
Intrusion Detection with Neural Networks

Jake Ryan�
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
raven@cs.utexas.edu

Meng-Jang Lin
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

mj@orac.ece.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
risto@cs.utexas.edu

Abstract

With the rapid expansion of computer networks during the past few years,
security has become a crucial issue for modern computer systems. A
good way to detect illegitimate use is through monitoring unusual user
activity. Methods of intrusion detection based on hand-coded rule sets or
predicting commands on-line are laborous to build or not very reliable.
This paper proposes a new way of applying neural networks to detect
intrusions. We believe that a user leaves a ‘print’ when using the system;
a neural network can be used to learn this print and identify each user
much like detectives use thumbprints to place people at crime scenes. If
a user’s behavior does not match his/her print, the system administrator
can be alerted of a possible security breech. A backpropagation neural
network called NNID (Neural Network Intrusion Detector) was trained
in the identification task and tested experimentally on a system of 10
users. The system was 96% accurate in detecting unusual activity, with
7% false alarm rate. These results suggest that learning user profiles is
an effective way for detecting intrusions.

1 INTRODUCTION

Intrusion detection schemes can be classified into two categories: misuse and anomaly
intrusion detection. Misuse refers to known attacks that exploit the known vulnerabilities
of the system. Anomaly means unusual activity in general that could indicate an intrusion.�Currently: MCI Communications Corp., 9001 N. IH 35, Austin,TX 78753; jake.ryan@mci.com.

To appear inAdvances in Neural Information Processing Systems 10, Cambridge, MA:
MIT Press, 1998.



If the observed activity of a user deviates from the expectedbehavior, an anomaly is said
to occur.

Misuse detection can be very powerful on those attacks that have been programmed in
to the detection system. However, it is not possible to anticipate all the different attacks
that could occur, and even the attempt is laborous. Some kindof anomaly detection is
ultimately necessary. One problem with anomaly detection is that it is likely to raise many
false alarms. Unusual but legitimate use may sometimes be considered anomalous. The
challenge is to develop a model of legitimate behavior that would accept novel legitimate
use.

It is difficult to build such a model for the same reason that itis hard to build a comprehen-
sive misuse detection system: it is not possible to anticipate all possible variations of such
behavior. The task can be made tractable in three ways: (1) Instead of general legitimate
use, the behavior of individual users in a particular systemcan be modeled. The task of
characterizing regular patterns in the behavior of an individual user is an easier task than
trying to do it for all users simultaneously. (2) The patterns of behavior can be learned
for examples of legitimate use, instead of having to describe them by hand-coding possible
behaviors. (3) Detecting an intrusion real-time, as the user is typing commands, is very
difficult because the order of commands can vary a lot. In manycases it is enough to rec-
ognize that the distribution of commands over the entire login session, or even the entire
day, differs from the usual.

The system presented in this paper, NNID (Neural Network Intrusion Detector), is based on
these three ideas. NNID is a backpropagation neural networktrained to identify users based
on what commands they use during a day. The system administrator runs NNID at the end
of each day to see if the users’ sessions match their normal pattern. If not, an investigation
can be launched. The NNID model is implemented in a UNIX environment and consists of
keeping logs of the commands executed, forming command histograms for each user, and
learning the users’ profiles from these histograms. NNID provides an elegant solution to
off-line monitoring utilizing these user profiles. In a system of 10 users, NNID was 96%
accurate in detecting anomalous behavior (i.e. random usage patterns), with a false alarm
rate of 7%. These results show that a learning offline monitoring system such as NNID
can achieve better performance than systems that attempt todetect anomalies on-line in the
command sequences, and with computationally much less effort.

The rest of the paper outlines other approaches to intrusiondetection and motivates the
NNID approach in more detail (sections 2 and 3), presents theimplementation and an
evaluation on a real-world computer system (sections 4 and 5), and outlines some open
issues and avenues for future work (section 6).

2 INTRUSION DETECTION SYSTEMS

Many misuse and anomaly intrusion detection systems (IDSs)are based on the general
model proposed by Denning (1987). This model is independentof the platform, system vul-
nerability, and type of intrusion. It maintains a set of historical profiles for users, matches
an audit record with the appropriate profile, updates the profile whenever necessary, and re-
ports any anomalies detected. Another component, a rule set, is used for detecting misuse.

Actual systems implement the general model with different techniques (see Frank 1994;
Mukherjee et al. 1994, for an overview). Often statistical methods are used to measure how
anomalous the behavior is, that is, how different e.g. the commands used are from normal
behavior. Such approaches require that the distribution ofsubjects’ behavior is known.
The behavior can be represented as a rule-based model (Garvey and Lunt 1991), in terms
of predictive pattern generation (Teng et al. 1990), or using state transition analysis (Porras

2



et al. 1995). Pattern matching techniques are then used to determine whether the sequence
of events is part of normal behavior, constitutes an anomaly, or fits the description of a
known attack.

IDSs also differ in whether they are on-line or off-line. Off-line IDSs are run periodi-
cally and they detect intrusions after-the-fact based on system logs. On-line systems are
designed to detect intrusions while they are happening, thereby allowing for quicker inter-
vention. On-line IDSs are computationally very expensive because they require continuous
monitoring. Decisions need to be made quickly with less dataand therefore they are not as
reliable.

Several IDSs that employ neural networks for on-line intrusion detection have been pro-
posed (Debar et al. 1992; Fox et al. 1990). These systems learn to predict the next com-
mand based on a sequence of previous commands by a specific user. Through a shifting
window, the network receives thew most recent commands as its input. The network is
recurrent, that is, part of the output is fed back as the inputfor the next step; thus, the
network is constantly observing the new trend and “forgets”old behavior over time. The
size of the window is an important parameter: Ifw is too small, there will be many false
positives; if it is too big, the network may not generalize well to novel sequences. The most
recent of such systems (Debar et al. 1992) can predict the next command correctly around
80% of the time, and accept a command as predictable (among the three most likely next
commands) 90% of the time.

One problem with the on-line approach is that most of the effort goes into predicting the
order of commands. In many cases, the order does not matter much, but the distribution of
commands that are used is revealing. A possibly effective approach could therefore be to
collect statistics about the users’ command usage over a period of time, such as a day, and
try to recognize the distribution of commands as legitimateor anomalous off-line. This is
the idea behind the NNID system.

3 THE NNID SYSTEM

The NNID anomaly intrusion detection system is based on identifying a legitimate user
based on the distribution of commands she or he executes. This is justifiable because
different users tend to exhibit different behavior, depending on their needs of the system.
Some use the system to send and receive e-mail only, and do notrequire services such as
programming and compilation. Some engage in all kinds of activities including editing,
programming, e-mail, Web browsing, and so on. However, eventwo users that do the same
thing may not use the same application program. For example,some may prefer the “vi”
editor to “emacs”, favor “pine” over “elm” as their mail utility program, or use “gcc” more
often than “cc” to compile C programs. Also, the frequency with which a command is
used varies from user to user. The set of commands used and their frequency, therefore,
constitutes a ‘print’ of the user, reflecting the task performed and the choice of application
programs, and it should be possible to identify the user based on this information.

It should be noted that this approach works even if some usershave aliases set up as short-
hands for long commands they use frequently, because the audit log records the actual
commands executed by the system. Users’ privacy is not violated, since the arguments to
a command do not need to be recorded. That is, we may know that auser sends e-mail five
times a day, but we do not need to know to whom the mail is addressed.

Building NNID for a particular computer system consists of the following three phases:

1. Collecting training data: Obtain the audit logs for each user for a period of several
days. For each day and user, form a vector that represents howoften the user
executed each command.

3



as awk bc bibtex calendar cat chmod comsat cp cpp
cut cvs date df diff du dvips egrep elm emacs
expr fgrep filter find finger fmt from ftp gcc gdb
ghostview gmake grep gs gzip hostname id ifconfig ispell last
ld less look lpq lpr lprm ls machine mail make
man mesg metamail mkdir more movemail mpage mt mv netscape
netstat nm objdump perl pgp ping ps pwd rcp resize
rm rsh sed sendmail sh sort strip stty tail tar
tcsh tee test tgif top tput tr tty uname vacation
vi virtex w wc whereis xbiff++ xcalc xdvi xhost xterm

Table 1: The 100 commands used to describe user behavior.The number of times the user
executed each of these commands during the day was recorded,mapped into a nonlinear scale of 11
intervals, and concatenated into a 100-dimensional input vector, representing the usage pattern for
that user for that day.

2. Training: Train the neural network to identify the user based on these command
distribution vectors.

3. Performance: Let the network identify the user for each new command distribu-
tion vector. If the network’s suggestion is different from the actual user, or if the
network does not have a clear suggestion, signal an anomaly.

The particular implementation of NNID and the environment where it was tested is de-
scribed in the next section.

4 EXPERIMENTS

The NNID system was built and tested on a machine that serves aparticular research group
at the Department of Electrical and Computer Engineering atthe University of Texas at
Austin. This machine has 10 total users; some are regular users, with several other users
logging in intermittently. This platform was chosen for three reasons:

1. The operating system (NetBSD) provides audit trail logging for accounting pur-
poses and this option had been enabled on this system.

2. The number of users and the total number of commands executed per day are on
an order of magnitude that is manageable. Thus, the feasibility of the approach
could be tested with real-world data without getting into scalability issues.

3. The system is relatively unknown to outsiders and the users are all known to us, so
that it is likely that the data collected on it consists of normal user behavior (free
of intrusions).

Data was collected on this system for 12 days, resulting in 89user-days. Instead of trying
to optimize the selection of features (commands) for the input, we decided to simply use
a set of 100 most common commands in the logs (listed in Table 1), and let the network
figure out what information was important and what superfluous. Intelligent selection of
features might improve the results some but the current approach is easy to implement and
proves the point.

In order to introduce more overlap between input vectors, and therefore better generaliza-
tion, the number of times a command was used was divided into intervals. There were 11
intervals, non-linearly spaced, so that the representation is more accurate at lower frequen-
cies where it is most important. The first interval meant the command was never used; the
second that it was used once or twice, and so on until the last interval where the command
was used more than 500 times. The intervals were representedby values from 0.0 to 1.0
in 0.1 increments. These values, one for each command, were then concatenated into a
100-dimensional command distribution vector (also calleduser vector below) to be used as
input to the neural network.

4



The standard three-layer backpropagation architecture was chosen for the neural network.
The idea was to get results on the most standard and general architecture so that the fea-
sibility of the approach could be demonstrated and the results would be easily replicable.
More sophisticated architectures could be used and they would probably lead to slightly
better results. The input layer consisted of 100 units, representing the user vector; the hid-
den layer had 30 units and the output layer 10 units, one for each user. The network was
implemented in the PlaNet Neural Network simulator (Miyata1991).

5 RESULTS

To avoid overtraining, several training sessions were run prior to the actual experiments to
see how many training cycles would give the highest performance. The network was trained
on 8 randomly chosen days of data (65 user vectors), and its performance was tested on the
remaining 4 days (24 vectors) after epochs 30, 50, 100, 200, and 300, of which 100 gave
the best performance. Four splits of the data into training and testing sets were created by
randomly picking 8 days for training. The resulting four networks were tested in two tasks:

1. Identifying the user vectors of the remaining 4 days. If the activation of the output
unit representing the correct user was higher than those of all other units, and
also higher than 0.5, the identification was counted as correct. Otherwise, a false
positive was counted.

2. Identifying 100 randomly-generated user vectors. If alloutput units had an acti-
vation less than 0.5, the network was taken to correctly identify the vector as an
anomaly (i.e. not any of the known users in the system). Otherwise, the most
highly active output unit identifies the network’s suggestion. Since all intrusions
occur under one of the 10 user accounts, there is a 1/10 chancethat the suggestion
would accidentally match the compromised user account and the intrusion would
not be detected. Therefore, 1/10 of all such cases were counted as false negatives.

The second test is a suggestive measure of the accuracy of thesystem. It is not possible to
come up with vectors that would represent a good sampling of actual intrusions; the idea
here was to generate vectors where the values for each command were randomly drawn
from the distribution of values for that command in the entire data set. In other words, the
random test vectors had the same first-order statistics as the legitimate user vectors, but
had no higher-order correlations. Therefore they constitute a neutral but realistic sample of
unusual behavior.

All four splits led to similar results. On average, the networks rejected 63% of the random
user vectors, leading to an anomaly detection rate of 96%. They correctly identified the
legitimate user vectors 93% of the time, giving a false alarmrate of 7%.

Figure 1 shows the output of the network for one of the splits.Out of 24 legitimate user
vectors, the network identified 22. Most of the time the correct output unit is very highly
activated, indicating high certainty of identification. However, the activation of the highest
unit was below 0.5 for two of the inputs, resulting in a false alarm.

Interestingly, in all false alarms in all splits, the falsely-accused user was always the same.
A closer look at the data set revealed that there were only 3 days of data on this user. He
used the system very infrequently, and the network could notlearn a proper profile for him.
While it would be easy to fix this problem by collecting more data in this case, we believe
this is a problem that would be difficult to rule out in general. No matter how much data
one collects, there may still not be enough for some extremely infrequent user. Therefore,
we believe the results obtained in this rather small data setgive a realistic picture of the
performance of the NNID system.

5



Figure 1: User identification with the NNID Network. The output layer of NNID is shown for
each of the 24 test vectors in one of the 4 splits tested. The output units are lined up from left to
right, and their activations are represented by the size of the squares. In this split there were two false
alarms: one is displayed in the top right with activation 0.01, and one in the second row from the
bottom, second column from the left with 0.35. All the other test vectors are identified correctly with
activation higher than 0.5.

6 DISCUSSION AND FUTURE WORK

An important question is, how well does the performance of NNID scale with the number
of users? Although there are many computer systems that haveno more than a dozen
users, most intrusions occur in larger systems with hundreds of users. With more users,
the network would have to make finer distinctions, and it would be difficult to maintain the
same low level of false alarms. However, the rate of detecting anomalies may not change
much, as long as the network can learn the user patterns well.Any activity that differs from
the user’s normal behavior would still be detected as an anomaly.

Training the network to represent many more users may take longer and require a larger
network, but it should be possible because the user profiles share a lot of common struc-
ture, and neural networks in general are good at learning such data. Optimizing the set of
commands included in the user vector, and the size of the value intervals, might also have a
large impact on performance. It would be interesting to determine the curve of performance

6



versus the number of users, and also see how the size of the input vector and the granularity
of the value intervals affect that curve. This is the most important direction of future work.

Another important issue is, how much does a user’s behavior change over time? If behavior
changes dramatically, NNID must be recalibrated often or the number of false positives
would increase. Fortunately such retraining is easy to do. Since NNID parses daily activity
of each user into a user-vector, the user profile can be updated daily. NNID could then be
retrained periodically. In the current system it takes onlyabout 90 seconds and would not
be a great burden on the system.

7 CONCLUSION

Experimental evaluation on real-world data shows that NNIDcan learn to identify users
simply by what commands they use and how often, and such an identification can be used
to detect intrusions in a network computer system. The orderof commands does not need
to be taken into account. NNID is easy to train and inexpensive to run because it operates
off-line on daily logs. As long as real-time detection is notrequired, NNID constitutes a
promising, practical approach to anomaly intrusion detection.

Acknowledgements

Special thanks to Mike Dahlin and Tom Ziaja for feedback on anearlier version of this paper, and to
Jim Bednar for help with the PlaNet simulator. This researchwas supported in part by DOD-ARPA
contract F30602-96-1-0313, NSF grant IRI-9504317, and theTexas Higher Education Coordinating
board grant ARP-444.

References

Debar, H., Becker, M., and Siboni, D. (1992). A neural network component for an intrusion
detection system. InProceedings of the 1992 IEEE Computer Society Symposium on
Research in Computer Security and Privacy, 240–250.

Denning, D. E. (1987). An intrusion detection model.IEEE Transactions on Software
Engineering, SE-13:222–232.

Fox, K. L., Henning, R. R., Reed, J. H., and Simonian, R. (1990). A neural network
approach towards intrusion detection. InProceedings of the 13th National Computer
Security Conference, 125–134.

Frank, J. (1994). Artificial intelligence and intrusion detection: Current and future direc-
tions. InProceedings of the National 17th Computer Security Conference.

Garvey, T. D., and Lunt, T. F. (1991). Model-based intrusiondetection. InProceedings of
the 14th National Computer Security Conference.

Miyata, Y. (1991).A User’s Guide to PlaNet Version 5.6 – A Tool for Constructing, Run-
ning, and Looking in to a PDP Network. Computer Science Department, University
of Colorado, Boulder, Boulder, CO.

Mukherjee, B., Heberlein, L. T., and Levitt, K. N. (1994). Network intrusion detection.
IEEE Network, 26–41.

Porras, P. A., Ilgun, K., and Kemmerer, R. A. (1995). State transition analysis: A rule-
based intrusion detection approach.IEEE Transactions on Software Engineering, SE-
21:181–199.

Teng, H. S., Chen, K., and Lu, S. C. (1990). Adaptive real-time anomaly detection using in-
ductively generated sequential patterns. InProceedings of the 1990 IEEE Symposium
on Research in Computer Security and Privacy, 278–284.

7


