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Abstract

Exploratory data analysis methods are essential for getting insight into data.

Identifying the most important variables and detecting quasi-homogenous groups

of data are problems of interest in this context. Solving such problems is a

difficult task, mainly due to the unsupervised nature of the underlying learn-

ing process. Unsupervised feature selection and unsupervised clustering can

be successfully approached as optimization problems by means of global op-

timization heuristics if an appropriate objective function is considered. This

paper introduces an objective function capable of efficiently guiding the search

for significant features and simultaneously for the respective optimal partitions.

Experiments conducted on complex synthetic data suggest that the function we

propose is unbiased with respect to both the number of clusters and the number

of features.

Keywords: unsupervised feature selection, unsupervised clustering, global

optimization

1. Introduction

Clustering is the task of identifying natural groups in data. The problem

can be stated more formally as follows:
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Given a set S of n data items each of which is described by m numerical at-

tributes: S = {d1, d2, ..., dn} where di = {fi1, fi2, ..., fim} ∈ �1×�2× ...×�m ⊂

�m∀i = 1..n,

find

C∗ = argmaxC∈ΩF (C)

where

• Ω is the set of all possible hard partitions C of the data set S, where

each C is a hard partition if C = {C1, C2, ..., Ck},
⋃k

i=1 Ci = S and

Ci

⋂
Cj = ∅∀i, j = 1..n, i �= j, k ∈ {1, 2, ..., card(C)}.

• F is a function which measures the quality of each partition C ∈ Ω with

respect to the requirement implicitly described above by the word natural :

similar data items should belong to the same cluster and dissimilar items

should reside in distinct clusters.

The notion of similarity is seldom given in the problem statement.

If the number of clusters p is known in advance the problem is called super-

vised clustering ; otherwise, it is called unsupervised clustering.

This definition leaves space to a wide choice of objective functions and sim-

ilarity functions, depending strongly on the domain under investigation. The

choice is rarely straightforward. The literature records a lot of comparative

studies regarding the impact of various objective functions on the solution es-

pecially in the case of unsupervised clustering. As for the similarity function, if

extra-information is available in the form of pairwise constraints of data items

that must reside in the same cluster (the case of semi-supervised clustering and

supervised classification) then an optimal distance metric can be learned. For

unsupervised clustering, metric learning is usually performed in a pre-processing

step, using methods that reduce data dimensionality through statistical analysis.

Dimensionality reduction is a problem intensively studied in both supervised

and unsupervised clustering. The main goal is to reduce the size of the represen-

tation of data items in order to decrease the computational cost of subsequent
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steps, with minimal alterations in terms of descriptive accuracy. Dimensional-

ity reduction is approached in two distinct ways: Feature Selection (FS) and

Feature extraction (FE). The feature selection approach searches for irrelevant

original features (attributes) and excludes them; additionally, feature weight-

ing may be performed. Feature extraction methods create new features from

the original ones. The points in the original D-dimensional feature space are

mapped into new points in a d-dimensional feature space, d < D. Compared to

FS methods, FE methods provide an improved lower-dimensional representation

for the full data set; however, an important drawback of FE methods is that

the relationship between the original and the reduced space is more difficult to

interpret.

Feature selection plays different roles in the supervised and respectively the

unsupervised scenario. In both situations, in a pre-processing step redundant

features may be eliminated by means of statistical analysis. Further, in clas-

sification feature selection aims at identifying those features that predict with

highest accuracy the appropriate class labels, while in clustering feature selec-

tion aims at identifying the features which generate good partitions.

Unsupervised feature selection is performed by means of:

• filter approaches, which compute some entropy measure in order to asses

the grouping tendency of data items in different feature subspaces. The

subsequent unsupervised learning method is completely ignored.

• wrapper approaches, which actually search for partitions in different fea-

ture subspaces using a clustering algorithm. These approaches give better

results but at higher computational costs.

In view of the definition of clustering, feature selection can be stated as an

optimization problem:

find

w∗ = argmaxwQ(S′)

where
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• w = {w1, w2, ...wm} ∈ {0, 1}m is a binary string;

• S′ is the data set constructed from the original set S and the string w as

follows: S′ = {d′1, d
′
2, ..., d

′
n}, d

′
i = {w1 ·fi1, w2 ·fi2, ..., wm ·fim}, ∀i = 1..n;

• Q(S′) is a function which measures the tendency of data items in set S′

to group into well-separated clusters; it can be expressed by means of

the entropy (filter approaches) or of a fitness function which measures

the quality of a partition detected by a clustering algorithm (wrapper

approaches). In the latter case feature weighting is akin to solving the

clustering problem in different feature spaces.

Our study approaches unsupervised feature selection in a wrapper manner.

In this regard, a new optimization criterion largely unbiased with respect to

the number of clusters is introduced in section 2. Section 3 discusses the nor-

malization of the clustering criterion with respect to the number of features.

Section 4 presents a framework for performing unsupervised feature selection

in conjunction with unsupervised clustering and summarizes the experimental

results. Section 5 draws conclusions and points to future work.

2. Unsupervised clustering: searching for the optimal number of clus-

ters

Classical clustering methods, such as k-means and hierarchical algorithms,

are designed to use prior knowledge on the number of clusters. In k-means, an

iterative process reallocates data items to the clusters of a k-class partition in

order to minimize the within-cluster variance. Hierarchical clustering adopts a

greedy strategy constructing trees/dendrograms based on the similarity between

data items; each level in these dendrograms corresponds to partitions with a

specific number of clusters and the method offers no guidance regarding the

level where the optimal partition is represented (hence, the optimal number of

clusters).
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The algorithms mentioned above are local optimizers. In order to design a

global optimizer for the clustering problem, a criterion for ranking all partitions,

irrespective of the number of clusters, is needed. The problem is far for being

trivial: with no hint on the number of clusters, common-sense clustering criteria

like minimizing the variance within clusters and/or maximizing the distance

between clusters guide the search towards the extreme solution - the n-class

partition with each class containing exactly one point.

Existing studies in the literature propose and experiment with various clus-

tering criteria [3, 22, 24, 13]. The main concern is the bias these criteria intro-

duce towards either lower or higher numbers of clusters. Since this bias proved

to be hard to eliminate, multi-objective algorithms were proposed [9], which

evaluate the quality of a partition against several criteria. The main drawback

remains the fact that identifying the optimal solution within the final Pareto

front is not straightforward.

The clustering criterion used in the present work originates in the analogy

with the Huygens’ theorem from mechanics, analogy introduced in [6] and used

further in [19]. Considering the data set S in the above definitions, the following

notations are used:

W =
∑k

i=1

∑
d∈Ci

δ(ci, d) is the within-cluster inertia computed as the sum

of the distances between all data items d in cluster Ci and their cluster center

ci;

B =
∑k

i=1 |Ci| · δ(ci, g) is the between-cluster inertia computed as the sum

of the distances between the cluster centers ci and the center of the entire data

set g weighted with the size of each cluster |Ci|.

T =
∑n

i=1 δ(di, g) is the total inertia of the data set computed as the sum

of the distances between the data items and the center g of the data set.

In the above center is the gravity center.

The above-mentioned analogy with mechanics can only be applied as an

approximation. The simplest approximation of the Huygens theorem is then

W +B ≈ T
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According to the above formula, for any partition of the data set, regardless the

number of clusters, the sum W+B is merely constant. Figure 1 illustrates this

for the case of a data set with 10 random Gaussian features/variables: W, B,

and W+B are computed for locally optimal partitions of the data set obtained

by the k-means algorithm with the number of clusters varying between 2 and

50.

Figure 1: The within-cluster inertia W, between-cluster inertia B and their sum plotted for

locally optimal partitions obtained with k-means over different numbers of clusters

In view of the Huygens theorem, if the number of clusters is fixed, minimizing

W or maximizing B are equivalent clustering criteria which can be used in

general heuristics [6]. Note that the within-cluster variance is a widely used

clustering criterion in supervised clustering. The Huygens theorem provides an

equivalent clustering criterion (namely B), at a lower computational cost, which

can be used in a nearest-neighbor assignment scenario [19].

When the number of clusters is unknown both these criteria are useless: they

direct the search towards the extreme n-class partition. However, a corollary of

the Huygens theorem in conjunction with penalties against the increase of the

number of clusters proved to work in unsupervised clustering:
(
B
T

)k
is used in

[21]; an equivalent (in view of the Huygens’ theorem) function
(

1
1+W/B

)k

is used

in [20] in order to use local Mahalanobis distances. Unfortunately, extensive

experiments we conducted recently with these fitness functions, showed that

they are appropriate only for data sets with a small number of features; other

penalization factors may therefore be necessary for higher-dimensional spaces.
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Both within-cluster inertia and between-cluster inertia are necessary for a

reliable comparison and evaluation of partitions in different feature subspaces.

In this regard, we minimize the within-cluster inertia and maximize the between-

cluster inertia simultaneously, through maximizing

F =

(
1

1 +W/B

)
. (1)

In order to study the bias this function induces on the number of clusters in

unsupervised clustering, we used the k-Means algorithm to derive partitions

for data sets consisting of between 2 and 20 random Gaussian features. As

shown in figure 2-left, the function F is monotonically increasing with respect

to the number of clusters, taking smaller values for higher dimensional data sets.

Figure 2-right penalizes the increase in the number of clusters: F k is represented

by the dotted lines and F log2(k+1)+1 is represented by the continuous lines.

Figure 2: Left: function F plotted for partitions obtained with k-Means over different num-

bers of clusters, for data sets with 2, 4, 10 and 20 features; Right: function F is penalized

introducing at exponent k (dotted lines) and le(k) = log2(k + 1) + 1 (continuous lines).

Figure 2 presents the behavior of function F when the Euclidean metric is

used as distance function: δ(x, y) = (
∑m

i=1 |xi−yi|q)1/q with q = 2. Experiments

showed that using the Manhattan metric (q = 1) and Chebyshev metric (q =∞)

- the extreme cases of the Minkovski metric, identical plots as the ones in Figure

2 are obtained; this suggests that function F records the same behavior under

all Minkovski metrics. Moreover, experimental studies with fractional norms

gave the same results: function F is biased towards lower numbers of features
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and higher numbers of clusters. For unsupervised clustering, its use would fail

to identify the optimal number of clusters and would favor the partition with

the maximum allowed number of clusters; for feature selection its use would fail

to identify all relevant features and would favor the subset with the minimum

allowed cardinality.

Exponent k reverses the bias towards low numbers of clusters in all cases,

while the logarithmic exponent is able to eliminate any bias for the data sets

with more than 10 features. For lower dimensions, the logarithmic factor is,

however too weak. In order to make it work in low dimensional spaces, a new

factor which penalizes F linearly in the number of features m is introduced.

The new criterion we introduce for measuring the quality of a partition is

CritC = (a · F )le(k) (2)

where a = 2·m
(2·m+1) and le(k) = log2(k + 1) + 1 (logarithmic exponent).

CritC takes values in range [0,1] and should be maximized.

This function is studied in the sequel in the context of unsupervised cluster-

ing; we test its capacity of detecting simultaneously the optimal partition and

the optimal number of clusters (see section 4).

3. Unsupervised feature selection: searching for the optimal number

of features

Since the search space is exponential in the number of features, unsuper-

vised feature selection has been initially approached using greedy heuristics in

the filter manner. One such approach is sequential selection which was imple-

mented in two ways [17]: sequential forward selection, which starts with the

empty set and iteratively adds the most rewarding feature among the unse-

lected ones and sequential backward selection, which at the beginning considers

all features as being selected and iteratively removes the least rewarding feature

among the selected ones,until the stopping criterion is met. Two strategies are

used to compute the merit of each feature: one that aims at removing redun-

dant features and one that scores the relevance of features. Redundancy-based
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approaches hold that mutually-dependent features should be discarded. On the

contrary, approaches in the second category [18, 26] compute the relevance of

features based on the assumption that relevant features are kept dependent to

each other by the structure of the clusters. Pairwise dependence scores are

consequently computed using mutual information and mutual prediction [26].

Other approaches rank the features according to their variances or according

to their contribution to the entropy calculated on a leave-one-out basis [27].

However, most of these methods deliver feature rankings and leave to the user

the decision regarding the number of features.

Wrapper methods for feature selection evaluate subsets of features based on

the quality of the best partition generated by each subset. In this scenario,

an unsupervised clustering criterion unbiased with respect to the number of

clusters and able to compare different partitions is required in order to asses

the quality of feature subsets. However, existing unsupervised clustering cri-

teria are not appropriate/fair evaluators in the context of feature subsets of

different cardinalities: they are based on computing some distance function for

every pair of data items. Since dimensionality influences the distribution of the

distances between data items, it induces a bias in the objective function with

respect to the size of the feature space. To illustrate this, consider the case of

Minkowski distance functions: the mean of the distribution increases with the

size of the feature space because one more feature introduces one more posi-

tive term into the sum; combined with an objective function which minimizes

the between-cluster variance, feature selection will be strongly biased towards

low dimensionality. This example is not unique: it is also the case of the most

popular unsupervised clustering criteria - Davies- Bouldin Index [5], Sillhouette

Width [25] - which are also biased towards low dimensionality.

The influence of the dimensionality of the data set on distance-based data

analysis methods - including clustering techniques, was thoroughly investigated

in [1]. The authors show that in high-dimensional spaces fractional norms are

more appropriate to discriminate between data items. As a consequence, clus-

tering algorithms using fractional norms to measure the distance between data
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items of large dimensionality, are more successful. However, fractional norms

are not a solution when a large number of noisy features are present in data.

A few strategies were proposed in order to reduce the dimensionality bias.

Dy and Brodley [8] use sequential forward search to search for feature subsets

in conjunction with the Expectation Maximization algorithm searching for the

best partition. The search for the number of clusters is performed for each

feature subspace starting with a high number of clusters and iteratively decre-

menting by one this number, merging at each step the clusters which produce

the least difference in the objective function. Two feature subset selection crite-

ria are tested in [8]: the Maximum Likelihood criterion which is biased towards

lower-dimensional spaces of features and the scatter separability which favors

higher-dimensional spaces. In order to counteract these biases, cross-projection

is introduced: given a pair of feature subsets, for each feature subset the best

partition is determined and the resulting partitions are evaluated as well in the

other subspace. The fitness of each feature subspace is computed with regard

to the quality of the optimal partition it produces, measured in both feature

subspaces. This cross-projection normalization can be used for pairwise compar-

isons between features sets. However, it is not transitive which raises obstacles

against its use in global optimization techniques.

Multi-objective optimization algorithms are a more straightforward way to

deal with biases: the bias introduced in the primary objective function is coun-

terbalanced by a second objective function. The approach was initially proposed

in [14] where four objectives are used by the Evolutionary Local Selection Algo-

rithm (ELSA). In [23] only two objectives are used by a multi-objective genetic

algorithm: the Non-dominated Sorting GA-II. A more extensive study on the

use of multi-objective optimization for unsupervised feature selection is carried

out in [10]: some drawbacks of the existing methods are outlined and several

objective functions are thoroughly tested on a complex synthetic benchmark.

Furthermore, a strategy for automated solution extraction from the Pareto front

is proposed. However, the entire method is time-consuming and somewhat awk-

ward to use.
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In [29] clustering and feature selection are performed iteratively: a recently

proposed Gaussian mixture clustering algorithm is used to derive partitions;

subsequently, a refined feature subset in terms of relevance and non-redundance

under the current data partition is identified. As a result, a more accurate

partition is to be found using the selected feature subset in the next iteration.

A new score is proposed to quantify the relevance of each feature based on the

intra-cluster variance reported to the total variance. A Markov Blanket filter

is used to identify redundant features. Both procedures - the one computing

relevancy and the one computing redundancy - return rankings over features.

Therefore, two numerical parameters are introduced, one for each procedure, in

order to perform feature selection. This parameters are optimized empirically.

Recent work in clustering is focused on ensemble learning methods. In [11]

ensemble clustering is used in order to leverage the consensus across multiple

clustering solutions. Then, a population based incremental learning algorithm

is used to search for a subset of all features such that the clustering algorithm

trained on this feature subset can achieve the most similar clustering solution

to the one obtained by the ensemble clustering method. The bias with respect

to the cardinality of the feature subsets is eliminated, as the feature selection

problem is now reformulated within a supervised scenario: given a partition

of the data set, a subset of features which predicts with highest accuracy the

cluster assignments must be identified.

There are methods which push feature selection directly into a specific clus-

tering procedure [16, 4].

In the available literature we did not come across an objective function

(ranking criterion) to provide a ranking of partitions with regard to their quality,

irrespective of the number of features. It is the goal of this paper to

propose a function which, in the search space defined by all possible subsets

of features in conjunction with a variable number of clusters, assigns a ranking

score to each partition that may be defined. The function we propose may be

used by any heuristic searching for the best partition when both the number of

features and the number of clusters vary during the search.
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As shown in Figure 2, the function CritC (proposed in section 2), mono-

tonically decreases with the number of features even if factor a penalizes small

feature spaces. This function would point the search towards small feature sub-

sets. In order to eliminate this bias with respect to the number of features m,

we use the factor le(m) = log2(m + 1) + 1 with the goal of penalizing small

values of m. Our new optimization function is:

CritCF = CritC
1

le(m) = (a · F )
le(k)
le(m) (3)

Studies we undertook on datasets containing Gaussian features, show that

the function CritCF removes considerably the bias with regard to both the

number of clusters and the number of features, but not completely. Yet, this

function is the winner of a contest with only a few hand-made competitors;

a safe assumption would be that better candidates may exist. We tested this

assumption through an automated search process using Genetic Programming.

this search is described in the rest of this section.

Because F is influenced by both the number of features m and the number

of clusters k, we search for a function expressing this dependency. The problem

is formulated as follows: given tuples (m, k, F ), an equation satisfied by them

must be determined. We deal in fact with symbolic regression: the optimization

process has to work simultaneously on the analytical form of the function, the

variables involved, and the coefficients.

Using datasets containing only standard Gaussian features, optimal parti-

tions were constructed with the k-Means algorithm varying the number of clus-

ters k in the range 2-49 and the number of features m in the range 2-20. Then,

using formula (1) the values of F were computed for all resulted partitions.

Tuples (m, k, F ), generated in this way, are given as input to a genetic pro-

gramming algorithm [15, 2]. The chromosomes are trees which are decoded into

functions over the two variablesm and k. The crossover and mutation operators

are similar to those described by Koza in [15]. The fitness function computes

the ability of each chromosome to predict the values of F in terms of absolute
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error of the encoded solution relative to the input data set. The set of operators

is {+, -, ·, / }; additionally, the natural logarithm, the base 2 logarithm and the

power function are used.

A chromosome derived from CritCF function was introduced in the initial

population consisting of random generated individuals. CritCF should deliver

a constant value for all the partitions derived in this part of the experiments;

however, slight variations exist and an average denoted by const is computed

over all values. Then, F is extracted from formula (3) as shown below and

encoded as a GP chromosome.

F =
1

a
· (const)

le(d)
le(m) (4)

Several runs of the GP algorithm with different settings were performed, each

run consisting of evaluating about 20 000 new chromosomes derived from the ap-

plication of genetic operators. None of the chromosomes generated throughout

the run outperformed the chromosome encoding formula (4). The absolute er-

ror obtained by the best chromosome recorded during the runs of the algorithm

was 41% higher compared to the absolute error recorded by the chromosome

encoding formula (4).

These first experiments strongly suggest that the function CritCF we propose

is a near-optimal solution; it is largely unbiased with respect to both the number

of clusters and the number of features. It takes values in range [0,1] and should

be maximized in order to simultaneously obtain the best feature subset and

partition. This function is further studied on synthetic complex data sets.

4. Experiments

4.1. The unsupervised clustering criterion

In order to study the criterion CritC, we undertook comparative studies on

complex synthetic data sets against the most widely used criteria for unsuper-

vised clustering.
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4.1.1. Currently used unsupervised clustering criteria

Several studies [9] indicate Silhouette Width (SW) [25] as the best parti-

tion ranking criterion in unsupervised clustering. SW for a partition is computed

as the average silhouette over all data items in the data set. The Silhouette for

a data item i is computed as follows:

S(i) =
bi − ai

max(bi, ai)

where

ai = avgd∈Ci
δ(di, d) where di ∈ Ci denotes the average distance between i

and all data items in the same cluster;

bi = minC �=Ci
avgd∈Cδ(di, d) where di ∈ Ci denotes the average distance

between i and all data items in the closest other cluster (defined as the one

yielding the minimal bi).

SW takes on values in the range [-1,1] and is to be maximized in search of

the optimal clustering.

Another widely used clustering criterion is Davies-Bouldin Index (DB)

[5] which, as in the case of CritC above, makes use of cluster representatives

to compute the within-cluster compactness and between-cluster separation in a

partitioning:

WDB(j) = 1
|Cj |

·
∑

d∈Cj
δ(cj , d) is the intra-cluster compactness for cluster

Cj ;

BDB(j, l) = δ(cj , cl) is the separation between clusters Cj and Cl.

The DB Index is defined as:

IDB =
1

k
·

k∑
j=1

max
j,l �=j

(
WDB(j) +WDB(l)

BDB(j, l)

)

and is to be minimized in order to seek for the optimum clustering.

4.1.2. The search method

In order to search for the best clustering in a fixed feature space, the K-

means algorithm is run over the given data set with the number of clusters k

ranging from 2 to 50. In order to avoid suboptimal solutions due to unfavorable
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initialization, K-means is run 10 times and only the best solution with regard to

the within-cluster inertia is reported. This is what we further call one k-Means

run.

4.1.3. The data suite

The performance of our clustering criterion CritC in finding the optimal

clustering is evaluated under various scenarios: data sets with lower or higher

dimensionality, some having optimal partitions with a small number of clusters

and others having optimal partitions with a high number of clusters. In this

regard the complex benchmark made available by Julia Handl 1 [9] is used;

it represents a standard cluster model built using multivariate normal distri-

butions. The clusters in a data set are built iteratively based on covariance

matrices which need to be symmetric and positive definite. Overlapping clus-

ters are rejected and regenerated, until a valid set of clusters has been found.

The covariance matrices are built in such a way to encourage the production of

elongated clusters; this is the reason why k-Means fail to identify in some test

cases the correct partition, as the results in the experimental section show.

Ten data sets of dimensionality d and containing k clusters are created and

referred to as the group of data dd-kc, with d ∈ {2, 10} and k ∈ {4, 10, 20, 40}.

The size of each cluster varies uniformly in the range [50,500] for the data sets

with 4 and 10 clusters and in range [10,100] for the data sets with 20 and 40

clusters.

A total of 120 data sets were used in order to study our criterion in the

context of unsupervised clustering.

1http://dbkgroup.org/handl/generators/
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4.1.4. Validation measures: the Adjusted Rand Index

Each partition returned by k-means is evaluated against the optimal clus-

tering using the Adjusted Rand Index (ARI) [12]:

ARI =

∑
ij
C2

Nij
−

[∑
i
C2

Ni−
·
∑

j
C2

N
−j

]
/C2

N

1

2

[∑
i
C2

Ni−
+

∑
j
C2

N
−j

]
−

[∑
i
C2

Ni−
·
∑

j
C2

N
−j

]
/C2

N

where Nij is the number of data items of optimal cluster i within cluster j in

the evaluated clustering, Ni− is the number of data items in the optimal cluster

i and N−j is the number of data items in cluster j under evaluation.

4.2. The unsupervised feature selection criterion

4.2.1. Search methods

Wrapper feature selection methods usually involve two distinct heuristics:

one for searching the feature space for the optimal feature subset and the other

one for searching the optimal partition, given a feature set. In our approach the

latter is performed using the k-Means algorithm. The former is conducted with

two heuristics: a greedy method named sequential forward selection which is

widely used in the context of feature selection and a global optimization heuris-

tic. Extensive experiments employing two versions of the greedy algorithm and

a multi-modal optimization algorithm provide insight into the fitness landscape

under our criterion.

(A) Sequential forward Selection

Forward selection is a greedy algorithm widely used for feature selection

[17, 8, 10]. In our implementation it starts with the empty set and iteratively

adds the feature which, added to the already selected features gives the highest

value for the CritCF function. For each candidate feature the k-Means algorithm

is run repeatedly with the number of clusters ranging from 2 to 17 and the best

partition is chosen using the CritCF function. The range of values used for

the number of clusters was chosen in order to be consistent with the genetic

algorithm employed in subsection B)as the global search method.

Two versions of this algorithm corresponding to different halting conditions

are considered. In a first scenario, the algorithm is stopped when none of the
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remaining features brings any improvement when added to the already selected

ones.

A second version of the greedy algorithm is inspired from the experiments

described in [10] where a fixed number of features are selected and the best

solution is eventually chosen from a Pareto front. As in [10], the algorithm

selects iteratively up to 20 features which is akin to ranking the most relevant

20 features. The best solution is chosen further based on the fitness values

computed with CritCF for each group of the first i features.

The first algorithm has a reduced time complexity due to the halting condi-

tion but it gets more easily trapped in local optima.

The number of evaluations required by the greedy forward feature selection

algorithm with variable number of clusters is

(kmax − 1) · dmax · d

where

• d is the dimensionality of the data set;

• dmax is the maximum cardinality of the feature subsets;

• kmax is the maximum number of clusters allowed while searching for the

best partition.

For Handl’s data sets with 100 noisy variables used in this paper, the second

version of the greedy algorithm searching for at most 20 relevant features would

thus require at least 32 000 evaluations. The number of evaluations required

by the first version of the algorithm depends on the number of relevant features

identified.

(B) A Genetic Algorithm

The Multi-Niche Crowding Genetic Algorithm (MNC GA) [28] is a steady-

state GA which implements the crowding mechanism in order to maintain di-

versity in population during the search. It typically converges to multiple local

optima. Since in various feature subspaces different numbers of clusters and con-

sequently different groupings would be (locally) optimal, the algorithm searches
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for both the optimal feature subset and the respective optimal number of clus-

ters. Therefore, a chromosome is a binary string encoding both the features (’1’

for ’selected’, ’0’ for ’unselected’) and the number of clusters (4 bits under Gray

coding); this representation was used in several papers [10, 23, 14] and reduces

the computational cost as it eliminates the need for searching exhaustively for

the optimal number of clusters in a given feature space.

Figure 3: One iteration in MNC GA for unsupervised feature selection.

In MNC GA, both selection and replacement operators implement a crowd-

ing mechanism. Mating and replacement among members of the same niche are

encouraged while allowing at the same time some competition among the niches

for the population slots. Selection for recombination has two steps: 1. one indi-

vidual is selected randomly from the population 2. its mate is the most similar

individual from a group of size s which consists of randomly chosen individuals

from the population; one offspring is created. The individual to be replaced by

the offspring is chosen according to a replacement policy called worst among

most similar :

• f groups are created by randomly picking from the population g (crowding

group size) individuals for each group ;
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• one individual from each group that is most similar to the offspring is

identified;

• the individual with the lowest fitness value among most similar ones is

replaced by the offspring.

In the original MNC algorithm the replacement is always performed, even

if the fitness of the offspring is lower than the fitness of the individual chosen

to be replaced. We adopted a strategy inspired from Simulated Annealing: an

individual having lower fitness survives with a probability that decreases during

the run of the algorithm. Lower fitness survivals have a probability of 0.5 at the

beginning of the run; it decreases exponentially during the run by multiplying

it with 0.9995 at each iteration.

One iteration of the MNC algorithm is illustrated in Figure 3. The evaluation

step (step 5. in Figure 3) has two sub-steps:

• the k-Means algorithm is run in the feature space consisting only of the

features selected and with the number of clusters encoded in the chromo-

some. K-Means is restarted 10 times and the best partition with regard

to the within-cluster inertia score is chosen;

• the criterion CritCF, calculated for the partition obtained above, gives the

fitness of the chromosome.

Recombination is performed using uniform crossover and binary mutation

(pm is 1
numberOfFeatures for genes encoding features and 1

4 for genes encoding

the number of clusters).

The similarity between two individuals is measured using the Hamming dis-

tance; only the substring which encodes features is considered.

For comparison purposes, many parameter values in our experiments repro-

duce those reported in [10]. The maximum number of clusters allowed during

the search is kmax = 17 (only 4 bits encode the number of clusters). The search

space is restricted to solutions with a maximum of dmax = min{20, d} features
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from a total of d features. In addition, in order to speed up the process of iden-

tifying the optimal feature subset, the maximum number of features selected

within a chromosome is gradually increased throughout the run from a max-

imum of 5 features during the first generations to 10, then 15 and finally 20

at the end of the run. The risk of getting trapped in local optima due to this

incremental search (specific to greedy algorithms) is tackled by the crowding

GA through maintaining multiple niches in the search space.

The size of the population in MNC-GA is set to pop size = 100 individuals.

The following values give an appropriate balance between exploration/exploitation

and a moderate fitness pressure at replacement: s = 0.10 · pop size, g =

0.15 · pop size, f = 0.10 · pop size.

The most time-consuming part of the algorithm is the evaluation step which

mainly consists of finding the best partition for a given feature set and a given

number of clusters. Each run of the MNC-GA algorithm consisted of 10.000

iterations which correspond to 10.000 evaluations.

At the end of each run of the MNC-GA algorithm a local search was per-

formed around the best individual in order to avoid sub-optimal numbers of

clusters: for the best feature subset, the k-Means algorithm was run with the

number of clusters varying from k− 2 to k+2 where k is the number of classes

encoded by the best chromosome. The best partition is chosen to be the one

with the best (highest) CritCF value.

4.2.2. The data suite

In order to validate our criterion in the context of unsupervised wrapper

feature selection, a total of 40 data sets were used in this part of the experiments.

Using the multivariate Gaussian cluster model from Section 4.1.3, Handl and

Knowles designed small data sets for validating feature selection methods [10].

They created ten data sets of dimensionality d and containing k clusters, with

d ∈ {2, 10} and k ∈ {2, 4, 10}. The size of each cluster is uniformly distributed

within the set{10,....,50}.

Handl and Knowles introduced 100 Gaussian noise variables in each data
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set in order to create high-dimensional data, which contain in some cases more

dimensions than data points, a few features being relevant for the classification

task. We denote these data sets by dd-kk-100-gaussian.

We also evaluate the performance of criterion CritCF when other kind of

noise than Gaussian is involved. Therefore, we replaced the Gaussian noisy

variables introduced within the datasets designed by Handl and Knowles with

100 uniform noisy variables and thus 40 new data sets were created and denoted

in the experimental section as dd-kk-100-uniform.

Tests were also conducted on some real data sets form UCI Repository. The

datasets used represent hand-written digits and letters. The Digits data set has

64 attributes representing pixels on a 8x8 grid and the Letters data set consist

of 16 attributes corresponding to a 4x4 grid. Their values express the intensity

of the color.

Since features may be expressed on different scales, all datasets are normal-

ized such that each feature has mean 0 and standard deviation 1.

4.2.3. Validation measures

Results regarding feature selection can be validated from two perspectives:

the quality of the best found partition reported to the (known) optimal partition,

and the quality of the feature set reported to the (known) relevant features.

The quality of a partition is measured by the Adjusted Rand Index (ARI,

described in section 4.1.4).

The quality of a feature subset is computed with respect to the known rele-

vant feature set by means of two indexes from information retrieval:

precision =
#(significant features identified)

#(features identified)

recall =
#(significant features identified)

#(significant features)

Based on these indexes the F-Measure is computed as:

FMeasure =
2 · precision · recall

precision+ recall
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4.3. Results

4.3.1. Results for unsupervised clustering

One observation is mandatory for the sake of further discussion: the two

criteria CritC in formula (2) and CritCF in formula (3) deliver the same ordering

on the set of all partitions in the context of unsupervised clustering in a fixed

feature space. Therefore, the two criteria can be considered as equivalent for

the first task investigated in this paper which is unsupervised clustering in a

fixed feature space; this discussion is conducted further for the CritCF function.

In order to verify that the clustering criterion does not suffer from any bias

with regard to the number of clusters, tests are made within a larger range. For

each data set, k-Means is run with the number of clusters varying in the range

[2, 50].

In case of the data sets dd-kk-100 designed for feature selection, k-Means is

run on the reduced data consisting only of the relevant features. For these test

cases, k-Means is run with the number of clusters varying in range [2, 17], in

order to be able to report these results as upper bounds for feature selection.

Subsequently, the three unsupervised clustering criteria (Davies Bouldin In-

dex, Silhouette Width and CritCF) are computed for each of the 49 (respec-

tively 16) partitions returned by k-Means, in order to select the partition with

the optimal number of clusters. The ARI score and the number of clusters k

are recorded for the winning partition. The best partition for each dataset is

designated to be the one with the highest ARI score.

The procedure described above was applied 20 times to each data set. Table 1

presents averages and standard deviations over the ARI scores and the numbers

of clusters for best partitions with respect to: 1. the ARI score recorded by

k-Means (Best), 2. Davies-Bouldin Index (DB), 3. Silhouette-Width (SW) and

4. our criterion.

Statistical tests were conducted to verify if the differences of the ARI scores

are significant enough to extract a winner for each type of problem. In this

regard, the 3 groups of ARI values corresponding to the 3 clustering criteria,
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obtained through repeated independent runs of the algorithm on instances of

a given type of problem (dd-kk) are analyzed. We skip the Kruskal-Wallis

test for testing equality of population medians among the 3 groups because it

assumes identically-shaped distributions for all group. This condition does not

hold: the standard deviation is significantly larger in case of Davies-Bouldin and

Silhouette-Width criteria. One reason for the high variance is a bad performance

on one or several test instances. For example, in case of the problem 2d-4c all

clustering criteria select partitions with a number of clusters ranging from 3 to

5, except in case of the instance 2d-4c-no5 for which DB and SW criteria select

the partition with only 2 clusters. An opposite example is the problem 10d-4c-

100: for the instance 10d-4c-100-no5 CritCF selects partitions with a number of

clusters ranging from 3 to 5, while SW and mostly DB select partitions with a

higher number of clusters, even up to the maximum allowed value - 17 clusters.

The Wilcoxon Signed-Rank non-parametric test was applied for each prob-

lem on the group of ARI scores determined with CritCF function and the group

with the highest average ARI score among the other two criteria. Where differ-

ences are significant (at the level 1%) the winner is marked in bold.

Table 1 shows that the new criterion CritCF achieves the best results in

unsupervised clustering in most test cases. In a few cases it is outperformed

by the Silhouette Width Index However, compared to Silhouette Width Index

which has quadratic complexity in the number of data items, CritCF has linear

time complexity. The highest difference in performance between CritCF and the

two opponents can be observed in case of smaller (sparser) data sets dd-4c-100

due to the poor estimation of the number of clusters by Davies-Bouldin Index

and Silhouette Width Index. The high values of the standard deviation for the

number of clusters and, implicitly, for the ARI scores in case of these latter

criteria show that they are more sensitive to minor changes in the structure

of clusters. For a given problem instance, in some experiments these criteria

were able to identify the optimal clustering but in others they showed a bias

towards a higher number of clusters (each experiment consisting of running

k-Means with varying number of clusters). In case of the Silhouette Width
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index, this sensitivity can be explained by the fact that it is dependent on

each particular assignment (to clusters) of the data items rather than on cluster

representatives. In the case of the k-Means algorithm, which is highly dependent

on the initialization step and yields near-optimal partitions, this sensitivity is

a drawback. CritCF proved to be more robust: in repeated runs on the same

problem instance, it chose partitions with the same number of clusters.

4.3.2. Results for unsupervised wrapper feature selection

Table 2 presents the average performance of the genetic algorithmMNC-GA

making use of CritCF as fitness function on the datasets with Gaussian noise:

the ARI score for the best partition obtained in the selected feature space and

its number of clusters k, the size m, the recall and the precision of the selected

feature subset. The average performance over 20 runs of our method is reported

for these datasets in order to make comparisons with the algorithms investigated

in [10]. Figure 4 shows the comparative results on the performance of CritCF

and the algorithms investigated in [10] for feature selection:

• the three red lines correspond to the MNC-GA and Forward Selection

algorithms both employing CritCF as evaluation criterion

• the two blue lines correspond to the multi-objective algorithm investigated

in [10] with Silhouette Width and Davies Bouldin criteria used as the

primary objective;

• the performance of a filter method is represented in yellow. The method

was also investigated in [10]. It returns a Pareto front of solutions over two

objectives: the minimization of an entropy measure and the maximization

of the number of features in order to balance the bias introduced by the

first objective. After the optimal feature subset is extracted the corre-

sponding ARI value is obtained using k-Means with the optimal number

of clusters. This procedure is quite unfair since the other methods receive

no input regarding the number of clusters.

24



The gray line corresponds to the best partition that can be obtained using k-

Means with the exact number of clusters, on the optimal standardized feature

subset consisting of the known relevant features. These values provide an upper

bound for the methods under investigation.

All methods implemented in [10] return a range of solutions corresponding

to different feature cardinalities. The results presented in [10] and cited in our

paper are obtained in the following way: for a given Pareto front, the feature

set with the best F-Measure is selected. This procedure requires supplementary

input and thus makes the comparison unfair for the methods which use the

CritCF criterion and work in an entirely unsupervised manner.

Table 3 presents the results obtained with the two versions of the Forward

Selection algorithms on the same datasets containing Gaussian noise.

To estimate the real performance of criterion CritCF, an exhaustive search

method should be employed. Because under an exhaustive search the problem

becomes intractable, we present in Figure 5 the best results (and not averages)

obtained by the genetic algorithm. In this way we obtain a lower bound for the

performance of our criterion if an exhaustive search should be employed. For

each problem instance, from 5 runs of MNC-GA on each problem instance, the

solution having the highest CritCF fitness value is retained. For each class of

problems (each class consisting of 10 problem instances) the results are summa-

rized as boxplots over the Adjusted Rand Index. Experiments are performed

both for gaussian and uniform noise. For each problem, Figure 5 presents the

following:

• the performance of KMeans over the datasets consisting only of relevant

features and given the correct number of clusters (supervised clustering),

• the performance of KMeans over the datasets consisting only of relevant

features and employing CritCF to determine the correct number of clusters

(unsupervised clustering),

• the performance of KMeans over the datasets containing 100 gaussian

noisy features and employing CritCF to determine simultaneously the cor-
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rect number of clusters and the relevant features (unsupervised wrapper

FS)

• item the performance of KMeans over the datasets containing 100 noisy

features with uniform distribution and employing CritCF to determine

simultaneously the correct number of clusters and the relevant features

(unsupervised wrapper FS).

As upper bound

Comparing the ARI scores obtained in the original feature space consisting

only of relevant features (Table 1) with the ARI scores obtained in the selected

normalized feature space (Table 2), a decrease in the computed partition quality

can be observed. Part of this loss can be related to the data normalization per-

formed before feature selection which, as shown in [7], can decrease considerably

the separability between clusters making thus more difficult for the algorithm

to identify proper groupings.

In case of the data sets 2d-4c containing gaussian noise, our algorithms

using the criterion CritCF identified the 2 relevant attributes in 7 out of 10 test

instances and delivered partitions with the number of clusters varying between

3 and 5. The poor average performance reported in Table 2 is due to the

misleading behavior of our criterion on the remaining 3 test instances. The

MNC-GA either selected more features or chose partitions with a larger number

of clusters for these instances. This behavior also explains the high value of the

standard deviation. However, analyzing the chromosomes in the last generation

of the algorithm, we discovered individuals encoding the relevant features and

the right number of clusters; their presence shows that the right configuration

constitutes a local optimum in the landscape designed by the CritCF function.

This distorted behavior of our criterion constitutes a drawback for global search

methods; however, the experiments show that it is much reduced in the greedy

context: the two versions of the Forward Selection algorithm added only one

irrelevant feature in the case of these 3 instances determining only on one of

them a higher number of clusters which justifies the high average value for k in
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Table 3.

Regarding the class of problems 2d-10c with gaussian noise, all algorithms

selected the two relevant features for all problem instances as shown by the value

of the F-Measure. The high variance of the number of clusters is due to a higher

number of clusters chosen for two out of ten problem instances. Compared to

the results presented in Table 1 for CritCF corresponding to the original rele-

vant feature subset, a loss in performance is observed because of the normalized

features. However, the results are still better than those obtained with Silhou-

ette Width and Davies-Bouldin criteria in the original relevant feature space

(see Table 1).

For the problems with 10 relevant features and gaussian noise, all three

algorithms selected only relevant features but discarded some of them. For

the problems with 10 clusters, this seems to be an advantage: the quality of the

partitions derived in the reduced feature space is better, compared to the quality

of the partitions derived in the feature space containing all relevant features (see

Table 2 vs. Table 1).

Even if the F-Measure values in Figure 4 bottom corresponding to the crite-

rion CritCF are lower compared to those reported in [10], which were obtained

as described above, the ARI scores obtained by our methods are higher for some

problem instances. For example, in case of the problems 10d-4c our methods ob-

tain the lowest values for the F-measure but outperform most of the algorithms

with regard to the ARI scores. Value 1 for the precision in Tables 2 and 3 shows

that CritCF manages to remove all the gaussian noisy features. On the other

hand, the recall values show that some relevant features are also discarded. All

these observations suggest the hypotheses that some of the features known to

be relevant actually may be redundant. This hypotheses is suggested as well

by experiments reported in [10]: when the procedure for automated extraction

of the optimal solution from the Pareto front was used, the results concerning

F-Measure were significantly worst while the ARI scores were relatively close.

Unfortunately, analyzing Figure 4 no definite winner can be identified: if

an algorithm outperforms the others on one class of test instances, there exists
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an algorithm which beats it on a different problem. However, when comparing

the methods, one must take into account that the methods based on CritCF

function work completely unsupervised while the results reported for the other

methods were obtained in a supervised manner as described above. Moreover,

the methods using the function CritCF win with regard to time-complexity

against the other methods presented in the experimental section. The first

version of the Forward Selection algorithm required an average of 5,000 fitness

evaluations for the problem instances with only 2 relevant features and about

17,000 fitness evaluations for the data sets with 10 relevant features. The Multi-

Niche GA was run for only 10,000 fitness evaluations while the second version

of the Forward Selection algorithm and all the methods from [10] (except the

one based on entropy) employed more than 32,000 fitness evaluations. The

quadratic complexity of the Silhouette Width criterion and the computational

effort which must be payed for post-processing the Pareto front in [10] must also

be considered.

Regarding the performance of our criterion on datasets with uniform noise,

the same results as for the case of gaussian noise are obtained for the datasets

with 10 relevant features. On the datasets with 2 relevant features and 10 clus-

ters, the algorithm behaved impeccable on nine out of ten problem instances

and selected one irrelevant feature along with the two relevant features for one

problem instance. A significant decrease in performance can be observed in

Figure 5 for the class of problems with uniform noise consisting of 2 relevant

features and 4 clusters. Only on two problem instances out of ten in this class,

the algorithm selected correctly only the two relevant features. On six problem

instances the algorithm selected the 2 relevant features but also added 1 noisy

features which led to an increasing number of clusters in the selected partition.

On the remaining two problem instances, the algorithm did not identify the

relevant features. However, this class of problem instances seems to be the most

difficult one even for the case of supervised clustering, when k-Means is run

on the dataset consisting only of the relevant features and is supplied with the

correct number of clusters; this may be one reason for the bad performance of
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the wrapper feature selection method: the clusters formed in the relevant fea-

ture space can not be correctly separated with k-Means, and the noisy uniform

features mislead our criterion towards selecting smaller clusters.

For the Letters and Digits data sets we selected only 2 classes in order to

interpret the results in terms of relevant features: classes A (789 data items) and

B (766 data items) for Letters and classes 5 (376 data items) and 6 (377 data

items) for Digits. For both test cases the MNC-GA was run 5 times each run

consisting of 500 iterations; the best solution under CritCF criterion is reported.

The results are presented in Table 4. For the Digits data set the best partition

returned with MNC-GA accordingly to CritCF consisted of 3 clusters with one

of the clusters consisting of only 5 data items; a k-Means run on the selected

features with the number of clusters set to 2 returns an ARI score of 0.9476.

The selected features are marked in gray in Figure 6.

As shown by the experimental results, CritCF can be used to search for

both the most significant feature subspace and the best partition. The results

reported are obtained on data sets containing more than 90 data items. How-

ever, for very small data sets, the between-cluster inertia and within-cluster

inertia computed for optimal partitions with varying number of clusters do not

follow the same distribution as the one illustrated in Figure 1, but a more linear

one. For this reason, our function was unable to determine the right number

of clusters on most of the test instances in class 2d-2c-100 and 10d-2c-100. For

example, in case of the instances 10d-2c-100-no0 and 10d-2c-100-no8 (which

consist of 118 and respectively 89 data items) CritCF was able to identify the

optimum partition while for the rest of the test instances in the class 10d-2c-100

(which consist of less than 68 data items) CritCF biased the search process to-

wards higher numbers of clusters. This phenomenon is common for a wide range

of computational problems: there exist thresholds in the parameter space where

certain characteristics of the problem change dramatically (phase transitions).

Therefore, different algorithms may be appropriate for different instances of the

problem. Experiments strongly suggest that the criterion we propose for un-

supervised feature selection and clustering is appropriate for problem instances
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(data sets) with more than 70 data items.

5. Conclusion and further work

This paper introduces a new clustering criterion which is in most cases unbi-

ased with respect to the number of clusters and which provides at the same time

a ranking of partitions in feature subspaces of different cardinalities. Therefore,

this criterion is able to provide guidance to any heuristic that simultaneously

searches for both relevant feature subspaces and optimal partitions.

CritCF, the new criterion, minimizes the within-cluster variance and simulta-

neously maximizes the between-cluster separation. It facilitates the use of local

Mahalanobis metrics which allow for identification of clusters of more general,

ellipsoidal shape. The impact of using Mahalanobis distances in conjunction

with the new criterion for unsupervised feature selection will be investigated in

future work.
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Problem Best DB SW CritCF

ARI k ARI k ARI k ARI k

2d-4c 0.9235 4.02 0.8182 3.30 0.8710 3.70 0.8580 4.01

±0.04 ±0.14 ±0.15 ±0.78 ±0.13 ±0.78 ±0.08 ±0.79

2d-10c 0.8359 10.93 0.6869 7.78 0.7800 11.24 0.7945 10.39

±0.07 ±2.09 ±0.14 ±3.35 ±0.10 ±3.37 ±0.08 ±2.44

2d-20c 0.9133 19.63 0.8046 14.17 0.8700 16.71 0.8902 17.45

±0.02 ±2.13 ±0.12 ±3.15 ±0.07 ±2.90 ±0.04 ±2.53

2d-40c 0.8347 39.48 0.7070 25.39 0.8023 34.84 0.7868 30.64

±0.02 ±4.50 ±0.10 ±6.37 ±0.04 ±5.27 ±0.05 ±4.74

10d-4c 0.9711 3.99 0.9158 3.69 0.9044 3.59 0.9327 3.5

±0.02 ±0.07 ±0.14 ±0.64 ±0.14 ±0.66 ±0.04 ±0.50

10d-10c 0.9246 9.21 0.8930 8.62 0.9178 9.03 0.8958 8.36

±0.02 ±0.82 ±0.07 ±1.26 ±0.02 ±0.78 ±0.03 ±1.25

10d-20c 0.9744 20.23 0.9189 17.08 0.9479 18.05 0.9636 20.44

±0.01 ±1.82 ±0.06 ±1.84 ±0.04 ±1.59 ±0.02 ±1.63

10d-40c 0.9582 41.36 0.8849 32.03 0.9282 35.48 0.9459 42.975

±0.0122 ±3.25 ±0.0529 ±2.89 ±0.0379 ±3.12 ±0.02 ±3.23

2d-4c-100 0.8090 3.9 0.6996 3.39 0.6419 2.96 0.7467 4.00

±0.13 ±0.83 ±0.15 ±2.43 ±0.15 ±1.14 ±0.12 ±1.00

2d-10c-100 0.7913 10.7 0.6608 8.44 0.6880 8.945 0.7420 9.65

±0.06 ±2.19 ±0.15 ±4.02 ±0.13 ±4.05 ±0.05 ±2.90

10d-4c-100 0.9610 3.88 0.7963 4.66 0.8600 4.06 0.9263 3.93

±0.05 ±0.32 ±0.26 ±3.52 ±0.22 ±2.53 ±0.12 ±0.44

10d-10c-100 0.8805 9.70 0.8392 8.37 0.8600 9.43 0.8327 8.18

±0.04 ±1.19 ±0.06 ±1.30 ±0.06 ±1.53 ±0.07 ±1.39

Table 1: Results on synthetic and real data sets - partitions obtained with the k-Means

algorithm. The ARI score and the number of clusters k reported here, are computed as

averages over 20 runs per data set. For each data set, four partitions are reported: the one

with the highest ARI value (Best) and the partition found by Davis-Bouldin Index (DB),

Silhouette Width (SW) and CritCF function, respectively.

34



Problem ARI k m recall precision F-measure

2d-4c-100-Gaussian 0.5649 6.27 3.85 0.93 0.80 0.86

±0.28 ± 4.77 ± 4.73

2d-10c-100-Gaussian 0.7281 9.52 2 1 1 1

±0.07 ± 3.40 ± 0

10d-4c-100-Gaussian 0.9087 3.95 7.36 0.74 1 0.85

±0.13 ± 0.45 ± 1.33

10d-10c-100-Gaussian 0.8528 8.51 9.20 0.92 1 0.95

±0.07 ± 1.23 ± 0.71

Table 2: Results for feature selection obtained with the MNC-GA algorithm using CritCF, on

data sets with gaussian noise (100 gaussian features). The ARI score for the best partition,

the number of clusters k, the number of features m, the recall and the precision of the selected

feature space are computed as averages over 20 runs on each data set.

Problem Alg. ARI k m recall precision F-measure

2d-4c-100-gaussian FS1 0.6321 5.60 2.30 1 0.90 0.94

FS2 0.6391 5.4 2.3 1 0.90 0.94

2d-10c-100-gaussian FS1 0.7464 9.3 2 1 1 1

FS2 0.7491 9.4 2 1 1 1

10d-4c-100-gaussian FS1 0.8580 3.80 7.20 0.72 1 0.83

FS2 0.9055 4 7.5 0.75 1 0.85

10d-10c-100-gaussian FS1 0.8084 7.70 9.00 0.90 1 0.9428

FS2 0.8648 8.7 9.4 0.94 1 0.9678

Table 3: Results for feature selection obtained with the two versions of the Forward Selection

algorithm using CritCF on data sets with gaussian noise (100 gaussian features). The ARI

score for the best partition, the number of clusters k, the number of features m, the recall

and the precision of the selected feature space are listed.
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Figure 4: Results for the datasets containing Gaussian noise. Adjusted Rand Index (top)

and F-Measure (bottom) for the best partition obtained in the feature subspace extracted

with various methods: the three red lines correspond to the MNC-GA and the two versions

of Forward selection algorithm using CritCF; the two blue lines correspond to the multi-

objective algorithm investigated in [10] using Silhouette Widthand Davies Bouldin as the

primary objective. The yellow line corresponds to a filter method investigated in [10] using an

entropy measure. The gray line corresponds to the best partition that can be obtained with

k-Means run on the optimal standardized feature subset
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Figure 5: The Adjusted Rand Index for the partitions obtained as follows: supervised clus-

tering on the relevant features, unsupervised clustering on the relevant features using CritCF,

unsupervised wrapper feature selection using CritCF on datasets containing 100 gaussian fea-

tures and on datasets containing 100 uniform features. Each boxplot summarizes 10 values

corresponding to the 10 problem instances in each class.

Problem Alg. ARI k m

Letters AB kMeans 0.7524 2 16

MNC-GA 0.7704 2 8

Digits 56 k-Means 0.9475 2 64

MNC-GA 0.9347 3 6

Table 4: Results for feature selection on real data sets. The first line for each data set presents

the performance of k-Means on the initial data set with the correct number of clusters. The

second line presents the performance of MNC-GA for unsupervised wrapper feature selection:

the ARI score, the number of clusters k identified and the number of features m selected.

Figure 6: Results for MNC-GA on real data. The selected features are marked in gray
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