for Makespan Optimisation

Figure 6 shows the experimental results on the optimisation rate of makespan. Figure 6(a) presents

the optimisation rate on overall makespan in 10 different scenarios; Figure 6(b), 6(c), 6(d) show

the best and average makespan of scenario 6 by GA, ACO and PSO respectively.

From Figure 6(a), it can be seen that when the workflow size is small, the optimisation rate on

makespan by GA, ACO and PSO are similar but very low. For example, in the first scenario with

50 tasks, the makespan optimisation rate of ACO is about 5%, PSO is about 5.6% and GA is about

5.8%. When the workflow size increases, the performance of GA remains relatively stable but is

getting worse; the performance of PSO is on the rise at first and then deteriorates dramatically. On

the contrary, ACO has a potential ability to search good solution in workflow scheduling when the

number of the activities becomes large. For example, in the last scenario with 300 tasks, the

optimisation rate on makespan of ACO is 24.4%, GA is 11.8% and PSO is only 3.88%. It is

interesting to see that PSO achieved better performance than the others when the workflow size is

ranging from 150 to 200. For example, the makespan optimisation rate of PSO is 22.2% when the

number of tasks is 180 while GA is 13.8% and ACO is 15.4%.

21

In Figure 6(b), 6(c) and 6(d), 10 independent test cases are shown for scenario 6. The vertical

distance between the curve of best value and the curve of average value indicates the reduced

makespan. A clear phenomenon is that though in the same scenario, the best value found by each

algorithm in different test cases is very dynamic. However, it can be seen that the curve for the

best value and the curve for the average value have the similar trend but in a coarse-grained sense.

Upon our observation, the quality of the initial solutions mainly accounts for such a phenomenon

besides the random nature of these algorithms. Therefore, effective methods for generating high

quality initial solutions such as the package based random generation methods employed in this

paper and others can be further investigated to improve the performance of these scheduling

algorithms as well as their stability.

(a) (b)

(c)
(d)

Figure 6. Makespan optimisation of GA, ACO and PSO

6.3.2 Results for Cost Optimisation

Figure 7 shows the experimental results on the optimisation rate of cost. Figure 7(a) presents the

optimisation rate on cost in 10 different scenarios; Figure 7(b), 7(c), 7(d) show the best and

average cost of scenario 6 by GA, ACO and PSO respectively.

(a) (b)

22

Figure 7. Cost optimisation of GA, ACO and PSO

As can be seen in Figure 7(a), ACO has an overall better performance than others and it shows a

increasing trend. GA and PSO have similar and relatively stable performance, but much lower than

that of ACO especially when the workflow size is becoming larger. As for the detailed results in

scenario 6, the best cost value by ACO is ranging from 7930.28 to 8810.87 with a mean value

8309.73; the best cost value by GA is ranging from 8346.70 to 8719.63 with a mean value 8613.42;

the best cost value by PSO is ranging from 8389.50 to 8783.00 with a mean value 8541.00. This

implies that ACO explores a larger searching space than the other two and it is more effective in

constructing solutions with smaller cost. Meanwhile, similar to the optimisation on makespan, the

best cost found by each algorithm in the ten test cases is very different but normally behaves

similarly to their average cost.

6.3.3 Results for CPU time

(a) (b)

(c) (d)

Figure 8. CPU time of GA, ACO and PSO

(c) (d)

23

Figure 8 shows the experimental results on the CPU time of each algorithm. Figure 8(a) presents

the CPU time in 10 different scenarios; Figure 8(b), 8(c), 8(d) show the CPU time of scenario 6 of

GA, ACO and PSO respectively.

As can be seen in Figure 8(a), PSO consumes much more CPU time than others. In the first

scenario with 50 tasks, PSO and GA use about 30 seconds while ACO only needs 16 seconds.

When the workflow size increases, the CPU time of PSO is growing dramatically. For example,

for the last scenario with 300 tasks, it takes PSO about 58 seconds while ACO only uses 33

seconds. An interesting phenomenon is that the CPU time used by GA goes down at first and

keeps steady at about 17 seconds. As can be seen in Figure 8(b), 8(c), 8(d), the CPU time of each

algorithm is very dynamic though in the same scenario. Furthermore, if we take a look at the three

basic measurements for the same test case of specific algorithm, it shows that a larger CPU time

often associates with a lager optimisation rate on makespan (or cost). For example, the CPU time

of test case 4 is larger than that of test 3, and accordingly as can be seen in Figure 6(c), the

optimisation rate on makespan of test case 4 is larger than that of test 3. Another example, the

CPU time of test case 7 is larger than that of test 8, and accordingly as can be seen in Figure 7(c),

the optimisation rate on cost of test case 7 is larger than that of test 8. However, larger CPU time

normally cannot guarantee larger optimisation rate on makespan and cost simultaneously. This is

reasonable since larger optimisation rate on makespan normally implies the more usage of

expensive virtual machines with faster speed, and hence increase the cost.

6.3.4 Further Discussion

1) For the optimisation rate on makespan: A distinctive phenomenon observed is that when the

number of tasks is more than 200, ACO yields a better performance. This implies that the ACO is

more effective in solving large size discrete multiple constraints optimisation problem. One of the

possible reasons for that is because ACO constructs the valid solutions task by task while PSO and

GA search for valid solutions randomly in the searching space. Therefore, ACO generated

solutions are all constraints satisfied. But GA and PSO cannot guarantee the validity of generated

solutions. Meanwhile, due to the same reason, ACO can normally explore a much larger searching

space than GA and PSO. Therefore, ACO can still maintain a good performance when the

workflow size is getting larger. In contrast, GA and PSO tend to have premature convergence due

to the limited searching space.

2) For the optimisation rate on cost: In this paper, the scheduling problem is a two-constraint

optimisation problem where the fitness value for each solution is defined based on both makespan

and cost. Solutions with higher fitness values are regarded as better solutions. As explained, in our

experiment, the best solution is selected as the one with the minimum makespan and its

corresponding cost is regarded as the best cost. Therefore, the optimisation rate on cost is highly

related to the optimisation rate on makespan. For example, in scenario six, ACO can achieve the

makespan optimisation rate of 19.5% and at the same time achieve the cost optimisation rate of

7.6%. Based on Figure 6(a) and Figure 7(a), conclusion can be drawn that ACO has a better ability

to optimise cost than optimise makespan. One of the possible reasons is that in ACO, 50% ants are

duration-greedy, i.e. dedicate to makespan optimisation only, while the other 50% are cost-greedy,

i.e. dedicate to cost optimisation only. In GA and PSO, the balance between makespan

optimisation and cost optimisation is only adjusted by fitness value. In other words, each

individual in ACO has its social role for either makespan optimisation or to cost optimisation. In

GA and PSO, individuals are evolving to achieve higher fitness value but without the difference of

social roles. Therefore, it implies that the performance of algorithms having specialised social

roles is better than that of those without.

3) For CPU time: Generally speaking, the problem of larger overheads is the main drawback of

metaheuristics based algorithms. Therefore, in our experiments, compound stopping condition is

designed to control but also give reasonable CPU time for the optimisation process. Since ACO

constructs and optimises the solutions task by task, its CPU time increases steadily with the growth

of workflow size. By tracing the program, it is found that the most time consuming part of PSO is

UPDATE (pbest) (Line 18 in the pseudo code of PSO). For UPDATE (pbest), every particle’s

fitness needs to be calculated where the calculation of makespan and the calculation of cost are

invoked at the same time. As for the interesting phenomenon that the CPU time used by GA goes

down at first and keeps steady at about 17 seconds, also by tracing the program, it is shown that

when the workflow size is small, e.g. 50, GA iterates more than the minimum iteration times (i.e.

100). However, when the workflow size goes up over 100, GA encounters the problem of

premature convergence and hence the iteration times are normally equal to100 or just a little more

than that. Therefore, the CPU time is almost the same and thus also explains why GA has a

relatively stable performance.

24

6.3.5 Summary

Given the experimental results presented above, there is not a single candidate among GA, ACO

and PSO of which the average performance is distinctively better than others in all scenarios on

the three basic measurements. However, we can have the following conclusions:

1) For optimisation rate on makespan: GA has a stable and moderate performance among the

three; the performance of ACO is increasing rapidly when the workflow size grows; the

performance of PSO is quite dynamic and it is on a down trend when the workflow size becoming

larger. 2) For optimisation rate on cost: GA and PSO both have a stable and moderate

performance among the three; ACO behaves better than other and especially when the workflow

size is becoming larger. 3) For CPU time: PSO has much larger CPU time than others. The CPU

time of GA is becoming stable when the workflow size is large. The CPU time of ACO is larger

than that of GA but much less than that of PSO.

To sum up, GA has the moderate performance among the three. PSO is a better candidate for

medium size scheduling problem, e.g. the number of workflow tasks is ranging from 150 to 200.

The performance of ACO is on the rise with the growing of the workflow size. When the

workflow size is small, its overall performance is the best or closest to the best. Therefore, given

such results, we recommend ACO based task-scheduling algorithm as the best candidate among

the three for task-level scheduling in our hierarchal scheduling strategy.

7. Related Work

A cloud workflow system is built on the novel cloud computing infrastructure [3]. Cloud

computing is the latest computing paradigm which adopts the market-oriented business model

where users are charged for their consumption of computing resources, similar to the consumption

of utilities such as water, gas and electricity in our everyday life. The advent of cloud computing is

based on the recent development and application in the area of high performance distributed

computing such as cluster, peer to peer (P2P) and grid computing [17, 45, 47]. Especially with the

marketed-oriented grid computing [35], the traditional community based computing paradigm is

involved into utility based. Such an innovation brings many challenges for resource management

in cloud workflow systems, and among many others, cloud workflow scheduling is one of the

most important issues.

Workflow scheduling are classical NP-complete problems [43, 50]. Therefore, many heuristic

algorithms are proposed. The work in [50] has presented a systematic overview of workflow

scheduling algorithms for grid computing. The major grid workflow scheduling algorithms have

been classified into two basic categories which are best-effort based scheduling and QoS-

constraint based scheduling. In traditional community based computing paradigms, best-effort

based scheduling strategies are often applied to only minimise the execution time without

considering the monetary cost since resources are shared freely among system users. On the

contrary, in market-oriented computing paradigms, QoS-constraint based scheduling strategies are

employed to optimise performance under important QoS constraints, e.g. makespan minimisation

under cost constraints or cost minimisation under time constraints. Many heuristic algorithms such

as Minimum Execution Time, Minimum Completion Time, Min-min, Max-min are used as

candidates for best-effort based scheduling strategies [40]. As for QoS-constraint based

scheduling, some metaheuristic methods such as GA (Genetic Algorithm), ACO (Ant Colony

Optimisation) and PSO (Particle Swarm Optimisation) have been proposed and exhibit satisfactory

performance [10, 11, 26, 49, 50, 52].

In cloud workflow systems, QoS-constraint based scheduling strategies, namely metaheuristic

algorithms, are required. The three most representative metaheuristic algorithms for workflow

scheduling investigated in this paper are GA, ACO and PSO. In recent years, GA has been adopted

to address large complex scheduling problems and proved to be quite effective in many distributed

and dynamic resource environments, such as parallel processor systems and grid workflow

systems [28, 29, 31, 33, 49]. ACO, a type of optimisation algorithm inspired by the foraging

behaviour of real ants in the wild, has been adopted to address large complex scheduling problems

and proved to be quite effective in many application scenarios [12, 26, 32, 51]. The work in [11]

proposes an ant colony optimisation approach to address scientific workflow scheduling problems

with various QoS requirements such as reliability constraints, makespan constraints and cost

constraints. A balanced ACO algorithm for job scheduling is proposed in [6] which can balance

the entire system load while trying to minimise the makespan of a given set of jobs. PSO is a

relatively new type of searching algorithm. PSO is a stochastic, population-based algorithm

modelled on swarm intelligence that finds a solution to an optimisation problem in a search space

25

[51]. In recent years, PSO has been applied to address scheduling problems [22, 52] in many

different application scenarios such as grid computing, service-flow and flow-shop.

Up to date, the research on cloud computing is in its infancy so is the research on cloud

workflow scheduling. To the best of our knowledge, this is the first paper that systematically

analyses the problem of cloud workflow scheduling and proposes a practical solution, i.e. a

hierarchical scheduling strategy.

8. Conclusions and Future Work

With the emerging of cloud computing, cloud workflow systems are designed to facilitate the

cloud infrastructure to support large scale distributed collaborative e-business and e-science

applications. One of the most important aspects which differentiate a cloud workflow system from

its other counterparts is the market-oriented business model where users are charged for their

consumption of the cloud resources such as computing, storage and network. This is a significant

innovation which brings many challenges to the resource management in conventional workflow

systems, especially for workflow scheduling strategies. Specifically, as introduced in Section 2.2,

there are at least two basic changes which bring major challenges for workflow scheduling in

market-oriented cloud workflow systems: 1) from best-effort based scheduling to QoS-constraint

based scheduling; 2) from specific application oriented scheduling to general service oriented

scheduling. The first change requires QoS constraint based workflow scheduling strategies in

cloud workflow systems instead of conventional best-effort based strategies. The second change

requires that cloud workflow scheduling strategies can deal with cloud services which are either

within or outside their own data centre, and have the ability to handle intensive requests of

workflow applications.

In order to address these challenges, this paper proposed a market-oriented hierarchical

scheduling strategy which consists of a service-level scheduling and a task-level scheduling. The

service-level scheduling deals with the Task-to-Service assignment where tasks of individual

workflow instances are mapped to cloud services in the global cloud markets based on their

functional and non-functional QoS requirements; the task-level scheduling deals with the

optimisation of the Task-to-VM assignment in local cloud data centres where the overall running

cost of cloud workflow systems will be minimised given the satisfaction of QoS constraints for

individual tasks. Based on a systematic analysis of workflow scheduling in cloud workflow

systems in Section 2, the overview of our hierarchical scheduling strategy with the detailed

processes for both service-level scheduling and task-level scheduling are described in Section 3.

Afterwards, under the hierarchical scheduling strategy, a package based random scheduling

algorithm has been presented in Section 4 as the candidate for service-level scheduling which can

assign workflow tasks to suitable cloud services with correct functional and non-functional QoS

requirements in an efficient fashion. As for task-level scheduling, three representative

metaheuristics based scheduling algorithms including genetic algorithm (GA), ant colony

optimisation (ACO) and particle swarm optimisation (PSO) have been adapted, implemented and

analysed as candidate task-level scheduling algorithms in Section 5. In this paper, the three

metaheuristics have been adapted so that they can optimise both makespan and cost

simultaneously. Meanwhile, considering the enormous overhead of optimising the Task-to-VM

assignment in the entire data centre, in our strategy, the task-level scheduling algorithms are run in

a parallel fashion where each instance only deals with a local Task-to-VM list. Each individual

local Task-to-VM list is defined by an integrated Task-to-VM list for a group of virtual machines,

and they together cover the Task-to-VM list of the entire data centre. As such, the overall running

cost of the data centre will be reduced since the task-level scheduling algorithm will optimise the

Task-to-VM assignment in each group of virtual machines.

The simulation experiments conducted in our SwinDeW-C cloud workflow system have

demonstrated the effectiveness of our hierarchical scheduling strategy. Meanwhile, the

experimental results show that ACO performs better than GA and PSO in the overall performance

on three basic measurements: the optimisation rate on makespan, the optimisation rate on cost and

the CPU time. Therefore, a recommended solution for workflow scheduling in cloud workflow

systems is our market-oriented hierarchical scheduling strategy where the service-level scheduling

adopts the package based random scheduling algorithm and the task-level scheduling adopts the

ACO based scheduling algorithm. But note that based on our hierarchical scheduling strategy,

different system designers may select different candidate scheduling algorithms according to

his/her personal preferences on the three basic measurements and more.

In the future, more heuristics and metaheuristics will be investigated for both service-level

scheduling and task-level scheduling algorithms. Meanwhile, in order to overcome the enormous

26

overhead, our current strategy decomposes the optimisation of global Task-To-VM assignment in

the entire data centre into parallel optimisation of local Task-To-VM assignment in many small

groups of virtual machines. However, the optimal solution for the global Task-To-VM assignment

may not be found. Therefore, scheduling algorithms which can effectively tackle large size

scheduling problems in cloud workflow systems are required to be investigated in the future.

Meanwhile, some real world applications will be implemented in our SwinDeW-C workflow

system to further evaluate the performance of these scheduling strategies. These results will be

demonstrated in our future work.

Acknowledgements This work is partially supported by Australian Research Council under

Linkage Project LP0990393, the National Natural Science Foundation of China project under

Grant No. 70871033.

Reference

[1] W. M. P. van der Aalst and K. M. V. Hee, Workflow Management: Models, Methods, and

Systems: The MIT Press, Cambridge, 2002.

[2] D. Ardagna and B. Pernici, "Adaptive Service Composition in Flexible Processes," IEEE

Trans. on Software Engineering, vol. 33, no. 6, pp. 369-384, 2007.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud Computing and

Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th

Utility," Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[4] H. Cao, H. Jin, X. Wu, and S. Wu, "ServiceFlow: QoS-based Hybrid Service-Oriented Grid

Workflow System," The Journal of Supercomputing, vol. 53, no. 3, pp. 371-393, 2009.

[5] H. Cao, H. Jin, X. Wu, S. Wu, and X. Shi, "DAGMap: Efficient and Dependable Scheduling

of DAG Workflow Job in Grid," The Journal of Supercomputing, vol. 51, no. 2, pp. 201-223,

2009.

[6] R. Chang, J. Chang, and P. Lin, "An Ant Agorithm for Balanced Job Scheduling in Grids,"

Future Generation Computer Systems, vol. 25, no. 1, pp. 20-27, 2009.

[7] J. Chen and Y. Yang, "Adaptive Selection of Necessary and Sufficient Checkpoints for

Dynamic Verification of Temporal Constraints in Grid Workflow Systems," ACM Trans. on

Autonomous and Adaptive Systems, vol. 2, no. 6, 2007.

[8] J. Chen and Y. Yang, "Multiple States based Temporal Consistency for Dynamic Verification

of Fixed-time Constraints in Grid Workflow Systems," Concurrency and Computation:

Practice and Experience, Wiley, vol. 19, no. 7, pp. 965-982, 2007.

[9] J. Chen and Y. Yang, "Temporal Dependency based Checkpoint Selection for Dynamic

Verification of Temporal Constraints in Scientific Workflow Systems " ACM Trans. on

Software Engineering and Methodology, in press, http://www.ict.swin.edu.au/personal/yyang

/papers/ACM-TOSEM-checkpoint.pdf, accessed on 1
st
 Aug. 2010.

[10] W. Chen, J. Zhang, H. S. H. Chung, W. Zhong, W. Wu, and Y. Shi, "A Novel Set-Based

Particle Swarm Optimization Method for Discrete Optimization Problems," IEEE Trans. on

Evolutionary Computation, vol. 14, no. 2, pp. 278-300, 2009.

[11] W. Chen and J. Zhang, "An Ant Colony Optimization Approach to a Grid Workflow

Scheduling Problem With Various QoS Requirements," IEEE Trans. on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 39, no. 1, pp. 29-43, 2009.

[12] W. Chen, J. Zhang, and Y. Yu, "Workflow Scheduling in Grids: An Ant Colony Optimization

Approach", Proc. 2007 IEEE Congress on Evolutionary Computation, pp. 3308-3315, 2007.

[13] S. Chin, T. Suh, and H. Yu, "Adaptive Service Scheduling for Workflow Applications in

Service-Oriented Grid," The Journal of Supercomputing, vol. 52, no. 3, pp. 253-283, 2009.

[14] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-Science: An Overview

of Workflow System Features and Capabilities," Future Generation Computer Systems, vol.

25, no. 6, pp. 528-540, 2008.

[15] W. C. Dou, J. J. Chen, J. X. Liu, S. C. Cheung, G. H. Chen, and S. K. Fan, "A Workflow

Engine-Driven SOA-based Cooperative Computing Paradigm in Grid Environments,"

International Journal of High Performance Computing Applications, vol. 22, no. 3, pp. 284-

300, Aug 2008.

[16] Thomas Erl, SOA: Principles of Service Design: Prentice Hall, 2008.

[17] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure (Second

Edition): Morgan Kaufmann, 2004.

[18] I. Foster, Zhao Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-

Degree Compared", Proc. 2008 Grid Computing Environments Workshop, pp. 1-10, 2008.

27

[19] Hadoop, http://hadoop.apache.org/, accessed on 1
st
 Aug. 2010.

[20] J. W. Han and M. Kamber, Data Mining: Concepts and Techniques (Second Edition):

Elsevier, 2006.

[21] B. Kao and H. G. Molina, "Deadline Assignment in a Distributed Soft Real-Time System,"

IEEE Trans. Parallel Distributed System, vol. 8, no. 12, pp. 1268-1274, 1997.

[22] I. . Kuo, S. Horng, T. Kao, T. Lin, C. Lee, T. Terano, and Y. Pan, "An Efficient Flow-Shop

Scheduling Algorithm based on a Hybrid Particle Swarm Optimization Model," Expert

Systems with Applications, vol. 36, no. 3, Part 2, pp. 7027-7032, 2009.

[23] Y. Kwok and I. Ahmad, "Static Scheduling Algorithms for Allocating Directed Task Graphs

to Multiprocessors," ACM Comput. Surv., vol. 31, no. 4, pp. 406-471, 1999.

[24] A. M. Law and W. D. Kelton, Simulation Modelling and Analysis (Fourth Edition): McGraw-

Hill, 2007.

[25] K. Liu, J. Chen, Y. Yang, and H. Jin, "A Throughput Maximization Strategy for Scheduling

Transaction-Intensive Workflows on SwinDeW-G," Concurrency and Computation: Practice

and Experience, vol. 20, no. 15, pp. 1807-1820, 2008.

[26] X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, and Y. Yang, "Handling Recoverable Temporal

Violations in Scientific Workflow Systems: A Workflow Rescheduling Based Strategy", Proc.

10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid10), pp. 534-537, Melbourne, Australia, 2010.

[27] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting Temporal Constraints in

Scientific Workflows", Proc. 6th International Conference on Business Process Management

(BPM2008), vol. 5204, pp. 180-195, Milan, Italy, 2008.

[28] X. Liu, Y. Yang, J. Chen, Q. Wang, and M. Li, "Achieving On-Time Delivery: A Two-Stage

Probabilistic Scheduling Strategy for Software Projects," Proc. the 2009 International

Conference on Software Process: Trustworthy Software Development Processes, Vancouver,

B. C., Canada: Springer-Verlag 2009.

[29] X. Liu, Y. Yang, Y. Jiang, and J. Chen, "Preventing Temporal Violations in Scientific

Workflows: Where and How," IEEE Transactions on Software Engineering, to appear,

http://www.ict.swin.edu.au/personal/xliu/papers/TSE-2010-01-0018.pdf, accessed on 1
st
 Aug.

2010.

[30] A. Martinez, F. J. Alfaro, J. L. Sanchez, F. J. Quiles, and J. Duato, "A New Cost-Effective

Technique for QoS Support in Clusters," IEEE Trans. on Parallel and Distributed Systems,

vol. 18, no. 12, pp. 1714-1726, 2007.

[31] M. Moore, "An Accurate Parallel Genetic Algorithm to Schedule Tasks on a Cluster," Parallel

Computing, vol. 30, no. pp. 567–583, 2004.

[32] R. J. Mullen, D. Monekosso, S. Barman, and P. Remagnino, "A Review of Ant Algorithms,"

Expert Systems with Applications, vol. 36, no. 6, pp. 9608-9617, 2009.

[33] J. Oh and C. Wu, "Genetic-Algorithm-Based Real-Time Task Scheduling with Multiple

Goals," Journal of Systems and Software, vol. 71, pp. 245-258, 2004.

[34] B. Raghavan, S. Ramabhadran, K. Yocum, and A. C. Snoeren, "Cloud Control with

Distributed Rate Limiting", Proc. 2007 ACM SIGCOMM, , pp. 337-348, Kyoto, Japan, 2007.

[35] R. Buyya and K. Bubendorfer, Market Oriented Grid and Utility Computing: Wiley Press,

New York, USA, 2009.

[36] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede, "Exception Handling Patterns

in Process-Aware Information Systems," Technical Report BPM-06-04, BPMcenter.org,

2006.

[37] A. Sahai, A. Durante, and V. Machiraju, "Towards Automated SLA Management for Web

Services," Technical Report HPL-2001-310 (R.1), HP Laboratories Palo Alto, 2002.

[38] SECES, Proc. First International Workshop on Software Engineering for Computational

Science and Engineering, in conjuction with the 30th International Conference on Software

Engineering (ICSE2008), Leipzig, Germany, May, 2008,

[39] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for e-Science: Scientific

Workflows for Grids: Springer, 2007.

[40] D. B. Tracy, J. S.Howard, and B. Noah, "Comparison of Eleven Static Heuristics for Mapping

a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems," Journal

of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810 - 837, 2001.

[41] VMware, http://www.vmware.com/, accessed on 1
st
 Aug. 2010.

[42] M. Wang, R. Kotagiri, and J. Chen, "Trust-based Robust Scheduling and Runtime Adaptation

of Scientific Workflow," Concurrency and Computation: Practice and Experience, vol. 21,

no. 16, pp. 1982-1998, 2009.

[43] M. Wieczorek, R. Prodan, and A. Hoheisel, "Taxonomies of the Multi-criteria GridWorkflow

Scheduling Problem," CoreGRID Technical Report Number TR-0106, no. August 30, 2007.

28

[44] J. Yan, Y. Yang, and G. K. Raikundalia, "SwinDeW - A Peer-to-Peer based Decentralized

Workflow Management System," IEEE Transactions on Systems, Man and Cybernetics, Part

A, vol. 36, no. 5, pp. 922-935, 2006.

[45] Y. Yang, K. Liu, J. Chen, J. Lignier, and H. Jin, "Peer-to-Peer Based Grid Workflow Runtime

Environment of SwinDeW-G", Proc. 3rd International Conference on e-Science and Grid

Computing (e-Science07), pp. 51-58, Bangalore, India, Dec. 2007.

[46] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, "An Algorithm in SwinDeW-C for

Scheduling Transaction-Intensive Cost-Constrained Cloud Workflows", Proc. 4th IEEE

International Conference on e-Science (e-Science08), pp. 374-375, Indianapolis, USA, Dec.

2008.

[47] Z. Yang, C. Koelbel, and K. Cooper, "Hybrid Re-scheduling Mechanisms for Workflow

Applications on Multi-cluster Grid", Proc. 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp. 116-123, 2009.

[48] J. Yu and R. Buyya, "A Taxonomy of Workflow Management Systems for Grid Computing,"

Journal of Grid Computing, no. 3, pp. 171-200, 2005.

[49] J. Yu and R. Buyya, "Scheduling Scientific Workflow Applications with Deadline and Budget

Constraints Using Genetic Algorithms," Scientific Programming, vol. 14, no. 3,4, pp. 217-

230, Dec. 2006.

[50] J. Yu and R. Buyya, "Workflow Scheduling Algorithms for Grid Computing," Metaheuristics

for Scheduling in Distributed Computing Environments, F. Xhafa and A. Abraham (eds),

ISBN:978-3-540-69260-7, Springer, Berlin, Germany, 2008.

[51] L. Zhang, Y. Chen, and B. Yang, "Task scheduling based on PSO algorithm in computational

grid", Proc. Proceedings - ISDA 2006: Sixth International Conference on Intelligent Systems

Design and Applications, ISDA 2006: Sixth International Conference on Intelligent Systems

Design and Applications, vol. 2, pp. 696-701, Jinan, 2006.

[52] X. D. Zhang, X. P. Li, Q. Wang, and Y. C. Yuan, "Hybrid Particle Swarm Optimization

Algorithm for Cost Minimization in Service-Workflows with Due Dates," Tongxin

Xuebao/Journal on Communication, vol. 29, no. 8, 2008.

