Intrusion Detection with Neural Networks

Jake Ryart Meng-Jang Lin
Department of Computer Sciences Department of Electrical and Computer Engineering
The University of Texas at Austin The University of Texas at Austin
Austin, TX 78712 Austin, TX 78712
raven@s. ut exas. edu nj @r ac. ece. ut exas. edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
ri sto@s. utexas. edu

Abstract

With the rapid expansion of computer networks during the fexsyears,
security has become a crucial issue for modern computeersgst A
good way to detect illegitimate use is through monitoringisumal user
activity. Methods of intrusion detection based on handecballe sets or
predicting commands on-line are laborous to build or noyetiable.
This paper proposes a new way of applying neural networkseteat
intrusions. We believe that a user leaves a ‘print’ whengifire system;
a neural network can be used to learn this print and identfsheuser
much like detectives use thumbprints to place people atecsognes. If
a user's behavior does not match his/her print, the systamrastrator
can be alerted of a possible security breech. A backpromagaéural
network called NNID (Neural Network Intrusion Detector) svliained
in the identification task and tested experimentally on aesgsof 10
users. The system was 96% accurate in detecting unusuahgatiith
7% false alarm rate. These results suggest that learnirrgpusties is
an effective way for detecting intrusions.

1 INTRODUCTION

Intrusion detection schemes can be classified into two odt=y misuse and anomaly
intrusion detection. Misuse refers to known attacks that@kthe known vulnerabilities
of the system. Anomaly means unusual activity in generaldbald indicate an intrusion.

*Currently: MCl Communications Corp., 9001 N. IH 35, AusflX 78753; jake.ryan@mci.com.

To appear ildvances in Neural Information Processing System<abnbridge, MA:
MIT Press, 1998.

If the observed activity of a user deviates from the expebtdthvior, an anomaly is said
to occur.

Misuse detection can be very powerful on those attacks that bheen programmed in
to the detection system. However, it is not possible to grdte all the different attacks
that could occur, and even the attempt is laborous. Some dfirahomaly detection is
ultimately necessary. One problem with anomaly detecBdhat it is likely to raise many
false alarms. Unusual but legitimate use may sometimes bsidered anomalous. The
challenge is to develop a model of legitimate behavior thatilel accept novel legitimate
use.

It is difficult to build such a model for the same reason that ftard to build a comprehen-
sive misuse detection system: it is not possible to antieipl possible variations of such
behavior. The task can be made tractable in three ways: §1¢dd of general legitimate

use, the behavior of individual users in a particular systexm be modeled. The task of
characterizing regular patterns in the behavior of an iiddial user is an easier task than
trying to do it for all users simultaneously. (2) The pattewof behavior can be learned
for examples of legitimate use, instead of having to desdtiem by hand-coding possible
behaviors. (3) Detecting an intrusion real-time, as the issé/ping commands, is very

difficult because the order of commands can vary a lot. In nt@ses it is enough to rec-
ognize that the distribution of commands over the entirén@gssion, or even the entire
day, differs from the usual.

The system presented in this paper, NNID (Neural Netwonkisibn Detector), is based on
these three ideas. NNID is a backpropagation neural nettrairied to identify users based
on what commands they use during a day. The system admtoistuas NNID at the end
of each day to see if the users’ sessions match their norntiarpalf not, an investigation
can be launched. The NNID model is implemented in a UNIX emvinent and consists of
keeping logs of the commands executed, forming commanddrits for each user, and
learning the users’ profiles from these histograms. NNIDvjtes an elegant solution to
off-line monitoring utilizing these user profiles. In a syt of 10 users, NNID was 96%
accurate in detecting anomalous behavior (i.e. randomeugatierns), with a false alarm
rate of 7%. These results show that a learning offline moimigpsystem such as NNID
can achieve better performance than systems that atterdptdot anomalies on-line in the
command sequences, and with computationally much lesg.effo

The rest of the paper outlines other approaches to intrudatection and motivates the
NNID approach in more detail (sections 2 and 3), presentdrtigementation and an
evaluation on a real-world computer system (sections 4 andrid outlines some open
issues and avenues for future work (section 6).

2 INTRUSION DETECTION SYSTEMS

Many misuse and anomaly intrusion detection systems (IB8spased on the general
model proposed by Denning (1987). This model is indeperafghe platform, system vul-
nerability, and type of intrusion. It maintains a set of bigtal profiles for users, matches
an audit record with the appropriate profile, updates thélpr@henever necessary, and re-
ports any anomalies detected. Another component, a rulesseted for detecting misuse.

Actual systems implement the general model with differechhiques (see Frank 1994;
Mukherjee et al. 1994, for an overview). Often statisticathods are used to measure how
anomalous the behavior is, that is, how different e.g. thrarnands used are from normal
behavior. Such approaches require that the distributiosubjects’ behavior is known.
The behavior can be represented as a rule-based model §Gardd_unt 1991), in terms
of predictive pattern generation (Teng et %I 1990), or gisiiate transition analysis (Porras

et al. 1995). Pattern matching techniques are then usedeodee whether the sequence
of events is part of normal behavior, constitutes an anonmalyits the description of a
known attack.

IDSs also differ in whether they are on-line or off-line. @ifie IDSs are run periodi-
cally and they detect intrusions after-the-fact based @tesy logs. On-line systems are
designed to detect intrusions while they are happeningebyeallowing for quicker inter-
vention. On-line IDSs are computationally very expensigeduse they require continuous
monitoring. Decisions need to be made quickly with less daththerefore they are not as
reliable.

Several IDSs that employ neural networks for on-line intvaosdetection have been pro-
posed (Debar et al. 1992; Fox et al. 1990). These systems tegredict the next com-
mand based on a sequence of previous commands by a specificThsaugh a shifting
window, the network receives the most recent commands as its input. The network is
recurrent, that is, part of the output is fed back as the ifiputhe next step; thus, the
network is constantly observing the new trend and “forgetd’behavior over time. The
size of the window is an important parameterudfis too small, there will be many false
positives; if it is too big, the network may not generalizdM@novel sequences. The most
recent of such systems (Debar et al. 1992) can predict thecoexmand correctly around
80% of the time, and accept a command as predictable (amertfribe most likely next
commands) 90% of the time.

One problem with the on-line approach is that most of thereffoes into predicting the
order of commands. In many cases, the order does not mattdr,fut the distribution of
commands that are used is revealing. A possibly effectiygagrh could therefore be to
collect statistics about the users’ command usage overiacheftime, such as a day, and
try to recognize the distribution of commands as legitim@atanomalous off-line. This is
the idea behind the NNID system.

3 THE NNID SYSTEM

The NNID anomaly intrusion detection system is based ontifyemg a legitimate user
based on the distribution of commands she or he executess iFlistifiable because
different users tend to exhibit different behavior, depgagdn their needs of the system.
Some use the system to send and receive e-mail only, and dequite services such as
programming and compilation. Some engage in all kinds afiéies including editing,
programming, e-mail, Web browsing, and so on. However, éwerusers that do the same
thing may not use the same application program. For exarmplag may prefer the “vi”
editor to “emacs”, favor “pine” over “elm” as their mail uty program, or use “gcc” more
often than “cc” to compile C programs. Also, the frequencyhwivhich a command is
used varies from user to user. The set of commands used aindrélugiency, therefore,
constitutes a ‘print’ of the user, reflecting the task parfed and the choice of application
programs, and it should be possible to identify the userdasedhis information.

It should be noted that this approach works even if some Unsars aliases set up as short-
hands for long commands they use frequently, because thielagdecords the actual
commands executed by the system. Users’ privacy is notteid)aince the arguments to
a command do not need to be recorded. That is, we may know tisgraends e-mail five
times a day, but we do not need to know to whom the mail is addtes

Building NNID for a particular computer system consistsiu# following three phases:
1. Collecting training data: Obtain the audit logs for easbnfor a period of several

days. For each day and user, form a vector that representoftew the user
executed each command. 3

as awk bc bibiex calendar cat chmod comsat cp cpp

cut cvs date df diff du dvips egrep elm emacs
expr fgrep filter find finger fmt from ftp gcc db
Phostwew gmake grep gs gzip hostname id ifconfig ispell last

d less look Ipqg lpr Iprm Is machine mail make

man mesg metamail mkdir more movemail mpage mt mv netscape
netstat nm otgdump perl pﬁp ping ps. pwd rcp resize
m rsh se sendmail s sort strip stty tall tar
tcsh tee test tgif top tput tr tt uname vacation
Vi virtex w wcC whereis xbiff++ xcalc xdvi xhost xterm

Table 1: The 100 commands used to describe user behavioiThe number of times the user
executed each of these commands during the day was recondpged into a nonlinear scale of 11
intervals, and concatenated into a 100-dimensional inpatov, representing the usage pattern for
that user for that day.

2. Training: Train the neural network to identify the usesba on these command
distribution vectors.

3. Performance: Let the network identify the user for eaclh nbemmand distribu-
tion vector. If the network’s suggestion is different frohetactual user, or if the
network does not have a clear suggestion, signal an anomaly.

The particular implementation of NNID and the environmettere it was tested is de-
scribed in the next section.

4 EXPERIMENTS

The NNID system was built and tested on a machine that senvagiaular research group
at the Department of Electrical and Computer EngineerintpatUniversity of Texas at
Austin. This machine has 10 total users; some are regulas,uséh several other users
logging in intermittently. This platform was chosen fordlrreasons:

1. The operating system (NetBSD) provides audit trail loggfior accounting pur-
poses and this option had been enabled on this system.

2. The number of users and the total number of commands eapet day are on
an order of magnitude that is manageable. Thus, the feiggibflthe approach
could be tested with real-world data without getting intalability issues.

3. The system is relatively unknown to outsiders and thesuserall known to us, so
that it is likely that the data collected on it consists ofmaf user behavior (free
of intrusions).

Data was collected on this system for 12 days, resulting in®89-days. Instead of trying
to optimize the selection of features (commands) for thaiinwe decided to simply use
a set of 100 most common commands in the logs (listed in Tabland let the network
figure out what information was important and what superfiuomtelligent selection of
features might improve the results some but the currentagmpbris easy to implement and
proves the point.

In order to introduce more overlap between input vectord, therefore better generaliza-
tion, the number of times a command was used was dividedmgovials. There were 11
intervals, non-linearly spaced, so that the represemtétinore accurate at lower frequen-
cies where it is most important. The first interval meant tommand was never used; the
second that it was used once or twice, and so on until therlgestval where the command
was used more than 500 times. The intervals were represbgtedlues from 0.0 to 1.0
in 0.1 increments. These values, one for each command, Wweredoncatenated into a
100-dimensional command distribution vector (also caliser vector below) to be used as
input to the neural network. 4

The standard three-layer backpropagation architectusechrasen for the neural network.
The idea was to get results on the most standard and genehdtiegture so that the fea-
sibility of the approach could be demonstrated and the teswduld be easily replicable.
More sophisticated architectures could be used and theydwmuobably lead to slightly
better results. The input layer consisted of 100 units,as@nting the user vector; the hid-
den layer had 30 units and the output layer 10 units, one fon eger. The network was
implemented in the PlaNet Neural Network simulator (Miyh@91).

5 RESULTS

To avoid overtraining, several training sessions were mior po the actual experiments to
see how many training cycles would give the highest perfoiceaThe network was trained
on 8 randomly chosen days of data (65 user vectors), andrferpence was tested on the
remaining 4 days (24 vectors) after epochs 30, 50, 100, 210380, of which 100 gave
the best performance. Four splits of the data into trainimgj i@sting sets were created by
randomly picking 8 days for training. The resulting fourwetks were tested in two tasks:

1. Identifying the user vectors of the remaining 4 days. dfalgtivation of the output
unit representing the correct user was higher than thosdl ofter units, and
also higher than 0.5, the identification was counted as cor@therwise, a false
positive was counted.

2. ldentifying 100 randomly-generated user vectors. loallput units had an acti-
vation less than 0.5, the network was taken to correctlytifiethe vector as an
anomaly (i.e. not any of the known users in the system). @tiser the most
highly active output unit identifies the network’s suggesti Since all intrusions
occur under one of the 10 user accounts, there is a 1/10 chizeitdbe suggestion
would accidentally match the compromised user accounttamatrusion would
not be detected. Therefore, 1/10 of all such cases were edastfalse negatives.

The second test is a suggestive measure of the accuracy ®fdtem. It is not possible to
come up with vectors that would represent a good samplingtiahintrusions; the idea
here was to generate vectors where the values for each cothwene randomly drawn

from the distribution of values for that command in the emtiata set. In other words, the
random test vectors had the same first-order statisticseaketfitimate user vectors, but
had no higher-order correlations. Therefore they constiuneutral but realistic sample of
unusual behavior.

All four splits led to similar results. On average, the netikgorejected 63% of the random
user vectors, leading to an anomaly detection rate of 96%y Torrectly identified the
legitimate user vectors 93% of the time, giving a false aleata of 7%.

Figure 1 shows the output of the network for one of the splsit of 24 legitimate user
vectors, the network identified 22. Most of the time the corautput unit is very highly
activated, indicating high certainty of identification. \Mever, the activation of the highest
unit was below 0.5 for two of the inputs, resulting in a faltzria.

Interestingly, in all false alarms in all splits, the falgelccused user was always the same.
A closer look at the data set revealed that there were only8 dhdata on this user. He
used the system very infrequently, and the network coulde@h a proper profile for him.
While it would be easy to fix this problem by collecting moreala this case, we believe
this is a problem that would be difficult to rule out in generdlb matter how much data
one collects, there may still not be enough for some extremédequent user. Therefore,
we believe the results obtained in this rather small datayiseta realistic picture of the
performance of the NNID system. 5

] . - u -
T ENRT El T 1 7 2458 7 g T T 2 5 4 5 B 9 T T ih B L
Oatput Output Oubrut Outpus
] . -l | L
3.2 345678 3 01 2456 7 89 01 23 456 7€ 9 C 123567 839
Ootrut Ouitput Dukrut Outpuiz
[] [] - |-] |
a7 4T E E] a1 ¥ = 465 & 7 E] 1 4T E k] D B E E]
Oatput Output Dubput Dukpuz
|] u -
L] A & F El o1 T 2 45 E 7 g 0o 1 Z A5 E E] T 1 Z] E]
Oatput Output Dubput Dubpuz
u L] N |
B A S o7 o1 I - 45 G ¢ 093 01 & 3 450 [[- R - v [
Dalpul Cuilpul DLl OuLpu
] u -l .
D2 3 485 67 8 3 0o L 2 T 456 7 83 0 1 2 3 45 6 7 & 3 ¢ 12 3+ 567 &9
OLitput. Cutput TLEFUT TLtpu=

Figure 1: User identification with the NNID Network. The output layer of NNID is shown for
each of the 24 test vectors in one of the 4 splits tested. Thmubunits are lined up from left to
right, and their activations are represented by the sizeestiuares. In this split there were two false
alarms: one is displayed in the top right with activation1).Gnd one in the second row from the
bottom, second column from the left with 0.35. All the othesttvectors are identified correctly with
activation higher than 0.5.

6 DISCUSSION AND FUTURE WORK

An important question is, how well does the performance oiDliNcale with the number
of users? Although there are many computer systems that mavaore than a dozen
users, most intrusions occur in larger systems with hurelegdisers. With more users,
the network would have to make finer distinctions, and it widug difficult to maintain the
same low level of false alarms. However, the rate of detgaimomalies may not change
much, as long as the network can learn the user patternsAwsflactivity that differs from
the user’s normal behavior would still be detected as an ahom

Training the network to represent many more users may takgeloand require a larger
network, but it should be possible because the user profil@es lot of common struc-
ture, and neural networks in general are good at learninly data. Optimizing the set of
commands included in the user vector, and the size of thewatarvals, might also have a
large impact on performance. It would be énteresting to uheiiee the curve of performance

versus the number of users, and also see how the size of thieviegtor and the granularity
of the value intervals affect that curve. This is the mostamgnt direction of future work.

Another importantissue is, how much does a user’s behakimmge over time? If behavior
changes dramatically, NNID must be recalibrated often ernimber of false positives
would increase. Fortunately such retraining is easy to daceSNNID parses daily activity
of each user into a user-vector, the user profile can be ugdkiéy. NNID could then be
retrained periodically. In the current system it takes aaibput 90 seconds and would not
be a great burden on the system.

7 CONCLUSION

Experimental evaluation on real-world data shows that NN&D learn to identify users
simply by what commands they use and how often, and such atifidation can be used
to detect intrusions in a network computer system. The asflieommands does not need
to be taken into account. NNID is easy to train and inexpengivvun because it operates
off-line on daily logs. As long as real-time detection is nequired, NNID constitutes a
promising, practical approach to anomaly intrusion dédect

Acknowledgements

Special thanks to Mike Dahlin and Tom Ziaja for feedback omartier version of this paper, and to
Jim Bednar for help with the PlaNet simulator. This reseavels supported in part by DOD-ARPA
contract F30602-96-1-0313, NSF grant IRI1-9504317, andithes Higher Education Coordinating
board grant ARP-444,

References

Debar, H., Becker, M., and Siboni, D. (1992). A neural netamymponent for an intrusion
detection system. IRroceedings of the 1992 IEEE Computer Society Symposium on
Research in Computer Security and Priva2$0-250.

Denning, D. E. (1987). An intrusion detection modeEEE Transactions on Software
Engineering SE-13:222-232.

Fox, K. L., Henning, R. R., Reed, J. H., and Simonian, R. (J998 neural network
approach towards intrusion detection.Rroceedings of the 13th National Computer
Security Conferencd 25-134.

Frank, J. (1994). Artificial intelligence and intrusion detion: Current and future direc-
tions. InProceedings of the National 17th Computer Security Confeze

Garvey, T. D., and Lunt, T. F. (1991). Model-based intrusietection. InProceedings of
the 14th National Computer Security Conference

Miyata, Y. (1991).A User’s Guide to PlaNet Version 5.6 — A Tool for ConstructiRgn-
ning, and Looking in to a PDP NetwarkComputer Science Department, University
of Colorado, Boulder, Boulder, CO.

Mukherjee, B., Heberlein, L. T., and Levitt, K. N. (1994). tWerk intrusion detection.
IEEE Network26-41.

Porras, P. A,, llgun, K., and Kemmerer, R. A. (1995). Stadmgition analysis: A rule-
based intrusion detection approatlBEE Transactions on Software EngineeriSd-
21:181-199.

Teng, H. S., Chen, K., and Lu, S. C. (1990). Adaptive reabtamomaly detection using in-
ductively generated sequential patternsPnceedings of the 1990 IEEE Symposium
on Research in Computer Security a?d Privazy8—-284.

