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In Evolutionary Testing, meta-heuristic search techniques are used for generating test data. The focus of
our research is on employing evolutionary algorithms for the structural unit-testing of Object-Oriented
programs. Relevant contributions include the introduction of novel methodologies for automation, search
guidance and Input Domain Reduction; the strategies proposed were empirically evaluated with encour-
aging results.

Test cases are evolved using the Strongly-Typed Genetic Programming technique. Test data quality
evaluation includes instrumenting the test object, executing it with the generated test cases, and tracing
the structures traversed in order to derive coverage metrics. The methodology for efficiently guiding the
search process towards achieving full structural coverage involves favouring test cases that exercise
problematic structures. Purity Analysis is employed as a systematic strategy for reducing the search
space.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Software testing is expensive, typically consuming roughly half
of the total costs involved in software development while adding
nothing to the raw functionality of the final product. Yet, it remains
the primary method through which confidence in software is
achieved [6]. A large amount of the resources spent on testing
are applied on the difficult and time consuming task of locating
quality test data; automating this process is vital to advance the
state-of-the-art in software testing. However, automation in this
area has been quite limited, mainly because the exhaustive enu-
meration of a program’s input is unfeasible for any reasonably-
sized program, and random methods are unlikely to exercise
‘‘deeper” features of software [25].

Meta-heuristic search techniques, like Evolutionary Algorithms
– high-level frameworks which utilise heuristics, inspired by
genetics and natural selection, in order to find solutions to combi-
natorial problems at a reasonable computational cost [4] – are nat-
ural candidates to address this problem, since the input space is
typically large but well defined, and test goal can usually be ex-
pressed as a fitness function [10].
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The application of Evolutionary Algorithms to test data genera-
tion is often referred to as Evolutionary Testing [39] or Search-Based
Testing [25]. Approaches have been proposed that focus on the
usage of Genetic Algorithms [16,17,39,48], Ant Colony Optimiza-
tion [22], Genetic Programming [38], Strongly-Typed Genetic Pro-
gramming [43,45], and Memetic Algorithms [1].

Evolutionary Testing is an emerging methodology for automat-
ically generating high quality test data. It is, however, a difficult
subject, especially if the aim is to implement an automated solu-
tion, viable with a reasonable amount of computational effort,
which is adaptable to a wide range of test objects. Significant suc-
cess has been achieved by applying this technique to the automatic
generation of unit-test cases for procedural software [24,25]. The
application of search-based strategies for Object-Oriented unit-
testing is, however, fairly recent [39] and is yet to be investigated
comprehensively [11].

The focus of our research is precisely on developing a solution
for employing Evolutionary Algorithms for generating test sets
for the structural unit-testing of Object-Oriented programs. Our
approach involves representing and evolving test cases using the
Strongly-Typed Genetic Programming technique [28]. The method-
ology for evaluating the quality of test cases includes instrumen-
ting the program under test, and executing it using the generated
test cases as inputs with the intention of collecting trace informa-
tion with which to derive coverage metrics. The aim is that of effi-
ciently guiding the search process towards achieving full structural
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coverage of the program under test. These concepts have been
implemented into the eCrash automated test case generation tool
– which will be described below.

Our main goals are those of defining strategies for addressing
the challenges posed by the Object-Oriented paradigm and of pro-
posing methodologies for enhancing the efficiency of search-based
testing approaches. The primary contributions of this work are the
following:

� Presenting a strategy for Test Case Evaluation and search guid-
ance, which involves allowing unfeasible test cases (i.e., those
that terminate prematurely due to a runtime exception) to be
considered at certain stages of the evolutionary search – namely,
once the feasible test cases that are being bred cease to be
interesting.

� Introducing a novel Input Domain Reduction methodology,
based on the concept of Purity Analysis, which allows the iden-
tification and removal of entries that are irrelevant to the search
problem because they do not contribute to the definition of test
scenarios.

Additionally, our methodology for automated test case genera-
tion is thoroughly described and validated through a series of
empirical studies performed on standard Java classes.

This article is organized as follows. In the next Section, we start
by introducing the concepts underlying our research. Next, related
work is reviewed and contextualized. In Section 4, our test case
generation methodology and the eCrash tool are described. The
experiments conducted in order to validate and observe the impact
of our proposals are discussed in Section 5, with special emphasis
being put on studying the novel Test Case Evaluation and Input Do-
main Reduction strategies. The concluding Section presents some
final considerations, the most relevant contributions, and topics
for future work.
2. Background and terminology

In Evolutionary Testing, meta-heuristic search techniques are
employed to select or generate test data; this section presents
the most important Software Testing and Evolutionary Algorithms
aspects related with this interdisciplinary area. Special attention is
paid to the concepts of particular interest to our technical
approach.

2.1. Software testing

Software testing is the process of exercising an application to
detect errors and to verify that it satisfies the specified require-
ments [21]. When performing unit-testing, the goal is to warrant
the robustness of the smallest units – the test objects – by testing
them in an isolated environment. Unit-testing is performed by exe-
cuting the test objects in different scenarios using relevant and
interesting test cases. A test set is said to be adequate with respect
to a given criterion if the entirety of test cases in this set satisfies
this criterion.

Distinct levels of testing include functional (black-box) and
structural (white-box) testing [6]. Traditional structural adequacy
criteria include branch, data-flow and statement coverage; the ba-
sic idea is to ensure that all the control elements in a program are
executed by a given test set, providing evidence of its quality. The
metrics for measuring the thoroughness of a test set can be ex-
tracted from the structure of the target object’s source code, or
even from compiled code (e.g., Java bytecode).

The evaluation of the quality of a given test set and the guidance
to the test case selection using structural criteria generally requires
the definition of an underlying model for program representation –
usually a Control-Flow Graph (e.g., Fig. 4). The Control-Flow Graph
is an abstract representation of a given method in a class; con-
trol-flow testing criteria can be derived based on such a program
representation to provide a theoretical and systematic mechanism
to assess the quality of the test set [29]. Two well known control-
flow testing standards to derive testing requirements from the Con-
trol-Flow Graph are the all-nodes and all-edges criteria [42].

The observations needed to assemble the metrics required for
the evaluation of test data suitability can be collected by abstract-
ing and modelling the behaviours programs exhibit during execu-
tion, either by static or dynamic analysis techniques [40]. Static
analysis involves the construction and analysis of an abstract
mathematical model of the system (e.g., symbolic execution); test-
ing is performed without executing the method being tested, but
rather this abstract model. This type of analysis is complex, and of-
ten incomplete due to the simplifications in the model. In contrast,
dynamic analysis involves executing the actual test object and mon-
itoring its behaviour; while it may not be possible to draw general
conclusions from dynamic analysis, it provides evidence of the suc-
cessful operation of the software.

Dynamic monitoring of structural entities can be achieved by
instrumenting the test object, and tracing the execution of the struc-
tural entities traversed during test case execution. Instrumentation
is performed by inserting probes in the test object.

2.1.1. Object-Oriented Software Testing
Most work in testing has been done with ‘‘procedure-oriented”

software in mind; nevertheless, traditional methods – despite their
efficiency – cannot be applied without adaptation to Object-Ori-
ented systems.

For Object-Oriented programs, classes and objects are typically
considered to be the smallest units that can be tested in isolation.
An object stores its state in fields and exposes its behaviour
through methods. Hiding internal state and requiring all interac-
tion to be performed through an object’s methods is known as data
encapsulation – a fundamental principle of Object-Oriented pro-
gramming [5].

A unit-test case for Object-Oriented software consists of a Meth-
od Call Sequence, which defines the test scenario. During test case
execution, all participating objects are created and put into partic-
ular states through a series of method calls. Each test case focuses
on the execution of one particular public method – the Method Un-
der Test. It is not possible to test the operations of a class in isola-
tion; testing a single class involves other classes, i.e., classes that
appear as parameter types in the method signatures of the Class
Under Test. The transitive set of classes which are relevant for test-
ing a particular class is called the test cluster [43].

In summary, the process of performing unit-testing on Object-
Oriented programs usually requires [44]:

� at least, an instance of the Class Under Test;
� additional objects, which are required (as parameters) for the

instantiation of the Class Under Test and for the invocation of
the Method Under Test – and for the creation of these additional
objects, more objects may be required;

� putting the participating objects into particular states, in order
for the test scenario to be processed in the desired way – and,
consequently, method calls must be issued for these objects.

2.2. Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search
strategy to evolve candidate solutions for a given problem, using
operators inspired by genetics and natural selection. The best
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known algorithms in this class include Evolution Strategies, Evolu-
tionary Programming, Genetic Algorithms and Genetic Program-
ming. These methodologies are usually employed to solve
problems for which no reasonable fast algorithms have been devel-
oped, and they are especially fit for optimization problems [8].

Independently of its class, any evolutionary program should
possess the following attributes [27]:

� a genetic representation for potential solutions to the problem;
� a way to create an initial population of potential solutions;
� an evaluation function that plays the role of the environment,

rating solutions in terms of their ‘‘fitness”;
� genetic operators that alter the composition of children;
� values for various parameters that the Genetic Algorithm uses

(population, size, probabilities of applying genetic operators,
etc.).

Genetic Algorithms [15] are probably the most well known form
of Evolutionary Algorithms. The term ‘‘Genetic Algorithm” comes
from the analogy between the encoding of candidate solutions as
a sequence of simple components and the genetic structure of a
chromosome; continuing with this analogy, solutions are often re-
ferred to as individuals or chromosomes. The components of the
solution are referred to as genes, with the possible values for each
component being called alleles and their position in the sequence
being the locus. The encoded structure of the solution for manipu-
lation by the Genetic Algorithm is called the genotype, with the de-
coded structure being known as the phenotype.

Genetic algorithms maintain a population of candidate solutions
rather than just one current solution; in consequence, the search is
afforded many starting points, and the chance to sample more of
the search space than local searches. The population is iteratively
recombined and mutated to evolve successive populations, known
as generations. Various selection mechanisms can be used to decide
which individuals should be used to create offspring for the next
generation; key to this is the concept of the fitness of individuals.
A fitness function quantifies the optimality of a solution; the idea
Fig. 1. Flowchart for the Genetic Programming paradigm [19]. The index i refers to an in
generation. The variable Run is the number of the current run, and N is the predefined n
of selection is to favour the fitter individuals, in the hope of breed-
ing better offspring.

However, too strong a bias towards the best individuals will re-
sult in their dominance of future generations, thus reducing diver-
sity and increasing the chance of premature convergence on one
area of the search space. Conversely, too weak a strategy will result
in too much exploration, and not enough evolution for the search
to make substantial progress.

Traditional Genetic Algorithm operators include selection, cross-
over, and mutation [8,15]:

� Selection (or Reproduction) is the process of copying individuals.
They are chosen according to their fitness value; selection meth-
odologies include Fitness-Proportionate Selection, Linear Rank-
ing or Tournament Selection.

� Crossover is the procedure of mating the members of the new
population, in order to create a new set of individuals. As genetic
material is being combined, new genotypes will be produced.

� Mutation modifies the values of one or several genes of an
individual.

Genetic Programming [19] is a specialization of Genetic Algo-
rithms usually associated with the evolution of tree structures;
it focuses on automatically creating computer programs by
means of evolution, and is thus especially suited for representing
and evolving test cases. In most Genetic Programming ap-
proaches, the programs are represented using tree genomes (e.g.,
Fig. 8). The leaf nodes are called terminals, whereas the non-leaf
nodes are called non-terminals. Terminals can be inputs to the
program, constants or functions with no arguments; non-termi-
nals are functions taking at least one argument. The Function
Set is the set of functions from which the Genetic Programming
system can choose when constructing trees. A set of programs
is manipulated by applying reproduction, crossover and mutation
until the optimum program is found or other termination criteria
are met. Fig. 1 is a flowchart for the Genetic Programming
paradigm.
dividual in the population of size M. The variable Gen is the number of the current
umber of runs.



Fig. 2. Example Method Call Sequence.
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The nodes of a Genetic Programming tree are usually not typed
– i.e., all the functions are able to accept every conceivable argu-
ment. Non-typed Genetic Programming approaches are, however,
unsuitable for representing test programs for Object-Oriented soft-
ware [13], because any element can be a child node in a parse tree
for any other element without having conflicting data types, which
can lead to the generation of syntactically illegal trees. In [28],
Montana suggested the Strongly-Typed Genetic Programming mech-
anism for defining typed Genetic Programming nodes. Strongly-
Typed Genetic Programming allows the definition of types for the
variables, constants, arguments and returned values; the only
restriction is that the data type for each element must be specified
beforehand in the Function Set (e.g., Table 3). This causes the ini-
tialization process and the various genetic operations to only con-
struct syntactically correct trees.

The Strongly-Typed Genetic Programming search space is the
set of all legal parse trees – i.e., all of the functions have the correct
number of parameters of the correct type. Strongly-Typed Genetic
Programming is thus particularly suited for representing the Meth-
od Call Sequences of Object-Oriented test cases, as it enables the
reduction of the search space to the set of compilable sequences,
by allowing the definition of constraints that eliminate invalid
combinations of operations. The usage of Strongly-Typed Genetic
Programming in this context was first proposed in [45].

2.3. Evolutionary Testing

The application of Evolutionary Algorithms to test data genera-
tion is often referred to in the literature as Evolutionary Testing
[25]. The goal of Evolutionary Testing problems is to find a set of
test cases that satisfies a certain test criterion – such as full struc-
tural coverage of the test object. The test objective must be defined
numerically and suitable fitness functions, that provide guidance
to the search by telling how good each candidate solution is, must
be defined [11].

The search space is the set of possible inputs to the test object
[12]. In the particular case of Object-Oriented programs, the input
domain encompasses the parameters of the test object’s public
methods, including the implicit parameter (i.e., the this parame-
ter) and all the explicit parameters. As such, the goal of the evolu-
tionary search is to find Method Call Sequences that define
interesting state scenarios for the variables which will be passed,
as arguments, in the call to the Method Under Test.

The method call dependences involved in the Method Call Se-
quences’ construction can be represented by means of an Extended
Method Call Dependence Graph (EMCDG) [45]. This graph is a bipar-
tite, directed graph with two types of nodes: nodes of type 1 rep-
resent members (i.e., methods or constructors), and the nodes of
type 2 represent data types. A link between a member node and
a data type node means that the method can only be called if an
instance of the linked data type is created in advance; a link be-
tween a data type node and a member node means that an in-
stance of the class is created or delivered by the linked member
(e.g., Fig. 9).

One of the most pressing challenges faced by researchers in the
Evolutionary Testing area is the state problem [26], which occurs
with objects that exhibit state-like qualities by storing information
in fields that are protected from external manipulation – and that
can only be accessed through the public methods that expose the
classes’ internals and grant the access to the objects’ state. The
encapsulation principle, in particular, constitutes a serious hin-
drance to testing [5], because the only way to observe the state of
an object is through its operations, and the only way to change the
state of an object is through the execution of a series of method calls.

Defining a test set that achieves full structural coverage may, in
fact, involve the generation of complex and intricate test cases in
order to define elaborate state scenarios, and requires the defini-
tion of carefully fine-tuned methodologies that promote the trans-
versal of problematic structures and difficult control-flow paths.
Our technical approach (Section 4) includes the presentation of no-
vel techniques for Test Case Evaluation (Section 4.2) and Input Do-
main Reduction (Section 4.4); the following subsections establish
the rationale for pursuing new advances on these topics and pres-
ent the most relevant concepts. In Section 3, a review of the work
developed in the area of Object-Oriented Evolutionary Testing is
presented.

2.3.1. Feasible and unfeasible test cases
Syntactically correct and compilable Method Call Sequences

may still abort prematurely, if a runtime exception is thrown dur-
ing execution [43]. Test cases can thus be separated in two classes:

� feasible test cases are effectively executed, and terminate with a
call to the Method Under Test;

� unfeasible test cases terminate prematurely because a runtime
exception is thrown by an instruction of the Method Call
Sequence.

Fig. 2 depicts an example of a Method Call Sequence; in this
program, instructions 1, 3 and 4 instantiate new objects, whereas
instructions 2 and 5 aim to change the state of the stack0 and ob-

ject3 instance variables that will be used in the call to the Method
Under Test (push) at instruction 6.

However, instructions 2 and 5 render the test case unfeasible by
throwing runtime exceptions (EmptyStackExceptions, to be
precise). When this happens, it is not possible to observe the struc-
tural entities traversed in the Method Under Test because the final
instruction of the Method Call Sequence is not reached.

2.3.2. Input Domain Reduction
The massive number of distinct Method Call Sequences that can

possibly be created while searching for a particular test scenario
constitutes a notorious hindrance to the test case generation pro-
cess. Input Domain Reduction deals with the removal of irrelevant
variables from a given test data generation problem, thereby
reducing the size of the search space [12].

The input domain can effectively be reduced by acknowledging
that some methods in Object-Oriented languages have no exter-
nally visible side effects when executed or, at least the extent of
these side effects is limited in some way; these are called pure
methods [37].

According to the definition provided by the Java Modelling Lan-
guage (JML), a pure method is one which does not: perform Input/
Output operations; write to any pre-existing objects; or invoke any
impure methods [20]. This definition allows a method to change
the state of newly allocated objects and/or construct objects and
return them as a result.

JML is annotation based, requiring purity information to be pro-
vided manually by users. Salcianu and Rinard have, however, pre-
sented a systematic Purity Analysis methodology [37] based on a
previous points-to and escape analysis [46]. Their purity definition
is similar to the one specified by JML: a pure method can read from
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or write to local objects, and can also create, modify and return
new objects not present in the input state.

More interestingly, Purity Analysis is able to identify important
purity properties even when a method is not pure, such as safe and
read-only parameters:

� a parameter is read-only if the method does not write the param-
eter or any objects reachable from the parameter;

� a parameter is safe if it is read-only, and the method does not
create any new externally visible paths in the heap to objects
reachable from the parameter.

Parameter Purity Analysis is especially useful in the context of
search-based test case generation, as it provides a means to auto-
matically identify and remove entries that are irrelevant to the
search problem, reducing the size of the set of method calls from
which the algorithm can choose when constructing the Method
Call Sequences that compose test cases.

In the example Method Call Sequence depicted in Fig. 2, instruc-
tions 2 and 5 do not actually change the state of the stack0 and
object3 reference variables like they were supposed to: the peek
method simply looks at the object at the top of the stack without
removing it, and the search method returns the 1-based position
where an object is on the stack without changing the state of the
object or the stack.

In fact, performing Parameter Purity Analysis on the implicit
parameters of the peek and search methods and on the explicit
parameter of the search method would allow marking them as
being safe. Therefore, these particular methods could safely be dis-
carded of being Stack and Object data type providers, and
instructions 2 and 5 could be excluded from the set of instructions
selectable by the test case generation algorithm.

Incidentally, the exclusion of these instructions from this partic-
ular Method Call Sequence would transform the corresponding test
case into a feasible one; Parameter Purity Analysis may thus indi-
rectly enhance the search process by preventing the creation of test
cases that are rendered unfeasible by the inclusion of instructions
that do not contribute to the definition of state scenarios.
3. Related work

Evolutionary Algorithms have already been applied with signif-
icant success to the search for test data; Xanthakis et al. [47] pre-
sented the first application of heuristic optimization techniques for
test data generation in 1992 [25].

However, research has been mainly geared towards generating
test data for procedural software. The first approach to the field of
Object-Oriented Evolutionary Testing, based on the concept of Ge-
netic Algorithms, was presented by Tonella [39] in 2004. In this
work, the eToc tool for the Evolutionary Testing of Object-Ori-
ented software was described. The approach presented involved
generating input sequences for the white-box testing of classes
by means of Genetic Algorithms, with possible solutions being
represented as chromosomes. A source-code representation was
used, and an original evolutionary algorithm, with special evolu-
tionary operators for recombination and mutation on a statement
level – i.e., mutation operators inserted or removed methods from
a test program – was defined. A population of individuals, repre-
senting the test cases, was evolved in order to increase a measure
of fitness, accounting for the ability of the test cases to satisfy a
coverage criterion of choice. New test cases were generated as
long as there were targets to be covered or a maximum execution
time was reached. However, the encapsulation problem was not
addressed, and this proposal only dealt with a simple state
problem.
An approach which employed an Ant Colony Optimization algo-
rithm was presented in [22]. The focus was on the generation of
the shortest Method Call Sequence for a given test goal, under
the constraint of state dependent behaviour and without violating
encapsulation. Ant PathFinder, hybridizing Ant Colony Optimiza-
tion and Multiagent Genetic Algorithms were employed. To cover
branches enclosed in private/protected methods without violating
encapsulation, call chain analysis on class call graphs was
introduced.

In [44] the focus was put on the usage of Universal Evolutionary
Algorithms – i.e., evolutionary algorithms, provided by popular
toolboxes, which are independent from the application domain
and offer a variety of predefined, probabilistically well-proven evo-
lutionary operators. An encoding was proposed that represented
Object-Oriented test cases as basic type value structures, allowing
for the application of various search-based optimization tech-
niques – such as Hill Climbing or Simulated Annealing. The test
cases generated could be transformed into test classes according
to popular testing frameworks (e.g., JUnit). Still, the suggested
encoding did not prevent the generation of individuals which could
not be decoded into test programs without errors; the fitness func-
tion used different penalty mechanisms in order to penalize invalid
sequences and guide the search towards regions that contained va-
lid sequences. Due to the generation of invalid sequences, the ap-
proach lacked efficiency for more complicated cases.

A methodology for creating test software for Object-Oriented
systems using a Genetic Programming approach was proposed in
[38]; this methodology was advantageous over the more estab-
lished search-based test-case generation approaches because the
test software is represented and altered as a fully functional com-
puter program. However, it was pointed out that the number of dif-
ferent operation types is quite limited, and that large classes which
contain many methods lead to huge hierarchical trees.

A Strongly-Typed Genetic Programming based approach was
presented in [45]. Potential solutions were encoded using the
Strongly-Typed Genetic Programming technique, with Method Call
Sequences being represented by method call trees; these trees are
able to express the call dependences of the methods that are rele-
vant for a given test object. To account for polymorphic relation-
ships which exist due to inheritance relations, the Strongly-
Typed Genetic Programming types used by the Function Set were
specified in correspondence to the type hierarchy of the test cluster
classes. The emphasis of this work was on sequence validity; the
usage of Strongly-Typed Genetic Programming preserves validity
throughout the entire search process, with only compilable test
cases being generated.

Wappler et al. were also the first to take runtime exceptions
into account and address the topic of unfeasible test cases [43].
They proposed a minimizing distance-based fitness function in or-
der to assess and differentiate the test programs that are generated
during the evolutionary search, which rated the test programs
according to their distance to the given test goal (the program ele-
ment to be covered). The aim of each individual search was to gen-
erate a test program that covers a particular branch of the class
under test. This fitness function makes use of a distance metric that
is based on the number of unexecuted methods of a Method Call
Sequence if a runtime exception occurs. Unlike previous ap-
proaches in this area, the search is guided in case of uncaught run-
time exceptions.

Our Test Case Evaluation approach (Section 4.4) also deals with
the issue of runtime exceptions and unfeasible test cases. We pro-
pose tackling this challenge by defining weighted Control-Flow
Graph nodes. The direction of the search is under constant adapta-
tion, as the weight of Control-Flow Graph nodes is dynamically re-
evaluated every generation. This causes the fitness of feasible test
cases to fluctuate throughout the search process, allowing unfeasi-
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ble test cases to be considered at certain points of the evolutionary
search.

In [1,3,35], Arcuri et al. have focused on the testing of Container
Classes (e.g., Vector, Stack, BitSet). Besides analysing how to
apply different search algorithms (Random Search, Hill Climbing,
Simulated Annealing, Genetic Algorithms, Memetic Algorithms
and Estimation of Distribution Algorithms) to the problem and
exploiting the characteristics of this type of software to help the
search, more general techniques that can be applied to Object-Ori-
ented software were studied.

In [16,17,48], the authors proposed augmenting Tonella’s Ge-
netic Algorithm-based approach [39] by integrating Symbolic Exe-
cution into the process. Symbolic Execution was used primarily for
primitive-type method argument selection, whereas Evolutionary
Testing is employed to generate Method Call Sequences; the objec-
tive was that of mitigating the weaknesses of both methodologies.
The test case generation framework described (Evacon) is reported
to outperform eToc and also other symbolic execution and random
testing approaches.

There has been little investigation of the relationship between
the size of the input domain (the search space) and performance
of search-based algorithms; Harman et al. [12] were the first to
characterise and empirically explore the search space/search algo-
rithm relationship for search-based test data generation. In this
work, static analysis was used to remove irrelevant variables for
a given test data generation problem (i.e., from the set of possible
input vector parameter-value combinations) thereby reducing the
search space size. However, this study focused on procedural soft-
ware and primitive parameter values. To the best of our knowl-
edge, only two works addressed the issue of reducing the input
domain of Object-Oriented test data generation problems.

In [1], Arcuri and Yao presented a way to reduce the search
space for Object-Oriented software by dynamically eliminating
the functions that cannot give any further help to the search, so
as to avoid inserting method calls that do not change the state of
the object in the Method Call Sequence. For determining if a func-
tion was read-only, a syntactic analysis of the source code was per-
formed. Additionally, and because only container classes were used
in the experiments, a database of common read-only function
names (e.g., insert, add, push) was built and used to eliminate
such functions using string matching algorithms. For the container
classes employed in the experiments an improvement of 65.5% (on
average) was reported in terms of efficiency.

In Arjan Seesing’s Master Thesis report [38], Purity Analysis was
proposed as a means to improve the performance of a search-based
approach to test case generation for Object-Oriented software. A
Genetic Programming approach was employed for creating test
software for Object-Oriented systems, and Purity Analysis was
integrated into the test tool described (EvoTest). Its usage is re-
ported to almost double the coverage/time performance of the tool.
However, the methodology lacked complete automation; it was
stated that the analysis performed by the EvoTest tool still made
many mistakes, and manual annotations were allowed and used
to complement the information generated automatically. Addition-
ally, the usage of Parameter Purity Analysis is not reported. Also,
because Input Domain Reduction was not the primary focus of this
work, the procedure is not thoroughly explored and described.

Our Input Domain Reduction strategy builds on the concept of
Purity Analysis; however, our methodology, described with detail
in Section 4.2, is systematic and fully automated. What’s more,
we introduce the usage of Parameter Purity Analysis, which allows
the automatic identification and removal of entries even if the cor-
responding methods are not entirely pure.

Interesting review articles in on the topic of Evolutionary Test-
ing include [2,7,24,25]. In [2], several issues in the current state-of-
art of test data generation for Object-Oriented software are pin-
pointed, namely the unexistence of a common benchmark cluster
which can be used to test and compare different techniques and
the lack of theoretical work on the subject. McMinn [25] points
out that extensions to search-based structural test data generation
for Object-Oriented systems are complicated by problems of inter-
nal states, since objects are inherently state-based.

4. Technical approach

In this section, our evolutionary approach for automatic test
case generation is described. The concepts presented were imple-
mented into the eCrash automated test case generation tool for Ob-
ject-Oriented Java software [30]. The process is summarized in
Fig. 3.

The eCrash tool was employed to empirically assess the impact
of our Test Case Evaluation and Input Domain Reduction strategies;
the experimental studies are detailed in Section 5.

4.1. Test object analysis and instrumentation

The test object instrumentation and Control-Flow Graph gener-
ation tasks must precede the test case generation and evaluation
phases, so as to allow tracing the structural entities traversed dur-
ing test case execution. Probe insertion and Control-Flow Graph
computation are performed at the Java bytecode level. Java byte-
code is an assembly-like language that retains much of the high-le-
vel information about the original source program [42]. Class files
(i.e., compiled Java programs containing bytecode information) are
a portable binary representation that contains class related data,
such as the class’s name, information about the variables and con-
stants, and the bytecode instructions of each method. Given that
the target object’s source code is often unavailable, working at
the bytecode level allows broadening the scope of applicability of
software testing tools; they can be used, for instance, to perform
structural testing on third-party components.
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The Control-Flow Graph building procedure involves grouping
bytecode instructions into a smaller set of Basic Instruction and Call
blocks, with the intention of easing the representation of the test
object’s control flow [31]. For the example Control-Flow Graph de-
picted in Fig. 4, attaining full structural coverage involves travers-
ing nodes 4, 5, 8, 11, 12, 15 (Basic Instruction blocks) and 2, 6, 9, 13
(Call blocks). Additionally, other types of blocks, which represent
virtual operations are defined: Entry blocks (e.g., block 1 in
Fig. 4), Exit blocks (e.g., blocks 18–23 in Fig. 4), and Return blocks
(e.g., blocks 3, 7, 10, 14 in Fig. 4). These Virtual blocks encompass no
bytecode instructions, and are used to represent certain control
flow hypothesis.

Test Object Analysis and Instrumentation is performed stati-
cally with the aid of the Sofya framework [18], a dynamic Java
bytecode analysis framework. The Sofya package provides imple-
mentations and tools for the construction of various kinds of
graphs – most notably Control-Flow Graphs – and native capabili-
ties for dispatching event streams of specified program observa-
tions, which include instrumentators, event dispatchers, and
event selection filters for semantic and structural event streams.

4.2. Function set definition

With our approach, Method Call Sequences are encoded as
Strongly-Typed Genetic Programming trees; each tree subscribes
to a Function Set, which defines the Strongly-Typed Genetic Pro-
gramming nodes legally permitted in the tree, and establishes
the constraints involved in Method Call Sequence construction.
For modelling call dependences and defining the Function Set, an
Extended Method Call Dependence Graph (EMCDG) [43,45] is em-
Fig. 4. Example Test Object’s bytecode (left) and
ployed. Our Input Domain Reduction strategy involves the removal
of irrelevant edges from the Extended Method Call Dependence
Graph, in order to build the purified Extended Method Call Depen-
dence Graph. The purified Function Set is computed with basis on
the purified Extended Method Call Dependence Graph, so as to in-
clude only those entries that are relevant to the search [34]. The
algorithm depicted in Fig. 5 summarizes this process, which is de-
tailed in the remaining of this section; the empirical studies per-
formed in order to assess the validity of this approach are
described and discussed in Section 5.2.

The first task of the purified Function Set generation phase is
that of defining the test cluster. In order to do so, the Class Under
Test provided by the user is firstly loaded. Next, the Class Under
Test’s public members – i.e., its public methods and constructors
– are identified by means of the Java Reflection API in order to de-
fine the public members list.

The Method Under Tests list includes only the public methods –
which are to be the subjects of the unit-test case generation pro-
cess. The test cluster for the Class Under Test is computed by ana-
lysing the signatures of these methods, and includes all the distinct
parameter data types.

Our current methodology for extending the public members list
involves complementing it with the public constructors of the data
types included in the test cluster; for primitive data types, a set of
constants defining acceptable and boundary values [33] is used to
sample the search space.

At this point, the Parameter Purity Analysis is performed on the
parameters (implicit and explicit) of the members contained in
the Method Under Tests list with the aid of the Soot Java Optimiza-
tion Framework [41]. Purity Analysis was implemented into the
corresponding Control-Flow Graph (right).



Fig. 5. Input Domain Reduction overview.

Fig. 6. Purified EMCDG generation algorithm.

Fig. 7. Purified Function Set generation algorithm.
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Soot framework by Antoine Mine, in conformity to the methodol-
ogy proposed by Salcianu and Rinard [36,37]. Parameters are anno-
tated as being safe, read-only or read/write (Section 2.3.2).

Next, two tables are computed: a types required table, which
identifies the data types required to build a method call for each
member (i.e., the parameter data types); and a provider members
table, which identifies the data types potentially supplied by each
member (i.e., the parameter reference data types and the return
types). These tables are built with basis on the methods’ signatures
and return type information, and the entries are labelled with
information on the associated item. The associated item label links
data types to the implicit parameter, to an explicit parameter, or
to the return value; it allows the unambiguous definition of the
data type’s provider/consumer. Without this information, it would
not be possible to construct the instructions in the posterior test
case generation phase (Section 4.3).

The list of possible labels for the associated item is the following:

� implicit parameter (IP) – the data type is associated to the impli-
cit parameter;

� explicit parameter ðPqÞ – the data type is associated to the expli-
cit parameter number q;q 2 @�;

� return value (RE) – the data type is associated to the return value.

At this point, all the data required for building the Extended
Method Call Dependence Graph and modelling call dependences
has been assembled. The Extended Method Call Dependence Graph
is initialized, in accordance to the information contained in the test
cluster and public members list tables, with two types of nodes:
member nodes and data type nodes.

The Extended Method Call Dependence Graph nodes are then
connected, in accordance to the information contained in the data
types required table and provider members table: a directed edge be-
tween a data type (origin) and a member (destination) means that
the data type at the origin is provided by the member at the desti-
nation; a direct edge between a member (origin) and a data type
(destination) means that the member at the origin requires the
data type at the destination. Edge information is complemented
with a label containing information on the associated item, in order
to complete the Extended Method Call Dependence Graph
definition.

The purified Extended Method Call Dependence Graph is com-
puted with basis on the Extended Method Call Dependence Graph
and on the parameters’ purity information, in accordance to the
algorithm depicted in Fig. 6. The purified Extended Method Call
Dependence Graph is obtained by removing the edges representing
safe and read-only parameters from the Extended Method Call
Dependence Graph (e.g., Fig. 9). Finally, the purified Function Set
is defined with basis on the purified Extended Method Call Depen-
dence Graph, in accordance to the algorithm shown in Fig. 7. Each
entry in the Function Set table contains information on the types
required (child types column) and types provided (return types col-
umn) by the corresponding member (e.g., Table 3).

4.3. Test case generation

As was abovementioned, potential solutions (i.e., test cases) are
encoded as Strongly-Typed Genetic Programming trees. The pro-
cess of decoding the genotype (i.e., the Strongly-Typed Genetic
Programming trees) to the phenotype (i.e., the Method Call Se-
quences) involves the linearisation of the Strongly-Typed Genetic
Programming tree using a depth-first transversal algorithm; test
case source-code generation is performed by translating the linear-
ised Strongly-Typed Genetic Programming tree to a Method Call
Sequence using the method signature information embedded into
each Strongly-Typed Genetic Programming node (e.g., Fig. 8).

For evolving test cases, the Evolutionary Computation in Java
(ECJ) package [23] is used. ECJ is a research package that incorpo-
rates several Universal Evolutionary Algorithms, and includes
built-in support for Strongly-Typed Genetic Programming. It is
highly flexible, having nearly all classes and their settings being



Fig. 8. Example Strongly-Typed Genetic Programming Tree (left) and corresponding Method Call Sequence (right).
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dynamically determined at runtime by user provided Parameter
Files and Function Files (e.g., Strongly-Typed Genetic Programming
node and Strongly-Typed Genetic Programming tree constraints,
maximum number of generations, probabilities for the evolution-
ary operators).

Test cases are evolved while there are Control-Flow Graph
nodes left to be covered (i.e., an all-nodes criterion is used), or until
a predefined number of generations is reached. Whenever a test
case ‘‘hits” an unexercised Control-Flow Graph node, that node is
removed from the remaining nodes list, and the test case is added
to the test set.

After all the individuals of a given generation have been evalu-
ated, and if the termination criteria have not been met, some of
them are selected for being reproduced to the next generation
(possibly after being mutated) or for participating in a crossover
phase. The probability of selection is related to the fitness of the
individuals, which is set in accordance to the outcome of the Test
Case Evaluation process (detailed in the following subsection).

4.4. Test Case Evaluation

With our approach, the quality of feasible test cases is related to
the structural entities of the Method Under Test which are the cur-
rent targets of the evolutionary search [32]. Test cases that exercise
less explored (or unexplored) Control-Flow Graph nodes and paths
must be favoured. However, unfeasible test cases cannot be blindly
penalized because, as a general rule, longer and more intricate test
cases are more prone to throw runtime exceptions; still, they are
often needed for defining elaborate state scenarios and traversing
certain problem nodes.

The issue of steering the search towards the traversal of inter-
esting control-flow paths was address by assigning weights to
the Control-Flow Graph nodes; the higher the weight of a given
node the higher the cost of exercising it, and hence the higher
the cost of traversing the corresponding control-flow path. Also,
the weights of Control-Flow Graph nodes are dynamically reevalu-
ated every generation; the direction of the search is thus under
constant adaptation. The remaining of this subsection details the
Test Case Evaluation strategy proposed.

Let each Control-Flow Graph node n 2 N represent a linear se-
quence of computations (i.e., bytecode instructions) of the Method
Under Test; each Control-Flow Graph edge eij represents the trans-
fer of the execution control of the program from node ni to the
node nj. Conversely, nj is a successor node of ni if an edge eij be-
tween the nodes ni and nj exists. The set of successor nodes of ni

is defined as Nni
s ;N

ni
s � N.
4.4.1. Weight reevaluation
The weight of traversing node ni is identified as Wni. At the

beginning of the evolutionary search the weights of nodes are ini-
tialized with a predefined value Winit .

The Control-Flow Graph nodes’ weights are reevaluated every
generation according to Eq. (1).

Wni ¼ aWnið Þ hitCni

Tj j þ 1
� � P

x2Nni
s

Wx

Nni
s

��� ���� Winit
2

0
B@

1
CA ð1Þ

The hitCni parameter is the ‘‘Hit Count”, and contains the num-
ber of times a particular Control-Flow Graph node was exercised
by the test cases of the previous generation. T represents the set
of test cases produced in the previous generation, with jTj being
its cardinality.

The constant value a;a 2�0;1� is the weight decrease constant.
In summary, each generation the weight of a given node is mul-

tiplied by:

� the weight decrease constant value a, so as to decrease the weight
of all Control-Flow Graph nodes indiscriminately;

� the hit count factor, which worsens the weight of recurrently hit
Control-Flow Graph nodes;

� the path factor, which improves the weight of nodes that lead to
interesting nodes and belong to interesting paths.

After being reevaluated, the weights of all the nodes are nor-
malized to the nodes’ initial weight Wni in accordance to Eq. (2).

Wni ¼
Wni �Winit

Wmax
ð2Þ

Wmax corresponds to the maximum value for the weight existing in
N.

4.4.2. Evaluation of feasible test cases
For feasible test cases, the fitness is computed with basis on

their trace information; relevant trace information includes the
‘‘Hit List” – i.e., the set Ht;Ht # N of traversed Control-Flow Graph
nodes. The fitness of feasible test cases is, thus, evaluated as
follows:

FitnessfeasibleðtÞ ¼
P

h2Ht
Wh

Htj j
ð3Þ

This strategy causes the fitness of feasible test cases that exercise
recurrently traversed structures to fluctuate throughout the search
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process; frequently hit nodes will have their weight increased, thus
worsening the fitness of the test cases that exercise them.

4.4.3. Evaluation of unfeasible test cases
For unfeasible test cases, the fitness of the individual is calcu-

lated in terms of the distance between the runtime exception index
exIndt (i.e., the position of the method call that threw the excep-
tion) and the Method Call Sequence length seqLent .

Also, an unfeasible penalty constant value b is added to the final
fitness value, so as to penalise unfeasibility.

FitnessunfeasibleðtÞ ¼ bþ seqLent � exIndtð Þ � 100
seqLent

ð4Þ

With this methodology, and depending on the value of b and on
the fitness of feasible test cases, unfeasible test cases may be se-
lected for breeding at certain points of the evolutionary search,
thus favouring the diversity and complexity of Method Call
Sequences.
5. Experimental studies

In this section, the empirical studies implemented with the
objectives of validating and observing the impact of our Test Case
Evaluation (Section 5.1) and Input Domain Reduction (Section 5.2)
strategies are described and discussed.

The Java Stack and BitSet classes (JDK 1.4.2) were used as
test objects. The rationale for employing these classes is related
with the fact that they represent ‘‘real-world” problems and, being
container classes, possess the interesting property of containing
explicit state, which is only controlled through a series of method
calls [1]. Additionally, they have been used in several other case
studies described in literature (e.g., [1,17,39,45]), providing an ade-
quate testbed in the lack of common benchmark cluster that can be
used to test and compare different techniques [2].

5.1. Test Case Evaluation experiments

The main objective of this case study was that of experimenting
with different configurations for the probabilities of evolutionary
operators – mutation, reproduction and crossover (Section 2.2) –
and for the values of the test case evaluation parameters – the
weight decrease constant a (Eq. (1)) and the unfeasible penalty con-
stant b (Eq. (4)).

For evolving test cases, ECJ was configured using a single popu-
lation of five individuals. The Method Under Tests’ Control-Flow
Graph nodes were initialized with a weight Wni of 200. The search
stopped if an ideal individual was found or after 200 generations.

For the generation of individuals a multi-breeding pipeline was
used, which stored three child sources; each time an individual had
to be produced, one of those sources was selected with a prede-
fined probability. The available breeding pipelines were the
following:

� a Reproduction pipeline, which simply makes a copy of the indi-
viduals it receives from its source;

� a Crossover pipeline, which performs a strongly-typed version of
Subtree Crossover [19] – two individuals are selected, a single
tree is chosen in each such that the two trees have the same con-
straints, a random node is chosen in each tree such that the two
nodes have the same return type, and finally the swap is
performed;

� and a Mutation pipeline, which implements a strongly-typed ver-
sion of Point Mutation [19] – an individual is selected, a random
node is selected, and the subtree rooted at that node is replaced
by a new valid tree.
The selection method employed was Tournament Selection with
a size of 2, which means that first 2 individuals are chosen at ran-
dom from the population, and then the one with the best fitness is
selected.

5.1.1. Probabilities of operators case study
This particular experiment was performed with the intention of

assessing the impact of the evolutionary operators’ probabilities on
the test case generation process. In order to do so, four distinct
parametrizations of the multi-breeding pipeline were defined,
having:

1. a high probability of selecting the mutation pipeline;
2. a high probability of selecting the crossover pipeline;
3. a high probability of selecting the reproduction pipeline;
4. equal probabilities of selecting either pipeline.

For each of the above multi-breeding pipeline parametrizations,
20 runs were executed for the Stack’s methods, and 10 runs were
executed for the BitSet’s methods.

The weight decrease constant a was set to 0.9, and the unfeasible
penalty constant b was defined as 150. It should be noted that the
definition of these values was heuristic, as no experiments had
been performed that allowed a fundamented choice; these were
conducted later, and are described in the following subsection.

Table 1 summarizes the results obtained. The statistics show
that the strategy of assigning balanced probabilities (r:0.33
c:0.33 m:0.34) to the all of the breeding pipelines yields better re-
sults. For the Stack class, this configuration was the only one in
which full coverage was achieved in all of the runs (in, at most,
200 generations), and it was also the best in terms of the average
number of generations required to attain it; for the BitSet class,
it was the only configuration in which full coverage was attained
at least once for all the Method Under Tests. The worst results were
obtained for the parametrization in which the reproduction breed-
ing pipeline was given a high probability of selection.

5.1.2. Evaluation parameters case study
In this experiment, different combinations of values for the a

and b parameters were studied, with the intention of analysing
the impact of the Test Case Evaluation parameters on the evolu-
tionary search.

The following values were used:

� a – 0.1, 0.5, and 0.9;
� b – 0, 150, and 300.

The probabilities of choosing the three breeding pipelines were
chosen in accordance to the results yielded by the experiment de-
scribed in Section 5.1.1 – i.e., the probabilities for reproduction,
crossover and mutation were set to 0.33, 0.33 and 0.34, respec-
tively. The other configurations remained unaltered. All the 9 com-
binations of the a and b values were employed; 20 runs were
executed for each of the Stack’s Method Under Tests, and 5 runs
where executed for the BitSet’s methods.

The results obtained are summarized in Table 2. The statistics
clearly show that the best configuration for the test case evaluation
parameters is that of assigning a value of 150 to b and a value of 0.5
to a.

5.1.3. Discussion
Automatic test case generation using search-based techniques

is a difficult subject, especially if the aim is to implement a system-
atic solution that is adaptable to a wide range of test objects. Key to
the definition of a good strategy is the configuration of parameters



Table 1
Statistics for the probabilities of operators case study. Relevant data includes the probabilities of choosing the reproduction (r), crossover (c) and mutation (m) pipelines and, for
each configuration, the percentage of runs in which full coverage was achieved (%f) and the average number of generations required attain full coverage (#g).

r:0.1 c:0.1 m:0.8 r:0.8 c:0.1 m:0.1 r:0.1 c:0.8 m:0.1 r:0.3 c:0.3 m:0.3

#g %f #g %f #g %f #g %f

Stack

empty 10.2 100 11.2 100 17.5 100 4.5 100
peek 6.6 100 10.7 100 9.4 100 2.8 100
pop 6.5 100 8.9 100 8.6 100 2.8 100
push 20.6 100 16.4 57 37.2 95 2.5 100
search 48.9 95 48.2 57 98.8 82 18.7 100

BitSet

hashCode 1.4 100 2.0 100 1.3 100 1.4 100
clear(int) 65.3 100 154.8 40 140.8 50 92.1 90
clear( ) 7.2 100 31.2 100 28.6 100 12.6 100
clear(int, int) 181.5 20 – 0 – 0 175.4 30
toString 7.6 100 29.6 100 32.0 100 8.6 100
isEmpty 7.6 100 52.4 100 32.0 100 8.6 100
length 41.4 100 125.4 60 126.2 70 49.2 100
get(int, int) – 0 – 0 – 0 186.2 30
get(int) 57.8 100 184.8 30 137.4 80 75.8 100
size 1.2 100 2.0 100 1.2 100 1.2 100
set(int,boolean) 24.8 100 29.0 100 37.8 100 23.6 100
set(int, int) 42.8 100 122.2 100 109.0 100 44.8 100
set(int, int,boolean) 32.2 100 68.2 100 97.4 80 25.0 100
set(int) 37.2 100 127.0 80 86.8 100 51.8 100
flip(int, int) 80.4 80 184.8 60 165.0 40 89.8 100
flip(int) 73.4 100 174.0 40 148.6 60 77.8 100
andNot 38.0 100 – 0 104.8 100 20.8 100
cardinality 7.6 100 52.4 100 32.0 100 8.6 100
intersects 127.8 60 – 0 150.6 50 107.4 60
nextSetBit 105.8 100 192.2 20 192.8 20 114.6 60
xor 80.6 80 123.6 50 133.4 40 70.3 90

Averages
Stack 18.6 99 19.1 83 34.3 95 6.3 100
BitSet 51.1 80 97.4 56 92.5 65 59.3 81

Table 2
Statistics for the Evaluation Parameters case study. Relevant data includes the percentage of runs in which full coverage was achieved (%f) and the average number of generations
required attain full coverage (#g). Using different combinations for the alpha ðaÞ and beta ðbÞ parameters.

b 0 150 300

a 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

%f #g %f #g %f #g %f #g %f #g %f #g %f #g %f #g %f #g

Stack

hline empty 100 5 100 6 100 5 100 5 100 5 100 5 100 5 100 5 100 5
peek 100 3 100 4 100 3 100 3 100 3 100 3 100 3 100 3 100 3
pop 100 3 100 3 100 3 100 2 100 2 100 3 100 3 100 3 100 3
push 100 5 100 5 100 5 100 5 100 5 100 3 100 5 100 5 100 5
search 100 18 100 18 100 22 100 16 100 16 100 19 100 16 100 21 100 22

BitSet

hashCode 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2
clear(int) 20 163 80 133 80 107 40 126 100 123 100 105 40 126 100 122 80 135
clear( ) 100 15 100 8 100 8 100 13 100 8 100 8 100 7 100 8 100 8
clear(int, int) 0 – 0 – 0 – 0 – 40 177 0 – 0 – 40 180 20 181
toString 100 14 100 8 100 8 100 13 100 8 100 8 100 8 100 8 100 8
isEmpty 100 10 100 8 100 8 100 10 100 8 100 8 100 10 100 8 100 8
length 80 88 100 59 100 49 100 106 100 67 100 49 100 109 100 44 100 49
get(int, int) 0 – 0 – 0 – 0 – 20 188 0 – 0 – 0 – 0 –
get(int) 60 136 100 97 100 87 100 96 100 83 100 96 60 146 100 86 100 70
size 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1
set(int,boolean) 100 73 100 15 100 17 100 73 100 15 100 17 100 73 100 15 100 17
set(int, int) 60 130 100 40 100 66 60 122 100 45 100 60 60 129 100 45 100 54
set(int, int,boolean) 100 63 100 25 100 24 100 47 100 25 100 27 100 44 100 25 100 27
set(int) 80 106 100 68 100 42 60 108 100 62 100 60 60 113 100 62 80 63
flip(int, int) 60 145 100 66 80 111 60 122 100 94 100 94 80 136 100 70 100 95
flip(int) 20 178 60 144 80 126 40 170 100 102 100 79 60 139 100 97 100 82
andNot 40 137 100 21 100 47 60 147 100 21 100 47 80 125 100 21 100 47
cardinality 100 15 100 8 100 8 100 9 100 8 100 8 100 16 100 8 100 8
intersects 0 – 40 149 60 171 20 173 60 149 60 149 0 – 20 190 60 180
nextSetBit 20 166 80 118 60 140 40 158 60 132 60 132 40 172 60 145 60 139
xor 0,8 124 100 34 100 51 80 92 100 26 100 37 60 89 100 33 100 37

Averages
Stack 100 7 100 7 100 8 100 6 100 6 100 6 100 6 100 7 100 8
BitSet 63 87 84 53 84 57 70 84 90 64 87 52 69 80 87 59 86 60
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Table 3
Purified Function Set for the Stack class (top) and entries excluded from the Purified
Function Set (bottom).

Member Return type Child types

Stack() Stack [IP]
Object pop() Object [RE] Stack [IP]
Object pop() Stack [IP] Stack [IP]
Object push(Object) Object [RE] Stack [IP]

Object [P0]
Object push(Object) Stack [IP] Stack [IP]

Object [P0]
Object peek() Object [RE] Stack [IP]
Object() Object [RE]

Entries excluded
Object push(Object) Object [P0] Stack [IP]

Object [P0]
Object peek() Object [IP] Stack [IP]
boolean empty() Stack [IP] Stack [IP]
int search(Object) Stack [IP] Stack [IP]

Object [P0]
int search(Object) Stack [P0] Stack [IP]

Object [P0]
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so as to find a good balance between the intensification and the
diversification of the search. With our approach, the test case eval-
uation parameters a and b and the evolutionary operators’ selec-
tion probabilities play a central role in the test case generation
process.

The main task of the mutation and crossover operators is that of
diversifying the search, allowing it to browse through a wider area
of the search landscape and to escape local maximums; the task of
intensifying the search and guiding it towards the transversal of
unexercised structures is performed as a result of the strategy of
assigning weights to Control-Flow Graph nodes.

Nevertheless, to strong a bias towards the breeding of feasible
test cases will hinder the generation of more complex test cases,
which are sometimes needed to exercise problem structures in
the test object; on the other hand, if feasible test cases are not
clearly encouraged, the search process will wander.

This issue was addressed by allowing the fitness of feasible test
cases to fluctuate throughout the search process as a result of the
impact of the a and b parameters, in order to allow unfeasible test
cases to be selected at certain points of the evolutionary search.

The experiments performed allow drawing a preliminary con-
clusion: the assumption made on the Probabilities of Operators
case study (Section 5.1.1), in which a ¼ 0:9 was employed as being
an adequate value, was incorrect. Using a value of 0.5 for this eval-
uation parameter yielded better results.

On the other hand, it is possible to affirm that the strategy of
assigning the value 150 to the unfeasible penalty constant b yields
good results. An explanation for this behaviour follows.

The worst value a Control-Flow Graph node can have is 200 –
since the weights of Control-Flow Graph nodes are normalized
each generation (Eq. (2)). If all the nodes exercised by a feasible
test case have the worst possible value – because they are being
recurrently exercised by test cases, i.e., because the search is stuck
in a local maximum – the fitness of the corresponding test case will
also be 200 (Eq. (3)).

However, for a given unfeasible test case t, if exIndt 6
seqLent

2 and
b ¼ 150, then FitnessunfeasibleðtÞ 2 ½150;200�, i.e., if the exception in-
dex of a given unfeasible test case is lower or equal to half of its
Method Call Sequence length, and if the value 150 is used for b,
then the fitness of that test case will belong to the interval 150
to 200.

This means that, with b ¼ 150, some good unfeasible test cases
may be selected for breeding; conversely, if b ¼ 0, all unfeasible
test cases will be evaluated with relatively good fitness values,
and if b ¼ 300, none of the unfeasible test cases will be evaluated
as being interesting. The concept of good unfeasible test cases, in
this context, can thus be verbalized as being a test case in which
at least half of the Method Call Sequence is executed without an
exception being thrown.
Fig. 9. EMCDG (left) and purified EM
Assigning the value b ¼Winit � 50 is, thus, a good compromise
between the need to penalize unfeasible test cases and the need
to consider them at some points of the evolutionary search.

5.2. Input Domain Reduction experiments

This subsection describes the case studies implemented with
the objectives of observing the impact of our Input Domain Reduc-
tion proposal – both in terms of the size of the input domain (Sec-
tion 5.2.1) and of the results yielded by the eCrash tool (Section
5.2.2).

5.2.1. Input Domain Size case study
With our approach, the Extended Method Call Dependence

Graph models call dependences and the Function Set encompasses
the entries from which the test case generation algorithm can
choose when evolving test programs; as such, the impact of our In-
put Domain Reduction strategy on the size of the search space is
best assessed by comparing the purified Function Sets and Ex-
tended Method Call Dependence Graphs with those obtained when
no Parameter Purity Analysis is employed.

Fig. 9 and Table 3 illustrate, respectively, the purified Extended
Method Call Dependence Graph and the purified Function Set gen-
erated for the Stack class; additionally, the original Extended
Method Call Dependence Graph and the entries excluded from
the Function Set as a result of the Parameter Purity Analysis proce-
dure are shown for comparison purposes.
CDG (right) for the Stack class.



Fig. 10. Average percentage of nodes remaining per generation for the Stack and
BitSet classes with and without Parameter Purity Analysis.

1546 J.C.B. Ribeiro et al. / Information and Software Technology 51 (2009) 1534–1548
The statistics depicted in Table 4 for the Stack and BitSet

classes show a clear reduction in the size of the input domain;
the number of Function Set entries in the Purity column is only
65.2% of those obtained when no Parameter Purity Analysis is used.

5.2.2. Test case generation results case study
This subsection compares the results yielded by the eCrash tool

when the Parameter Purity Analysis phase is included and ex-
cluded from the process. A single population of 10 individuals
was used. Twenty runs were executed for each of the Method Un-
der Tests. The Method Under Tests’ Control-Flow Graph nodes
were initialized with a weight of 200, with the a and b (Subsection
4.3) parameters being set to 0.5 and 150, respectively. The search
stopped if an ideal individual was found or after 100 generations.
For breeding individuals, three pipelines were used: a Reproduc-
tion pipeline, a Crossover pipeline, and a Mutation pipeline; the
probabilities of choosing these pipelines were set equal values.
The selection method employed was Tournament Selection with
a size of 2. Table 5 presents the results obtained for the Stack

and BitSet classes.
Table 4
Statistics for the Input Domain Size case study. Relevant data includes the number of
EMCDG edges and Function Set entries obtained for the Stack and BitSet classes
with and without Parameter Purity Analysis.

No purity Purity

EMCDG edges FS entries EMCDG edges FS entries

Stack 19 12 14 7
BitSet 106 54 88 36

Table 5
Statistics for the Test Case Generation Results case study. Relevant data includes the
average number of generations required to attain full structural coverage (gens) and
the percentage of runs attaining full structural coverage (full) for the public members
of the Stack and BitSet classes with and without Parameter Purity Analysis.

No purity Purity

Gens Full (%) Gens Full (%)

Stack

pop 4.5 100 1.3 100
push 1.9 100 1.9 100
empty 7.1 100 1.4 100
peek 4.2 100 1.3 100
search 9.4 100 6.9 100

BitSet

hashCode 1.6 100 1.3 100
clear(int) 43.3 55 37.7 60
clear( ) 15.8 100 17.7 100
clear(int, int) – 0 63.0 10
toString 21.6 100 18.4 100
isEmpty 13.4 90 4.2 90
length 48.0 50 47.4 95
get(int, int) 75.5 15 – 0
get(int) 13.2 50 41.3 60
size 1.6 100 1.3 100
set(int,boolean) 13.5 100 9.2 90
set(int, int) 42.2 90 36.6 90
set(int, int,boolean) 42.0 90 39.4 100
set(int) 26.0 70 25.4 90
flip(int, int) 48.8 40 57.7 35
flip(int) 41.0 60 33.5 60
andNot 38.2 45 26.0 70
cardinality 10.9 100 9.7 100
intersects 58.5 40 61.8 40
nextSetBit 68.0 10 56.0 45
xor 34.9 70 29.8 90

Averages
Stack 5.4 100.0 2.6 100.0
BitSet 32.9 65.5 30.9 72.6
For the Stack class, the number of generations required to at-
tain full coverage using Parameter Purity Analysis was, on average,
2.6 – less than half of those required when no Parameter Purity
Analysis was employed. All the runs yielded full coverage in both
cases. For the BitSet class – and although 33.3% of the Function
Set entries were eliminated when Parameter Purity Analysis was
used – the improvement was not as clear. Still, the average per-
centage of test cases that accomplished full coverage within a max-
imum of 100 generations increased approximately 7%.

The graphs shown in Fig. 10 represent the average number of
Control-Flow Graph nodes left to be covered per generation. Again,
the results obtained for the Stack yield a significant improvement,
whereas those presented for the BitSet test object show a slight
(but clear) improvement.

5.2.3. Discussion
The results observed in the Input Domain Size experiment indi-

cate that the search space of Evolutionary Testing problems can be
dramatically reduced by embedding Parameter Purity Analysis into
the test case generation process. For the test objects used, approx-
imately a third of the set of entries that could potentially be se-
lected for integrating the generated test cases were discarded;
these instructions would have no (positive) impact on the defini-
tion of test scenarios.

In terms of the results yielded by the eCrash automated test case
generation tool when Parameter Purity Analysis is used, a signifi-
cant improvement is clearly observable in terms of the efficiency
of the search – i.e., fewer generations (and, consequently, less com-
putational time) are required to find an adequate test set if the
conditions are, otherwise, similar.

Finally, it should be mentioned that the Input Domain Reduc-
tion strategy proposed also enhances the test case generation pro-
cess indirectly, by preventing irrelevant instructions from
obstructing the search by throwing runtime exceptions and ren-
dering test cases unfeasible.

This fact is especially pertinent given that our Test Case Evalu-
ation methodology does consider unfeasible test cases for breeding
at certain points of the evolutionary search (Section 4.3). The inclu-
sion of a Parameter Purity Analysis phase into the process thus
strengthens our Test Case Evaluation proposal, by ensuring that
unfeasible Method Call Sequences are composed solely by instruc-
tions that are relevant in terms of state scenario definition.

6. Conclusions

Evolutionary Testing is an emerging methodology for automat-
ically generating high quality test data. It is, however, a difficult
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subject, especially if the aim is to implement an automated solu-
tion, viable with a reasonable amount of computational effort,
which is adaptable to a wide range of test objects.

The state problem of Object-Oriented programs requires the
definition of carefully fine-tuned methodologies that promote the
transversal of problematic structures and difficult control-flow
paths. We proposed tackling this particular challenge by defining
weighted Control-Flow Graph nodes. The direction of the search
is under constant adaptation, as the weight of Control-Flow Graph
nodes is dynamically reevaluated every generation. Also, the fit-
ness of feasible test cases fluctuates throughout the search process;
this strategy allows unfeasible test cases to be considered at cer-
tain points of the evolutionary search – once the feasible test cases
that are being bred cease to be interesting because they exercise
recurrently traversed structures. In conjunction with the impact
of the evolutionary operators, a good compromise between the
intensification and diversification of the search can be achieved.

Additionally, an Input Domain Reduction methodology, based
on the concept of Parameter Purity Analysis, for eliminating irrele-
vant variables from Object-Oriented test case generation search
problems was proposed. With our approach, test cases are evolved
using the Strongly-Typed Genetic Programming paradigm; Purity
Analysis is particularly useful in this context, as it provides a
means to automatically identify and remove Function Set entries
that do not contribute to the definition of interesting test scenarios.
Nevertheless, the concepts presented are generic and may be em-
ployed to enhance other search-based test case generation meth-
odologies in a systematic and straight-forward manner. The
observations made indicate that the Input Domain Reduction strat-
egy presented has a highly positive effect on the efficiency of the
test case generation algorithm; less computational time is spent
to achieve results.

The process of ‘‘trimming” the input domain in order to elimi-
nate irrelevant entries also ensures that test cases are not rendered
unfeasible by the inclusion of unsuitable instructions; this strategy
is thus of special importance, given that our Test Case Evaluation
strategy does consider unfeasible test cases at certain stages of
the search.

6.1. Future work

Several open problems persist in the area of search-based test
case generation. Future work will be mainly focused on addressing
the challenges posed by the three cornerstones of Object-Oriented
programming: encapsulation, inheritance, and polymorphism. The
importance of the inheritance and polymorphism properties, in
particular, is yet to be fully studied by researchers in this area.
Inheritance allows the treatment of an object as its own type or
its base type; polymorphism means ‘‘different forms”, and allows
one type to express its distinction from another similar type
through differences in behaviour of the methods that can be called
through the base class [9]. Search space sampling deals with the
inclusion of all the relevant variables to a given test object into
the test data generation problem, so as to enable the coverage of
the entire search space whenever possible and improve the effec-
tiveness the approach. Because the test cluster cannot possibly in-
clude all the subclasses that may override the behaviours of the
classes which are relevant for the test object, adequate strategies
for search space sampling – which take the commonality among
classes and their relationships with each other into account – are
of paramount importance.

In the near future, we will also be proposing an adaptive
strategy [14] for enhancing Genetic Programming-based ap-
proaches to automatic test case generation. This novel Adaptive
Evolutionary Testing methodology aims to promote the introduc-
tion of relevant instructions into the generated test cases by
means of mutation; the instructions from which the algorithm
can choose are ranked, with their rankings being updated every
generation in accordance to the feedback obtained from the indi-
viduals evaluated in the preceding generation. We are also plan-
ning to experiment with parallel systems in order to enhance
our methodology’s performance; the evaluation procedure, in
particular, is inherently parallelizable, as all the test cases gener-
ated in a given generation can be executed simultaneously. Also,
we intend to treat the test case selection process as a multi-
objective optimization problem [49], so as to take into account
several goals simultaneously – such as structural coverage and
execution cost.
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