
Fitness Evaluation for Nurse Scheduling Problems

Edmund K. Burke
University of Nottingham

School of Computer
Science & IT

Nottingham NG8 1BB, UK
ekb@cs.nott.ac.uk

Patrick De Causmaecker
KaHo St.-Lieven

Information Technology
Gebr. Desmetstraat 1, 9000

Gent, Belgium
patdc@kahosl.be

Sanja Petrovic
University of Nottingham

School of Computer
Science & IT

Nottingham NG8 1BB, UK
sxp@cs.nott.ac.uk

Greet Vanden Berghe
KaHo St.-Lieven

Information Technology
Gebr. Desmetstraat 1, 9000

Gent, Belgium
greetvb@kahosl.be

Abstract- When applying evolutionary algorithms to dif-
ficult real-world problems, the fitness function routinely
needs evaluating for a very high number of intermediary
cases.
This paper is concerned with real-world nurse rostering
problems with highly constrained resources. We consider
a particular approach, which allows for a quick evalua-
tion and is general enough to deal with other kinds of re-
source planning problems with time-related constraints.
The model developed for this approach handles the con-
straints in a modular way and the addition of new con-
straints is relatively straightforward. Simple constraints
(such as those affecting the personal wishes of employ-
ees) and global constraints (such as balancing the work-
load among people) can be formulated easily using this
approach. Our approach can also handle very complex
time-related constraints as well as conditions that are re-
lated to previously planned work. Moreover, it provides
clear feedback about violation of constraints.
The approach has been implemented successfully in a
nurse rostering program entitled “Plane” which is used
in hospitals all over Belgium. It can tackle a high number
of specific and modifiable constraints of a very different
nature. The benefits from this approach (in terms of soft-
ware requirements) are small memory use and a compu-
tationally simple, single evaluation function allowing for
the simultaneous rostering of several hospital wards at the
same time.

1 Introduction

The work presented in this paper describes the evaluation
method employed in Plane, a personnel rostering software
system developed for the Belgian hospital market (Burke et.
al., [2, 3]). Plane has been developed in conjunction with Im-
pakt1 and GET2. One of the main motivations for developing
this software was the discovery that none of the available per-
sonnel or nurse rostering tools on the market could cope with
the high number of very specific constraints that Belgian hos-
pitals have to deal with.
Employee rostering problems basically consist of assigning a

1Impakt N.V., Ham 64, B-9000 Gent
2GET, General Engineering & Technology, Antwerpse Steenweg 107, B-

2390 Oostmalle

number of tasks (or shifts) to personnel with different skills
over a defined period of time. The assignment is usually
subject to a large number of constraints. The automation of
personnel rostering has attracted the attention of researchers
since the sixties (cf. Hung, [8]). The problems are often re-
stricted to imposing constraints limiting the total work and
constraints limiting consecutive assignments (Chan and Weil,
[5]), (Chiarandini et. al., [6]), (Meisels and Lusternik, [9]),
(Meyer auf’m Hofe, [10]). Both (Aickelin and Dowsland,
[1]) and (Dowsland, [7]) work with a limited number of shift
type patterns whose value is predefined.
The majority of approaches described in the literature aim
at producing weekly rotating three-shift schedules (Aickelin
and Dowsland, [1]), (Chan and Weil, [5]), (Dowsland, [7]),
and (Weil et. al., [12]). Plane, however, attempts to solve
rostering problems of larger complexity. It attempts to sched-
ule people of different skill categories so that the demands
of the hospital can be met during a particular planning pe-
riod. The search algorithms implemented in Plane are based
on tabu search (Burke et. al., [2]). Experiments with genetic
and memetic approaches (Burke et. al., [3]) led to better qual-
ity timetables at the expense of computational time.
The aim of this paper is to present an approach for the eval-
uation of personnel schedules. The method is fast and re-
quires only a very simple algorithm, which is extremely use-
ful for evaluating all neighbourhood solutions for the meta-
heuristics applied. The evaluation method can be applied in
other timetabling or scheduling problems with time-related
constraints. Section 2 lists the requirements of Plane which
have an immediate effect on the cost function. In Section 3,
the main constraints imposed on the personnel schedules are
explained. We introduce the evaluation approach in Section 4
and explain that new constraints can easily be defined by only
designing a template with numbers. In Section 5 the evalua-
tion method is demonstrated using a simplified example of a
personnel roster. Some concluding remarks are presented in
Section 6.

2 Requirements

The objectives of Plane, which were formulated after an ex-
tensive market research effort, led us to the formulation of the
evaluation method described in this paper.
The first set of requirements is functional. We want to pro-

duce a solution satisfying all personnel demands and respect-
ing the constraints imposed on the resources as much as pos-
sible. To evaluate the latter we construct a fitness function
expressing the degree to which the constraints are satisfied.
Among the other objectives, there is a list of system specific
requirements: conceptual consistency and continuity, grace-
ful degradation, pertinent behaviour, explanatory power, and
extendibility.
The presented evaluation approach is aimed at meeting all
of these requirements. The criterion of graceful degradation
requires the system to come up with a reasonable schedule
when (very often) no solution satisfying all the constraints
can be found. Even in the middle of the search process,
the system should be prepared to provide the user with the
best schedule found when it is prompted for a solution. The
scheme selected for Plane is one in which the personnel de-
mands are fulfilled in the initial solution and remain fulfilled
while trying to improve on the resource constraints. Any ob-
tained solution must be explanatory, in that all constraint vio-
lations are explicitly shown to the user. A feature of the sys-
tem is that all constraints on personal schedules are treated
equally, both in the model and in the user interface. The ap-
proach provides a method for handling all characteristics of
the constraints such as cost parameters, minimum and maxi-
mum values, and consecutiveness in a modular way.

3 Constraints

3.1 Terminology

Planning Period
The planning period is the time interval over which the staff
have to be scheduled. Plane allows the user to define a plan-
ning period, which usually consists of 4 weeks.
Skill Category
This determines a class of staff who have a particular level of
qualification, skill or responsibility. For example, a particular
skill category might be a class of junior nurses. Staff in this
category would not normally be allowed to be allocated to a
ward manager’s shift. However, it might be the case that we
could allocate someone in the ward manager’s category to a
junior shift on a given day. It is usually possible to allocate
senior staff to a junior position on any given day but not the
other way round. However, in practice, very senior staff are
usually reluctant to stand in for junior staff. It is also the case
that, in practice, a regular (not a junior) nurse will temporar-
ily stand in for a head nurse.
Shift Type
Shift types are hospital tasks with a well-defined start and end
time. The ward manager can set the details of the shift types
in order to make them match the activities.
Time Units
Time Units represent time intervals of minimum allocation.
They are defined to handle the personnel constraints. In the
approach used in Plane, where personnel demands and sched-
ules make use of shift types, each shift type has a correspond-

ing time unit. The time units are ordered according to the start
times of the shift types they represent. When two shift types
have the same start time, the first time unit will match the shift
type with the earliest end time. The time units defined for this
approach do not represent consecutive or separate periods but
they will very often overlap in time. For the nurse rostering
problem considered in this paper, the number of time units
equals the number of shift types times the number of days in
the planning period. In the evaluation method (described in
Section 4), time units play a particularly important role.
Personnel Demands
Personnel demands express the number of personnel needed
for every skill category and for every shift during the entire
planning period. Plane provides other formulations for the
personnel demands as well but since they only affect the ini-
tialisation and the algorithmic calculations, we will not dis-
cuss them in this paper (see (Burke et. al., [2, 3]) for more
details).

3.2 Hard constraints

Hard constraints are those that must be satisfied at all costs.
Plane is organised so that the personnel demands form the
hard constraints. The system does not allow a user to de-
fine personnel demands which would need a larger number of
staff than are available. In addition, the system does not al-
low any violation of the hard constraints during the course of
the scheduling process. A schedule satisfying the hard con-
straints is a solution in which for every day of the planning
period, the required personnel for each skill category are as-
signed to the shift types needed.

3.3 Soft constraints

Soft constraints are those that are desirable but which may
need to be (usually will need to be) violated in order to gen-
erate a workable solution. Indeed, in most real-world cases
it is simply not possible to satisfy all soft constraints. All
constraints on the personal schedules are categorised as soft
constraints. The cost function sums all violations on these
constraints for all the personnel members in the solution.
Belgian healthcare institutions have a tradition of evaluat-
ing the personnel schedules on a large number of criteria.
Due to the, sometimes unpredictable, character of the work-
load, the schedules have to be very flexible. The constraints
are divided into a few categories, affecting certain groups of
personnel members. A full description of all the constraint
types in use in Plane is given on the following web page
http://www.cs.nott.ac.uk/ � gvb/constraints.ps. In this paper,
we restrict the description to the constraints most used in
practice.

3.3.1 Hospital constraints

Personnel scheduling in the hospitals we deal with is organ-
ised per ward. We consider a ward to be a group of personnel
working together in the same location (e.g. a certain floor in

a hospital) or having similar activities (e.g. the ambulance
team). There are certain rules which hold for the entire hos-
pital. Underneath these global rules, each ward can define its
own local rules, such as:
- Minimum time between two assignments
- Allow use of an alternative skill category in certain situa-
tions

3.3.2 Constraints defined by the work regulation

Every personnel member has a contract with the hospital,
called the work regulation or work agreement. There are dif-
ferent work regulations for full time personnel members, half
time and night nurses. In the real-world there are many hos-
pitals which allow for a personal work agreement per nurse.
This enables them to formulate personal constraints such as
‘Every Wednesday afternoon should be free’, ‘Work a week-
end every two weeks’, etc. . . When defining the work regu-
lation, either of the following constraints can be defined or
made idle.
- Maximum number of assignments in the planning period
- Minimum/Maximum number of consecutive days
- Minimum/Maximum number of hours worked
- Minimum/Maximum number of consecutive free days
- Maximum number of assignments per day of the week
- Maximum number of assignments for each shift type
- Maximum number of a shift type per week
- Number of consecutive shift types
- Assign 2 free days after night shifts
- Assign complete weekends
- Assign identical shift types during the weekend
- Maximum number of consecutive working weekends
- Maximum number of working weekends in a 4-week period
- Maximum number of assignments on bank holidays
- Restriction on the succession of shift types
- Patterns enabling specific cyclic constraints
- Balancing the workload among personnel

3.3.3 Personal constraints

When individual personnel members have an agreement with
the personnel manager or head nurse, the following con-
straints can be put into action:
- Day off; shifts off
- Requested assignments
- Tutorship (people not allowed to work alone)
- People not allowed to work together

4 The Evaluation Approach

Our method evaluates the group of very different constraints
that is outlined above. More generally, the method also pro-
vides a technique to calculate the extent to which constraints
on the schedule are violated. The main ideas of the approach,
as well as some guidelines to translate real-world constraints
into the model, are explained in this section.

From Till

M morning shift 06:45 14:45
L late shift 14:30 22:00
N night shift 22:00 07:00

Table 1: The shift types

The evaluation method allows for the evaluation of the solu-
tion per resource (in our nurse rostering example, a resource
is a person). The solution of every resource will be evaluated
against a schematic representation of the constraints (Section
4.5) in order to determine the value of the cost function for
the solution.
To facilitate the explanation of the evaluation method, we
consider a simple example consisting of a one-week planning
period for a ward with 5 people. The number of shift types
in use is restricted to the morning (M), late (L), and night (N)
shifts presented in Table 1. All personnel members have the
same work agreement. This implies that their personal sched-
ules are all subject to the same set of soft constraints. Each
requested shift can be assigned to any of the nurses because
they all belong to the same skill category.
Table 2 shows a personnel schedule especially constructed to
demonstrate the method. The rows in the table present the
schedules associated with each of the personnel members.
The schedule for the previous planning period is also pre-
sented in the table. The previous solution is used for defining
the start values of the constraints to be evaluated.

4.1 Formal description of the evaluation method

The ideas, which form the basis of the evaluation method,
will be presented formally in this section. The time units in-
troduced in Section 3.1 are basic concepts in the description
of this method. Suppose there are

�
days in the planning

period and that the problem consists of ��� shift types then��� ��� time units are used. The set of time units is denoted
by � . As an example, the schedule for 5 people presented in
Table 2 is translated into a time unit schedule in Table 3. In
this example,

���
	
and ��� ��� . Since the example con-

sists of only 3 possible shift types, every day in the real-world
planning is represented by 3 columns in the time unit sched-
ule.
We introduce numberings as templates which are put on each
personal schedule in order to evaluate constraints in a uniform
way. Instead of writing a separate algorithm for the evalua-
tion of each constraint, we designed the numberings so that
all constraints can be evaluated using a single algorithm. The
evaluation of every personal schedule is performed in one
go, starting from the first time unit for which the person is
scheduled and ending at the last. For some easy constraints,
very simple numberings suffice. When we come to compli-
cations involving weekends, night work, etc., the numberings
are constructed in order to allow for sufficient abstractions
from the real-world details of the problem.
Definition 1 A numbering �� is a mapping of the set of time

Previous planning period Current planning period
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

P1 M M M M L L N
P2 M L L N N N L L
P3 L L M M M M M M M
P4 L L M L N N N
P5 N N N N N M L L L L

Table 2: Shift type solution for 5 people (P1,. . . , P5) and 1 week; M,L, and N being the shift types introduced in Table 1

Previous planning period
P1 * *
P2 * * * *
P3 * *
P4 * *
P5 * * * * *

Current planning period
P1 * * * * *
P2 * * * *
P3 * * * * * * *
P4 * * * * * *
P5 * * * * *

Table 3: Time unit representation of the solution in Table 2: ”*” denotes ’used’ (scheduled) and ”-” denotes ’idle’ (free)

Soft constraints V C N

1 maximum assignments 6 1 ���
2 minimum assignments 2 1 ���
3 maximum consecutive days 4 1 ���
4 minimum consecutive days 2 1 ���
5 maximum consecutive free days 8 1 ���
6 minimum consecutive free days 2 1 ���
7 maximum assignments per day 1 1 ���
8 maximum night shifts 3 1 ���
9 minimum consecutive night shifts 2 1 ���

10 work full weekends y 1 ���
Table 4: Some soft constraints; the column V denotes the
value, C denotes the cost and N denotes the numbering asso-
ciated with the constraint

units to a set of numbers i.e.
 ��� �
	 ��! #"

where i=1, . . . , I and I is the total number of numberings.�
is a positive integer and

is a symbol introduced to rep-

resent the time units for which the numbering is undefined.
The mapping need not be into or onto, nor need it conserve
the sequence. A set of 10 constraints of a different nature was
selected from the real-world constraints to explain how the
approach covers the personnel rostering problem (see Table
4). Table 5 presents 3 numberings denoted by %$, #& , and
#' , created for the schedule presented in Table 2. The value
for M in both ($ and #& is 6 and M is 1 in)' . Each number-
ing is assigned to one or more constraints. When constraints
are related to days, for example, the numbering will consist
of increasing numbers for the time units corresponding to the
days (as in numbering *$). In Table 5, the appropriate num-
bers identifying the previous planning period are also shown.
These numbers will be used for the initialisation of the eval-
uation method. In fact, the 3 presented numberings are suffi-

cient to evaluate all 10 real-world constraints given in Table
4. The values in the numbering depend on the nature of the
real-world constraints. Numberings provide the possibility of
implementing irregular concepts such as days off, bank hol-
idays, etc. All numberings are potentially susceptible to the
same set of numbering constraints, introduced later on in this
section. One of the main aims of the approach presented in
this paper is the reduction of the effort of implementing new
real-world constraints to designing a proper numbering. The
following definitions allow us to be more specific.
Definition 2 A personal schedule for person p is a mapping

�,+)� �
	 �.-0/.132,�5462781�"
.

In the personal schedule, an event occurs at every time unit
when the person is assigned to a shift (or when �9+ has value
”used”). At an event, each numbering associated with the
personal schedule will be checked against its constraints. The
events are generated following the order of the time units and
will be evaluated in that sequence in the algorithm (see Fig.
1).
Definition 3 For a given personal schedule �9+ an event is a
time unit

1
for which �:+,; 1=< � -0/.132 . Denote by >@?.A the set

of all events that are induced by �:+ .
Denote by �0B the set of time units for which the numbering
 does not have value U (undefined). Denote by >@B�C ?.A the
set of events of �:+ which are defined for the numbering N. In
other words, >�B�C ?.A � �0BEDF>�?.A .
The basic idea of the evaluation method is to go through the
set >GB�C ?.A for each personal schedule of person p and con-
sider the values H; 1=< of each event in >�B�C ?.A . The number of
constraint types per numbering is limited to 8 (see later on in
this section).

Previous planning period� � -7 -7 -7 -6 -6 -6 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1��� U U -7 U U -6 U U -5 U U -4 U U -3 U U -2 U U -1� � U U U U U U U U U U U U U U U -3 -3 -3 -2 -2 -2

Current planning period� � 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6��� U U 0 U U 1 U U 2 U U 3 U U 4 U U 5 U U 6� � U U U U U U U U U U U U U U U 0 0 0 1 1 1

Table 5: Numberings used for expressing the real-world constraints of Table 4

� � ��� � �
Constraints (Real-world constraint) Penalty costs
max total 6 (1) 1 3 (8) 1 cost max total
min total 2 (2) 1 cost min total
max pert 1 (7) 1 cost max pert
min pert cost min pert
max between 8 (5) 1 cost max between
min between 2 (6) 1 cost min between
max consecutive 4 (3) 1 cost max consecutive
min consecutive 2 (4) 1 2 (9) 1 2 (10) 1 cost min consecutive

Table 6: Constraint values and penalty costs for each of the
3 numberings in Table 5; the numbers between brackets refer
to the corresponding real-world constraint of Table 4

4.2 Numbering Constraints and Values

A formal description of the numbering constraints and their
values is given here. A numbering constraint is a condition,
which is checked against its value, during or at the end of the
evaluation. Numbering constraint values (between brackets
in Table 6) are derived from the real-world constraints’ values
(denoted by V in Table 4) as presented in the left part of the
columns.
Max total is an upper limit for the number of events� >GB�C ?.A������	�
��
�� 7
The real-world constraints given in Table 4 are translated into
8 numbering constraints presented in Table 6. In the real-
world constraints 1 and 8 presented in Table 4 max total has
value 6 and 3 (see Table 6). The other real-world constraints
in Table 4 are not evaluated with the max total constraint.
Min total is a lower limit for the number of events� >GB�C ?.A���� 4��
��
�� 7
The real-world constraint 2 in Table 4 makes use of min total
in numbering *$.
Max pert is an array of size

�
representing for each number

in the numbering the maximum number of events that can be
mapped to it.
Min pert is an array of size

�
which is similar to max pert

except that it represents a minimum instead of a maximum.
None of the constraints in Table 4 makes use of the min pert
constraint. In more realistic rostering problems, however, the
constraint is used to evaluate real-world constraints such as
patterns, requested assignments and balancing the workload
(see Section 3.3).
For convenience, we introduce a new operator:
Definition 4 Two numbers a and b (where �����) are said to

be consecutive with respect to a numbering if and only if
for every number m in

�
a,. . . ,b

"
the numbering maps an

event in >GB�C ?.A to m.
This allows us to introduce four additional constraints:
Max consecutive is the maximum number of consecutive
events. The constraint max consecutive is used in number-
ing ($ for the 3rd real-world constraint of Table 4 and its
value is 4.
Min consecutive is the minimum number of consecutive
events. 3 different real-world constraints are evaluated with
this constraint, and so 3 different numberings are required.
Constraints 4, 9 and 10 use numberings %$, #& and #' re-
spectively. In the example, the value of min consecutive is 2
for all the numberings.
Max between is the maximum gap between two non-conse-
cutive events a and b i.e. � � �������	� � 1
�� 131�� . The 5th
constraint in Table 4 is evaluated with Max between. It has
value 8.
Min between is the minimum gap between two non-conse-
cutive events a and b i.e. � � ����� 4�� � 1
�� 131�� . For con-
straint number 6 in Table 4 the value of min between is 2 and
the numbering is *$.
4.3 Counters

A counter is a variable, which is initiated at the beginning
of the evaluation and which changes during the procedure in
order to calculate the constraint violations. Some real-world
constraints can be handled with a single counter, for others a
counter array is required. The counters will be adjusted dur-
ing the course of the evaluation and checked against the val-
ues of the constraints. The real-world constraints described
in Section 3.3 can be evaluated using not more than 8 dif-
ferent constraint types. The counters are: total, consecutive,
pert, and last; respectively representing the total number of
events for the numbering, the number of consecutive events,
the number of events per value in the numbering and the num-
ber of the last evaluated event. The pert counters are used to
count certain scheduling features for different time periods
(e.g., count night shifts in weekends). Of the real-world con-
straints in Table 4, only the 7th uses max pert as a constraint.
For every value of the numbering *$, max pert is set to 1.
The constraints introduced above can all be evaluated by one
single algorithm. In Section 5 we show, using the schedule of
Table 2 and the real-world constraints presented in Table 6 as
an example, how the evaluation approach is implemented.

Copy the start values (Fig. 2) into the numberings.

Find first element e of T belonging to ��� A .

DO

- Update all the numbering counters in the intermediate evalu-
ation (Fig. 3).

- Find next element e of T belonging to ��� A .

WHILE the end of the solution is not reached.

Perform a final evaluation on all numbering constraints (Fig. 4).

Communicate the results to an output device.

Figure 1: Overview of the fitness evaluation

4.4 Cost Parameters

The fitness function is completely modifiable. The approach
allows for the establishment of weight factors adapted to the
needs of the schedulers. Any violation of a constraint will
contribute to the overall value of the cost function in propor-
tion to the weight factor.
In the evaluation approach, weight factors are denoted by the
term � � /
 followed by the type of the numbering constraint
as defined in Section 4.1. For the demonstration, all cost pa-
rameters for the real-world constraints of Table 4 (denoted by
C) are set to 1, as presented in the right part of Table 6.

4.5 Evaluation mechanism

Every personal schedule is evaluated separately. The proce-
dure can be presented schematically as in Fig. 1. An evalu-
ation starts with the initialisation of the numbering counters.
This initialisation sets the start values induced by the solution
of the previous planning period. The initialisation procedure

Denote by ��� the personal schedule of the previous planning period for per-
son p.
FOR i=1,. . . ,I (I is the total number of numbering)

numbering initialised=False

consecutive=0

last nr= ��� (t) t: the time unit for the smallest value of �	�
max nr= ��� (t) t: the time unit for the highest value of �	�
Find last element e of T belonging to ��
 A
DO

���� ���������
��������������� ������
IF � ��! �#" �

IF � ����%$ �'&)(������ � THEN
*)+,�-& � */.0(21�3 � �%*)+,�-& � */.0(21�3 �54 �

ELSE IF � ��768$ �'&)(����9� � THEN

numbering initialised=True

last nr=nr

Find previous element e of T belonging to ��
 A .

WHILE (: �.0��; � ��1��< 1��1�(212�=$ 1>& �,?)
i=i+1
Save the results.

Figure 2: Pseudo code for the initialisation algorithm

is described in Fig. 2. The start values are only important
for the constraint types max consecutive, min consecutive,
max between and min between. After the initialisation pha-
se, the evaluation will go from one event to another adjust-
ing the counters for all the numberings. The procedure is

FOR i=1,. . . ,I���� ���/�����
IF � ��@ �A" �

(>+,(>�=$B��(>+,(>�=$ 4 �
IF � ����%$ �'&)(�� 4 � � THEN*)+,�-& � */.0(21�3 � �%*)+,�-& � */.0(21�3 �54 �
ELSE IF � ��DC8$ �'&)(�� 4 � � THEN

IF � *)+,�-& � */.0(21�3 � 69�@1�� *)+,�-& � */.0(21�3 ��� THEN
E � �B�=$ (2F �@1�� *)+,�-& � */.0(21�3 � �E � �B�=$ (2F �@1�� *)+,�-& � */.0(21�3 �54*)+G&)(�@1�� *)+,�-& � */.0(21�3 �IHJ� �@1�� *)+,�-& � */.0(21�3 � �*)+,�-& � */.0(21�3 ���K�

IF � *)+,�-& � */.0(21�3 � C9����� *)+,�-& � */.0(21�3 ��� THEN
E � �B�=$ (2F ����� *)+,�-& � */.0(21�3 � �E � �B�=$ (2F ����� *)+,�-& � */.0(21�3 �54*)+G&)(����� *)+,�-& � */.0(21�3 �5H
� ����� *)+,�-& � */.0(21�3 � ��*)+,�-& � */.0(21�3 ���

IF � �����$ �'&)(�������69�@1�� ; � (2L �,� � � THEN
E � �B�=$ (2F �@1�� ; � (2L �,� �M�E � �B�=$ (2F �@1�� ; � (2L �,� � 4 *)+G&)(�@1�� ; � (2L �,� � H
� �@1�� ; � (2L �,� �@� � ����N$ �'&)(������ �K�

IF � �����$ �'&)(�������C9����� ; � (2L �,� � � THEN
E � �B�=$ (2F ����� ; � (2L �,� �M�E � �B�=$ (2F ����� ; � (2L �,� � 4 *)+G&)(����� ; � (2L �,� � H
�K� �����$ �'&)(����9� � ������� ; � (2L �,� � �

E � ��(/O ��,P0�QE � ��(/O ��,P 4 �
$ �'&)(����8��

i=i+1

Figure 3: Pseudo code for the intermediate evaluation

schematically presented in Fig. 3. Suppose the number cor-
responding to the event is

�
(different from

) then the value

of total will be increased by 1, as will the value of pert[
�

].
Depending on the relationship between

�
and the number

of the last event encountered, either consecutive will be in-
creased by 1 or an intermediate evaluation on the ‘between’
and ‘consecutive’ counters will be performed. The details of
this intermediate evaluation are presented in Fig. 3. When the
evaluation has reached the last event in the planning period,
a final evaluation on the constraints is required (Fig. 4). This
provides the values of all the violations on the constraints for
the schedule. Since the violation values are stored in appro-
priate data structures, called R 1�� � 7
/S � where � is one of the
numbering constraints (see Fig. 4), the quality of the sched-
ule in terms of each particular constraint can easily be traced
back. This approach reduces the difficulty of defining proper
cost parameters considerably because the impact of changes
to the parameters is immediately visible in the value of all the
constraints’ violations. In Section 5 the whole procedure is
executed on a particular personal schedule from the example
in Table 2.

Initial P1 Event 1 Event 2 Event 3 Event 4 Event 5� � ��� � � � � ��� � � � � ��� � � � � ��� � � � � ��� � � � � ��� � �
-1 U -2 last 0 U -2 1 U -2 2 U -2 3 U -2 4 4 -2
0 0 0 total 1 0 0 2 0 0 3 0 0 4 0 0 5 1 0
2 0 2 consecutive 3 0 2 4 0 2 5 0 2 6 0 2 7 1 2
0 0 0 pert[0] 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 pert[1] 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 pert[2] 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 pert[3] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 pert[4] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 pert[5] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 pert[6] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty max total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty min total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty max pert 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty min pert 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty max between 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty min between 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
penalty max consecutive 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
penalty min consecutive 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 7: Evaluation procedure for person 1 (P1)

5 Example

5.1 Demonstration of the method

In this section, a demonstration is given to show how the soft
constraints from Section 3.3 are formulated and evaluated us-
ing this approach. All the data is presented in Tables 1 - 6
in Section 4). We will follow the entire evaluation procedure
of Fig. 1 for one single personnel member. The results for
this person are presented in Table 7. The left part of the table
shows the initial values for the counters. The values can be
stored in memory since they will not change when evaluat-
ing new solutions. Some counters in the numbering do not
reflect any real-world constraints in this particular example
(see empty fields in Table 6). They hardly affect the evalu-
ation method; their impact on calculation time and memory
is very low indeed. For each numbering, only one value for
each counter and penalty is stored in the memory.
From left to right in the table, the chronological updating
of the counters is illustrated. Note that the values of the
counters can change each time a new event is found. The
personal solution we choose for this explanation (P1) con-
sists of 5 assignments (events) in the planning period. No
penalty is created during the intermediate evaluation phase
(see Fig. 3). After the last event was found, the evaluation
goes to the final evaluation phase of the algorithm (see Fig.
4). During this part of the evaluation, a penalty is created for
the max consecutive constraint in numbering %$ and one for
min consecutive in)& .
Following the evaluation for the P4 solution step by step, the
second event already creates a penalty in the intermediate
evaluation phase of Fig. 3. The min between constraint of
numbering *$ is violated when going from event 1 (where
the corresponding number is 0) to event 2 (the corresponding
number is 2). Since the ; ��� � 7 � /
 ���(� �3<

condition of
Fig. 3 is not fulfilled, the intermediate evaluations are exe-

cuted. One extra violation occurs during the final evaluation
because the min consecutive constraint of (& is violated.

5.2 Real-world issues

The following figures give an idea of the importance of a
quick evaluation scheme for the solutions of the nurse ros-
tering problem tackled in Plane. In a hospital, all wards (the
number of wards can be hundreds) have access to the soft-
ware system. An average ward consists of 20 people, has 6
different shift types and 30 different soft constraints per per-
sonal schedule. The length of the most encountered planning
period is 4 weeks. An iteration in the evolutionary algorithms
described in (Burke et. al., [2]) requires approximately 100
evaluations of the cost function. On an IBM RS6000, it takes
about one minute to perform 300 iterations.
The evaluation approach is suitable for other timetabling and
scheduling problems such as (Burke et. al., [4]) and (Paechter
et. al., [11]), especially when evolutionary algorithms are be-
ing employed.

6 Conclusions

The described approach for the formulation of the fitness
function in a personnel rostering environment has proven to
be very powerful.
The evaluation method introduced in this paper was origi-
nally developed to enable easy extendibility of real-world
nurse rostering problems and to provide a quick and ex-
planatory mechanism. During the course of the development,
special constraints and customer requirements forced us to
elaborate on the basic idea of the evaluation mechanism. All
the extra difficulties can still be tackled with the evaluation
method discussed in this paper. Explaining all these details is
beyond the scope of this paper.
The method makes use of one simple evaluation function,

FOR i=1,. . . ,I

IF � (>+,(>�=$ C9����� (>+,(>�=$ � THEN
E � �B�=$ (2F ����� (>+,(>�=$B�NE � �B�=$ (2F ����� (>+,(>�=$ 4*)+G&)(����� (>+,(>�=$ H � (>+,(>�=$������� (>+,(>�=$ �

IF � (>+,(>�=$ 69�@1�� (>+,(>�=$ � THEN
E � �B�=$ (2F �@1�� (>+,(>�=$B�QE � �B�=$ (2F �@1�� (>+,(>�=$ 4*)+G&)(�@1�� (>+,(>�=$ H�� �@1�� (>+,(>�=$�� (>+,(>�=$ �

IF � *)+,�-& � */.0(21�3 � C9����� *)+,�-& � */.0(21�3 ��� THEN
E � �B�=$ (2F ����� *)+,�-& � */.0(21�3 � �E � �B�=$ (2F ����� *)+,�-& � */.0(21�3 �54 *)+G&)(����� *)+,�-& � */.0(21�3 �5H
� *)+,�-& � */.0(21�3 � � ����� *)+,�-& � */.0(21�3 ���

IF � *)+,�-& � */.0(21�3 � 69�@1�� *)+,�-& � */.0(21�3 ��� THEN
E � �B�=$ (2F �@1�� *)+,�-& � */.0(21�3 � �E � �B�=$ (2F �@1�� *)+,�-& � */.0(21�3 �54 *)+G&)(�@1�� *)+,�-& � */.0(21�3 �5H
� �@1�� *)+,�-& � */.0(21�3 � ��*)+,�-& � */.0(21�3 ���

� (��G1�� ���
IF � E � ��(/O (�PBC������ E � ��(/O (�P � THEN

E � �B�=$ (2F ����� E � ��(�QE � �B�=$ (2F ����� E � ��(4*)+G&)(����� E � ��(H�� E � ��(/O (�P ������� E � ��(/O (�P �
IF � E � ��(/O (�PB6��@1�� E � ��(/O (�P � THEN

E � �B�=$ (2F �@1�� E � ��(�NE � �B�=$ (2F �@1�� E � ��(4*)+G&)(�@1�� E � ��(H�� �@1�� E � ��(/O (�P ��E � ��(/O (�P �
IF � ����������4(����� ���B� � ����� $ �'&)(� 3 � �(� C������ ; � (2L �,� � � THEN

E � �B�=$ (2F ����� ; � (2L �,� �M�E � �B�=$ (2F ����� ; � (2L �,� � 4 *)+G&)(����� ; � (2L �,� � H
�K� ���/�����B4%����� ���B� � ����� $ �'&)(� 3 � �(� � ����� ; � (2L �,� � �

i=i+1

Figure 4: Pseudo code for the final evaluation of the algorithm

independent of the number and character of the constraints
imposed on the system. Although the problem is complex,
the current approach enables a quick evaluation of interme-
diate solutions in the search. This approach is fast and thus
especially interesting for meta-heuristic applications. The
memory used to model and evaluate the constraints is very
limited. A numbering requires memory for the numbers
(many constraints can be handled by the same numbering)
and for the numbering constraint counters. Since these
constraint counters change in the course of the evaluation,
they keep track of the value of the cost function without
requiring extra memory. Both the time and memory savings
are important for the practical use of Plane. A hospital
generally buys one licence and the head nurses or personnel
planners can log on from their own office to execute the
planning at any given time.
The evaluation method also provides a very structural
technique which can handle new constraints. Moreover it can
take start values for constraints related to previous planning
periods into account without interfering with the evaluation
method. The modular nature of the approach allows the
system to provide some feedback. This functionality assists
the user of the software with the interpretation of the quality
of the result.

Bibliography

[1] Aickelin, U., Dowsland, K.: Exploiting problem struc-
ture in a genetic algorithm approach to a nurse roster-
ing problem, Journal of Scheduling, Volume 3 Issue 3,
2000, 139–153

[2] Burke, E.K., De Causmaecker, P., Vanden Berghe, G.:
A Hybrid Tabu Search Algorithm for the Nurse Ros-
tering Problem, X. Yao et al. (Eds.): SEAL’98, LNCS
1585, 187-194, 1999

[3] Burke, E.K., Cowling, P., De Causmaecker, P., Vanden
Berghe, G.: A Memetic Approach to the Nurse Roster-
ing Problem, Applied Intelligence special issue on Sim-
ulated Evolution and Learning (to appear)

[4] Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Al-
gorithm for University Timetabling, Practice and The-
ory of Automated Timetabling, First International Con-
ference, Edinburgh, 1995, 241–250

[5] Chan, P., Weil, G.: Cyclical Staff Scheduling Using
Constraint Logic Programming, Proceedings of the 3rd
international PATAT conference, ISBN 3-00-003866-3,
2000, 261–276

[6] Chiarandini, M., Schaerf, A., Tiozzo, F.: Solving Em-
ployee Timetabling Problems with Flexible Workload
using Tabu Search, Proceedings of the 3rd international
PATAT conference, ISBN 3-00-003866-3, 2000, 298–
302

[7] Dowsland, K.: Nurse scheduling with Tabu Search and
Strategic Oscillation. European Journal of Operations
Research (106), 1998, 393–407

[8] Hung, R.: Hospital Nurse Scheduling. JONA, Volume
25, Number 7/8, 1995, 21–23, Lippincott-Raven Pub-
lishers

[9] Meisels, A., Lusternik, N.: Experiments on Networks
of Employee Timetabling Problems, PATAT II, Second
International Conference Toronto, 1997, 130–141

[10] Meyer auf’m Hofe, H.: Solving Rostering Tasks as
Constraint Optimization, Proceedings of the 3rd in-
ternational PATAT conference, ISBN 3-00-003866-3,
2000, 280–297

[11] Paechter, B., Rankin, R.C., Cumming, A.: Improving a
Lecture Timetabling System for University-Wide Use,
Practice and Theory of Automated Timetabling II, Sec-
ond International Conference, Toronto, 1997, 156–165

[12] Weil, G., Heus, K., Francois, P. et al: Constraint Pro-
gramming for Nurse Scheduling, IEEE Engineering in
Medicine and Biology, 1995, 417–422

