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a b s t r a c t

This paper introduces a heuristic approach to portfolio optimization problems in different risk measures
by employing genetic algorithm (GA) and compares its performance to mean–variance model in cardinal-
ity constrained efficient frontier. To achieve this objective, we collected three different risk measures
based upon mean–variance by Markowitz; semi-variance, mean absolute deviation and variance with
skewness. We show that these portfolio optimization problems can now be solved by genetic algorithm
if mean–variance, semi-variance, mean absolute deviation and variance with skewness are used as the
measures of risk. The robustness of our heuristic method is verified by three data sets collected from main
financial markets. The empirical results also show that the investors should include only one third of total
assets into the portfolio which outperforms than those contained more assets.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Expect return and risk are the most important parameters with
regard to portfolio optimization problems. One of the main contri-
butions on this problem is by Markowitz (1952, 1991) who intro-
duced mean–variance model, but the standard mean–variance
model is based on assumption that investors are risk averse and
the return of assets are normally distributed. Jia and Dyer (1996)
noted that these conditions are rarely satisfied in practice. The
mean–variance objective function may not be the best choice
available to investors in terms of an appropriate risk measure. Fur-
thermore, other risk measures may be more appropriate. From a
practical point of view, real world investors have to face a lot of
constraints in risk models: trading limitation, size of portfolio,
etc. Such as constraints may be formed in a nonlinear mixed inte-
ger programming problem which is considerably more difficult to
solve than the original model. Several researchers have attempted
to find this problem by a variety of techniques, but exact solution
methods fail to solve large-scale instances of the problem. There-
fore, several researchers try to improve algorithms by using the
state-of-the-art mathematical programming methodology to solv-
ing portfolio problems. The purpose of this paper is to show that
portfolio optimization problems containing cardinality constrained
efficient frontier can be successfully solved by the state-of-the-art
genetic algorithms if we use the different risk measures such as
mean–variance, semi-variance, mean absolute deviation and vari-
ance with skewness. We also show that practical portfolio optimi-
ll rights reserved.

; fax: +886 3 3894770.
zation problems consisting of different numbers of assets drawn
from three main markets stock indices can be solved by a genetic
algorithm within a practical amount of time.

The remainder of this paper is organized as follows. Section 2
describes the portfolio optimization in the risk measures which
we want to solve. In Section 3 investigates basic structure of genet-
ic algorithm. Section 4, our proposed algorithm was introduced.
Section 5 provides our computational results using C++ program-
ming. It shows that cardinality constrained portfolio optimization
problems can be solved in different risk measures without diffi-
culty. Conclusion is given in Section 6.

2. Portfolio optimization in the risk measures

Portfolio is to deal with the problem of how to allocate wealth
among several assets. The portfolio optimization problems have
been one of the important research fields in modern risk manage-
ment. In generally, an investor always prefers to have the return on
their portfolio as large as possible. At the same time, he also wants
to make the risk as small as possible. However, a high return al-
ways accompanied with a higher risk. Markowitz introduced the
mean–variance model, which has been regarded as a quadratic
programming problem. In spite of its popularity during the past,
the mean–variance model is based upon the assumptions that an
investor is risk averse and that either (i) the distribution of the rate
of return is multivariate normal or (ii) the utility of the investor is a
quadratic function of the rate of return. Unfortunately however,
neither (i) nor (ii) holds in practice. It is now widely recognized
that the real world portfolios do not follow a multivariate normal
distribution. Many researchers once suggest that cannot blindly
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depend on mean–variance model. Therefore, there has been a tre-
mendous amount of researches on improving this basic model both
computationally and theoretically. Various risk measures such as
semi-variance model, mean absolute deviation model and variance
with skewness model have been proposed. Among them risk mod-
els were mathematically shown as below.

2.1. Mean–variance model

Markowitz was the first to apply variance or standard deviation
as a measure of risk. He assumed that his classical formation is as
follows:

Minimize
XN

i¼1

XN

j¼1

wiwjrij ð1Þ

Subject to
XN

i¼1

wili ¼ R� ð2Þ

XN

i¼1

wi ¼ 1 ð3Þ

0 6 wi 6 1; i ¼ 1; . . . ;N ð4Þ

where

N is the number of assets available;
wi is the proportion (0 6wi 6 1) of the portfolio held in assets i
(i = 1, . . . ,N);
li is the expected return of asset i (i = 1, . . . ,N);
rij is the covariance between assets i and j (i = 1, . . . ,N;
j = 1, . . . ,N).

Eq. (1) minimizes the total variance (risk) associated with the
portfolio while Eq. (2) ensures that the portfolio has an expected
return of R*. Eq. (3) ensures that the proportions add to one. In
Eq. (4) the proportion held in each asset is between zero (minimum
amount) and one (maximum amount). This formulation (Eqs. (1)–
(4)) is a quadratic programming problem and nowadays it can be
solved optimally using available software tool.

By solving the above optimization problem continuously with a
different R* each time, a set of efficient points is traced out. This
efficient set called the efficient frontier and is a curve that lies be-
tween the global minimum risk portfolio and the maximum return
portfolio. In other words, the portfolio selection problem is to find
all the efficient portfolios along this frontier.

In order to enrich the model, we introduce a weighting param-
eter k (0 6 k 6 1) and consider:

Minimize k
XN

i¼1

XN

j¼1

wiwjrij

" #
� ð1� kÞ

XN

i¼1

wili

" #
ð5Þ

Subject to
XN

i¼1

wi ¼ 1 ð6Þ

XN

i¼1

zi ¼ K ð7Þ

eizi 6 wi 6 dizi; i ¼ 1; . . . ;N ð8Þ
zi 2 f0;1g; i ¼ 1; . . . ;N ð9Þ

where

K is the desired number of assets in the portfolio;
ei is the minimum proportion that must be held of asset i
(i = 1, . . . ,N) if any of assets i is held;
di is the maximum proportion that can be held of asset i
(i = 1, . . . ,N) if any of assets i is held;
zi = 1 if any of asset i (i = 1, . . . ,N) is held

= 0 otherwise.
Eq. (5) the case k = 0 represents maximum expected return and
k = 1 represents minimum risk. Values of k satisfying 0 < k < 1 repre-
sent an explicit trade-off between risk and return, generating solu-
tions between the two extremes k = 0 and k = 1. Eq. (6) ensures
that the proportions add to one. Eq. (7) is assets desired number con-
straint. It ensures that exactly K assets are held. Eq. (8) constraints
define lower and upper limits on the proportion of each asset which
can be held in the portfolio. It ensures that if any of assets i is held
(zi = 1) its proportion wi must lie between ei and di, while if none of
asset i is held (zi = 0) its proportion wi is zero. Eq. (9) is the integrality
constraint. By a weighting parameter k, we could use this program
(Eqs. (5)–(9)) to trace out the cardinality constrained efficient fron-
tier (CCEF) in an exactly analogous way. The use of heuristics for car-
dinality constrained portfolio optimization has been proposed and
discussed by Chang, Meade, Beasley, and Sharaiha (2000).

2.2. Semi-variance model

Standard mean–variance model is based upon assumptions that
an investor is risk averse and that the distribution of the rate of re-
turn is multivariate normal. This means that the variance compo-
nent of the Markowitz quadratic objective function can be
replaced by other risk functions such as semi-variance. With an
asymmetric return distribution, the mean–variance approach leads
to an unsatisfactory prediction of portfolio behavior. Markowitz in-
deed suggested that a model based on semi-variance would be
preferable. Let:

T be such that we have observed historical values for stocks
over the time period 0,1,2, . . . ,T;
vit be the value of one unit of stock i (i = 1, . . . ,N) at time t
(t = 0, . . . ,T);
Ccash be the cash available to invest in the portfolio;
xi be the number of units of stock i (i = 1, . . . ,N) that we choose
to hold in the portfolio;
zi = 1 if any of stock i (i = 1, . . . ,N) is held in the portfolio

= 0 otherwise.

It is helpful when formulating the problem to introduce:

wi is the proportion of Ccash that is invested at time T in stock i
(i = 1, . . . ,N);
rt is the single period continuous time return given by the port-
folio at time t (t = 1, . . . ,T).

We get the values through the variables given previously:

wi ¼ v iT xi=Ccash; i ¼ 1; . . . ;N ð10Þ

rt ¼ loge

XN

i¼1

v itxi

 ,XN

i¼1

v it�1xi

!
; t ¼ 1; . . . ; T ð11Þ

Eq. (10) defines wi to be the proportion of the portfolio associated
with stock i at time T and Eq. (11) defines rt to be the return on
the portfolio (since the total value of the portfolio at time t isPN

i¼1v itxi). Then the constraints associated with discrete time port-
folio optimization problem are

XN

i¼1

zi ¼ K ð12Þ

eizi 6 v iT xi=Ccash 6 dizi; i ¼ 1; . . . ;N ð13Þ
XN

i¼1

v iT xi ¼ Ccash ð14Þ

xi P 0; i ¼ 1; . . . ;N ð15Þ
zi 2 f0;1g; i ¼ 1; . . . ;N ð16Þ
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Algebraically we can transform the above equations to form con-
straints in decision variables [wi] and [zi], this algebraic transforma-
tion yields the constraints

XN

i¼1

zi ¼ K ð17Þ

eizi 6wi 6 dizi; i¼ 1; . . . ;N ð18Þ
XN

i¼1

wi ¼ 1 ð19Þ

rt ¼ loge

XN

i¼1

wiv it=v iT

 !, XN

i¼1

wiv it�1=v iT

 !" #
; t ¼ 1; . . . ;T ð20Þ

wi P 0; i¼ 1; . . . ;N ð21Þ
zi 2 f0;1g; i¼ 1; . . . ;N ð22Þ

Furthermore, it is helpful at this stage to define:

�r ¼
XT

t¼1

rt=T ð23Þ

so that �r is the mean portfolio return over the time period 1,2, . . . ,T.
Therefore, semi-variance only considers downside risk (returns be-
low �rÞ and is defined by

XT

t¼1; rt<�r

ðrt � �rÞ2=T ð24Þ

In other words risk is no longer symmetric, and we are not con-
cerned with time periods in which rt P �r (portfolio return exceeds
mean return). Further discussion of downside risk can be found in
Sortino and Forsey (1996) and Sortino and van der Meer (1991).
Minimize k
XT

t¼1

ðrt � �rÞ2=T

" #
� ð1� kÞ�r � h

XT

t¼1

ðrt � �rÞ3=T

 !, XT

t¼1

ðrt � �rÞ2=T

 !3=2
2
4

3
5 ð27Þ

Subject to Eqs: ð17Þ—ð23Þ
Hence the semi-variance model for the CCEF is:

Minimize k
XT

t¼1; rt<�r

ðrt � �rÞ2=T

" #
� ð1� kÞ�r ð25Þ

Subject to Eqs: ð17Þ—ð23Þ

Many researchers have studied the semi-variance model. Kon-
no, Waki, and Yuuki (2002) showed that very large-scale mean-
lower partial risk models are solvable in an efficient manner by
the mathematical programming methodology. In the large-scale
stock portfolio, they observe virtually no difference in the tail dis-
tribution among portfolios generated by mean–variance model and
mean–lower semi-variance model above 60 monthly data of 1100
stocks on the Tokyo Stock Exchange. Enrique (2005) proposed
mean–semi-variance approach with those derived from the tradi-
tional mean–variance model. Computational results were pre-
sented among the seven scenarios (seven different target expect
returns), four of them have the same solutions for both measures
while three of them give different solutions.

2.3. Mean absolute deviation model

Konno and Yamazaki (1991) first propose a mean absolute
deviation portfolio optimization model as an alternative to the
Markowitz mean–variance portfolio selection model, which allows
the portfolio selection problem to be formulated and solved via
linear programming. In their paper computational results were
presented for one problem involving 224 assets. They showed that
using mean absolute deviation model generates similar results to
the Markowitz mean–variance model. The advantage of the mean
absolute deviation model is linear programming problem instead
of quadratic programming problem, and is easily solved by means
of classical techniques for large-scale optimization problems. Our
method has the flexibility to incorporate a mean absolute deviation
function, but they may not have any computational advantages
over classical approaches. The mean absolute deviation model for
the CCEF is:

Minimize k
XT

t¼1

jrt � �rj=T

" #
� ð1� kÞ�r ð26Þ

Subject to Eqs: ð17Þ—ð23Þ

The computational advantages of the mean absolute deviation
model over the mean–variance are also once well established by
Konno (2003) and Konno and Koshizuka (2005).

2.4. Variance with skewness

The importance of the third order moment in portfolio optimi-
zation was first suggested by Samuelson (1958). A portfolio return
may not be a symmetric distribution. The distribution of individual
asset returns tends to exhibit a higher probability of extreme val-
ues than is consistent with normality.

In order to capture the characteristics of the return distribution
and provide further decision-making information to investors, an-
other approach is to include skewness into the mean–variance
model. Hence the variance with skewness model for the CCEF is:
where h is a weighing factor for skewness and the expression it
weights in Eq. (27) is known as the coefficient of skewness. Eq.
(27) balances variance, expected return and skewness at the same
time. For a specific value of h, we can thus generate an efficient
frontier which reflects our attitude to skewness. Although positive
skewness in portfolio returns implies some reduction in downside
risk, which is favorable to investors, the coefficient of skewness is
affected by returns greater than, as well as those less than, the
mean return. Therefore, it is possible to have portfolios with simi-
lar skewness but quite different downside behavior.

Although many researchers have demonstrated the existence of
skewness in portfolios, only a few studies to date have proposed
incorporating skewness into the portfolio optimization problem.
In recent year, Lai (1991) proposed a polynomial goal program-
ming algorithm to solve the unconstrained portfolio optimization
problem with skewness. Konno and Suzuki (1995) have considered
a mean–variance objective function extended to include skewness
and applied piecewise linear approximation to the objective func-
tion. Computational results were provided for three data sets
involving 225 assets. Konno and Yamamoto (2005) also show that
a mean–variance skewness portfolio optimization model can be
solved exactly and fast by using the integer programming ap-
proach. Note here that, as far as we are aware, there have been
no applications of the variance with skewness objective function
to the cardinality constrained portfolio optimization problem re-
ported in the literature.
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In the next section, we will review the basic principle and ter-
minology of genetic algorithms and they were applied in different
risk measures.
3. Genetic algorithms

Based on the Darwin principle ‘‘the fittest survive” in nature, ge-
netic algorithm (GA) was first initiated by Holland’s (1975) and has
rapidly become the best-known evolutionary techniques (Gold-
berg, 1997; Mitchell, 1996). Since the pioneering method by Hol-
land, numerous related GA-based portfolio selection approaches
have been published. Arnone, Loraschi, and Tettamanzi (1993) pre-
sented a GA for the unconstrained portfolio optimization problem
with the risk associated with the portfolio being measured by
downside risk. Kyong, Tae, and Sungky (2005) also used GA to sup-
port portfolio optimization for index fund management. Lin and
Liu (2008) proposed that GA for portfolio selection problems with
minimum transaction lots. Recently, GA has attracted much atten-
tion in portfolio optimization problems.

In GA, an initial population containing constant number of chro-
mosomes is generated randomly. With regard to portfolio optimi-
zation problems, each chromosome represents the weight of
individual stock of portfolio and is optimized to reach a possible
solution. An evaluation function is formed to evaluate the fitness
for each chromosome, which defines how good a solution the chro-
mosome represents. By using crossover, mutation values and nat-
ural selection, the population will converge to one containing
only chromosomes with good fitness. Where the larger the fitness
value is, the better objective function value the solution has. The
basic steps in GA are shown as follows:

Step 1: Initialize a randomly generated population.
Step 2: Evaluate fitness of individual in the population.
Step 3: Apply elitist selection: carry on the best individuals to the

next generation from reproduction, crossover, and
mutation.

Step 4: Replace the current population by the new population.
Step 5: If the termination condition is satisfied then stop, else go

to Step 2.

Through this reproduction once, the children of two chromo-
somes are generated. The reproduction process is operated until
all chromosomes of a new population have been generated thor-
oughly. Through specified maximum generations, the best solution
ever found is the answer.
4. The proposed GA portfolio optimization

The proposed genetic algorithm for portfolio optimization prob-
lems based on the GA steps discussed in the previous section. This
section we will describe in detail how to implement the proposed
method.

4.1. Population initialization

This paper used a population size of 100. Parents were chosen
by binary tournament selection which works by forming two pools
of individuals, each consisting of two individuals drawn from the
population randomly. The individuals with the best fitness, one ta-
ken from each of the two tournament pools, are chosen to be
parents.

4.2. Fitness objective function evaluation

We used mean–variance objective function
f ¼ k
X
i2Q

X
j2Q

wiwjrij

" #
� ð1� kÞ

X
i2Q

wili

" #

as an example to show a feasible solution in the portfolio optimiza-
tion problem. The chromosome representation of a solution has two
distinct parts, a set Q of K distinct assets and K real numbers si

(0 6 si 6 1), i 2 Q. Now given a set Q of K assets a fraction
P

j2Qej

of the total portfolio is already accounted for and so we interpret
si as relating to the share of the free portfolio proportion
1�

P
j2Qej associated with asset i 2 Q. Hence the proportion associ-

ated with asset i in the portfolio is given by

wi ¼ ei þ si

X
j2Q

sj

, !
1�

X
j2Q

ej

 !

i.e. the minimum proportion plus the appropriate share of the free
portfolio proportion.

Not all possible chromosomes correspond to feasible solutions
(because of the constraint (Eq. (8)) relating to the limits on the pro-
portion of an asset that can be held). In GA evaluation we can auto-
matically ensure that the constraints relating to the lower limits ei

are satisfied in a single algorithmic step. However we need an iter-
ative procedure to ensure that the constraints relating to the upper
limits di are satisfied.

4.3. Reproduction, crossover, and mutation

In this section we will describe how the genetic operators are
modified and how they performed in our algorithm. Children in
our GA are generated by uniform crossover. In uniform crossover
two parents have a single child. If an asset i is present in both par-
ents it is present in the child (with an associated value si randomly
chosen from one or other parent). If an asset i is present in just one
parent it has probability 0.5 of being present in the child. Children
are also subject to mutation, multiplying by 0.9 or 1.1 (chosen with
equal probability) the value (ei + si) of a randomly selected asset i.
This mutation corresponds to decreasing or increasing this value
by 10%.

4.4. Replacement

We used a steady-state population replacement strategy. With
this strategy each new child is placed in the population as soon
as it is generated. We choose to replace the member of the popu-
lation with the worst objective function value.

4.5. Termination criterion

With regard to all the computational results reported in this pa-
per we examined 500 different k values. With regard to the number
of iterations we used 1000N for our GA heuristic. These values
mean that the heuristic evaluates exactly 1000N solutions for each
value of k.

5. Research results

In the section, we report the computational results on different
risk measures under cardinality constraints. We used historical
daily data collected in the HANG SENG, FTSE and S&P 100 with
price data of 33, 93 and 99 assets respectively from January 2004
to December 2006. The cardinality constraint K is set from 10 to
90 increased by 10 each time. We solved the problem using heuris-
tic genetic algorithm is coded in C++ and run on a personal
computer.

The comparisons of the proposed portfolio optimization for dif-
ferent number of assets (K = 10 to 90) are presented from Figs. 1–6.



Risk

R
et

ur
n

0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04
0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

K=5

Risk

R
et

ur
n

0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04
0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

K=15

Risk

R
et

ur
n

R
et

ur
n

R
et

ur
n

R
et

ur
n

0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04
0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

K=25

Risk
0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

K=30

Risk

R
et

ur
n

0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04
0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

K=5

K=10

K=15

K=20

K=25

K=30

2.0E-03

1.5E-03

2.5E-03

K=10

1.0E-03

5.0E-04

Risk
0.0E+00

0.0E+00
1.0E-04 2.0E-04 3.0E-04 4.0E-04

2.0E-03

1.5E-03

Risk
0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04

0.0E+00

5.0E-04

1.0E-03

2.5E-03

K=20

Fig. 1. CCEF of mean–variance model for HS data.
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Fig. 2. CCEF of mean–variance model for FTSE data.
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Note that although they are plotted in return and risk coordinates,
each figure actually represents results of CCEF in different data
sets or risk measures. We illustrate the computation results
made from above GA for three data sets in mean–variance model
first, and then discuss the S&P 100 data in three different risk
measures.

In Figs. 1–3 we show these comparisons for mean–variance
model, where CCEF resulted from the nine different K values are
arranged by 1–3 rows individually and CCEF of mean–variance
model including K = 10–90 is arranged by fourth row. These three
groups of data under evaluation reach similar results in mean–var-
iance model, at least from our macroscopic point of view; these
three figures make a comparison based on different K values. As
a result, CCEF becomes shorter following increase of K value. Three
groups of data all indicate that CCEF with a K value above one third
of total is obviously dominated by those with relatively less K val-
ues, which means that these K values should not be considered by
investors.
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Fig. 3. CCEF of mean–variance model for S&P 100 data.
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Fig. 4 is CCEF of S&P 100 data in semi-variance model, Fig. 5
is CCEF of S&P 100 data in mean absolute deviation model, and
Fig. 6 is CCEF of S&P 100 data in variance with skewness model.
All indicate that CCEF for the different risk models have similar
results as those in mean–variance model. This further proves
that the proposed GA can provide a consistent and reliable result
for different market or risk preference. We also learned from
previous discussion that the different risk models in CCEF cannot
be directly compared since the manner of risk measures is differ-
ent.
In Fig. 6, we choose the coefficient of skewness h as 0.001, which
represents further information of data. Note that in our variance
with skewness model the trade-off is among mean, variance and
skewness. Therefore value of h might not have same influence to
different data set. In practice, investors should more concern about
how to decide the value.

Fig. 7 shows the CPU time (s) for various values of K with differ-
ent risk measures in S&P 100 data. The computation time increases
almost linearly as we increase K value. In spite of consuming time,
Investors do not need to waste time to compute those high K
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Fig. 4. CCEF of semi-variance model for S&P 100 data.
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Fig. 5. CCEF of mean absolute deviation model for S&P 100 data.
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Fig. 6. CCEF of variance with skewness model for S&P 100 data.
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values since they are dominated by lower one as mention above.
Therefore, our GA seems to be able to efficiently obtain a near-opti-
mal solution without difficulty, especially when the mean–vari-
ance, semi-variance and variance with skewness measures are
employed as the objective function.

In this paper we do not compared GA with other mathematical
programming algorithms in efficiency because we do emphasize
that portfolio optimization problems can be solved by genetic algo-
rithm for different measures of risk or risk preference. In other
words, when we cannot solve the portfolio optimization problems
analytically in complex cases for specific risk measures, the pro-
posed GA is a good alternative.
6. Conclusions

Genetic algorithm is robust to solve mixed nonlinear and inte-
ger programming problems and effective for solving the portfolio
optimization problems in different risk measures. GA prominent
advantage over other exact search methods is its flexibility and
its ability to easily obtain a good solution to a problem where
the other deterministic methods cannot achieve optimality in an
easy manner. The main objective of this paper was to investigate
genetic algorithm for solving difficult portfolio optimization prob-
lems with different risk models. Specifically, a number of portfolio
optimization problems including cardinality constraint can be
solved by the state-of-the-art GA in a practical amount of time if
we use mean–variance, semi-variance and variance with skewness
as the measures of risk. The application of our GA in the proposed
portfolio optimization problem is attractive because they are able
to deal with a class of objective functions which are difficult to
solve by other exact search algorithms found in literature.

The contribution of this paper showed the efficiency using GA to
solve these portfolio optimization problems in different risk mea-
sures. It also verified that investors should not consider K values
above one third of total assets since they are obviously dominated
by those with relatively less K values.

The GA method developed in the paper can provide an efficient
and convenient tool for investors. With different risk tendencies,
investors are able to find efficient frontier based on a fixed amount
of assets, as well as a lower bound of each asset to avoid minor
investment which might increase transaction costs. In terms of
number of assets hold in the portfolio, our research provides a clear
fact that a small size of portfolio could have a better performance



T.-J. Chang et al. / Expert Systems with Applications 36 (2009) 10529–10537 10537
than those of bigger one. The future study is to extend a class of
problems approach such as:

(a) Investigating other algorithms and their performance in dif-
ferent risk measures, such as simulated annealing, tabu
search and neural network.

(b) Applying other algorithms to portfolio optimization prob-
lems and comparing the results to those obtained with pre-
vious heuristic and mathematical programming algorithms.

(c) Analyzing other algorithms that are more appropriate and
efficient for specific risk measures.
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